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Sobolev inequalities for probability measures
on the real line

by

F. Barthe and C. Roberto (Marne-la-Vallée)

Abstract. We give a characterization of those probability measures on the real line
which satisfy certain Sobolev inequalities. Our starting point is a simpler approach to the
Bobkov–Götze characterization of measures satisfying a logarithmic Sobolev inequality.
As an application of the criterion we present a soft proof of the Latała–Oleszkiewicz
inequality for exponential measures, and describe the measures on the line which have the
same property. New concentration inequalities for product measures follow.

1. Introduction. Poincaré and logarithmic Sobolev inequalities are es-
sential tools in the study of concentration of measure and in the estimation
of the relaxation time of various ergodic systems (see e.g. [12, 1, 8, 17, 10]).
Recall that a probability measure µ on Rn satisfies a Poincaré (or spectral
gap) inequality if there exists a constant CP > 0 such that every smooth
function f : Rn → R satisfies

�
f2 dµ−

( �
f dµ

)2
≤ CP

�
|∇f |2 dµ.(1)

Here | · | is the Euclidean norm. One could also consider more general Dirich-
let forms than |∇f |2. On the other hand, µ satisfies a logarithmic Sobolev
inequality if there exists a constant CLS > 0 so that for every smooth f one
has

Entµ(f2) ≤ CLS

�
|∇f |2 dµ,(2)

where the entropy is defined by

Entµ(f2) =
�
f2 log f2 dµ−

( �
f2 dµ

)
log
( �
f2 dµ

)
.

This property was introduced by Gross [7] and is stronger than the Poincaré
inequality. For example the standard Gaussian measure, say on R, satisfies
a Poincaré and a logarithmic Sobolev inequality whereas the double expo-

2000 Mathematics Subject Classification: 26D10, 60E15.
Key words and phrases: Sobolev inequalities, concentration.

[481]



482 F. Barthe and C. Roberto

nential measure only satisfies a spectral gap inequality. Beckner [3] showed
that Gaussian measures satisfy a family of Sobolev inequalities interpolating
between (1) and (2). More recently, Latała and Oleszkiewicz [11] were able
to establish a corresponding fact for the probability measures νr, r ∈ (1, 2),
defined by

dνr(t) =
e−|t|

r
dt

2Γ (1 + 1/r)
, t ∈ R.

Namely, there is a universal constant C > 0 such that for every smooth
f : R→ R and every p ∈ (1, 2), one has

�
f2 dνr −

( �
|f |p dνr

)2/p
≤ C(2− p)2(1−1/r)

�
f ′2 dνr.(3)

For r = 2 and C = 1 this is Beckner’s interpolated inequality. The proof of
Latała and Oleszkiewicz is hard, and the inequality itself is quite subtle: most
of the information is encoded in the speed at which the constant vanishes
as p tends to 2. Their result nicely completed the picture: while a Poincaré
inequality ensures exponential concentration, and a log-Sobolev inequality
yields Gaussian concentration, the family of Sobolev inequalities (3) with
constant (2−p)2(1−1/r) ensures concentration with decay exp(−Ktr), t ≥ 1,
for the underlying measure. Moreover, like the Poincaré and the logarithmic
Sobolev inequalities, the interpolated inequalities also have the tensoriza-
tion property [11]. For this very reason it is of interest to study them for
measures on the real line, since this automatically provides information on
their infinite products.

The original motivation of this work was to characterize the proba-
bility measures on R which satisfy the same inequalities (3) as the mea-
sure νr, for any r ∈ (1, 2). As we explain later, this was already done
for log-Sobolev and Poincaré inequalities (which correspond to r = 2 and
r = 1), by means of Hardy type inequalities. Before giving some back-
ground about Hardy inequalities, we would like to emphasize that all the
previous inequalities enter the natural framework of Sobolev inequalities of
the form

( � |f |p dµ)2/p − � f2 dµ

p− 2
≤ C

�
|∇f |2 dµ.(4)

Indeed, Poincaré corresponds to p = 1 and log-Sobolev to the limit case
when p tends to 2. The latter framework also encompasses more classical
Sobolev inequalities, like the spherical one, for p > 2.

