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Asymptotic estimates for a perturbation of the linearization
of an equation for compressible viscous fluid flow

by

GERHARD STROHMER (Iowa City, IA)

Abstract. We prove a priori estimates for a linear system of partial differential equa-
tions originating from the equations for the flow of a barotropic compressible viscous fluid
under the influence of the gravity it generates. These estimates will be used in a forthcom-
ing paper to prove the nonlinear stability of the motionless, spherically symmetric equi-
librium states of barotropic, self-gravitating viscous fluids with respect to perturbations
of zero total angular momentum. These equilibrium states as well as the non-stationary
solutions occupy part of space, and a constant pressure is assumed on the free surface,
but no surface tension.

1. Introduction. This paper contains the continuation of the analysis
of systems of linear equations related to the linearization of the equations
describing the flow of a barotropic fluid under the influence of its own grav-
ity with a free surface without surface tension, begun in [8] and [9]. The
linearization is carried out at a spherically symmetric stationary solution of
the equations. We begin by giving a short, and not entirely rigorous, descrip-
tion of the original problem and its relationship with the equations studied
here for the purpose of motivation.

The original equations, formulated in Euler coordinates, concern a fluid
occupying a domain §2; at time ¢t € I, = [0,w] N R with some w € (0, c0].
We denote the space-time region in which the flow takes place by

= U{(yvt) ‘ Yy € Qt}v
tel,
the velocity of the flow by v : 2% — R3, v(t) = v(y,t) with v(t) : 2, — R3,
the density of the fluid by ¢ : 2% — R, o(t) = o(y,t), o(t) : £2; — R, and
its pressure by p: 2% — R, p(t) = p(y,t), p(t) : 24 — R. We also define the
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stress tensor T by
T(v,p) = [Tij (v, p)] = [=pdi; + Dy;(v)]
with
D(v) = [Dy(v)] = p([Vo] + [Vo]') + (v — p) tr(Vv) Bs.
(In this paper the symbol V only denotes the vector of space derivatives.)

We assume the viscosity coefficients p and v satisfy v > p/3 > 0. The
gravitational potential of the mass distribution is given by

_ _ o(y,t)
(1) G(y,t) = G(o, ) = két 5l

dy,

where k is the gravitational constant. We also assume the equation of state
p = p(o) = Ko* with » > 4/3, K > 0 for the gas in question and that it is
exposed to a positive outside pressure pg > 0 on 9f2. Then for (y,t) € 2¢
we have the equations

o(v' +v - Vv) —div(T(v,p)) = VG,

@ o + div(pv) = 0,

while for t € 1, y € 02, we have
(3) T(v,p(e)) - n = —pon.

Note that there is no surface tension. The domain is also moving with the
flow, which means that if we follow the direction of the vector field v begin-
ning at any point (y,t) € £2“ we only leave this set at ¢t = 0 and ¢ = w. It
will be shown in [10] that we can describe the domains (2 by means of a
family of diffeomorphisms 7} : Br — (2; which also satisfy the equations

dT;

%(ya t) = U(Tt(yv t)v t)v

which means that T} follows the flow. By specifying Ty we also describe (2.
Then T3 o Ty ! is identical with standard Lagrange coordinates for this prob-

lem. We can describe these transformations also in the form of the mapping
T : Br x I, — R3 defined by

(4) T(z,t) = Ti(x) (v € Bg, t € 1,).

In the main part of this paper T will be assumed to be given, but we will
still use the two alternative ways of denoting the transformation we just
introduced in (4).

For an equilibrium state without motion (v = 0) the equations (2) and
(3) reduce to V(p(p)) = oVG in (2, which is then constant, and p(9) = pg on
the spatial boundary. As was shown, e.g., in [11], given a mass M € (0, c0)
and a pressure pg € (0,00) there exists exactly one number R > 0 and
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exactly one function g. € C*°([0, R]) such that with p. = p(ge) the function
Ge(y) = G(0e(|y]), Br) is spherically symmetric, and for |y| < R we have
dp

Vipe(lyl)) = %(@e(‘y’))v(ge(’y’)) = 0e([yDVGe(y),  pe(R) = po,
and the integral of the density g.(|y|) over Br equals M. This means that
0c(|y|) is the density of a spherically symmetric equilibrium solution.
(See [11].) From now on we will use the symbols g, pe, G. interchangeably
for functions of r and y, so that, e.g., 0.(|y|) = 0¢(y). The meaning will be
clear from the context.

