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Asymptoti
 estimates for a perturbation of the linearizationof an equation for 
ompressible vis
ous �uid �owbyGerhard Ströhmer (Iowa City, IA)Abstra
t. We prove a priori estimates for a linear system of partial di�erential equa-tions originating from the equations for the �ow of a barotropi
 
ompressible vis
ous �uidunder the in�uen
e of the gravity it generates. These estimates will be used in a forth
om-ing paper to prove the nonlinear stability of the motionless, spheri
ally symmetri
 equi-librium states of barotropi
, self-gravitating vis
ous �uids with respe
t to perturbationsof zero total angular momentum. These equilibrium states as well as the non-stationarysolutions o

upy part of spa
e, and a 
onstant pressure is assumed on the free surfa
e,but no surfa
e tension.1. Introdu
tion. This paper 
ontains the 
ontinuation of the analysisof systems of linear equations related to the linearization of the equationsdes
ribing the �ow of a barotropi
 �uid under the in�uen
e of its own grav-ity with a free surfa
e without surfa
e tension, begun in [8℄ and [9℄. Thelinearization is 
arried out at a spheri
ally symmetri
 stationary solution ofthe equations. We begin by giving a short, and not entirely rigorous, des
rip-tion of the original problem and its relationship with the equations studiedhere for the purpose of motivation.The original equations, formulated in Euler 
oordinates, 
on
ern a �uido

upying a domain Ωt at time t ∈ Iω = [0, ω] ∩ R with some ω ∈ (0,∞].We denote the spa
e-time region in whi
h the �ow takes pla
e by
Ωω =

⋃

t∈Iω

{(y, t) | y ∈ Ωt},the velo
ity of the �ow by v : Ωω → R
3, v(t) = v(y, t) with v(t) : Ωt → R

3,the density of the �uid by ̺ : Ωω → R, ̺(t) = ̺(y, t), ̺(t) : Ωt → R, andits pressure by p : Ωω → R, p(t) = p(y, t), p(t) : Ωt → R. We also de�ne the2000 Mathemati
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100 G. Ströhmerstress tensor T by
T(v, p) = [Tij(v, p)] = [−pδij + Dij(v)]with

D(v) = [Dij(v)] = µ([∇v] + [∇v]t) + (ν − µ) tr(∇v)E3.(In this paper the symbol ∇ only denotes the ve
tor of spa
e derivatives.)We assume the vis
osity 
oe�
ients µ and ν satisfy ν ≥ µ/3 > 0. Thegravitational potential of the mass distribution is given by(1) G(y, t) = G(̺, Ωt) = k
\

Ωt

̺(ỹ, t)

|ỹ − y|
dỹ,where k is the gravitational 
onstant. We also assume the equation of state

p = p(̺) = K̺κ with κ > 4/3, K > 0 for the gas in question and that it isexposed to a positive outside pressure p0 > 0 on ∂Ωt. Then for (y, t) ∈ Ωωwe have the equations(2) ̺(v′ + v · ∇v) − div(T(v, p)) = ̺∇G,

̺′ + div(̺v) = 0,while for t ∈ Iω, y ∈ ∂Ωt we have(3) T(v, p(̺)) · n = −p0n.Note that there is no surfa
e tension. The domain is also moving with the�ow, whi
h means that if we follow the dire
tion of the ve
tor �eld v begin-ning at any point (y, t) ∈ Ωω we only leave this set at t = 0 and t = ω. Itwill be shown in [10℄ that we 
an des
ribe the domains Ωt by means of afamily of di�eomorphisms Tt : BR → Ωt whi
h also satisfy the equations
dTt

dt
(y, t) = v(Tt(y, t), t),whi
h means that Tt follows the �ow. By spe
ifying T0 we also des
ribe Ω0.Then Tt ◦T−1

0 is identi
al with standard Lagrange 
oordinates for this prob-lem. We 
an des
ribe these transformations also in the form of the mapping
T : BR × Iω → R

3 de�ned by(4) T(x, t) = Tt(x) (x ∈ BR, t ∈ Iω).In the main part of this paper T will be assumed to be given, but we willstill use the two alternative ways of denoting the transformation we justintrodu
ed in (4).For an equilibrium state without motion (v = 0) the equations (2) and(3) redu
e to ∇(p(̺)) = ̺∇G in Ωt, whi
h is then 
onstant, and p(̺) = p0 onthe spatial boundary. As was shown, e.g., in [11℄, given a mass M ∈ (0,∞)and a pressure p0 ∈ (0,∞) there exists exa
tly one number R > 0 and



Compressible vis
ous �uid �ow 101exa
tly one fun
tion ̺e ∈ C∞([0, R]) su
h that with pe = p(̺e) the fun
tion
Ge(y) = G(̺e(|y|), BR) is spheri
ally symmetri
, and for |y| ≤ R we have

∇(pe(|y|)) =
∂p

∂̺
(̺e(|y|))∇(̺e(|y|)) = ̺e(|y|)∇Ge(y), pe(R) = p0,and the integral of the density ̺e(|y|) over BR equals M . This means that

̺e(|y|) is the density of a spheri
ally symmetri
 equilibrium solution.(See [11℄.) From now on we will use the symbols ̺e, pe, Ge inter
hangeablyfor fun
tions of r and y, so that, e.g., ̺e(|y|) = ̺e(y). The meaning will be
lear from the 
ontext.In [8℄ the linearization
(5) ̺eu

′ − div(D(u)) + ̺e∇(γeα) = ̺e∇[I(α, β)],

α′ + div(̺eu) = 0,

β′ = u · nof the equations (2) and (3) at these equilibrium solutions was 
omputed.The boundary 
onditions are(6) T̃(u, α) · n =
∂pe

∂r
(R)βn.Here u is the variation of the velo
ity, α that of the density, both de�ned on

BR × Iω, and β is the variation of the fun
tion des
ribing Ωt as a graph inpolar 
oordinates, it is de�ned on ∂BR × Iω. Also γe =
(∂p

∂̺ ◦ ̺e

)
̺−1

e ,

T̃(u, α) = D(u) − γe(R)̺e(R)αE3and(7) I(α, β) = k

( \
BR

α(y)

|x − y|
dy + ̺e(R)

\
∂BR

β(y)

|x − y|
dσy

)
.The integral operator I represents the linearization of the gravity potential.In [8℄ it was shown that solutions of (5) and (6) belonging to suitable spa
esde
ay in an algebrai
 fashion, while the results in [5℄ and [7℄ strongly suggestthat one 
annot expe
t exponential de
ay for the solutions of this problem.Due to the slow de
ay, the appli
ation of the results about the linearizationto the non-linear problem requires a very deli
ate analysis. To this end wein
lude the deformation d(x, t) = T(x, t)−x (x ∈ BR, t ∈ Iω), whi
h satis�esthe equation(8) d′ = u.We also need to 
onsider suitable perturbations of the resulting system.The paper [9℄ is dedi
ated to the analysis of the homogeneous equation withhomogeneous boundary 
onditions without any expli
it dependen
e on time.In the present paper we will 
onsider inhomogeneous and time-dependent



102 G. Ströhmerequations. As this analysis strongly depends on the result of [9℄ and usesmu
h the same 
on
epts, we des
ribe the main result of that paper in a formmore appropriate for use here and introdu
e the notation used there to theextent that it is relevant here. This will partly be done by 
ontrasting theproblems 
onsidered in [8℄ with [9℄ and this paper. One di�eren
e between[8℄, [9℄ and this paper is that we assume here that all fun
tion spa
es 
onsistof real-valued fun
tions only, as the dire
t work with analyti
 semigroups
hara
teristi
 of the previous papers is now �nished, and we 
an reap itsbene�ts without getting entangled in the te
hni
al details. We unite therelevant variables in one ve
tor fun
tion
U(t) = [u(t), α(t), β(t), d(t)].One of the 
onditions one needs to impose on the 
omponents of U in orderto obtain the asymptoti
 estimates in [9℄ is that 
ertain integral quantities,whi
h originate from the 
onservation laws of the original equation, vanish.In the notation used in [9℄ we 
an express this 
ondition by introdu
ing thes
alar produ
t

([u, α, β, d], [ũ, α̃, β̃, d̃])H

=
\

BR

̺e(x)uũ dx +
\

BR

αα̃ dx + ̺e(R)
\

∂BR

ββ̃ dσ +
\

BR

̺e(x)dd̃ dx

for these fun
tions on the spa
e H = L2(BR)×L2(BR)×L2(∂BR)×L2(BR).If N is the linear spa
e spanned by the elements
[0, 1, 1, 0], [ek, 0, 0, 0], [x × ek, 0, 0, 0], [0, xk, xk, 0] (k = 1, 2, 3),these 
onditions 
an be expressed in the form(9) (U(t), u)H = 0 (u ∈ N ).The solutions of the systems of equations 
onsidered both in [8℄ and [9℄ arede�ned on BR as far as the spa
e variables are 
on
erned. If one poses thesame problem as in [8℄ on a di�erent set Ω, given as Ω = T (BR) with adi�eomorphism T ∈ W 2

p (BR), and then transforms it to BR one obtainsa problem very 
lose, but not identi
al with the one 
onsidered in [9℄. Weassume that this di�eomorphism T satis�es the 
onditions(10) ‖T − EBR
‖W 2