The Hardy inequality was originally introduced by Hardy, Littlewood
and Pólya [9; 21, p. 20]. They proved, for p ∈ [1,∞) and b ∈ R with bp < −1,
that
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( ∞∑

x=0

xb
∣∣∣
x∑

y=0

f(y)
∣∣∣
p)1/p

≤ −p
bp+ 1

( ∞∑

x=0

|xb+1f(x)|p
)1/p

for every function f on N (the constant is optimal). Tomaselli [20] and Tal-
enti [19] extended the inequality to general weight functions instead of xb

and xb+1 and also to the continuous setting (the weights being absolutely
continuous measures). Let us specify that all the measures considered in
our article are non-negative. Muckenhoupt [15] established the following
statement for general measures. Let µ, ν be Borel measures on R+ and let
p > 1. Then the best constant A so that every smooth function f satis-
fies

(∞�

0

(f(x)− f(0))p dµ(x)
)1/p

≤ A
(∞�

0

f ′p dν
)1/p

(5)

is finite if and only if

B = sup
x>0

µ([x,∞))1/p
(x�

0

1
n(t)p′/p

dt

)1/p′

is finite (throughout the paper we adopt the convention that 0 · ∞ = 0, in
other words the supremum is only over x ∈ (0,max(suppµ)]). Here p′ is
defined by 1/p + 1/p′ = 1 and n stands for the density of the absolutely
continuous part of ν. Moreover, when A is finite, B ≤ A ≤ p1/pp′1/p

′
B.

Using Hardy inequalities via the latter result by Muckenhoupt, Bobkov
and Götze [4] gave the following characterization of those probability mea-
sures on R which satisfy a logarithmic Sobolev inequality (2):

Theorem 1 ([4]). Let µ, ν be Borel measures on R with µ(R) = 1, and
let n(t) dt denote the absolutely continuous component of ν. Let m be a
median of µ. Let C be the optimal constant such that for every smooth
f : R→ R one has

Entµ(f2) ≤ C
�
f ′2 dν.

Then 1
150(D0 +D1) ≤ C ≤ 468(D0 +D1) where

D0 = sup
x<m

µ((−∞, x]) log
(

1
µ((−∞, x])

)m�

x

1
n
,

D1 = sup
x>m

µ([x,∞)) log
(

1
µ([x,∞))

) x�

m

1
n
.

Apparently, this was the first time that Hardy inequalities had been
used in probability theory. Next Miclo [14] and Chen [5, 6] extended their
approach to Poincaré and more general inequalities, including Sobolev in-
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equalities (see also [1]). We wish to emphasize here that one can derive from
these results a simple expression for the best constant C in a Sobolev in-
equality like (4), up to constants depending on p. However, these constants
degenerate when p tends to 2, so these results are not precise enough to
address the inequalities of Latała and Oleszkiewicz.

The rest of the paper is divided into three sections. In Section 2 we
present a simpler and tighter proof for the latter theorem of Bobkov and
Götze on log-Sobolev inequalities. The keystone in their approach was to
replace the entropy Ent(f 2) by some Orlicz norm ‖f 2‖ψ, for which clas-
sical Banach space theory provides a representation of the form ‖f 2‖ψ =
supg∈G � f2g dµ, where G is a set of non-negative functions. This represen-
tation allows one to reduce the log-Sobolev inequality to a family of Hardy
inequalities. Instead, we give a new class G that naturally controls the en-
tropy.

Section 3 is devoted to the extension of our method to Sobolev inequal-
ities like (4) for measures on the line and p ∈ (1, 2), and to the inequalities
of Latała and Oleszkiewicz. We manage to characterize those probability
measures on the line which satisfy their inequalities. This in turn provides
a soft proof of their result for νr, and gives new concentration inequalities
for product measures.

For the sake of clarity, the arguments of Sections 2 and 3 are not writ-
ten in full generality. Section 4 collects remarks on possible extensions, for
example to discrete settings, or to measures on Rn. In this situation we in-
troduce the right notion of capacity of a set with respect to a probability
measure.

2. Logarithmic Sobolev inequalities. Our starting point is the fol-
lowing statement, taken from [4], which is a direct corollary of the previously
quoted criterion of Muckenhoupt. Let µ, ν be (non-negative) Borel measures
on [m,∞) and let n(x) dx be the absolutely continuous component of ν. Let
G be a family of non-negative Borel measurable functions on [m,∞), and
for any measurable function f set

Φ(f) = sup
g∈G

∞�

m

fg dµ.

With this notation one has

Proposition 2 ([4]). Let A be the smallest constant such that for every
smooth function f with f(m) = 0 one has

Φ(f2) ≤ A
∞�

m

f ′2 dν.
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Then B ≤ A ≤ 4B where

B = sup
x>m

Φ(1[x,∞))
x�

m

dt

n(t)
.

This result seems adapted to the study of logarithmic Sobolev inequal-
ities, due to the classical variational expression for the entropy of a real-
valued non-negative measurable function ϕ on a probability space (X,P ):

EntP (ϕ) = sup
{ �

X

ϕg dP ;
�

X

eg dP ≤ 1
}
.(6)

However one should note that the only non-negative function g in the latter
supremum is the zero function, so this representation is not of the form
required in the proposition. We show in the rest of this section that a little
more work allows us to overcome this difficulty. We obtain the following
refinement of the criterion of Bobkov and Götze:

Theorem 3. Let µ, ν be Borel measures on R with µ(R) = 1 and dν(x)
= n(x) dx. Let m be a median of µ. Let C be the optimal constant such that
for every smooth f : R→ R one has

Entµ(f2) ≤ C
�
f ′2 dν.

