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Abstract. We consider the question of whether the trigonometric system can be
equivalent to some rearrangement of the Walsh system in Lp for some p 6= 2. We show
that this question is closely related to a combinatorial problem. This enables us to prove
non-equivalence for a number of rearrangements. Previously this was known for the Walsh–
Paley order only.

1. Introduction. Both the Walsh system and the trigonometric system
are systems of characters on a compact abelian group. This explains why
many of the results in the theory of those systems are parallel. However,
those similarities do not usually extend to the case when the systems are
compared directly. So it is known that the Walsh system in the Walsh–Paley
order and the trigonometric system are not equivalent in Lp for p 6= 2 (see
[5]). A “power-type” non-equivalence for those systems was recently shown
in [4].

It does not seem natural to fix the order of the systems in this basis
equivalence problem. In [4] the conjecture was made that non-equivalence
also holds for arbitrary rearrangements of the Walsh system. Nevertheless,
the methods used in that paper are very particular to the case of the Walsh–
Paley order. The aim of this note is to address the more general equivalence
problem.

In a first part, we relate the equivalence question for a fixed ordering
to a question of algebraic combinatorial type. In a second part, we apply
this approach to prove non-equivalence for a number of orderings. We obtain

2000 Mathematics Subject Classification: 42C10, 42C20, 46B15.
Key words and phrases: Walsh series, trigonometric series, equivalence of bases, rear-

rangements of bases.
The authors were supported by DFG grants Hi 584/2-2 and We 1868/1-1, respectively.

Both authors thank the University of Pretoria where part of this work was carried out.

[435]



436 A. Hinrichs and J. Wenzel

estimates of power type but we do not attempt to find the optimal estimates
here.

The method can be generalized to deal with the equivalence of arbi-
trary systems of characters on compact abelian groups. This will be studied
elsewhere.

We consider the trigonometric system (en)n∈Z on [0, 1] given by the func-
tions en(t) = exp(2πint). Let r0, r1, . . . be the system of Rademacher func-
tions on [0, 1]. For n = 0, 1, . . . the binary expansion of n is n =

∑∞
i=0 ni2

i

with ni ∈ {0, 1}. Observe that the sum is a finite sum. The nth Walsh
function is then given by

wn =
∞∏

i=0

rnii .

Fix a permutation σ of {0, 1, . . .}. Given 1 ≤ p ≤ ∞, we say that the
trigonometric system and the Walsh system rearranged with σ are equivalent
in Lp if there exists c > 0 such that

1
c

∥∥∥
∞∑

k=0

ξkek

∥∥∥
p
≤
∥∥∥
∞∑

k=0

ξkwσ(k)

∥∥∥
p
≤ c
∥∥∥
∞∑

k=0

ξkek

∥∥∥
p

for all sequences (ξk) of complex numbers with only finitely many non-zero
terms. Here ‖ · ‖p denotes the norm in Lp[0, 1]. We then write (ek)k≥0 ∼p
(wσ(k))k≥0. Observe that we actually only consider one half of the trigono-
metric system. This is not really essential for what follows but it simplifies
the exposition significantly.

We now describe the organization of the paper in some detail. The next
section provides a basic duality result which shows that the equivalence
questions in Lp and Lp′ are essentially the same, where as usual p′ denotes
the conjugate number of p given by 1/p+ 1/p′ = 1.

In Section 3 we introduce and study a sequence of functions crucial for
our purpose. Norm estimates for these functions provide a tool to prove non-
equivalence of Walsh and trigonometric systems. This is a generalization of
the method used in [4]. Moreover, it will turn out to be fundamental for our
considerations that non-equivalence of Walsh and trigonometric systems in
Lp for all p 6= 2 can be derived from a non-trivial Lp0-norm estimate of those
functions for one fixed p0 > 2.

In Section 4 we show that the L4-norm of the key functions is determined
by the solution of a particular combinatorial problem. This is due to the fact
that the fourth power of the L4-norm is a polynomial function and to the
orthogonality of Walsh and trigonometric functions.

Section 5 applies this approach to concrete rearrangements of the Walsh
system, in particular to linear and piecewise linear rearrangements and
“small” perturbations thereof. This includes all the commonly used order-
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ings of the Walsh functions, i.e. the Walsh–Paley order, the original Walsh
order, the Walsh–Kaczmarz order, and the Walsh–Kronecker orders. We give
the definitions of these orderings at the appropriate places. More informa-
tion on Walsh functions and Walsh series can be found in the monographs
[1] and [3].