P (BR) ≤ 1, det(∇T ) ≥ 1/2, min
x∈∂BR

|T (x)| ≥ R/2.For u ∈ W 2
p (BR) we 
an then de�ne

DT (u) = D(u ◦ T−1) ◦ T.Introdu
ing ZT ∈ W 1
p (BR) by(11) ZT = [∇T ]−1,



Compressible vis
ous �uid �ow 103one 
an easily see that(12) DT (u) = µ(∇uZT + (∇uZT )t) + (ν − µ)(tr(∇uZT ))E3.Likewise let̃
TT (u, α) = DT (u) − γe(R)̺e(R)αE3,

(LT )k(u) =
1

̺e ◦ T
((DT (u))kj)xq(ZT )qj (k = 1, 2, 3),(13)

LT (u, α) = LT (u) −∇((γe ◦ T )α)ZT .With mT (x) = T (x)/|T (x)| for x ∈ ∂BR and U = [u, α, β, d] we then de�nethe operator A1T by
(14) A1T U = [LT (u, α) + ∇I(α, β)ZT ,− tr(∇((̺e ◦ T )u)ZT ), u · mT , u].The expression u · mT may not seem to �t into our transformation s
heme.To give a hint of why it does, we have to return to the original problem. Asthe �ow takes boundary points to boundary points we have Tt(∂BR) = ∂Ωt,and for ∂Ωt whi
h are small perturbations of ∂BR the ray in the dire
tionof Tt(x) only 
ontains one point, Tt(x), of ∂Ωt. Thus the fun
tion(15) β(x, t) = |Tt(x)| − R
an be thought of as des
ribing ∂Ωt as a graph in Lagrange 
oordinates.Di�erentiating (15) with respe
t to time we obtain β′ = u · mTt .The domain of the operator A1T will be spe
i�ed later. With

BT (U) = BT (u, α, β) = T̃T (u, α) −
∂pe

∂r
(R)βE3let(16) BT (U) = BT (u, α, β) = BT (u, α, β) · nT ,where nT (x) is the exterior unit normal to ∂Ω at T (x). The equations (5),(6) and (8) 
an now be written in the form

Ut = A1EBR
U, BEBR

(U) = 0.Let
B

s = {[u, α, β, d] : u ∈ W s−1
p (BR), α ∈ W s

p (BR),

β ∈ W s+1−1/p
p (∂BR), d ∈ W s+1

p (BR)}with p > 9, 1/p < s ≤ 1 and
Ds = {[u, α, β, d] ∈ Bs : u ∈ W s+1

p (BR)}.With the norm
‖[u, α, β, d]‖Bs

−1
= ‖u‖W s−1

p
+ ‖α‖W s

p
+ ‖β‖

W
s−1/p
p

+ ‖d‖W s+1
p

,

Bs is a normed ve
tor spa
e, as is Ds with the norm
‖[u, α, β, d]‖Ds

−1
= ‖u‖W s+1

p
+ ‖[u, α, β, d]‖Bs

−1
.



104 G. StröhmerIn addition, Bs is a Bana
h spa
e with
‖[u, α, β, d]‖Bs = ‖[u, α, β, d]‖Bs

−1
+ ‖β‖

W
s+1−1/p
p

,and so is Ds with the norm
‖[u, α, β, d]‖Ds = ‖[u, α, β, d]‖Ds

−1
+ ‖β‖

W
s+1−1/p
p

.Spe
ifying D1 as the domain of A1T we obtain A1T : D1 → B1. The sig-ni�
an
e of the other norms will be
ome 
lear in Theorem 1. Let Pc bethe orthogonal proje
tion from H to N and P = EH − Pc. We 
learly have
PcU ∈ D1 and

‖PcU‖D1 ≤ C‖U‖Hfor all U ∈ H. Also let B = P(B1) and
A1T = PA1T .This proje
tion is a rather brute for
e, but e�e
tive, method for dealing withthe 
ondition U(t) ⊥ N . Also let

Π[u, α, β, d] = [u, α, β, 0],

D1(AT ) = {U ∈ B ∩ D1 : BT (U) = 0}, AT = A1T |D
1(AT ).With these de�nitions we 
an now formulate a version of the main result of[9℄ in a form suited to our purposes.Theorem 1. For s ∈ (1/p, 1] there exist numbers C < ∞ and η > 0su
h that if ‖T − E‖W 2

p (BR) ≤ η, then for every U0 ∈ B there is exa
tly onefun
tion U :[0,∞) → B, U ∈ C0([0,∞), B) ∩ C1((0,∞), D1(AT )) solving
U

′(t) = ATU(t) for t > 0, U(0) = U0,and it satis�es the inequality
‖U(t)‖B1 + t‖U′(t)‖B1 + t2‖ΠU

′(t)‖D1
−1

+ t2−s‖ΠU(t)‖Ds
−1

≤ C‖U0‖B1 .This theorem is a dire
t 
onsequen
e of Theorem 1.2 in [9℄. As alreadymentioned, the purpose of this paper is to 
onsider the 
ase in whi
h T isno longer stati
, but is repla
ed by a family of transformations denoted by
T : BR×[0, ω] → R

3, and at the same time to 
onsider the non-homogeneousequation and non-homogeneous boundary 
onditions. To this end we need tointrodu
e a few additional spa
es and norms for various fun
tions dependingon time t ∈ [0, ω]; these were not de�ned in [9℄. Unfortunately, the norms weneed to 
onsider are somewhat 
ompli
ated.Definition 2. Let ω ∈ [1,∞). For the transformations T we introdu
ethe spa
e
Bω = C0([0, ω], W 2

p (BR)) ∩ C2/3([0, ω], C1(BR))



Compressible vis
ous �uid �ow 105and the weighted norm
‖T‖Bω = sup

t∈[0,ω−1]
[‖T‖C0([t,t+1],W 2

p ) + (1 + t)1/3‖T‖C2/3([t,t+1],C1)].Let Bω
1 = Lp((0, ω), B1), Bω

2 = W
1−1/p,1/2−1/2p
p (∂BR × (0, ω)) and

Wω = {U = [u, α, β, d] : U ∈ Lp((0, ω), D1), U
′ ∈ Lp((0, ω), B1)}(for the meaning of U

′ see Se
tion 2). Then let
‖F‖Bω

1
= sup

t∈[0,ω−1]
(1 + t)4/3

[t+1\
t

‖F (τ)‖p
B1dτ

]1/p
,

‖g‖Bω
2

= sup
t∈[0,ω−1]

(1 + t)4/3‖g‖
W

1−1/p,1/2−1/2p
p (∂BR×[t,t+1])

.De�ning the norm
‖U‖Wω

1
= sup

t∈[0,ω−1]

[t+1\
t

(‖U′(τ)‖p
B1 + ‖U(τ)‖p

D1) dτ
]1/p

and the two seminorms
[U]1 = sup

t∈[0,ω−1]
(1 + t)

[t+1\
t

(‖U′(τ)‖p
B1 + ‖ΠU(τ)‖p

D1
−1

) dτ
]1/p

,

[U]2 = sup
t∈[0,ω−1]

(1 + t)4/3
[t+1\

t

‖ΠU
′(τ)‖p

B1
−1

dτ
]1/p

+ sup
t∈[0,ω]

(1 + t)4/3‖ΠU(t)‖
D

2/3

−1

,we 
an now 
on
lude with the �nal norm
‖U‖Wω = [U]1 + [U]2 + ‖U‖Wω

1
.It may be helpful to make a few remarks about the spa
es Wω. It isnot hard to see that as sets they are identi
al with the 
olle
tion of all

U = [u, α, β, d] su
h that u ∈ W 2,1
p (BR × (0, ω)), α ∈ W 1

p ((0, ω), W 1
p (BR)),

β ∈ W 1
p ((0, ω), W

2−1/p
p (∂BR)), d ∈ W 1

p ((0, ω), W 2
p (BR)). It is also obviousthat the weights used in de�ning the norm of Wω require 
ertain de
ayproperties for fun
tions with a bounded norm. Using s = 2/3 one 
an seefrom Theorem 1 that solutions of the equation 
onsidered there satisfy su
hestimates at least for t ≥ 1. The spe
i�
 value s = 2/3 and the exponent 4/3are somewhat arbitrary. We 
ould 
hoose any s ∈ [2/3, 1) and then wouldhave to repla
e 4/3 by 2−s. It is ne
essary, though, to have 2−s > 1 in orderto ensure the boundedness of 
ertain integrals involving these fun
tions as tgoes to in�nity.