Then max(b−, b+) ≤ C ≤ 4 max(B−, B+) where

b+ = sup
x>m

µ([x,∞)) log
(

1 +
1

2µ([x,∞))

) x�

m

1
n
,

B+ = sup
x>m

µ([x,∞)) log
(

1 +
e2

µ([x,∞))

) x�

m

1
n
,

b− = sup
x<m

µ((−∞, x]) log
(

1 +
1

2µ((−∞, x])

)m�

x

1
n
,

B− = sup
x<m

µ((−∞, x]) log
(

1 +
e2

µ((−∞, x])

)m�

x

1
n
.

We shall use the following lemmas. The first one is due to Rothaus, it
appears in previous proofs, and allows us to restrict to functions that vanish
at a given point.

Lemma 4 ([16]). On a probability space (X,P ), let f : X → R with
� X f2 dP <∞. Then for every a ∈ R one has

EntP (f2) ≤ EntP ((f − a)2) + 2
�
(f − a)2 dP.



486 F. Barthe and C. Roberto

The next lemmas, though rather simple, are crucial to our argument.

Lemma 5. Let ϕ be a non-negative measurable function on a probability
space (X,P ). Then

EntP (ϕ) + 2
�

X

ϕdP ≤ sup
{ �

X

ϕhdP ;
�

X

eh dP ≤ e2 + 1 and h ≥ 0
}
.

Proof. By the variational characterization of entropy (6), and setting
h = g + 2, one has

EntP (ϕ) + 2
�

X

ϕ = sup
{ �

X

(g + 2)ϕdP ;
�

X

eg dP ≤ 1
}

= sup
{ �

X

hϕdP ;
�

X

eh dP ≤ e2
}

≤ sup
{ �

X

ϕh1h≥0 dP ;
�

X

eh dP ≤ e2
}
.

Since � X eh1h≥0 dP = � X eh1h≥0 dP + � X 1h<0 dP ≤ e2 + 1, the result fol-
lows.

Lemma 6. Let Q be a finite measure on a space X. Let K > Q(X) and
let A ⊂ X be measurable with Q(A) > 0. Then

sup
{ �

X

1Ah dQ;
�

X

eh dQ ≤ K and h ≥ 0
}

= Q(A) log
(

1 +
K −Q(X)
Q(A)

)
.

Proof. Write S for the above supremum. In � A h dQ, the values of h on
the complement of A do not matter. So the best choice is to take h minimal
(that is, h = 0) on Ac, in order to save on the constraint � eh dQ ≤ K. This
shows that

S = sup
{ �

A

h dQ; Q(Ac) +
�

A

eh dQ ≤ K andh ≥ 0
}
.

Concavity of the logarithm ensures that
�

A

h
dQ

Q(A)
≤ log

�

A

eh
dQ

Q(A)
,

which readily implies that S ≤ Q(A) log((K − Q(Ac))/Q(A)). There is ac-
tually equality as one can check with

h = 1A log
(

1 +
K −Q(X)
Q(A)

)
≥ 0.

Proof of Theorem 3. We start with the upper bound on the best C in
the logarithmic Sobolev inequality. Let f : R → R be smooth. We consider
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the functions F = f − f(m), F+ = F1(m,∞) and F− = F1(−∞,m). They are
continuous. Since F 2 = F 2

+ + F 2
− one has

Entµ(F 2) = sup
{ �
F 2

+g dµ+
�
F 2
−g dµ;

�
eg dµ ≤ 1

}

≤ Entµ(F 2
+) + Entµ(F 2

−),

where we have used the fact that the supremum of a sum is less than the
sum of the suprema. By Lemma 4 and the previous remarks, one gets

Entµ(f2) ≤ Entµ(F 2) + 2
�
F 2 dµ

≤ Entµ(F 2
+) + 2

�
F 2

+ dµ+ Entµ(F 2
−) + 2

�
F 2
− dµ.

Next we work separately with F+. Recall that it is identically zero on
(−∞,m]. By Lemma 5,

Entµ(F 2
+) + 2

�
F 2

+ dµ ≤ sup
{ �
F 2

+h dµ;
�
eh dµ ≤ e2 + 1 andh ≥ 0

}
.