2. Duality. To study the equivalence problem we introduce some no-
tation. By An we denote a general orthonormal system (a0, . . . , an−1) in
L2[0, 1]; usually this will be the system Wn of the first n Walsh func-
tions (w0, . . . , wn−1) or the system En of the first n exponential functions
(e0, . . . , en−1). Given a finite set F ⊆ {0, . . . , n− 1}, we denote by A(F) the
system formed by the functions ak with k ∈ F. If in particular F = [m] :=
{0, . . . ,m− 1} is the set of the first m members of {0, . . . , n − 1} we write
again Am for A([m]). Given a permutation σ of {0, 1, . . .} we denote by
Aσ(F) the system formed by all aσ(k) where k ∈ F. Note that Aσ(F) and
A(σ(F)) differ just by their order.

We let %p(A(F),B(F)) denote the smallest constant c such that
∥∥∥
∑

k∈F
ξkak

∥∥∥
p
≤ c
∥∥∥
∑

k∈F
ξkbk

∥∥∥
p

for all complex numbers ξk with k ∈ F.
We are interested in the quantities

%p(En,W
σ
n), %p(Wn,E

σ−1

n ),

%p(W
σ
n,En), %p(E

σ−1

n ,Wn),

where σ−1 is the inverse permutation of σ.
In order to get some information on duality, we need another quantity,

which behaves better under passing from p to p′. The kth Fourier coefficient
of a function f ∈ Lp with respect to the system Bn is given by 〈f, bk〉 =

� 1
0 f(t)bk(t) dt. For simplicity, we will henceforth assume that all orthonormal

systems considered consist of bounded functions, so Fourier coefficients exist
for all Lp-functions. We let δp(A(F),B(F)) denote the smallest constant c
such that ∥∥∥

∑

k∈F
〈f, bk〉ak

∥∥∥
p
≤ c‖f‖p

for all functions f ∈ Lp[0, 1]. Observe that δp(A(F),B(F)) is the norm of
the operator S : Lp[0, 1]→ Lp[0, 1] given by Sf =

∑
k∈F〈f, bk〉ak.

We have the following facts about the quantities %p and δp, which are
either obvious or proved in [2]:

%p(A(F),B(F)) ≤ δp(A(F),B(F)),(1)

δp(A(F),B(F)) = δp′(B(F),A(F)),(2)



438 A. Hinrichs and J. Wenzel

δp(A(F),B(F)) ≤ %p(A(F),B(F))δp(B(F),B(F)),(3)

%p(A
σ(F),Bσ(F)) = %p(A(σ(F)),B(σ(F))),(4)

δp(Aσ(F),Bσ(F)) = δp(A(σ(F)),B(σ(F))).(5)

If F ⊆ G then also

%p(A(F),B(F)) ≤ %p(A(G),B(G)).(6)

Moreover, if θ ∈ (0, 1) is given by 1/p = (1− θ)/p0 + θ/p1, complex interpo-
lation shows that

δp(A(F),B(F)) ≤ δp0(A(F),B(F))1−θδp1(A(F),B(F))θ.(7)

The next fact follows from the boundedness of the Riesz transform in
any Lp[0, 1] for 1 < p < ∞ (see [6, Vol. I, p. 67]), and the boundedness of
the canonical projection from Lp[0, 1] onto the span of the first 2m Walsh
functions (see [3, p. 142]).

Lemma 2.1. For 1 < p <∞, there is a constant cp such that

δp(En,En) ≤ cp(8)

for n = 1, 2, . . . Moreover , for all m = 1, 2, . . . we have

δp(W2m ,W2m) = 1.(9)

Combining (4) and (6) gives the following lemma.

Lemma 2.2. If σ[n] ⊆ [N ] then

%p(A
σ
n,Bn) ≤ %p(AN ,B

σ−1

N ).(10)

Proof. We have

%p(A
σ
n,Bn) = %p(A(σ[n]),Bσ−1

(σ[n]))

≤ %p(A([N ]),Bσ−1
([N ])) = %p(AN ,B

σ−1

N ).

Next we prove a first duality result.

Lemma 2.3. For any orthonormal system An and 1 < p <∞ we have

%p(En,An) ≤ cp%p′(An,En),(11)

%p(W2m ,A2m) ≤ %p′(A2m ,W2m).(12)

Proof. It follows successively from (1), (2), (3) and (8) that

%p(En,An) ≤ δp(En,An) = δp′(An,En) ≤ %p′(An,En)δp′(En,En)

≤ cp%p′(An,En).

The second inequality follows in the same way if we use (9) instead of (8).

We can now prove the complete duality result.
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Proposition 2.4. Given a permutation σ and n ∈ {0, 1, . . .} there exists
a number N such that

%p(En,W
σ
n) ≤ cp%p′(Wσ

N ,EN ), %p(E
σ
n,Wn) ≤ cp%p′(WN ,E

σ
N ),(13)

%p(Wn,E
σ
n) ≤ %p′(EσN ,WN ), %p(W

σ
n,En) ≤ %p′(EN ,Wσ

N ),(14)

for all 1 < p <∞.