106 G. StröhmerRepla
ing the �xed transformation T by the time dependent T and usingthe notation introdu
ed in (4) and (11), we de�ne
ZT(t, x) = ZTt(x) (t ∈ [0, ω], x ∈ BR)and in 
omplete analogy

(A1TU)(t) = A1TtU(t)for t ∈ Iω. The meaning of BTU as well as a number of other similar expres-sions should now be 
lear. Note that
{U = [u, α, β, d] ∈ B1 | u ∈ W 2−2/p

p (BR)} = B1 ∩ D1−2/p.Our main result in this paper isTheorem 3. There exist numbers η > 0 and C < ∞ with the followingproperties. Let ω ∈ [1,∞), T ∈ Bω and T̃(x, t) = T(x, ω) (x ∈ BR, t ∈
[0, ω]). If

‖T − T̃‖Bω + ‖T(t) − EBR
‖W 2

p
≤ η (t ∈ [0, ω]),then for F ∈ Bω

1 , g ∈ Bω
2 , U0 ∈ B ∩ D1−2/p with BT0

(U0) = g(0) there isexa
tly one fun
tion U ∈ Wω with U(t) ∈ B for t ∈ Iω su
h that(17) BT(U) = g,

U(0) = U0 and(18) U
′ = A1TU + Ffor almost all t ∈ Iω, where the time derivative is meant in the sense ofdistributions (see Se
tion 2). This fun
tion also satis�es the inequality

‖U‖Wω ≤ C(‖F‖Bω
1

+ ‖g‖Bω
2

+ ‖U0‖B1 + ‖U0‖D1−2/p).Note in parti
ular that although the theorem only makes a statementabout ω < ∞, the 
onstant C is independent of ω.In the appli
ation of this theorem in [10℄, g and F themselves depend onthe ve
tor U in su
h a way that
‖F (U)‖Bω

1
+ ‖g(U)‖Bω

2
≤ C‖U‖

4/3
Wω .This then allows us to estimate ‖U‖Wω for small solutions. There is, however,the additional 
ompli
ation that the U des
ribing the �ow does not a
tuallybelong to B, but one 
an split it up into a 
omponent in B and one in N .The former 
an then be estimated by using Theorem 3, and the latter bymeans of the 
onservation laws.The proof of Theorem 3 pro
eeds by 
ombining the lo
al maximum regu-larity estimates proved in Se
tion 4 with asymptoti
 estimates for semigroupstaken from [9℄ by means of an abstra
t theorem proved in Se
tion 5.I am indebted to W. Zaj¡
zkowski from the Institute of Mathemati
s ofthe Polish A
ademy of S
ien
es for many 
ru
ial dis
ussions.
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ous �uid �ow 1072. Notation and fun
tion spa
es. We denote generi
 
onstants by C.Let tr(A) denote the tra
e of the matrix A, At its transpose, while En is the
n × n unit matrix. For arbitrary R > 0 and y ∈ R

3 let BR(y) = {x ∈ R
3 :

|x − y| < R} and BR = BR(0). We also use the summation 
onvention thatany index o

urring at least twi
e in an expression is to be summed over itsnatural range.Unless otherwise stated all our ve
tors are 
olumn ve
tors. Ex
eptions arethe fun
tion ve
tor U and the gradient of a ve
tor or s
alar fun
tion. Takingthe transformation T as an example, we have T (x) = [T1(x), T2(x), T3(x)]tand
∇T =




∂T1

∂x1

∂T1

∂x2

∂T1

∂x3

∂T2

∂x1

∂T2

∂x2

∂T2

∂x3

∂T3

∂x1

∂T3

∂x2

∂T3

∂x3


 .

Thus, if T and T̂ are two su
h transformations, we have ∇(T ◦ T̂ ) = ((∇T )

◦ T̂ )∇T̂ wherever su
h a 
omposition makes sense.The norm of any Bana
h spa
e B is denoted by ‖ · ‖B. Let S ⊂ R
m be anopen set or its 
losure. For any Bana
h spa
e B and δ ∈ [0, 1) let Cδ(S,B)be the spa
e of all 
ontinuous fun
tions f : S → B su
h that

‖f‖Cδ(S,B) = sup
x,x′∈S, x6=x′

‖f(x) − f(x′)‖B
|x − x′|δ

+ sup
x∈S

‖f(x)‖B < ∞.The set Cδ(S,B) is a Bana
h spa
e. Let Cδ
0(S,B) 
ontain all elements of

Cδ(S,B) with 
ompa
t support in S. If Ω is open, Lp(Ω,B) is the 
losure of
C0

0 (Ω,B) with respe
t to the norm
( \

Ω

‖u(x)‖p
B dx

)1/p
.Throughout the paper we use primes to denote time derivatives. This isto be understood in the sense of distributions if ne
essary. If, e.g., U ∈

Lp((0, ω),B) the statement U
′ ∈ Lp((0, ω),B) means that there is a fun
tion

V ∈ Lp((0, ω),B) su
h that for any ϕ ∈ C∞
0 ((0, ω)) we have(19) ω\

0

ϕ′(t)U(t) dt = −
ω\
0

ϕ(t)V(t) dt,and U
′ then denotes this fun
tion V. Then W 1

p ((0, ω),B) 
onsists of thefun
tions U ∈Lp((0, ω),B) su
h that U
′ ∈ Lp((0, ω),B). For this and otherspa
es for time-dependent fun
tions also see Se
tion 5.9.2 in [3℄.We de�ne Ck(S) for (k = 1, 2, 3, . . . ) as the spa
es of all real s
alar orve
tor fun
tions whi
h have 
ontinuous derivatives up to order k in S. Thismeans that these are Bana
h spa
es with the usual norms only in the 
ase



108 G. Ströhmerthat S is 
ompa
t. We denote by Ck
0 (S) the spa
e of fun
tions in Ck(S) with
ompa
t support in S. This notation is used if the target spa
e of a mappingis �nite-dimensional, and it will be 
lear from the 
ontext what it is.For real s ≥ 0 we de�ne W s

p (Ω) as in [12, 4.2.1, equation (3)℄, and W s
p0(Ω)is the 
losure in W s

p (Ω) of the set of in�nitely di�erentiable fun
tions with
ompa
t support. We 
an de�ne a seminorm for u ∈ W s
p (O) (0 < s < 1),where O is now 
ontained in R

m, by(20) [u]W s
p (O) =

[\
O

\
O

|u(x) − u(y)|p

|x − y|m+sp
dx dy

]1/p
,while [u]W 1

p (O) = ‖∇u‖Lp and [u]W 0
p (O) = 0. Then ‖u‖Lp(O) + [u]W s

p (O) is anorm for W s
p (O) a

ording to [12, equation (8), Se
tion 4.4.1℄ for 0 ≤ s ≤ 1.For ν < 0 we de�ne W−ν

p (Ω) as the dual spa
e of W ν
q0(Ω) with 1/p+1/q = 1.For anisotropi
 spa
es on the produ
t of two open sets O1 × O2 of di-mensions m1, m2 we de�ne, for 0 < s1 < 1,(21) [u]

W
s1,0
p (O1×O2)

=

[ \
O2

( \
O1

\
O1

|u(x, z) − u(y, z)|p

|x − y|m1+s1p
dx dy

)
dz

]1/p

,while [u]
W 1,0

p (O1×O2)
= ‖∇xu(x, y)‖Lp and [u]

W 0,0
p (O1×O2)

= 0. Also for 0 <

s2 < 1 let(22) [u]
W

0,s2
p (O1×O2)

=

[ \
O1

( \
O2

\
O2

|u(z, x) − u(z, y)|p

|x − y|m2+s2p
dx dy

)
dz

]1/p

,

[u]W 0,1
p (O1×O2)

= ‖∇yu(x, y)‖Lp , and [u]W s1,s2
p (O1×O2)

= [u]
W

s1,0
p (O1×O2)

+

[u]
W

0,s2
p (O1×O2)

. Then ‖u‖Lp(O1×O2)+[u]W s1,s2
p (O1×O2) is a norm for the spa
e

W s1,s2
p (O1×O2). Su
h anisotropi
 spa
es will be used with O2 = I, where I isan open interval in R. It is easy to see that, e.g., W 2,1

p (BR × I) is isomorphi
to {U ∈ Lp(I, W 2
p (BR)) : U ′ ∈ Lp(I, Lp(BR))} with the norm

[\
I

‖U(t)‖p
W 2

p
dt +

\
I

‖U ′(t)‖p
Lp

dt
]1/p

.This and other similar relationships will be used extensively.Fun
tion spa
es for fun
tions on any 
ompa
t di�erentiable manifold withor without boundary 
an easily be de�ned using a �nite 
olle
tion of 
harts
overing the manifold.Where no 
onfusion 
an arise, we will often omit the domain of de�nitionof the fun
tions in the notation for these spa
es.3. Continuity properties. In this se
tion we assume T, T̂ : BR ×
[0, ω] → R