Applying Proposition 2, we get

Entµ(F 2
+) + 2

�
F 2

+ dµ ≤ 4B̃+

�
(F ′+)2 dν,

where

B̃+ = sup
x>m

[
sup
{ �

1[x,∞)h dµ;
�
eh dµ ≤ e2 + 1 andh ≥ 0

} x�

m

1
n

]
.

Lemma 6 ensures that B̃+ coincides with the quantity B+ of the theorem.
We proceed in the same way with F−. Summing up, we arrive at

Entµ(f2) ≤ 4B+

�
(F ′+)2 dν + 4B−

�
(F ′−)2 dν

≤ 4 max(B+, B−)
�
((F ′+)2 + (F ′−)2) dν

= 4 max(B+, B−)
�
f ′2 dν.

Indeed, (F ′+)2 + (F ′−)2 = f ′2 at least on R \ {m}. It follows that C ≤
4 max(B+, B−).

Next we give a lower bound on C such that for every smooth non-negative
f on the line, Entµ(f2) ≤ C � f ′2 dν. Let f be a continuous function that
vanishes on (−∞,m] and is smooth on [m,∞). By approximation, the latter
inequality holds for such an f . Considering the variational expression (6) of
Entµ(f2) and noting as before that the values of the test function g outside
the support of f2 appear only in the constraint and have to be minimum
(here −∞) in order to approach the supremum, one writes
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Entµ(f2) = sup
{ �

(m,∞)

f2g dµ;
�

(m,∞)

eg dµ ≤ 1
}

≥ sup
{ �

(m,∞)

f2g dµ;
�

(m,∞)

eg dµ ≤ 1 and g ≥ 0
}
.

The latter supremum is non-trivial since the total mass of µ restricted to
(m,∞) is at most 1/2, so � (m,∞) e

g dµ ≤ 1 can happen for many non-negative
functions. From the log Sobolev inequality we deduce that for every smooth
f with f(m) = 0 one has

sup
{ �

(m,∞)

f2g dµ;
�

(m,∞)

eg dµ ≤ 1 and g ≥ 0
}
≤ C

�

(m,∞)

f ′2 dν.

Proposition 2 ensures that

C ≥ sup
x>m

[
sup
{ �

(m,∞)

1[x,∞)g dµ;
�

(m,∞)

eg dµ ≤ 1 and g ≥ 0
}] x�

m

1
n
.

Since µ((m,∞)) ≤ 1/2, Lemma 6 applies, and shows that the latter is at
least b+. Doing the same on (−∞,m] we finally obtain C ≥ max(b+, b−).
The proof is therefore complete.

Remark 7. It is not difficult to check that for any 0 ≤ y ≤ 1/2,

log
(

1 +
e2

y

)
≤ log(1 + 2e2)

log(2)
log
(

1 +
1
2y

)
≤ 4 log

(
1 +

1
2y

)
.

Thus, B+ ≤ 4b+ and B− ≤ 4b−. It follows that the best logarithmic Sobolev
constant C satisfies max(b−, b+) ≤ C ≤ 16 max(b−, b+).

3. Sobolev inequalities. Let p ∈ (1, 2), µ be a Borel probability mea-
sure on R and dν(x) = n(x) dx. In this section we show how the argument
of the previous section may be adapted to the study of the optimal constant
C such that for every smooth f : R→ R one has

�
f2 dµ−

( �
|f |p dµ

)2/p
≤ C

�
f ′2 dν.(7)

The following lemma is a slight extension of Lemma 4.1 in [2].

Lemma 8. Let p ∈ (1, 2). Let f : X → R be a square integrable function
on a probability space (X,Q). Then for all a ∈ R one has

�
f2 dQ−

( �
|f |p dQ

)2/p
≤

�
(f − a)2 dQ− (p− 1)

( �
|f − a|p dQ

)2/p
.
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Proof. Let g : X → R be a bounded function taking finitely many values.
One studies ϕ(t) = ( � |1 + tg|p)2/p. For brevity we omit the measure dQ in
the notation. Clearly ϕ(0) = 1, ϕ′(0) = 2 � g and

ϕ′′(t)
2

= (2− p)
( �
|1 + tg|p

)2/p−2( �
g|1 + tg|p−1 sign(1 + tg)

)2

+ (p− 1)
( �
|1 + tg|p

)2/p−1 �
g2|1 + tg|p−2.

The above differentiation is legitimate at least for all but a finite number of
t’s (where 1 + tg vanishes). For such values, note that the first term in the
second derivative is non-negative, while the second can be bounded from
below by Hölder’s inequality:

�
|g|p =

�
|g|p|1 + tg|p(p−2)/2 · |1 + tg|p(2−p)/2

≤
( �
g2|1 + tg|p−2

)p/2( �
|1 + tg|p

)(2−p)/2
.