In [8] the linearization

ocu’ — div(D(u)) + 0:V(ver) = 0eV[I(e, B)],
(5) o + div(geu) = 0,
B =u-n
of the equations (2) and (3) at these equilibrium solutions was computed.
The boundary conditions are

Ope
o (R)Bn.

Here u is the variation of the velocity, a that of the density, both defined on
Bpgr x 1,, and ( is the variation of the function describing (2; as a graph in

(6) T(u,a) - n =

polar coordinates, it is defined on dBg x I,,. Also v, = (g—g o Qe) 0.,

T(u, ) = D(u) — ve(R)0e(R)E3

and

7) rau0) = k(

o
| prtedn) | ).

Br OBr

The integral operator I represents the linearization of the gravity potential.
In [8] it was shown that solutions of (5) and (6) belonging to suitable spaces
decay in an algebraic fashion, while the results in [5] and [7] strongly suggest
that one cannot expect exponential decay for the solutions of this problem.
Due to the slow decay, the application of the results about the linearization
to the non-linear problem requires a very delicate analysis. To this end we
include the deformation d(z,t) = T(z,t)—x (z € Bg, t € 1,,), which satisfies
the equation

(8) d =u.
We also need to consider suitable perturbations of the resulting system.
The paper [9] is dedicated to the analysis of the homogeneous equation with

homogeneous boundary conditions without any explicit dependence on time.
In the present paper we will consider inhomogeneous and time-dependent
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equations. As this analysis strongly depends on the result of [9] and uses
much the same concepts, we describe the main result of that paper in a form
more appropriate for use here and introduce the notation used there to the
extent that it is relevant here. This will partly be done by contrasting the
problems considered in [8] with [9] and this paper. One difference between
[8], [9] and this paper is that we assume here that all function spaces consist
of real-valued functions only, as the direct work with analytic semigroups
characteristic of the previous papers is now finished, and we can reap its
benefits without getting entangled in the technical details. We unite the
relevant variables in one vector function

U(t) = [u(t), a(t), B(£), d()]-

One of the conditions one needs to impose on the components of U in order
to obtain the asymptotic estimates in [9] is that certain integral quantities,
which originate from the conservation laws of the original equation, vanish.
In the notation used in [9] we can express this condition by introducing the
scalar product

([u’ aaﬁvd]’ [17,52,5, Eﬂ)g)

= S Oc(x)ut dx + S aadr + p.(R) S ﬂﬁda—l— S ge(x)dadx
Br Br OBRr Br

for these functions on the space $) = La(Bg) X La(BRr) x L2(0BR) % La(BR).
If NV is the linear space spanned by the elements

[0,1,1,0], [ex,0,0,0], [x X ex,0,0,0], [0, xg, xx,0] (k=1,2,3),
these conditions can be expressed in the form
(9) (U@),u)g=0 (ueN).

The solutions of the systems of equations considered both in [8] and [9] are
defined on Bp as far as the space variables are concerned. If one poses the
same problem as in [8] on a different set {2, given as {2 = T(Bg) with a
diffeomorphism 1" € WE(BR), and then transforms it to Br one obtains
a problem very close, but not identical with the one considered in [9]. We
assume that this diffeomorphism T satisfies the conditions

(10) 1T = Bsalwam <1 det(VT) = 1/2 min [T(2)| = R/2.

For u € W2(Bg) we can then define

Dr(u) =D(uoT 1) oT.
Introducing Zr € W} (Bg) by
(11) Zp= V1],
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one can easily see that
(12) Dr(u) = u(VuZr + (VuZr)) + (v — p)(tr(VuZr))Es.
Likewise let

= Dr(u) — ve(R)oe(R)aEs,

(13)  (Lodelw) = — (Dr()iy)e,(Zr)ys (k= 1,2,3),

0
Lr(u,a) = Lp(u) — V((ye o T)v) Zp.
With mp(x) = T(x)/|T(z)| for x € 0Bgr and U = [u, «, 3, d] we then define
the operator ;7 by
(14)  A17U = [Lr(u, ) + VI(a, B) 27, — tr(V((0e 0 T)u) Zr), u - mr, u).