3 and T, T̂ ∈ Bω, and that both Tt and T̂t satisfy 
ondition (10)for all t ∈ [0, ω]. Likewise let T, T̂ : BR → R
3, T, T̂ ∈ W 2

p (BR), satisfy (10).
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ous �uid �ow 109Lemma 4. For every ω < ∞ there exists a 
onstant C(ω) < ∞ su
h thatfor U ∈ Wω,
‖U‖Wω

1
≤ ‖U‖Wω ≤ C(ω)‖U‖Wω

1
.Also Wω is a Bana
h spa
e with both norms.Proof. All 
onstants C in this proof may depend on ω. LetU = [u, α β, d].The estimate for ‖U‖Wω from below is obvious due to the de�nition of

‖U‖Wω . The estimate from above is also immediate ex
ept for the inequality
‖ΠU(t)‖

D
2/3

−1

≤ C‖U‖Wω
1for t ∈ [0, ω]. The only part of this statement requiring any thought is

‖u(t)‖
W

5/3
p

≤ C‖U‖Wω
1for t ∈ [0, ω]. Now this is also easy to see as(23) ‖u(t)‖

W
5/3
p

≤ C‖u(t)‖
W

2−2/p
p

≤ C‖u‖
W 2,1

p (BR×(0,ω))
≤ C‖U‖Wω

1by Theorem 1.8.2 in [12℄, owing to the fa
t that 5/3 ≤ 2 − 2/p. The last
laim is straightforward.Lemma 5. Assume Ok (k = 1, 2) are open sets with C1 boundaries whose
losures are 
ompa
t , lying either in R
mk or in C2 manifolds of dimension

mk. Then there exists a 
onstant C su
h that for s1, s2 ∈ [0, 1] we have, forany p ∈ (1,∞) and u, v ∈ W s1,s2
p (O1 × O2) ∩ L∞(O1 × O2),

[uv]W s1,s2
p

≤ C[‖u‖L∞
[v]W s1,s2

p
+ [u]W s1,s2

p
‖v‖L∞

],

‖uv‖W
s1,s2
p

≤ C[‖u‖L∞
‖v‖W

s1,s2
p

+ ‖u‖W
s1,s2
p

‖v‖L∞
].If s ∈ [0, 1] and u, v ∈ W s

p (O1) ∩ L∞(O1) then
‖uv‖W s

p
≤ C[‖u‖L∞

‖v‖W s
p

+ ‖u‖W s
p
‖v‖L∞

].If sp > m1 then also
‖uv‖W s+1

p
≤ C[‖u‖W s+1

p
‖v‖W s

p
+ ‖u‖W s

p
‖v‖W s+1

p
]for u, v ∈ W s+1

p (O1).Proof. It is easy to derive the 
laim for subsets of manifolds on
e it isproved for subsets of R
mk . The �rst three inequalities are easy to see from(20)�(22). For the last one note that as W s

p is embedded into L∞ we have
‖uv‖W s

p
≤ C‖u‖W s

p
‖v‖W s

p
,and therefore

‖uv‖W s+1
p

≤ C(‖uv‖W s
p
+‖∇(uv)‖W s

p
) = C(‖uv‖W s

p
+‖v∇u‖W s

p
+‖u∇v‖W s

p
)

≤ C(‖u‖W s
p
‖v‖W s

p
+ ‖v‖W s

p
‖∇u‖W s

p
+ ‖u‖W s

p
‖∇v‖W s

p
),proving the 
laim.



110 G. StröhmerThe following three lemmas 
ontain re�nements of estimates given in [9℄.Lemma 6. There exists a 
onstant C < ∞ su
h that if u ∈ W 2
p (BR),then

‖DT (u) − D
T̂
(u)‖W 1

p
+ ‖LT (u) − L

T̂
(u)‖Lp

≤ C(‖T − T̂‖W 2
p
‖u‖

W
5/3
p

+ ‖T − T̂‖C1(BR)‖u‖W 2
p
).Proof. For all k, m, n, q ∈ {1, 2, 3} we have, by Lemma 3.1 in [9℄, theSobolev embedding theorem and some elementary 
al
ulations,

∥∥∥∥∇
[

∂uk

∂xm
(ZT −Z

T̂
)nq

]∥∥∥∥
Lp

≤

∥∥∥∥
(
∇

∂uk

∂xm

)
(ZT −Z

T̂
)nq

∥∥∥∥
Lp

+

∥∥∥∥
∂uk

∂xm
∇(ZT −Z

T̂
)nq

∥∥∥∥
Lp

≤ C‖u‖W 2
p
‖ZT −Z

T̂
‖C0(BR) + C‖u‖C1(BR)‖ZT −Z

T̂
‖W 1

p

≤ C‖u‖W 2
p
‖T − T̂‖C1(BR) + C‖u‖

W
5/3
p

‖T − T̂‖W 2
p
.From this our 
laim follows easily.Lemma 7. There exists a 
onstant C < ∞ su
h that if u ∈ W 2
p (BR) and

α ∈ W 1
p (BR), then

‖LT (u, α) − LT̂ (u, α)‖Lp

≤ C(‖T − T̂‖C1(‖u‖W 2
p

+ ‖α‖W 1
p
) + ‖T − T̂‖W 2

p
‖u‖

W
5/3
p

).Proof. This inequality follows easily from Lemmas 5 and 6.Lemma 8. There exists a 
onstant C < ∞ su
h that if U ∈ D1, then
‖A1T U − A

1T̂
U‖B1 ≤ C‖T − T̂‖W 2

p
‖ΠU‖

D
2/3

−1

+ C‖T − T̂‖C1‖ΠU‖D1
−1

.Proof. Let U = [u, α, β, d]. The estimate for the �rst 
omponent followsfrom Lemma 7 here together with Lemma 3.1 of [9℄ and inequality (27) of [8℄.The last 
omponent of the di�eren
e is zero. We also infer, using Lemma 5,that
‖u · (mT − m

T̂
)‖

W
2−1/p
p (∂BR)

≤ C‖u‖
W

1−1/p
p

‖mT − m
T̂
‖

W
2−1/p
p

+ C‖u‖
W

2−1/p
p

‖mT − m
T̂
‖

W
1−1/p
p

≤ C‖u‖W 1
p (BR)‖T − T̂‖W 2

p (BR) + C‖u‖W 2
p (BR)‖T − T̂‖W 1

p (BR),and the proof of the estimate for the remaining 
omponent is similar to theproof of Lemma 6.
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ous �uid �ow 111Theorem 9. There exists a 
onstant C < ∞ independent of ω su
h thatif U ∈ Wω then
‖A1TU − A

1T̂
U‖Bω

1
≤ C‖T − T̂‖Bω‖U‖Wω .Proof. By Lemma 8, for t ∈ [0, ω − 1],

[t+1\
t

‖A1Tτ U(τ) − A
1T̂τ

U(τ)‖p
B1 dτ

]1/p

≤ C
[t+1\

t

‖Tτ − T̂τ‖
p
W 2

p
‖ΠU(τ)‖p

D
2/3

−1

dτ
]1/p

+ C
[t+1\

t

‖Tτ − T̂τ‖
p
C1‖ΠU(τ)‖p

D1
−1

dτ
]1/p

.Now
[t+1\

t

‖Tτ − T̂τ‖
p
W 2

p
‖ΠU(τ)‖p

D
2/3

−1

dτ
]1/p

≤ max
t≤τ≤t+1

[‖Tτ − T̂τ‖W 2
p
‖ΠU(τ)‖

D
2/3

−1

]

≤ C‖T− T̂‖Bω(1 + t)−4/3[U]2 ≤ C‖T − T̂‖Bω(1 + t)−4/3‖U‖Wωand
[t+1\

t

‖Tτ − T̂τ‖
p

C1(BR)
‖ΠU(τ)‖p

D1
−1

dτ
]1/p

≤ max
t≤τ≤t+1

‖Tτ − T̂τ‖C1

[t+1\
t

‖ΠU(τ)‖p
D1

−1

dτ
]1/p

≤ C‖T − T̂‖Bω(1 + t)−1/3[U]1(1 + t)−1

≤ C‖T − T̂‖Bω(1 + t)−1/3(1 + t)−1‖U‖Wω ,and therefore
(1 + t)4/3

[t+1\
t

‖A1Tτ U(τ) − A
1T̂τ

U(τ)‖p
B1 dτ

]1/p
≤ C‖T − T̂‖Bω‖U‖Wω .This proves our 
laim.Now we deal with the boundary 
onditions.Lemma 10. There exists a 
onstant C < ∞ su
h that for t ∈ [0, ω − 1],

‖ZT−Z
T̂
‖

W
1−1/p,1/2−1/2p
p (∂BR×(t,t+1))

+ ‖nT −n
T̂
‖

W
1−1/p,1/2−1/2p
p (∂BR×(t,t+1))

≤ C‖T − T̂‖Bω .