Therefore ϕ′′(t)/2 ≥ (p − 1)( � |g|p)2/p. Since ϕ is C1 (or convex), this is
sufficient to deduce that ϕ(t) ≥ ϕ(0) + tϕ′(0) + t2(p− 1)( � |g|p)2/p for all t.
Setting a = 1/t and multiplying by a2 one gets

( �
|a+ g|p

)2/p
≥ a2 + 2a

�
g + (p− 1)

( �
|g|p
)2/p

.

Subtracting this from the relation � (a + g)2 = a2 + 2a � g + � g2 gives the
result for f = a+ g. The general case follows by approximation.

Next we need a convenient representation of the left hand side in a
Sobolev inequality as a supremum.

Lemma 9. Let ϕ be a non-negative integrable function on a probability
space (X,P ). Let A > 0 and a ∈ (0, 1). Then

�
ϕdP −A

( �
ϕa dP

)1/a

= sup
{ �
ϕg dP ; g < 1 and

�
(1−g)a/(a−1) dP ≤ Aa/(a−1)

}

≤ sup
{ �
ϕg dP ; 0 ≤ g < 1 and

�
(1−g)a/(a−1) dP ≤ 1 + Aa/(a−1)

}
.

Proof. By a simple argument using Hölder’s inequality, it is not difficult
to see that

( �
ϕa dP

)1/a
= inf

{ �
ϕhdP ; h > 0 and

�
ha/(a−1) dP ≤ 1

}
.

Setting g = 1− Ah, we deduce from this fact that
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�
ϕdP −A

( �
ϕa dP

)1/a

= sup
{ �
ϕ(1− Ah) dP ; h > 0 and

�
ha/(a−1) dP ≤ 1

}

= sup
{ �
ϕg dP ; g < 1 and

�
(1− g)a/(a−1) dP ≤ Aa/(a−1)

}

≤ sup
{ �
ϕg1g≥0 dP ; g < 1 and

�
(1− g)a/(a−1) dP ≤ Aa/(a−1)

}

≤ sup
{ �
ϕg dP ; 0 ≤ g < 1 and

�
(1− g)a/(a−1) ≤ 1 +Aa/(a−1)

}
.

We have used the following simple estimate:
�
(1− g1g≥0)a/(a−1) dP =

�
(1− g)a/(a−1)1g≥0 dP + P{g < 0}

≤
�
(1− g)a/(a−1) dP + 1.

We shall need the following analogue of Lemma 6. Its proof is very similar
and we omit it.

Lemma 10. Let a ∈ (0, 1). Let Q be a finite measure on a space X and
let K > Q(X). Let A ⊂ X be measurable with Q(A) > 0. Then

sup
{ �

X

1Ag dQ; 0 ≤ g < 1 and
�

X

(1− g)a/(a−1) dQ ≤ K
}

= Q(A)
(

1−
(

1 +
K −Q(X)
Q(A)

)(a−1)/a)
.

We are now in a position to state our characterization of measures which
satisfy the inequality (7).

Theorem 11. Let p ∈ (1, 2) and let µ, ν be Borel measures on R with
µ(R) = 1 and dν(x) = n(x) dx. Let m be a median of µ. Let C be the
optimal constant such that for every smooth f : R→ R one has

�
f2 dµ−

( �
|f |p dµ

)2/p
≤ C

�
f ′2 dν.(8)

Then max(b−(p), b+(p)) ≤ C ≤ 4 max(B−(p), B+(p)) where

b+(p) = sup
x>m

µ([x,∞))
(

1−
(

1 +
1

2µ([x,∞))

)(p−2)/p) x�

m

1
n
,

B+(p) = sup
x>m

µ([x,∞))
(

1−
(

1 +
(p− 1)p/(p−2)

µ([x,∞))

)(p−2)/p) x�

m

1
n
,
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b−(p) = sup
x<m

µ((−∞, x])
(

1−
(

1 +
1

2µ((−∞, x])

)(p−2)/p)m�

x

1
n
,

B−(p) = sup
x<m

µ((−∞, x])
(

1−
(

1 +
(p− 1)p/(p−2)

µ((−∞, x])

)(p−2)/p)m�

x

1
n
.

Proof. The proof is similar to the one of Theorem 3. Just use Lemmas 8,
9 (with A = p− 1 and a = p/2) and 10 instead of Lemmas 4, 5 and 6.

Remark 12. One can check that for any 0 ≤ y ≤ 1/2 and any p ∈ (1, 2),

1−
(

1 +
(p− 1)p/(p−2)

y

)(p−2)/p

1−
(

1 +
1
2y

)(p−2)/p
≤ 1− (1 + 2(p− 1)p/(p−2))(p−2)/p

1− 2(p−2)/p
≤ 5.