Proof. The left hand inequalities are immediate consequences of (11)
and (12): use N = n and N = 2m > n and (6) respectively.

The right hand inequalities follow from (10), the corresponding left hand
inequalities and (10) again.

We can now summarize the duality results as follows.

Proposition 2.5. Let 1 < p < ∞. Then the systems (ek)k≥0 and
(wσ(k))k≥0 are equivalent in Lp if and only if they are equivalent in Lp′ .

Proof. We only have to note that (ek)k≥0 ∼p (wσ(k))k≥0 if and only if
the parameters %p(En,W

σ
n) and %p(W

σ
n,En) are uniformly bounded.

3. The key functions. To show non-equivalence of the trigonometric
and rearranged Walsh systems, norm estimates for the functions

F σn (s, t) =
n−1∑

k=0

ek(s)wσ(k)(t)

play an essential rôle. This is due to the next observation.

Proposition 3.1. For each p with 1 < p < ∞, there exists some con-
stant cp > 0 such that

%p(En,W
σ
n) ≥ cpn1−1/p‖F σn ‖−1

p for n = 1, 2, . . . ,

where ‖F σn ‖p is the norm of F σn in Lp([0, 1]2).

Proof. From the definition of %p(En,W
σ
n) we find that

1�

0

∣∣∣
n−1∑

k=0

ξkek(t)
∣∣∣
p
dt ≤ %p(En,Wσ

n)p
1�

0

∣∣∣
n−1∑

k=0

ξkwσ(k)(t)
∣∣∣
p
dt

for all complex numbers ξ0, . . . , ξn−1. Using this for ξk = ek(s), integrating
over s ∈ [0, 1] and taking pth roots, we obtain

( 1�

0

∣∣∣
n−1∑

k=0

ek(t)
∣∣∣
p
dt
)1/p

≤ %p(En,Wσ
n)‖F σn ‖p.
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The left hand side is the Lp-norm of the Dirichlet kernel. The well known
properties of this kernel imply that

c1n
1−1/p ≤

( 1�

0

∣∣∣
n−1∑

k=0

ek(t)
∣∣∣
p
dt
)1/p

≤ c2n
1−1/p,

where c1 and c2 depend only on p (see [6, Vol. I, p. 67]). This completes the
proof.

Since by Parseval’s equality ‖F σn ‖2 =
√
n and since obviously ‖F σn ‖∞

= n, Hölder’s inequality yields the upper bound ‖F σ
n ‖p ≤ n1−1/p for any

2 < p <∞. If we can show for some p > 2 that actually

lim inf
n→∞

n1/p−1‖F σn ‖p = 0(15)

then Proposition 3.1 implies that (ek)k≥0 and (wσ(k))k≥0 cannot be equiva-
lent in Lp. The duality result, Proposition 2.5, shows that this is also true
in Lp′ .

We now derive that (15) for one p0 in (2,∞) already implies (15) for all p
in (2,∞). Indeed, if p ∈ (2, p0), defining θ ∈ (0, 1) by 1/p = θ/2 + (1− θ)/p0
and using Hölder’s inequality together with ‖F σ

n ‖2 = n1/2 yields

n1/p−1‖F σn ‖p ≤ n1/p−1‖F σn ‖θ2‖F σn ‖1−θp0
= (n1/p0−1‖F σn ‖p0)1−θ.

Similarly, if p ∈ (p0,∞), defining θ ∈ (0, 1) by 1/p = θ/p0, from ‖F σn ‖∞ = n
we obtain

n1/p−1‖F σn ‖p ≤ n1/p−1‖F σn ‖θp0
‖F σn ‖1−θ∞ = (n1/p0−1‖F σn ‖p0)θ.

Altogether, we have proved the following theorem.

Theorem 3.2. If there exists p0 ∈ (2,∞) such that

lim inf
n→∞

n1/p0−1‖F σn ‖p0 = 0

then, for all p ∈ (1,∞) with p 6= 2, the systems (ek) and (wσ(k)) are not
equivalent in Lp.

Remark. In the cases p = 1 and p = ∞, some additional care has to
be taken. Using the well known estimates

δ1(En,En) = δ∞(En,En) ≤ c(1 + logn),

one deduces from the interpolation formula (7) that if there exists p0 ∈
(2,∞) such that

lim inf
n→∞

n1/p0−1(1 + logn)1−2/p0‖F σn ‖p0 = 0

then (ek) and (wσ(k)) are not equivalent in L1 and L∞.
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4. The case p = 4. By the results of the previous section, we can now
concentrate on upper bounds for the Lp-norm of F σn for a convenient value
of p ∈ (2,∞). We use p = 4 here. By Theorem 3.2, to show non-equivalence
of (ek) and (wσ(k)) in Lp for all p ∈ (1,∞) it is enough to verify that

lim inf
n→∞

n−3/4‖F σn ‖4 = 0.