112 G. StröhmerProof. Using the formula(24) nTt(x) =
1

|xtZTt(x)|
xtZTt(x),from Lemma 3.2 in [9℄ and the de�nition of ZT this easily follows as

‖ZT −Z
T̂
‖C2/3([t,t+1],C0(BR)) + ‖nT − n

T̂
‖C2/3([t,t+1],C0(BR))

≤ C‖T − T̂‖C2/3([t,t+1],C1(BR)),whi
h allows us to estimate the fra
tional time derivatives in these norms,while estimates for the spa
e derivatives dire
tly follow from Lemmas 3.1and 3.3 of [9℄.Theorem 11. There is a 
onstant C independent of ω su
h that for
U ∈ Wω,

‖BT(U) − B
T̂

(U)‖Bω
2
≤ C‖T− T̂‖Bω‖U‖Wω .Proof. Let t ∈ [0, ω−1]. All spa
es in the following sequen
es of inequal-ities 
onsist of fun
tions on ∂BR × [t, t + 1], unless otherwise stated, andduring the proof let δ = 1 − 1/p. As usual let U = [u, α, β, d].First observe

BT(U) · nT − B
T̂
(U) · n

T̂
= (DT(u) − D

T̂
(u)) · nT + B

T̂
(U) · (nT − n

T̂
).Also

‖(DT(u) − D
T̂

(u)) · nT‖W
δ,δ/2
p

≤ C‖DT(u) − D
T̂

(u)‖
W

δ,δ/2
p

‖nT‖W
δ,δ/2
p

≤ C‖DT(u) − D
T̂

(u)‖
W

δ,δ/2
p

,as ‖nT‖W
δ,δ/2
p

is bounded by Lemma 10, and this spa
e is embedded into L∞,allowing us to use Lemma 5. Now, using Lemma 5 again as well as Lemma10 and Theorem 1.8.2 in [12℄, we obtain
‖DT(u) − D

T̂
(u)‖

W
δ,δ/2
p

≤ C(‖∇u‖
W

δ,δ/2
p

‖ZT −Z
T̂
‖C0 + ‖∇u‖C0‖ZT −Z

T̂
‖

W
δ,δ/2
p

)

≤ C(‖u‖
W 2,1

p (BR×(t,t+1))
‖ZT −Z

T̂
‖C0

+ sup
t≤τ≤t+1

‖u(τ)‖
W

5/3
p (BR)

‖ZT −Z
T̂
‖

W
δ,δ/2
p

)

≤ C[U]1(1 + t)−1‖T − T̂‖C0([t,t+1],C1(BR)) + C[U]2(1 + t)−4/3‖T − T̂‖Bω

≤ C((1 + t)−1(1 + t)−1/3‖T − T̂‖Bω + (1 + t)−4/3‖T − T̂‖Bω)‖U‖Wω

≤ C(1 + t)−4/3‖T − T̂‖Bω‖U‖Wω .
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ous �uid �ow 113Also by the lemmas mentioned above,
‖B

T̂
(U) · (nT − n

T̂
)‖

W
δ,δ/2
p

≤ C‖B
T̂

(U)‖L∞
‖nT − n

T̂
‖

W
δ,δ/2
p

+ C‖B
T̂
(U)‖

W
δ,δ/2
p

‖nT − n
T̂
‖L∞

≤ C[U]2(1 + t)−4/3‖T − T̂‖Bω + C[U]1(1 + t)−1‖T− T̂‖C0([t,t+1],C1(BR))

≤ C(1 + t)−4/3‖T − T̂‖Bω‖U‖Wω .Then our 
laim easily follows.4. Maximum regularity estimates. In the following let T ∈ Bω, andalso assume that Tt satis�es 
ondition (10) as well as
‖T − EBR

‖C2/3([0,ω],C1(BR)) ≤ 1.For the relationship between T and Tt re
all (4).Theorem 12. Let ω̃ ∈ (0, ω]. Then there exists a 
onstant C(ω) inde-pendent of ω̃ su
h that if
F1 ∈ Lp(BR × (0, ω̃)), u0 ∈ W 2−2/p

p (BR), g ∈ W 1−1/p,1/2−1/2p
p (∂BR × (0, ω̃))with g(0) = DT0

(u0) · nT0
are given, then there is exa
tly one solution u ∈

W 2,1
p (BR × (0, ω̃)) of the equation

u′ − LT(u) = F1with the boundary 
ondition DT(u) · nT = g and the initial value u(0) = u0.This solution satis�es the estimate
‖u‖

W 2,1
p (BR×(0,ω̃))

≤ C(ω)(‖g‖
W

1−1/p,1/2−1/2p
p (∂BR×(0,ω̃))

+ ‖F1‖Lp(BR×(0,ω̃)) + ‖u0‖W
2−2/p
p (BR)

).Proof. This 
laim follows dire
tly from Theorem 5.4 of [6℄, by using someremarks in that treatise about less regular 
oe�
ients.Now we want to pro
eed to the entire operator.Theorem 13. There exists a 
onstant C(ω) su
h that if F ∈ Bω
1 , U0 ∈

B1∩D1−2/p and g ∈ W
1−1/p,1/2−1/2p
p (∂BR×(0, ω)) with g(0, x) = BT0

(U0)(x)are given, then there is exa
tly one solution U ∈ Wω of the equation
U

′ = A1TU + Fwith the boundary 
ondition
BT(U) = gand the initial value U(0) = U0. Also U(t) ∈ D1 for almost all t ∈ [0, ω],and

‖U‖Wω ≤ C(ω)(‖g‖Bω
2

+ ‖F‖Bω
1

+ ‖U0‖B1 + ‖u0‖W
2−2/p
p (BR)

).



114 G. StröhmerProof. Let U = [u, α, β, d] and U0 = [u0, α0, β0, d0]. Note that in view ofLemma 4 we 
an repla
e ‖U‖Wω in the estimate by ‖U‖Wω
1
, as our 
onstantis allowed to depend on ω.The last three 
omponents of the equation U

′ = A1TU + F are
α′ = (tr(∇((̺e ◦ T)u)ZT)) + F2,

β′ = u · mT + F3, d′ = u + F4.Together with the initial values α(0) = α0, β(0) = β0, d(0) = d0 the fun
tion
u therefore determines α, β, d. The �rst 
omponent of the equation 
an bewritten as

u′ − LT(u) = (∇((γe ◦ T)α) −∇I(α, β))ZT + F1.Together with the boundary 
onditions
DT(u) · nT = g + γe(R)̺e(R)αnT +

∂pe

∂r
(R)βnTand the initial 
ondition u(0) = u0 Theorem 12 allows us to 
on
lude thatgiven α and β with α(0) = α0, β(0) = β0 there is exa
tly one fun
tion

u ∈ W 2,1(BR × (0, ω)) satisfying these equations. For su�
iently small
ω the mapping taking u to the next u in this 
y
le is a 
ontra
tion in
W 2,1

p (BR × (0, ω)). It is possible and sometimes ne
essary to 
hoose ω < 1for this part of the argument. Verifying this takes some work, but is 
om-pletely straightforward. Thus we 
an prove existen
e and uniqueness of su
hsolutions by the Bana
h �xed point theorem. Then we 
an 
ontinue the 
on-stru
tion to any longer interval by a �nite number of steps, also obtainingthe estimate we 
laimed.Theorem 14. There exists a number η > 0 and a 
onstant C(ω) su
hthat if ‖Tt−EBR
‖W 2

p
≤ η, then the following is true. For F ∈ Bω

1 with F (t) ∈

B for almost all t, U0 ∈ B ∩D1−2/p, and g ∈ W
1−1/p,1/2−1/2p
p (∂BR × (0, ω))with g(0) = BT0

(U0) there is exa
tly one solution U ∈ Wω of the equation(25) U
′ = A1TU + Fwith the boundary 
ondition(26) BT(U) = gand the initial value U(0) = U0. Also U(t) ∈ B for t ∈ [0, ω], and

‖U‖Wω ≤ C(ω)(‖g‖Bω
2

+ ‖F‖Bω
1

+ ‖U0‖B1 + ‖U0‖D1−2/p).Proof. Let U(t) = [u(t), α(t) β(t), d(t)] and let N1 be the spa
e spannedby [0, xk, xk, 0] (k = 1, 2, 3) and [0, 1, 1, 0], and with v1
k = ek and v2

k = x× ek

(k = 1, 2, 3) let N2 be the spa
e spanned by [vm
k , 0, 0, 0] for m = 1, 2, k =

1, 2, 3. These spa
es are perpendi
ular to ea
h other. Then let Pc
m : H → Nkbe the orthogonal proje
tors, resulting in Pc = Pc

1 + Pc
2. In order to solve
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ous �uid �ow 115equations (25) and (26) we initially solve the equations
U

′ = A1TU− Pc(A1T − A1EBR
)U− Pc

2A1EBR
U + F,(27)