Thus, B+(p) ≤ 5b+(p) and B−(p) ≤ 5b−(p). It follows that the best constant
C in (8) satisfies max(b−(p), b+(p)) ≤ C ≤ 20 max(b−(p), b+(p)).

We now explain how the latter theorem gives a characterization of those
measures which satisfy the Latała–Oleszkiewicz inequality.

Theorem 13. Let r ∈ (1, 2). Let µ, ν be Borel measures on R with
µ(R) = 1 and dν(x) = n(x) dx. Let m be a median of µ. Let C be the
optimal constant such that for any smooth f : R→ R one has

sup
p∈(1,2)

� f2 dµ− ( � |f |p dµ)2/p

(2− p)2(1−1/r)
≤ C

�
f ′2 dν.(9)

Then

1
3 max(c−(r), c+(r)) ≤ C ≤ 4 max(C−(r), C+(r)) ≤ 17 max(c−(r), c+(r))

where

c+(r) = sup
x>m

µ([x,∞))
(

log
(

1 +
1

2µ([x,∞))

))2(1−1/r) x�

m

1
n
,

C+(r) = sup
x>m

µ([x,∞))
(

log
(

1 +
8

µ([x,∞))

))2(1−1/r) x�

m

1
n
,

c−(r) = sup
x<m

µ((−∞, x])
(

log
(

1 +
1

2µ((−∞, x])

))2(1−1/r) m�

x

1
n
,

C−(r) = sup
x<m

µ((−∞, x])
(

log
(

1 +
8

µ((−∞, x])

))2(1−1/r) m�

x

1
n
.
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Proof. Using Theorem 11 for any p ∈ (1, 2), one gets

sup
p∈(1,2)

max(b−(p), b+(p))
(2− p)2(1−1/r)

≤ C ≤ 4 sup
p∈(1,2)

max(B−(p), B+(p))
(2− p)2(1−1/r)

.

Therefore, it follows from Lemma 14 below applied with τ = 2(1−1/r) that
1
3 max(c−(r), c+(r)) ≤ C ≤ 4 max(C−(r), C+(r)). To complete the proof,
one proceeds as in Remarks 7, 12.

Lemma 14. For any 0 < y ≤ 1/2 and any τ ∈ [0, 1],

sup
p∈(1,2)

1−
(

1 +
(p− 1)p/(p−2)

y

)(p−2)/p

(2− p)τ ≤
[
log
(

1 +
8
y

)]τ

and

sup
p∈(1,2)

1−
(

1 +
1
2y

)(p−2)/p

(2− p)τ ≥ 1
3

[
log
(

1 +
1
2y

)]τ
.

Proof. The term A(p) = (p− 1)p/(p−2) is just a little nuisance. As A(p)
is non-increasing in p, A(p) ≤ 8 for p ∈ [3/2, 2). Thus,

sup
p∈(1,2)

1− (1 + (p− 1)p/(p−2)/y)(p−2)/p

(2− p)τ

≤ max
[

sup
p∈(1,3/2)

1
(2− p)τ , sup

p∈[3/2,2)

1− (1 + 8/y)(p−2)/p

(2− p)τ
]
.

Set b = (2− p)/p and note that 2− p = 2b/(b+ 1). For p ∈ [3/2, 2), one has
b ∈ (0, 1/3] and therefore (3/2)b ≤ 2b/(b + 1) ≤ 2b. Changing variable and
using the lower bound in the latter inequality, we estimate from above the
second supremum by supb∈(0,1/3] (1−X−b)/bτ where X = 1+8/y ∈ [17,∞).
Next, put c = b logX. Then

sup
b∈(0,1/3]

1−X−b
bτ

= (logX)τ sup
c∈(0, 13 logX]

1− e−c
cτ

≤ (logX)τ ,

because supc>0 (1− e−c)/cτ ≤ 1. Finally,

sup
p∈(1,3/2)

(2− p)−τ = 2τ ≤ (logX)τ .

This proves the first part of the lemma.
For the second part, we proceed as before with b ∈ (0, 1) and set X =

1 + 1/2y ∈ [2,∞). It follows that
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sup
p∈(1,2)

1− (1 + 1/2y)(p−2)/p

(2− p)τ ≥ 1
2τ

(logX)τ sup
c∈(0,log 2)

1− e−c
cτ

≥ 1
2(2 log 2)τ

(logX)τ ,

where we have taken c = log 2. Finally
1

2(2 log 2)τ
≥ 1

4 log 2
≥ 1

3
.

Next, we give examples of applications of Theorem 13.