We are going to formulate an equivalent combinatorial condition. To this
end, let us introduce some more notation. Given two numbers m,n ∈ N0
with binary expansions m =

∑∞
i=0mi2i and n =

∑∞
i=0 ni2

i, their dyadic
sum is given by m⊕ n =

∑∞
i=0 |mi− ni|2i. The set N0 with dyadic addition

is isomorphic to the group of Walsh functions, which is expressed in the
equation wm⊕n = wmwn for all m,n ∈ N0. Since the Walsh system relates
to the powers of two, we will from now on concentrate on the norms of F2n

instead of Fn for all n ∈ N0. Let

Aσn = {(k, l,m) ∈ [2n]3 : k+ l−m ∈ [2n], σ(k)⊕σ(l)⊕σ(m) = σ(k+ l−m)}.
In the next lemma and throughout the paper, the notation #A means

the cardinality of a set A.

Lemma 4.1. ‖F σ2n‖44 = #Aσn.

Proof. It follows from

|F σ2n(s, t)|2 = F σ2n(s, t)F σ2n(s, t) =
( 2n−1∑

k=0

ek(s)wσ(k)(t)
)( 2n−1∑

l=0

e−l(s)wσ(l)(t)
)

=
2n−1∑

k,l=0

ek−l(s)wσ(k)⊕σ(l)(t)

that

|F σ2n(s, t)|4 =
2n−1∑

k1,l1=0

2n−1∑

k2,l2=0

ek1−l1+k2−l2(s)wσ(k1)⊕σ(l1)⊕σ(k2)⊕σ(l2)(t).

Since
1�

0

1�

0

ea(s)wb(t) ds dt =
{

1 if a = b = 0,

0 otherwise,

we find by integration that ‖F σ2n‖44 = #Bσ
n where

Bσ
n = {(k1, l1, k2, l2) ∈ [2n]4 : k1 − l1 + k2 − l2 = 0,

σ(k1)⊕ σ(l1)⊕ σ(k2)⊕ σ(l2) = 0}.
Obviously, Bσ

n has the same cardinality as Aσn.

Corollary 4.2. If lim infn→∞ 8−n#Aσn = 0 then, for all p ∈ (1,∞)
with p 6= 2, the systems (ek) and (wσ(k)) are not equivalent in Lp.
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Remark. Using the remark following Theorem 3.2 we also see that

lim inf
n→∞

8−nn2#Aσn = 0

implies that (ek) and (wσ(k)) are not equivalent in L1 and L∞.

5. Application to concrete rearrangements. In this section, we ap-
ply the results of the previous section to the study of the equivalence prob-
lem for some specific rearrangements. In particular, we treat the (besides the
Walsh–Paley order) most frequently used cases of the original Walsh sys-
tem, the Walsh–Kaczmarz system and the Walsh–Kronecker systems. For
the properties and alternative definitions of the above orderings, we refer
the reader to [3].

5.1. Dyadically linear rearrangements. The original Walsh system is a
particular case of a linear rearrangement of the Walsh–Paley system. A dyad-
ically linear rearrangement is represented by a matrix T = (ti,j)∞i,j=0 with
entries in {0, 1} such that the ith coefficient in the binary expansion of σ(n)
is given as

σ(n)i =
∞∑

j=0

ti,jnj mod 2.

This is equivalent to the condition that σ is linear with respect to binary
addition: σ(m⊕ n) = σ(m)⊕ σ(n). The original Walsh system is obtained
using the matrix T with entries ti,j = 1 if and only if j = i or j = i+ 1.

For linear rearrangements σ the sets Aσn behave nicely.

Proposition 5.1. If σ is dyadically linear and π is an arbitrary permu-
tation, then

Aσ◦πn = Aπn

and consequently
#Aσ◦πn = #Aπn.

Proof. We simply observe that by linearity and injectivity of σ we have

Aσ◦πn = {(x, y, z) ∈ [2n]3 : x+ y − z ∈ [2n],

σ(π(x))⊕ σ(π(y))⊕ σ(π(z)) = σ(π(x+ y − z))}
= {(x, y, z) ∈ [2n]3 : x+ y − z ∈ [2n],

σ(π(x)⊕ π(y)⊕ π(z)) = σ(π(x+ y − z))}
= {(x, y, z) ∈ [2n]3 : x+ y − z ∈ [2n],

π(x)⊕ π(y)⊕ π(z) = π(x+ y − z)} = Aπn.

To use our general combinatorial condition for dyadically linear rear-
rangements of the Walsh–Paley system, we need the following result, which
may also have some interest in its own right.
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Theorem 5.2. Let ψ : N0 → Z be an arbitrary map. Then for all n =
0, 1, . . . we have

#{(x, y) ∈ [2n]2 : ψ(x⊕ y) = x+ y} ≤ 3n.