BT(U) = g(28)instead. Now Lemma 3.10 in [9℄ states that for U ∈ D1 we have(29) (A1EBR
U, [0, 1, 1, 0])H = 0,

(A1EBR
U, [0, xk, xk, 0])H = (U, [ek, 0, 0, 0])Hand

(A1EBR
U, [vm

k , 0, 0, 0])H =
\

∂BR

BEBR
(U) · vm

k dσ

for m = 1, 2, k = 1, 2, 3. Therefore
Pc

2A1EBR
U = M(BEBR

(U)),where M is a bounded linear mapping from L1(∂BR) to D1 and
‖M(h)‖D1 ≤ C‖h‖L1(∂BR)for h ∈ L1(∂BR). Thus equation (27) 
an be written as

U
′(t) = A1TU(t) + F (t) + M(g)(t)(30)

−Pc(A1T − A1EBR
)U(t) + M((BEBR

− BT)(U(t))).Now the expression F (t) + M(g)(t) is given, and, at least if we �x ω = 1,the expressions in the se
ond line of (30) are small perturbations if η issu�
iently small. This gives us the existen
e and uniqueness of solutions ofequation (30) with boundary 
ondition (28) using the Bana
h �xed pointtheorem, and we obtain an estimate for this solution as well. Now (27) isequivalent to
U

′ = A1TU + Pc
1A1EBR

U + F,thus for v ∈ N we have, as F (t) ∈ B for almost all t,
0 = (F+A1TU, v)H = (U′−Pc

1A1EBR
U, v)H =

d

dt
(U, v)H−(Pc

1A1EBR
U, v)H.Thus

d

dt
(U, v)H = (A1EBR

U,Pc
1v)H.For v ∈ N2 this implies 0 = (U0, v)H = (U(t), v)H, so U(t) ⊥ N2, andby (29) then (A1EBR

U,Pc
1v)H = 0 as well. Thus we have U(t) ⊥ N , and

Pc
1A1EBR

U = 0, whi
h means we have a
tually solved our original problemfor ω = 1. For larger values of ω we have to use a suitable partition of theinterval [0, ω].



116 G. Ströhmer5. Asymptoti
 estimates for an abstra
t Green operator. Theabstra
t theory developed here will be applied in the next se
tion.Let ω ∈ (0,∞] and let I be an arbitrary set. For any f : [0, ω] ∩ R → Iwe de�ne f t : [0, ω − t] ∩ R → I for t ∈ [0, ω] ∩ R by f t(τ) = f(t + τ) for
τ ∈ [0, ω − t]∩R. This notation will only be used for obje
ts in this se
tion,and of 
ourse also where the results of this se
tion are applied. As there areno matri
es in this se
tion, it is hoped that no 
onfusion with the transposewill arise. This de�nition immediately 
arries over to 
lasses of fun
tions
onsisting of all fun
tions agreeing almost everywhere in [0, ω] ∩ R.Let I1, I2 be two Bana
h spa
es, let ω ∈ [1,∞] and

Ŝω
1 = {u : [0, ω] ∩ R → I1}/∽, Ŝω

2 = {u : [0, ω] ∩ R → I2}/∽,where two fun
tions are 
onsidered equivalent in the sense of ∽ if they agreealmost everywhere. We also assume Sk ⊂ Ŝ1
k (k = 1, 2) are Bana
h spa
eswith norms ‖ · ‖Sk

. For f ∈ Ŝ ω̂
k with ω̂ ∈ [1, ω] the statement f ∈ Sk is usedinstead of f |[0, 1] ∈ Sk and likewise ‖f‖Sk

means ‖f |[0, 1]‖Sk
, a pra
ti
e wefollow throughout this se
tion. Then we de�ne(31) Sω

k = {f ∈ Ŝω
k : f t ∈ Sk for t ∈ [0, ω − 1] and sup

0≤t≤ω−1
‖f t‖Sk

< ∞}and(32) ‖f‖Sω
k

= sup
1≤t≤ω−1

‖f t‖Sk
.Now Sω

1 ,Sω
2 are Bana
h spa
es and S1

k = Sk. We also assume that thereexists a 
onstant C1 su
h that if f ∈ S1 and t ∈ [0, 1] then(33) ‖f(t)‖I1
≤ C1‖f‖S1for all t ∈ [0, 1], and that if f ∈ Sk and ϕ ∈ C1([0, 1]) and (ϕf)(t) = ϕ(t)f(t)then ϕf ∈ Sk and(34) ‖ϕf‖Sk

≤ C1‖ϕ‖C1‖f‖Sk
(k = 1, 2).We assume there is a bounded linear operator C : I1 × I2 → I2 su
h thatif u0 ∈ I1 and f ∈ S2, then the fun
tion 
lass t 7→ C(u0, f(t)) 
ontains arepresentative whi
h is a 
ontinuous fun
tion from [0, 1] to I2, and we denotethis representative by C(u0, f). Let us de�ne

D = {(u0, f) ∈ I1 × S2 : C(u0, f)(0) = 0}.We assume there exists a linear operator Γ : D → S1, referred to as a Greenoperator here, and a 
onstant C1 with(35) ‖Γ (u0, f)‖S1
≤ C1(‖u0‖I1

+ ‖f‖S2
)for all (u0, f) ∈ D, whi
h also has the property that for (u0, f) ∈ D,(36) Γ (u0, f)(0) = u0
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ous �uid �ow 117and(37) C(Γ (u0, f)(t), f)(t) = 0for t ∈ [0, 1]. Finally, we make the following 
onsisten
y assumption.If τ ∈ (0, 1) and f : [0, 1 + τ ] → I2, u0 ∈ I1 are su
h that f, f τ ∈ S2 and
(u0, f) ∈ D, then for t ∈ [0, 1 − τ ] we have(38) Γ (Γ (u0, f)(τ), f τ )(t) = Γ (u0, f)(t + τ).Note that (37) implies the left-hand side of the equation is well-de�ned.Now we will de�ne a Green operator for the interval [0,∞), whi
h wewill also denote by Γ . For the de�nition of S∞

k see (31).Definition 15. Let
D∞ = {(u0, f) ∈ I × S∞

2 : C(u0, f)(0) = 0}.We de�ne Γ : D∞ → S∞
1 as follows. For any t ∈ [0, ω] and (u0, f) ∈ D∞let 0 = t0 < · · · < tn−1 < tn = t with tk − tk−1 < 1. Then for k = 1, . . . , nlet uk = Γ (uk−1, f

tk−1)(tk − tk−1), de�ned indu
tively, and �nally
Γ (u0, f) = un.It is not 
lear whether Γ is well-de�ned. This, together with some of theproperties of this operator, is the 
ontent of the next lemma.Lemma 16. The operator Γ : D∞ → S∞

1 is well-de�ned and linear , andfor s, t ≥ 0 we have Γ (Γ (u0, f)(s), f s)(t) = Γ (u0, f)(s + t). Given C1 (see(35)) and ω ∈ [1,∞) there is a 
onstant C(ω, C1) su
h that if (u0, f) ∈ D∞,then(39) ‖Γ (u0, f)‖Sω
1
≤ C(ω, C1)(‖u0‖I1

+ ‖f‖Sω
2
).This 
onstant is an in
reasing fun
tion of C1 and ω. Also for t ≥ 1 the value

Γ (u0, f)(t) is independent of f(s) for s > t.Proof. First we prove that the de�nition for Γ we just gave is independentof the partition 0 = t0 < t1 < · · · < tn = t. As an initial step we 
onsideronly partitions for whi
h n is the same. Then, for given u0, t and f , thispro
edure at least de�nes a mapping from
Tn = {(t1, . . . , tn−1) ∈ R

n−1 | 0 < tk+1 − tk < 1 for k = 0, . . . , n − 1with t0 = 0, tn = t}to I1. Now let (t1, . . . , tn−1), (t̃1, . . . , t̃n−1) ∈ Tn and tk = t̃k for k 6= m,while tm 6= t̃m. Let uk and ũk be the elements of I1 produ
ed by these twopartitions. Without restri
tion we may assume t̃m < tm. Then uk = ũk for
k < m. Now
ũm = Γ (um−1, f

tm−1)(t̃m − tm−1) and um = Γ (um−1, f
tm−1)(tm − tm−1).