Proposition 15. Let dµ(x) = e−Φ(x) dx be a probability measure, where
Φ is a continuous function on R satisfying :

(i) there exists A > 0 such that for |x| > A, Φ is C2 and sign(x)Φ′(x) > 0,
(ii) lim|x|→∞ Φ′′(x)/Φ′(x)2 = 0,

(iii) there exists r ∈ (1, 2) such that

lim sup
|x|→∞

[Φ(x) + logΦ′(x)]2(1−1/r)

Φ′(x)2 <∞.

Then there exists C ≥ 0 such that µ satisfies the Latała–Oleszkiewicz in-
equality (9) with the corresponding r (and ν = µ on the right hand side).

Proof. Let m be a median of µ. Under our hypotheses, when x tends
to ∞, one has (see e.g. [1, Chapter 6])

x�

m

eΦ(t) dt ∼ eΦ(x)

Φ′(x)
,

∞�

x

e−Φ(t) dt ∼ e−Φ(x)

Φ′(x)
.

Thus, for any x ≥ m,

µ([x,∞))
(

log
(

1 +
8

µ([x,∞))

))2(1−1/r) x�

m

1
n
∼ [Φ(x) + logΦ′(x)]2(1−1/r)

Φ′(x)2 .

By hypothesis (iii), this quantity is bounded on [A′,∞) for some A′ > 0. As
it is continuous on [m,A′], it is bounded on (m,∞). Thus, C+(r) <∞, and
similarly for C−(r). We conclude by applying Theorem 13.

As a direct application, we recover that the measures

dνr(t) = exp(−|t|r) dt

2Γ (1 + 1/r)
, r ∈ (1, 2),

satisfy the Latała–Oleszkiewicz inequality (3) with the corresponding r, and
a constant C that may depend on r. To recover the full result of [11], namely
that C can be chosen independent of r ∈ (1, 2), one can combine Theorem 13
with the classical estimates on � x0 exp(tr) dr and � ∞x exp(−tr) dr. This is very
easy and we omit the details of the argument. The criterion allows one to
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deal with more general potentials, which are not bounded perturbations of
the latter. For example, we find that the probability measures

dτr(x) = exp(−|x|r − |x|r−1 cos(x))
dx

Zr
, r ∈ (1, 2),

dγr,a(x) = xa exp(−xr)1x>0
rdx

Γ ((a+ 1)/r)
, r ∈ (1, 2), a > −1,

also satisfy the Latała–Oleszkiewicz inequality (3) with the corresponding r.
These facts, or more generally Theorem 13, can be combined with the follow-
ing result of these authors in order to establish dimension free concentration
inequalities with decay exp(−tr) for product measures:

Theorem 16 ([11]). Let r ∈ [1, 2] and C > 0. Let µ be a probability
measure on Rk. Assume that for any smooth f : Rk → R and any p ∈ [1, 2),
one has

�
f2 dµ−

( �
|f |p dµ

)2/p
≤ C(2− p)2(1−1/r)

�
|∇f |2 dµ.

Then for any integer n ≥ 1 and any h : Rnk → R with ‖h‖Lip ≤ 1 (with
respect to the Euclidean norm on Rnk), one has � |h| dµn <∞ and

µn({x; h(x)−
�
h dµn ≥ t

√
C}) ≤ e−t2/3, t ∈ [0, 1],

µn
({
x; h(x)−

�
h dµn ≥ t

√
C
})
≤ e−tr/3, t ≥ 1.

Following this route Lata la and Oleszkiewicz proved dimension free con-
centration inequalities for νnr . For these measures, a slightly stronger state-
ment was proved earlier by Talagrand, via inf-convolution inequalities and
transport, which holds for even log-concave densities on the line [18, Propo-
sition 2.7.4]. The inf-convolution approach seems a bit more general than the
one based on Sobolev inequalities. However, there exists no simple criterion
so far that would allow one to decide whether a measure on R satisfies an
inf-convolution inequality. On the other hand, Theorems 13 and 16 form a
convenient tool to obtain new concentration inequalities for wide families of
measures, including e.g. τnr , γnr,a.

4. Final remarks. We conclude with some remarks and extensions.

1) As mentioned in [4], a Sobolev type inequality holds with right hand
side C � f ′2(x) dν(x) if and only if it holds with C � f ′2(x)n(x) dx where n is
the absolutely continuous part of ν. So our results extend to not necessarily
absolutely continuous ν on R. Only n enters the criterion.

2) The method presented here can actually be extended to deal with
more general concentration regimes, between exponential and Gaussian, but
not necessarily exp(−tr). The details will be given in a paper in preparation.
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3) Sobolev inequalities for p > 2. Our method can easily be adapted to
the Sobolev inequality (4) for p > 2, for measures on R. It would give good
estimates for fixed p or even when p → 2. However, the result of Lemma 8
(reversed for p > 2) introduces a p − 1 in front of the Lp-norm. This term
spoils our estimates as p→∞.