Proof. For u = 0, 1, . . . , define

Bn(u) = {(x, y) ∈ [2n]2 : x⊕ y = u},
Cψn (u) = {(x, y) ∈ [2n]2 : x+ y = ψ(u)}.

Then
{(x, y) ∈ [2n]2 : ψ(x⊕ y) = x+ y} =

⋃

u

Bn(u) ∩ Cψn (u).

So all we have to show is∑

u

#(Bn(u) ∩ Cψn (u)) ≤ 3n.

We use induction over n. The statement for n = 0 is trivial. So assume
we already know the statement for a certain value of n and all functions ψ.
Let us partition Bn+1(u) into four disjoint subsets as follows:

B00(u) = Bn+1(u) ∩ ([2n]× [2n]),

B01(u) = Bn+1(u) ∩ ([2n]× (2n + [2n])),

B10(u) = Bn+1(u) ∩ ((2n + [2n])× [2n]),

B11(u) = Bn+1(u) ∩ ((2n + [2n])× (2n + [2n])).

We are going to use the induction hypothesis to show that
∑

u

#(B01(u) ∩ Cψn+1(u)) ≤ 3n,(16)

∑

u

#(B10(u) ∩ Cψn+1(u)) ≤ 3n,(17)

∑

u

#((B00(u) ∪B11(u)) ∩ Cψn+1(u)) ≤ 3n.(18)

This implies
∑

u #(Bn+1(u) ∩ Cψn+1(u)) ≤ 3n+1, completing the induction.
To verify (16), we observe that for (x, y) ∈ [2n] × (2n + [2n]) we have

y ⊕ 2n = y − 2n and therefore

(x, y) ∈ B01(u) ∩ Cψn+1(u) ⇔ x⊕ y = u and x+ y = ψ(u)

⇔ x⊕ y ⊕ 2n = u⊕ 2n and x+ y − 2n = ψ(u)− 2n

⇔ (x, y − 2n) ∈ Bn(u⊕ 2n) ∩ Cψ̃n+1(u⊕ 2n),

where we define ψ̃(ũ) = ψ(ũ⊕ 2n)− 2n. So

#(B01 ∩ Cψn+1(u)) = #(Bn(u⊕ 2n) ∩ Cψ̃n (u⊕ 2n)),
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which implies by induction hypothesis that
∑

u

#(B01(u) ∩ Cψn+1(u)) ≤
∑

u

#(Bn(u) ∩ Cψ̃n (u)) ≤ 3n.

Inequality (17) is symmetric to (16).
To prove (18), we observe that

(x, y) ∈ B00(u) implies x+ y < 2n+1,

(x, y) ∈ B11(u) implies x+ y ≥ 2n+1,

which gives

if ψ(u) ≥ 2n+1 then B00(u) ∩ Cψn+1(u) = ∅,
if ψ(u) < 2n+1 then B11(u) ∩ Cψn+1(u) = ∅.

So ∑

u

#((B00(u) ∪B11(u)) ∩ Cψn+1(u))

=
∑

ψ(u)<2n+1

#(B00(u) ∩ Cψn+1(u)) +
∑

ψ(u)≥2n+1

#(B11(u) ∩ Cψn+1(u)).

Defining ψ̃ by

ψ̃(u) =
{
ψ(u) if ψ(u) < 2n+1,

ψ(u)− 2n+1 if ψ(u) ≥ 2n+1,

we obtain, for u with ψ(u) < 2n+1,

(x, y) ∈ B00(u) ∩ Cψn+1(u) ⇔ (x, y) ∈ Bn(u) ∩ Cψ̃n (u),

and for u with ψ(u) ≥ 2n+1

(x, y) ∈ B11(u) ∩ Cψn+1(u) ⇔ (x− 2n, y − 2n) ∈ Bn(u) ∩ Cψ̃n (u).

So ∑

ψ(u)<2n+1

#(B00(u) ∩ Cψn+1(u)) =
∑

ψ(u)<2n+1

#(Bn(u) ∩ Cψ̃n (u))

and ∑

ψ(u)≥2n+1

#(B11(u) ∩ Cψn+1(u)) =
∑

ψ(u)≥2n+1

#(Bn(u) ∩ Cψ̃n (u)),

together with the induction hypothesis, finally imply that
∑

u

#((B00(u) ∪B11(u)) ∩ Cψn+1(u)) ≤
∑

u

#(Bn(u) ∩ Cψ̃n (u)) ≤ 3n.

Denoting by ι the identity ι(x) = x for all x ∈ N0 we can now prove the
following result.

Corollary 5.3. #Aιn ≤ 6n.
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Proof. For each z ∈ [2n], we consider the set

An(z) = {(x, y) ∈ [2n]2 : x+ y − z ∈ [2n], x⊕ y ⊕ z = x+ y − z}.
Defining ψ(u) = (u⊕ z) + z, we obtain

An(z) ⊆ {(x, y) ∈ [2n]2 : ψ(x⊕ y) = x+ y},
so from Theorem 5.2 we infer that #An(z) ≤ 3n. Consequently,

#Aιn ≤
∑

z∈[2n]

#An(z) ≤ 2n3n = 6n.