118 G. StröhmerOwing to (38) we have
Γ (ũm, f t̃m)(τ) = Γ (Γ (um−1, f

tm−1)(t̃m − tm−1), f
t̃m)(τ)

= Γ (um−1, f
tm−1)(τ + t̃m − tm−1)for 0 ≤ τ ≤ 1− t̃m + tm−1. Now with τ = tm− t̃m we have τ ≤ 1− t̃m + tm−1,and therefore

Γ (ũm, f t̃m)(tm − t̃m) = Γ (um−1, f
tm−1)(tm − tm−1) = um.Using (38) again, we get

um+1 = Γ (um, f tm)(tm+1 − tm)

= Γ (Γ (ũm, f t̃m)(tm − t̃m), f tm)(tm+1 − tm)

= Γ (ũm, f t̃m)(tm+1 − t̃m) = ũm+1.From then on all uk will of 
ourse be equal. So we have now proved that if wehave two elements of Tn di�ering in only one 
omponent, then the pro
edurewe 
laim de�nes Γ gives the same result. Now Tn is open, thus for any point
(t1, . . . , tn−1) in Tn there exists a δ > 0 su
h that

{(τ1, . . . , τn−1) ∈ R
n−1 | |tk − τk| < δ, k = 1, . . . , n − 1} ⊂ Tn.It is 
lear that we 
an rea
h any point in this neighborhood from the 
enterby moving in the dire
tion of the 
oordinate axes only, so our pro
eduregives us the same value as at (t1, . . . , tn−1) throughout this set. Thus the setof all points where the pro
edure leads to a 
ertain value is an open subsetof Tn. As Tn is also 
onne
ted, there 
annot be more than one result of thispro
edure, as otherwise we would be able to split Tn up into at least two opensets. Due to (38) we 
an always add points to any partition without 
hangingthe result. This proves that the result of the pro
edure is independent of thepartition. Also one immediately sees, using a partition 
ontaining s as oneof its points, that for s, t ≥ 0 we have

Γ (Γ (u0, f)(s), f s)(t) = Γ (u0, f)(s + t).With this it is easy to prove the linearity and the estimate (39) by indu
tionover an upper bound for ω, and the last remark is obvious by 
onstru
tion.Now all our 
laims are proved.For ω ∈ [0,∞], a2 ≥ 0 let us de�ne(40) ‖f‖Sω,a2
2

= sup
0≤t≤ω−1

(1 + t)a2‖f t‖S2
,and

Sω,a2

2 = {f ∈ Sω
2 | ‖f‖Sω,a2

2
< ∞}.Then we obtain
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ous �uid �ow 119Theorem 17. Let [·]∗ be a seminorm de�ned on S1. Assume that thereare 
onstants C2, Ĉ2 and a number a1 ≥ 0 su
h that for u ∈ S1,(41) [u]∗ ≤ Ĉ2‖u‖S1
,and for (u0, 0) ∈ D∞ and t ∈ [0,∞),(42) [(Γ (u0, 0))t]∗ ≤ C2(1 + t)−a1‖u0‖I1

.Then for a2 > 1 with a2 ≥ a1 there exists a 
onstant C3, whi
h only dependson C1, C2, Ĉ2, a1 and a2, su
h that for all (u0, f) ∈ D∞ with f ∈ S∞,a2

2 ,(43) [(Γ (u0, f))t]∗ ≤ C3(1 + t)−a1(‖f‖S∞,a2
2

+ ‖u0‖I1
)for t ∈ [0,∞).Proof. Let ϕ ∈ C∞(R) be su
h that 0 ≤ ϕ(t) ≤ 1 for t ∈ R, ϕ(t) = 0 for

|t| ≥ 1, ϕ(t) = 1 for |t| ≤ 1/2, ϕ′(t)t ≤ 0 for all t ∈ R, and |ϕ′| ≤ 2. Then itis easy to see that
1 ≤

∞∑

p=−∞

ϕ(t − p) ≤ 3

for all t ∈ R, and this sum is 1-periodi
 and belongs to C∞(R). Now let
Ψ(t) = ϕ(t)

( ∞∑

p=−∞

ϕ(t − p)
)−1

,

Ψk(t) = Ψ(t − k) and fk(t) = Ψk(t)f(t). Also letting uk = 0 for k ≥ 1 wehave
f(t) =

∑

0≤k≤t+1

fk(t),and fk(0) = 0 and C(uk, fk(0)) = 0 for k ≥ 1. As Ψ0(0) = 1 we have (uk, fk) ∈
D∞ even for k ≥ 0. Now, owing to the linearity of Γ and Lemma 16,

Γ (u0, f)(t) =
∑

0≤k≤t+1

Γ (uk, fk)(t)and Γ (uk, fk)(t) = 0 for t ≤ k − 1. Therefore
(Γ (u0, f))t|[0, 1] =

∑

0≤k≤t+2

(Γ (uk, fk))
t|[0, 1]

and(44) [(Γ (u0, f))t]∗ ≤
∑

0≤k≤t+2

[(Γ (uk, fk))
t]∗.We �rst 
onsider the 
ase k − 2 ≤ t ≤ k + 2 ≤ 5. Then, remembering (31)



120 G. Ströhmerfor the de�nition of S5
k ,S6

k , by Lemma 16 and (34) we have
‖(Γ (uk, fk))

t‖S1
≤ ‖Γ (uk, fk)‖S6

1

≤ C(‖fk‖S6
2

+ ‖uk‖I1
) ≤ C(‖f‖S6

2
+ ‖u0‖I1

)

≤ C(‖f‖S∞,a2
2

+ ‖u0‖I1
).If k − 2 ≤ t ≤ k + 2 > 5 then for τ ≥ k − 2,

Γ (uk, fk)(τ) = Γ (0, fk)(τ) = Γ (Γ (0, fk)(k − 2), fk−2
k )(τ − k + 2)

= Γ (0, fk−2
k )(τ − k + 2).Therefore, again using Lemma 16 and (34),

‖(Γ (uk, fk))
t‖S1

= ‖Γ (0, fk−2
k )t−k+2‖S1

≤ ‖Γ (0, fk−2
k )‖S5

1
≤ C‖fk−2

k ‖S5
2

≤ C‖fk−2‖S5
2
≤ C(1 + k)−a2‖f‖Sa2,∞

2
.Putting these two 
ases together we �nd that for k − 2 ≤ t ≤ k + 2,(45) ‖(Γ (uk, fk))

t‖S1
≤ C(2 + k)−a2(‖f‖Sa2,∞

2
+ ‖u0‖I1

)with a �xed 
onstant C.Now we 
onsider the 
ase t ≥ k + 2. Then
(Γ (uk, fk))

t = (Γ (Γ (uk, fk)(k + 2), fk+2
k ))t−k−2.Now fk+2

k = 0, and therefore by (42),
[(Γ (uk, fk))

t]∗ = [(Γ (Γ (uk, fk)(k + 2), 0))t−k−2]∗

≤ C(1 + t − k − 2)−a1‖Γ (uk, fk)(k + 2)‖I1
.Thus, keeping in mind that t ≥ k + 2, we obtain

[(Γ (uk, fk))
t]∗ ≤ C(t + 5 − k)−a1‖Γ (uk, fk)(k + 2)‖I1

≤ C(t + 5 − k)−a1‖Γ (uk, fk)
k+1‖S1

.Combining this with (45) and (41), we have
[(Γ (uk, fk))

t]∗ ≤ C(t + 5 − k)−a1(2 + k)−a2(‖f‖S∞,a2
2

+ ‖u0‖I1
)for t ≥ k − 2. Using (44), we therefore even obtain

[(Γ (u, f))t]∗ ≤ C(‖f‖S∞,a2
2

+ ‖u0‖I1
)S(t)with

S(t) =
∑

0≤k≤t+2

(5 + t − k)−a1(k + 2)−a2 .

For τ ∈ [k, k + 1] we have
(5 + t − k)−a1(k + 2)−a2 ≤ (4 + t − τ)−a1(1 + τ)−a2
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ous �uid �ow 121and for this reason
S(t) ≤

∑

0≤k≤t+2

k+1\
k

(4 + t − τ)−a1(1 + τ)−a2 dτ

≤
t+3\
0

(4 + t − τ)−a1(1 + τ)−a2 dτ.Substituting τ = σ(t + 5) − 1 and letting δ = (t + 5)−1, we get, as a1 ≤ a2and 0 ≤ σ ≤ 1,

S(t) ≤ δa1+a2−1
1−δ\

δ

(1 − σ)−a1σ−a2 dσ ≤ δa1+a2−1
1−δ\

δ

(1 − σ)−a2σ−a2 dσand for reasons of symmetry, and as a2 > 1,

1−δ\
δ

(1 − σ)−a2σ−a2 dσ = 2

1/2\
δ

(1 − σ)−a2σ−a2dσ ≤ 21+a2

1/2\
δ

σ−a2dσ

≤
21+a2

a2 − 1
δ1−a2.Thus

S(t) ≤ Cδa1+a2−1δ1−a2 = Cδa1 = C(t + 5)−a1 .This proves our theorem.6. The proof of Theorem 3. First we prove the following theorem,whi
h implies Theorem 3 in 
ase T does not depend on time.Theorem 18. There exist numbers η > 0 and C < ∞ with the followingproperties. Assume that T ∈ W 2
p (BR) and

‖T − EBR
‖W 2

p
≤ η,and for ω ∈ [1,∞) let T(x, t) = T (x) (x ∈ BR, t ∈ [0, ω]). Then for F ∈ Bω

1 ,
g ∈ Bω

2 , U0 ∈ B ∩ D1−2/p with BT (U0) = g(0) there is exa
tly one fun
tion
U ∈ Wω with U(t) ∈ B for t ∈ [0, ω] whi
h solves the initial boundary valueproblem given by the equations

U
′ = A1TU + F, BT(U) = g,whi
h are equations (18) and (17), and U(0) = U0. This fun
tion also satis-�es the inequality

‖U‖Wω ≤ C(‖F‖Bω
1

+ ‖g‖Bω
2

+ ‖U0‖B1 + ‖U0‖D1−2/p)with a 
onstant C independent of ω.Proof. The existen
e and uniqueness immediately follow from Theo-rem 14, therefore we only need to prove the estimate.