4) Other splittings. In our arguments we split the measures on R into
two measures on the half-lines starting at the median m of µ. The argument
works if one makes the cut at some other point a. The upper estimate on
the constant in Sobolev type inequalities would be similar, with m replaced
by a. In the lower bound, the mass of µ on the left and on the right of
a would appear. If not the most convenient in practice, the choice of the
median seems to be the best.

5) Discrete case. The argument of Sections 2 and 3 can easily be adapted
to measures on Z. If µ is a probability measure and ν a positive measure,
both on Z, then the logarithmic Sobolev inequality reads

Entµ(f2) ≤ C
∑

x∈Z
ν(x)(f(x+ 1)− f(x))2(10)

for every f : Z→ R null except at a finite number of points, with Entµ(f2) =
µ(f2 log f2) − µ(f2) logµ(f2). In the same way, one can state a Sobolev
inequality in the discrete setting.

Exactly as in the proof of Theorem 3, one can prove that the best con-
stant C in (10) satisfies max(b−, b+) ≤ C ≤ 4 max(B−, B+) with

B+ = sup
x>m

(∑

y≥x
µ(y)

)
log
(

1 +
e2

∑
y≥x µ(y)

) x∑

y=m+1

1
ν(y)

and similarly for b−, b+ and B−. The same remark applies to Section 3 about
Sobolev inequalities and inequality (9).

6) Inequalities in Rn. One can give a criterion for functional inequalities
on Rn (it is however difficult to exploit). We illustrate this on the Poincaré
inequality. Let f : Rn → R be smooth. Then Varµ(f) ≤ � (f −m)2 dµ where
m is a median of the law of f under µ. Set F+ = (f − m)1{f>m} and
F− = (f −m)1{f<m}. One has � (f −m)2 dµ = � F 2

− dµ+ � F 2
+ dµ. Now, fix

Ω = {x; f(x) > m}. A result of Maz’ya [13] asserts that the best constant α
in � Ω F 2 dµ ≤ α � Ω |∇F |2 dν for smooth F vanishing on ∂Ω (and at infinity,
but we can get rid of this by approximation since µ is finite) is, up to
universal constants, equal to the best β such that for every open set A ⊂ Ω,
one has βCapν(A,Ω) ≥ µ(A) where

Capν(A,Ω) = inf
{ �

Ω

|∇f |2 dν; 1A ≤ f ≤ 1Ω
}
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is the capacity of A in Ω under µ. The idea of his argument is mainly a
decomposition of functions into level sets. In our case we have no idea of the
shape of Ω = {x; f(x) > m}. So the relevant notion of capacity of a set A
such that µ(A) < 1/2 seems to be

Capν(A,µ) = inf{Capν(A,Ω); Ω ⊃ A and µ(Ω) = 1/2}.
Let β be the smallest number so that β Capν(A,µ) ≥ µ(A) whenever µ(A) ≤
1/2. Then, by Maz’ya’s result, Varµ(f) ≤ kβ � |∇f |2 dν for some universal
constant k.

On the other hand, if � f2 dµ− ( � f dµ)2 ≤ C � |∇f |2 dν, µ(Ω) = 1/2 and
1A ≤ f ≤ 1Ω, then

( �
f dµ

)2
=
( �
f1Ω dµ

)2
≤ 1

2

�
f2.

So, C � |∇f |2 dν ≥ 1
2 � f2 ≥ 1

2µ(A) and C Capν(A,µ) ≥ 1
2µ(A). It follows

that 1
2β ≤ C ≤ kβ. We have thus obtained a characterization of those

measures which satisfy a Poincaré inequality on Rn.
Similarly the logarithmic Sobolev constant is equal, up to universal con-

stants, to the best constant β̃ in β̃Capν(A,µ) ≥ µ(A) log(1/µ(A)).
Finally, we show the link with dimension 1. An intermediate step was

to deal with the inequality � ∞m f2 dµ ≤ C � ∞m f ′2 dν for f(m) = 0. Such
an inequality is made tighter by replacing f(x) by � xm |f ′|. So one reduces
to increasing functions with level sets (x,∞) ⊂ (m,∞). And the capacity
Capν((x,∞), (m,∞)) is easily seen to be ( � xm 1/n)−1 where dν(x) = n(x) dx.
Indeed, if f is a smooth function such that 1(x,∞) ≤ f ≤ 1(m,∞), f(m) = 0
and f(x) = 1, then by the Cauchy–Schwarz inequality,

∞�

m

f ′2n =
∞�

m

f ′2n ≥ ( � ∞m f ′)2

� xm 1
n

=
1

� xm 1
n

.

This inequality is tight for appropriate choices of f , and the result follows.
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