Theorem 5.4. If σ is dyadically linear then #Aσn ≤ 6n for n = 0, 1, . . .
So the systems (ek) and (wσ(k)) are not equivalent in Lp for p 6= 2. In
particular , the Walsh–Paley system and the original Walsh system are not
equivalent to the trigonometric system in Lp for p ∈ [1,∞] with p 6= 2.

Proof. The assertion follows immediately from Proposition 5.1 and Co-
rollaries 5.3 and 4.2 and the remark following Corollary 4.2.

Remark. The Walsh–Kronecker systems W σn
2n are special rearrange-

ments of the first 2n Walsh functions, different for each n, which are the
basis for the fast Walsh–Fourier transform. They can also be obtained from
the Walsh matrices. Here σn is a dyadically linear map on [2n] so that our
results also apply to this case giving lower estimates for %p(E2n ,W

σn
2n ).

5.2. Piecewise linear rearrangements. Unfortunately, one of the fre-
quently used rearrangements of the Walsh system, the Walsh–Kaczmarz
system, is not a linear rearrangement. It seems more natural in the equiva-
lence problem than the Walsh–Paley order since it arranges the Walsh func-
tions in the order of increasing number of sign changes. The corresponding
permutation σ is given by σ(0) = 0 and

σ
(

2k +
k−1∑

i=0

xi2i
)

= 2k +
k−1∑

i=0

xk−1−i2i

for k = 0, 1, . . . and x0, . . . , xk−1 ∈ {0, 1}. It is possible to estimate the
cardinality of the set Aσn from the previous section for this rearrangement
directly. Nevertheless, we prefer to sketch an alternative approach which
works for all piecewise linear rearrangements.

A permutation σ defines a piecewise linear rearrangement if σ(0) = 0
and

σ(2k +m) = 2k + σk(m)

for k = 0, 1, . . . , 0 ≤ m ≤ 2k − 1, and bijections σk : [2k] → [2k] which
are linear with respect to binary addition. In particular, σ leaves the blocks
{2k, 2k + 1, . . . , 2k+1 − 1} invariant. Obviously, the Walsh–Kaczmarz order
is a piecewise linear rearrangement.
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Instead of using the functions F σn , we now use the functions

F̃ σn (s, t) = F σ2n(s, t)− F σn (s, t) =
2n−1∑

k=n

ek(s)wσ(k)(t).

As an analogue of Proposition 3.1, we obtain

Proposition 5.5. For each p with 1 < p < ∞, there exists some con-
stant cp > 0 such that

%p(E2n,W
σ
2n) ≥ cpn1−1/p‖F̃ σn ‖−1

p for n = 1, 2, . . .

Similarly, we obtain analogues of Lemma 4.1 and Corollary 4.2 if we
replace the set Aσn by the set

Ãσn = {(k, l,m) ∈ (2n + [2n])3 : k + l −m ∈ 2n + [2n],

σ(k)⊕ σ(l)⊕ σ(m) = σ(k + l −m)}.

Lemma 5.6. ‖F̃ σ2n‖44 = #Ãσn.

Corollary 5.7. If lim infn→∞ 8−n#Ãσn = 0 then, for all p ∈ (1,∞)
with p 6= 2, the systems (ek) and (wσ(k)) are not equivalent in Lp.

Remark. Using the remark following Theorem 3.2 we also deduce that

lim inf
n→∞

8−nn2#Ãσn = 0

implies that (ek) and (wσ(k)) are not equivalent in L1 and L∞.

We are now in a position to treat the case of piecewise linear rearrange-
ments.

Theorem 5.8. If σ is a piecewise linear rearrangement then #Ãσn ≤ 6n

for n = 0, 1, . . . So the systems (ek) and (wσ(k)) are not equivalent in Lp for
p 6= 2. In particular , the Walsh–Kaczmarz system is not equivalent to the
trigonometric system in Lp for p ∈ [1,∞] with p 6= 2.