122 G. StröhmerWe obtain this result by 
ombining Theorem 1, whi
h, as we saw, is animmediate 
onsequen
e of Theorem 1.2 of [9℄, with Theorems 14 and 17. Inapplying this latter theorem to our problem we use
S2 = {(F, g) | F ∈ B1

1 , g ∈ B1
2} = B1

1 × B1
2and I2 = B × Lp(∂BR) with the norms

‖(F, g)‖S2
= ‖F‖B1

1
+ ‖g‖B1

2
, ‖(F, g)(t)‖I2

= ‖F (t)‖B1 + ‖g(t)‖Lp.It is easy to verify that S2 has property (34), and that if (F, g) ∈ S2, then
(F, g)(t) ∈ I2 for almost all t, and Sω

2 = Bω
1 × Bω

2 for ω ∈ [1,∞). Also it iseasy to see that there is a 
onstant C ∈ (0,∞) independent of ω su
h that
C−1(‖F‖Bω

1
+ ‖g‖Bω

2
) ≤ ‖(F, g)‖

S
4/3,ω
2

≤ C(‖F‖Bω
1

+ ‖g‖Bω
2
).(For the de�nition of S4/3,ω

2 see (40).) Unfortunately the use of Theorem 17requires (F, g) ∈ S
4/3,∞
2 . Now, if we are given (F, g) ∈ S

4/3,ω
2 we 
an extend

(F, g) to in�nity by de�ning
F̃ (t) =

{
F (t) for t ≤ ω,

0 for t > ω.and with a fun
tion ϕ ∈ C∞(R) with 0 ≤ ϕ(t) ≤ 1, ϕ′(t) ≤ 0 and ϕ(t) = 1for t ≤ 0, ϕ(t) = 0 for t ≥ 1 we 
an de�ne
g̃(t) =





g(t) for t ≤ ω,
g(2ω − t)ϕ(t − ω) for ω < t ≤ 2ω,
0 for t > 2ω.Then one 
an easily verify

‖(F̃ , g̃)‖
S

4/3,∞
2

≤ C‖(F, g)‖
S

4/3,ω
2and (F̃ , g̃)(t) = (F, g)(t) for t ≤ ω. Furthermore, let

S1 = {U ∈ W1
1 | U(t) ∈ B for t ∈ [0, 1]}, I1 = B ∩ D1−2/pwith the norms

‖U‖S1
= ‖U‖W1

1
, ‖U‖I1

= ‖U‖B1 + ‖u‖
W

2−2/p
p

.Using the inequalities
max

0≤τ≤1
‖U(τ)‖B1 ≤ C

[1\
0

(‖U′(τ)‖p
B1 + ‖U(τ)‖p

B1) dτ
]1/p

≤ C‖U‖W1
1and inequality (23), we 
an easily verify 
ondition (33). Condition (34) for

S1 is also easy to see. We de�ne C(U, (F, g)) = (0,BT (U)−g). For (F, g) ∈ S2and U0 ∈ I1 with C(U0, (F, g)) = 0 by Theorem 14 we have a solution Uon [0, 1] of the equation U
′ = A1TU + F with initial value U(0) = U0 andboundary 
ondition BT(U) = g. Then we de�ne Γ (U0, (F, g)) = U.



Compressible vis
ous �uid �ow 123It is easy to see that C(U(t), (F (t), g(t))) is a 
ontinuous fun
tion from
[0, 1] to I2, as the �rst 
omponent of the pair is zero. Conditions (35)�(37)follow from Theorem 14. Condition (38) is due to the uniqueness of thatsolution. The same fa
t implies that the abstra
t Γ we 
onstru
ted in Lemma16 is identi
al with the solution operator that one obtains from Theorem 14for ω > 1.Now we apply Theorem 17 several times with a2 = 4/3. In the �rstappli
ation let a1 = 4/3 and

[U]∗ =
[ 1\

0

‖ΠU
′(τ)‖p

B1
−1

dτ
]1/p

+ sup
0≤τ≤1

‖ΠU(τ)‖
D

2/3

−1

.Using Lemma 4 we see that [U]∗ ≤ C‖U‖W1
1
, and by Theorem 1 we dedu
ethat if U0 ∈ I1 and U = Γ (U0, 0), then with s = 2/3,

t4/3(‖ΠU
′(t)‖D1

−1
+ ‖ΠU(t)‖

D
2/3

−1

) ≤ C‖U0‖B1for t ≥ 1. Therefore
(1 + t)4/3[Ut]∗ ≤ C(‖U0‖B1 + ‖u‖

W
2−2/p
p

)for t ≥ 1, while for t ≤ 1 this follows dire
tly from Theorem 14. ThusTheorem 17 implies that for t ≥ 0,
(1 + t)4/3[Γ (U0, (F̃ , g̃))t]∗ ≤ C(‖U0‖B1 + ‖u‖

W
2−2/p
p

+ ‖(F̃ , g̃)‖
S

4/3,∞
2

)

≤ C(‖U0‖B1 + ‖u‖
W

2−2/p
p

+ ‖(F, g)‖
S

4/3,ω
2

)

≤ C(‖U0‖B1 + ‖u‖
W

2−2/p
p

+ ‖F‖Bω
1

+ ‖g‖Bω
2
).Thus

[Γ (U0, (F, g))]2 = [Γ (U0, (F̃ , g̃))]2

≤ C(‖U0‖B1 + ‖u‖
W

2−2/p
p

+ ‖F‖Bω
1

+ ‖g‖Bω
2
),as for t ≤ ω we have Γ (U0, (F, g))(t) = Γ (U0, (F̃ , g̃)). We omit the details ofthe 
ompletely analogous argument whi
h gives us with a1 = 1 and

[U]∗ =
[ 1\

0

(‖U′(τ)‖p
B1 + ‖ΠU(τ)‖p

D1
−1

) dτ
]1/p

that
[Γ (U0, (F, g))]1 ≤ C(‖U0‖B1 + ‖u‖

W
2−2/p
p

+ ‖F‖Bω
1

+ ‖g‖Bω
2
)and �nally for a1 = 0 and

[U]∗ = ‖U‖W1
1that

‖Γ (U0, (F, g))‖Wω
1
≤ C(‖U0‖B1 + ‖u‖

W
2−2/p
p

+ ‖F‖Bω
1

+ ‖g‖Bω
2
).



124 G. StröhmerPutting these inequalities together, we 
on
lude that if F ∈ Bω
1 , g ∈ Bω

2 ,
U0 ∈ B ∩ D1−2/p, then for ω ∈ [1,∞),
‖U‖Wω = ‖U‖Wω

1
+[U]1 +[U]2 ≤ C(‖U0‖B1 +‖u‖

W
2−2/p
p

+‖F‖Bω
1

+‖g‖Bω
2
)with U = Γ (U0, (F, g)). This 
ompletes the proof of Theorem 18.Now we 
an pro
eed to the 
ase of variable T in order to prove Theorem 3in its generality. Again Theorem 14 implies the existen
e and uniqueness ofthe solution. To obtain the estimate we 
an rewrite our equation

U
′ = A1TU + F,using T̃(t, x) = Tω(x), as

U
′ = A

1T̃
U + (A1T −A

1T̃
)U + Fand the boundary 
onditions as

B
T̃

(U) = B
T̃

(U) − BT(U) + g.Using Theorem 18, we obtain
‖U‖Wω ≤ C(‖F‖Bω

1
+‖g‖Bω

2
+‖(A1T−A

1T̃
)U‖Bω

1
+‖B

T̃
(U)−BT(U)‖Bω

2
).By Theorem 9 we have

‖(A1T −A
1T̃

)U‖Bω
1
≤ C‖T − T̃‖Bω‖U‖Wω ≤ Cη‖U‖Wω ,while Theorem 11 implies

‖B
T̃

(U) − BT(U)‖Bω
2
≤ C‖T− T̃‖Bω‖U‖Wω ≤ Cη‖U‖Wω .Combining these estimates we get

‖U‖Wω ≤ C(‖F‖Bω
1

+ ‖g‖Bω
2
) + Cη‖U‖Wω .For Cη ≤ 1/2 this 
on
ludes the proof of Theorem 3.
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