The expression u - m7 may not seem to fit into our transformation scheme.
To give a hint of why it does, we have to return to the original problem. As
the flow takes boundary points to boundary points we have T;(0BRr) = 02,
and for 92, which are small perturbations of 0Bp the ray in the direction
of T;(z) only contains one point, T;(z), of 2. Thus the function

(15) Bz, t) = |T(z)| — R
can be thought of as describing 0f2; as a graph in Lagrange coordinates.

Differentiating (15) with respect to time we obtain ' = u - mg,.
The domain of the operator ;7 will be specified later. With

Br(U) = Br(u . 8) = Tr(u,0) ~ 2% (R)3E,
let
(16) BT(U) = BT(U,O(,B) :BT(uva)ﬁ) - nr,

where np(z) is the exterior unit normal to 92 at T'(x). The equations (5),
(6) and (8) can now be written in the form

U; = QllEBRU, BEBR(U) =0.
Let
B° = {[u, o, B,d] : w € WS (Bg), o € WS (Bg),
B e Wt =1P(0Bg), d € Wit (Bg)}
with p > 9, 1/p<sgland
D* = {[u,a, B,d] € B* :u € Wy (Br)}.
With the norm
||[U,Oé,ﬁ,d]||s35_1 = HUHW;_l + ||a||W§ + ||ﬁ||W;—1/p + ||d||W;+1’
B9 is a normed vector space, as is D® with the norm

Ifws @, B, dll[ D=, = llullyzer + [[[u, o, B, d]f|ss -
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In addition, ®B° is a Banach space with
H [u7 a, B, d] H%S = H [u7 a, B, d] H%il + ”5”W5+1*1/P7
p
and so is D? with the norm

ltu, @, 8, d]lip= = [llu, &, B, d]lips, + 1Bl 51170

Specifying D! as the domain of 27 we obtain iz : D' — B1. The sig-
nificance of the other norms will become clear in Theorem 1. Let P¢ be
the orthogonal projection from $) to N/ and P = Ey — P°¢. We clearly have
PeU € D' and
IPUlpr < CIUIs
for all U € §. Also let B = P(B!) and
Air = PUip.

This projection is a rather brute force, but effective, method for dealing with

the condition U(t) L N. Also let
U[u’ a7/87d] = [u7 a7ﬁ70]7
DY A7) ={U e BNnD':Br(U) =0}, Ar= Aip|D'(Ar).

With these definitions we can now formulate a version of the main result of
[9] in a form suited to our purposes.

THEOREM 1. For s € (1/p,1] there exist numbers C < oo and n > 0
such that if | T — EHWI?(BR) <, then for every Uy € B there is exactly one

function U :[0,00) — B, U € C°([0,0), B) N C1((0,00), D}(Ar)) solving
U'(t) = ArU(t)  for t >0, U(0) = Uy,
and it satisfies the inequality

OOl + U (@)1 + U (t)l| pr | + 27| ITU(1) ]| ps, < C|Ullsga-

This theorem is a direct consequence of Theorem 1.2 in [9]. As already
mentioned, the purpose of this paper is to consider the case in which T is
no longer static, but is replaced by a family of transformations denoted by
T : Bgx[0,w] — R3, and at the same time to consider the non-homogeneous
equation and non-homogeneous boundary conditions. To this end we need to
introduce a few additional spaces and norms for various functions depending
on time ¢ € [0, w]; these were not defined in [9]. Unfortunately, the norms we
need to consider are somewhat complicated.

DEFINITION 2. Let w € [1,00). For the transformations T we introduce
the space

B* = CY([0,w], W2

»(Br)) N C**((0,w], C*(Br))
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and the weighted norm

| T||ge = t [%up 1][HTHCO([t,t+1],Wg) + (1 +t)l/gHTHC2/3([t,t+1],cl)]-
€|0,w—

Let BY = L,((0,w), BY), By = Wy VP21 (9B x (0,w)) and
Qﬂw = {U = [’U,, aaﬁu d] : U € LP(<07(’U)7D1)7 U/ € LP((va)v%l)}