Proof. For each z ∈ 2n + [2n], we consider the set

Ãσn(z) = {(x, y) ∈ (2n + [2n])2 : x+ y − z ∈ 2n + [2n],

σ(x)⊕ σ(y)⊕ σ(z) = σ(x+ y − z)}.
Let σk : [2k]→ [2k] denote the linear maps from the definition of piecewise
linearity. Then we infer for any (x, y) ∈ Ãσn(z) that x+ y− z ∈ 2n + [2n] and

σn(x̃⊕ ỹ ⊕ z̃) = σn(x̃+ ỹ − z̃),

where x̃ = x − 2n, ỹ = y − 2n, z̃ = z − 2n. Since σn is a permutation this
implies x̃⊕ ỹ ⊕ z̃ = x̃+ ỹ − z̃. So

#Ãσn(z) ≤ #{(x̃, ỹ) ∈ [2n]2 : x̃⊕ ỹ ⊕ z̃ = x̃+ ỹ − z̃}.
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This can be estimated by 3n as in the proof of Corollary 5.3 and gives
#Ãσn ≤

∑
z∈2n+[2n] #Ãσn(z) ≤ 6n. The claim now follows from Corollary 5.7

if p ∈ (1,∞) and the remark after that corollary if p = 1,∞.

5.3. Small perturbations. Besides (piecewise) linear rearrangements, we
can treat a further class of rearrangements, namely small perturbations of
rearrangements of the Walsh system, which are known to be non-equivalent.

To this end, for v ∈ Z, we also consider the sets

Aσn(v) := {(x, y, z) ∈ [2n]3 : x+ y − z ∈ [2n],

σ(x)⊕ σ(y)⊕ σ(z)⊕ σ(v) = σ(x+ y − z)}.
So instead of asking for σ(x) ⊕ σ(y) ⊕ σ(z) ⊕ σ(x + y − z) = 0 we require
that the left hand side of this equality equals a fixed number σ(v). Note that
Aσn(0) = Aσn.

As in the proof of Theorem 5.4, we can control the size of Aσn(v) for
dyadically linear rearrangements σ and all v.

Proposition 5.9. If σ is dyadically linear then #Aσn(v) ≤ 6n for n =
0, 1, . . .

Proof. By linearity and injectivity of σ we need only consider the case
σ = ι. Using ψ(u) = (u⊕ z ⊕ v) + z we derive the result as in the proof of
Corollary 5.3.

Given two permutations π and σ let

f(u) := π(u)⊕ σ(u) and f∗n := max
u∈[2n]

f(u).

The function f measures, in some sense, how much π deviates from σ. In
particular |π(u) − σ(u)| ≤ f(u). We say that π dyadically differs from σ
by f .

Proposition 5.10. We have

Aσn ⊆
⋃

π(v)≤4f∗n

Aπn(v).

In particular
#Aσn ≤ (4f∗n + 1) #Aπn.

Proof. Note that for all x, y, z we have

(19) σ(x)⊕σ(y)⊕σ(z)⊕σ(x+ y− z)⊕π(x)⊕π(y)⊕π(z)⊕π(x+ y− z)

= f(x)⊕ f(y)⊕ f(z)⊕ f(x+ y − z).

Also, for any x, y ≥ 0 the dyadic addition satisfies

x⊕ y ≤ x+ y.
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Therefore if (x, y, z) ∈ Aσn then x, y, z, x+ y − z ∈ [2n] and hence

f(x)⊕ f(y)⊕ f(z)⊕ f(x+ y − z) ≤ 4f ∗n.

Defining v by

π(v) = π(x)⊕ π(y)⊕ π(z)⊕ π(x+ y − z),

we obtain (x, y, z) ∈ Aπn(v). It now follows from

σ(x)⊕ σ(y)⊕ σ(z)⊕ σ(x+ y − z) = 0

and (19) that π(v) ≤ 4f ∗n. This completes the proof.

This proposition immediately implies

Theorem 5.11. If π dyadically differs from σ by f , and f and #Aπn
satisfy

lim inf
n→∞

8−n#Aπnf
∗
n = 0,

then, for all p ∈ (1,∞) with p 6= 2, the systems (ek) and (wσ(k)) are not
equivalent in Lp. This is in particular the case if π is dyadically linear and
f satisfies

f∗n = o

(
4n

3n

)
.

Remark. In the cases p = 1,∞, we again have to adjust the condition
to

lim inf
n→∞

8−nn2#Aπnf
∗
n = 0.

We now develop a dual version of the last results. We will mostly leave
the proofs to the reader, since they are completely analogous to the previous
ones. For v ∈ Z, we define the sets

Âσn(v) := {(x, y, z) ∈ [2n]3 : σ(x) + σ(y)− σ(z) + v = σ(x⊕ y ⊕ z)}
and we let Âσn = Âσn(0). As before, we can show that for p ∈ (1,∞) with
p 6= 2 the systems (eσ(k)) and (wk) are not equivalent in Lp if

lim inf
n→∞

8−n#Âσn = 0.

Again, we can control the size of Âσn(v) for dyadically linear rearrange-
ments σ and all v.

Proposition 5.12. If σ is dyadically linear then #Âσn(v) ≤ 6n for n =
0, 1, . . .

Given two permutations π and σ let

f̂(u) := |π(u)− σ(u)| and f̂∗n := max
u∈[2n]

f̂(u).