(for the meaning of U’ see Section 2). Then let
t+1

1/p
IFlsy = swp (L+0)Y3] § IF()|hdr| ",
te[0,w—1] t
_ 4/3
”gHB‘ﬁj - te[soliup_l](l + t) ||g”Wp1_1/p’l/2_1/2p(aBR><[t,t+1])'
Defining the norm
t+1 l/p
1Ullawy = sup | § (U7l + [ r|
tel0,w—1] "~ }
and the two seminorms
t+1 1/p
U= sw (1+0)] | (U + 17U, Yar]
te[0,w—1] ¢ -1
t+1 1/p
U= swp 1+ | 70 (1) dr]
te[0,w—1] 1 -1
+ sup (1+6)*Y3|ITUW)|| 2,
-1

te[0,w]
we can now conclude with the final norm
[Ullgp» = [Ul1 + [Ul2 + [|U[| vy -

It may be helpful to make a few remarks about the spaces 20“. It is
not hard to see that as sets they are identical with the collection of all

U = [u, , 3,d] such that u € Wg’l(BR x (0,w)), a € Wpl((O,w),Wpl(BR)),
B e W;((O,w),Wg_l/p(aBR)), d € W ((0,w), W2(Bg)). It is also obvious

that the weights used in defining the norm of 20* require certain decay
properties for functions with a bounded norm. Using s = 2/3 one can see
from Theorem 1 that solutions of the equation considered there satisfy such
estimates at least for ¢ > 1. The specific value s = 2/3 and the exponent 4/3
are somewhat arbitrary. We could choose any s € [2/3,1) and then would
have to replace 4/3 by 2—s. It is necessary, though, to have 2—s > 1 in order
to ensure the boundedness of certain integrals involving these functions as ¢
goes to infinity.
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Replacing the fixed transformation 7" by the time dependent T and using
the notation introduced in (4) and (11), we define

ZT(t,.T) = ZTt(.f) (t S [O,w], WS ER)
and in complete analogy
(AirU)(t) = A1, U (%)

for t € I,,. The meaning of BrU as well as a number of other similar expres-
sions should now be clear. Note that

{U=[u,a,B,d] € B | ue W2 ?P(Bg)} =8' D'/,

Our main result in this paper is

THEOREM 3. There exist numbers 1 > 0 and C' < oo with the following
properties. Let w € [1,00), T € B and T(z,t) = T(z,w) (r € Bg,t €
[0, w]). If

IT = Bl + IT() — Engllws <n (¢ € 0,0)),

then for F € BY, g € BY,Uy € BN D*"%/? with By, (Uy) = g(0) there is
exactly one function U € Q¥ with U(t) € B fort € 1, such that

(17) Br(U) =g,
U(0) =Up and
(18) U = AlTU + F

for almost all t € I, where the time derivative is meant in the sense of
distributions (see Section 2). This function also satisfies the inequality

[Ullawe < CUIFI[ s + llgllzg + [Uollesr + [Uoll pr-2/v)-

Note in particular that although the theorem only makes a statement
about w < 00, the constant C' is independent of w.

In the application of this theorem in [10], g and F' themselves depend on
the vector U in such a way that

IF(U)| 82 + [l9(U)|l55 < C[|U|qpe

This then allows us to estimate ||U||gp~ for small solutions. There is, however,
the additional complication that the U describing the flow does not actually
belong to B, but one can split it up into a component in B and one in N.
The former can then be estimated by using Theorem 3, and the latter by
means of the conservation laws.

The proof of Theorem 3 proceeds by combining the local maximum regu-
larity estimates proved in Section 4 with asymptotic estimates for semigroups
taken from [9] by means of an abstract theorem proved in Section 5.

I am indebted to W. Zajaczkowski from the Institute of Mathematics of
the Polish Academy of Sciences for many crucial discussions.



Compressible viscous fluid flow 107

2. Notation and function spaces. We denote generic constants by C.
Let tr(A) denote the trace of the matrix A, A? its transpose, while E,, is the
n x n unit matrix. For arbitrary R > 0 and y € R3 let Br(y) = {z € R?:
|z —y| < R} and Br = Bgr(0). We also use the summation convention that
any index occurring at least twice in an expression is to be summed over its
natural range.

Unless otherwise stated all our vectors are column vectors. Exceptions are
the function vector U and the gradient of a vector or scalar function. Taking
the transformation T as an example, we have T'(x) = [T} (z), Ta(x), T3(x)]

and
ony, o 9Ty
Brl 8$2 8$3

— | 0 091 OT»
VT = O0r; Oxz Oxs3

o3 9Ty 013
Brl 8$2 8$3

Thus, if T and T are two such transformations, we have V(T oT) = ((VT)
oT )Vf wherever such a composition makes sense.