The function f̂ measures how much π deviates from σ. We say that π differs
from σ by f̂ .
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Proposition 5.13. We have

Âσn ⊆
⋃

|v|≤4f̂∗n

Âπn(v).

In particular
#Âσn ≤ (8f̂∗n + 1) #Âπn.

Proof. Note that for all x, y, z we have

(20) |σ(x⊕y⊕z)−σ(x)−σ(y)+σ(z)−π(x⊕y⊕z)+π(x)+π(y)−π(z)|
≤ f̂(x⊕ y ⊕ z) + f̂(x) + f̂(y) + f̂(z).

Therefore if (x, y, z) ∈ Aσn then x, y, z, x⊕ y ⊕ z ∈ [2n] and hence

f̂(x⊕ y ⊕ z) + f̂(x) + f̂(y) + f̂(z) ≤ 4f̂∗n.

Defining v by
v = π(x⊕ y ⊕ z)− π(x)− π(y) + π(z),

we obtain (x, y, z) ∈ Âπn(v). It now follows from

σ(x⊕ y ⊕ z)− σ(x)− σ(y) + σ(z) = 0

and (20) that |v| ≤ 4f̂∗n. This completes the proof.

Again we immediately obtain

Theorem 5.14. If π differs from σ by f̂ , and f̂ and #Âπn satisfy

lim inf
n→∞

8−n#Âπnf̂
∗
n = 0,

then, for all p ∈ (1,∞) with p 6= 2, the systems (eσ(k)) and (wk) are not
equivalent in Lp. This is in particular the case if π is dyadically linear and
f̂ satisfies

f̂∗n = o

(
4n

3n

)
.

Remark. In the cases p = 1,∞, we again have to adjust the condition
to

lim inf
n→∞

8−nn2#Âπnf̂
∗
n = 0.

To illustrate the power of this perturbation method, we add another
example.

Example. Let F be a subset of N0 such that

lim inf
n→∞

#(F ∩ [n])
n

< 2− log2 3 = 0.415037 . . .

Let σ be such that for x =
∑∞

i=0 xi2
i we have

σ(x) =
∑

i∈F
x̃i2i ⊕

∑

i6∈F
xi2i,
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where x̃i ∈ {0, 1} are such that σ is a permutation and otherwise arbitrary.
In other words, σ acts arbitrarily on the binary coefficients in F and as the
identity on the remaining binary coefficients. Then the systems (ek) and
(wσ(k)) are not equivalent in Lp with p 6= 2.

Proof. Fix n ∈ N0. Let m = #(F∩[n]) and write F∩[n] = {k0, . . . , km−1}
and [n] \ F = {km, . . . , kn−1}. Define a permutation πn by

πn

( n−1∑

i=0

xi2i
)

=
n−1∑

i=0

xki2
i.

Then πn is a dyadically linear permutation on [2n] so by Proposition 5.1 we
have #Aπnn = #Aπn◦σn . Moreover

πn ◦ σ(u)⊕ πn(u) =
m−1∑

i=0

ũki2
i ⊕

m−1∑

i=0

uki2
i < 2m.

This implies by Proposition 5.10 that

#Aπn◦σn ≤ 4 · 2m#Aπnn ,

or by the linearity of πn and Corollary 5.3,

#Aσn ≤ 4 · 2m6n.

The growth condition on #(F ∩ [n]) ensures that

lim inf
n→∞

8−n#Aσn = 0.

The claim now follows from Corollary 4.2.

Final remarks. 1. The estimates for the non-equivalence quantities
obtained by our methods have power type behavior. Nevertheless, since they
do not give optimal exponents except possibly in the case p = 4, we did not
state those estimates explicitly. In the case 2 < p ≤ 4, our estimates for the
Walsh–Paley system are the same as the lower bounds obtained in [4]. In
the cases p > 4 and 1 ≤ p < 2, the estimates for the special case of the
Walsh–Paley order in [4] are better than ours. It would be interesting to
find the optimal estimates at least in the cases of the usual orderings.

2. Although we were not able to give general estimates for the cardinal-
ities of the sets Aσn, we conjecture that the identical permutation already
gives the maximal possible cardinality. A similar question, very natural from
the combinatorial point of view, is to find good upper bounds for the cardi-
nalities of the sets

Bσ
n = {(k, l) ∈ [2n]2 : k + l ∈ [2n], σ(k)⊕ σ(l) = σ(k + l)}.

For linear and piecewise linear rearrangements one can obtain #Bσ
n ≤ 3n

and for the identity #Bι
n = 3n. Again we conjecture that #Bσ

n ≤ 3n for
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any permutation σ. Basically, this is a question about how big the set of
pairs (k, l) can be for which σ behaves like a homomorphism between the
integers and the Cantor group. We checked this claim for n ≤ 4 and for all
permutations σ of [2n] by computer. The running time for the case n = 4
on a PC was about four days.
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