The norm of any Banach space B is denoted by || - ||5. Let S C R™ be an
open set or its closure. For any Banach space B and § € [0,1) let C%(S, B)
be the space of all continuous functions f : S — B such that

1£(2) ~ £
fllcs = sup
H HC (5.B) z,x' €S, vF#x! |$ - :LJ|Ls
The set C‘;(S, B) is a Banach space. Let Cg (S, B) contain all elements of

)
C9(S, B) with compact support in S. If £2 is open, L, (2, B) is the closure of
CY(£2, B) with respect to the norm

1
(§ (o) az) .
9]
Throughout the paper we use primes to denote time derivatives. This is
to be understood in the sense of distributions if necessary. If, e.g., U €
L,((0,w), B) the statement U’ € L,((0,w), B) means that there is a function
V € L,((0,w), B) such that for any ¢ € C§°((0,w)) we have

+sup | f ()]l < oo.
zeSs

(19) V' OU) dt = = [ o)V (2) dt,

and U’ then denotes this function V. Then W;((O,w),B) consists of the
functions U €L,((0,w), B) such that U’ € L,((0,w), B). For this and other
spaces for time-dependent functions also see Section 5.9.2 in [3].

We define C*(S) for (k = 1,2,3,...) as the spaces of all real scalar or
vector functions which have continuous derivatives up to order k in S. This
means that these are Banach spaces with the usual norms only in the case
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that S is compact. We denote by C§(S) the space of functions in C*(S) with
compact support in .S. This notation is used if the target space of a mapping
is finite-dimensional, and it will be clear from the context what it is.

For real s > 0 we define W ({2) as in [12, 4.2.1, equation (3)], and W(£2)
is the closure in W, ({2) of the set of infinitely differentiable functions with
compact support. We can define a seminorm for u € W,;(0) (0 < s < 1),
where O is now contained in R™, by

u(z) — u(y)l” 1/p
(20) [ulws0) = [S | P dedy|
00
while [uly10) = [Vullz, and [u]yoo) = 0. Then [[ul[1, o) + [ulw;s(0) is a

norm for W, (O) according to [12, equation (8), Section 4.4.1] for 0 < s < 1.
For v < 0 we define W"({2) as the dual space of W (£2) with 1/p+1/q = 1.

For anisotropic spaces on the product of two open sets O x Oy of di-
mensions mq, mo we define, for 0 < s; < 1,

S < [ | L) ol dy> dz} "

(21) [U]Wpsl*o

01x03) — — qy|mits
( 1 X 2) 0 N0, O ‘_j(; y‘ 1 1p
while [u]WpLo(leo2 Vau(z,y)||z, and [u] W01 x05) = 0- Also for 0 <
s9 < 1 let
_ Ju(z,2) — ulz,y) P 1
(22) [U]W£752(01><02) o {S (S S |$ _ y|m2+52p dx dy dz )

01 "O2 O2

[Wwor0,x0y) = IVywl@,y)liL,, and [ulysie 0,10, = [Ulys100, 40, +
[u] W20 xO03)’ Then ||ulz, (0, x0,) +[u ]Wpﬂ 20, x0,) 18 & norm for the space
W% (01 x O3). Such anisotropic spaces will be used with Oy = I, where I is

an open interval in R. It is easy to see that, e.g., Wg’l(BR x I) is isomorphic
to {U € L,(I,W}(Br)) : U' € Ly(I, Ly(Bg))} with the norm

S 1w@lfgar s, a) ™
1

This and other similar relationships Wlll be used extensively.

Function spaces for functions on any compact differentiable manifold with
or without boundary can easily be defined using a finite collection of charts
covering the manifold.

Where no confusion can arise, we will often omit the domain of definition
of the functions in the notation for these spaces.

3. Continuity properties. In this section we assume T, T : Bp x
[0,w] — R? and T, T € B¥, and that both T} and Tt satisfy condition (10)

for all t € [0,w)]. Likewise let 7,7 : B — R3, T, T € W2 (BRg), satisfy (10).
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LEMMA 4. For every w < oo there ezists a constant C'(w) < oo such that
for U € 25%,
[Ullggy < [|Ulgn < C(w)[ U]l 2wy

Also 0¥ is a Banach space with both norms.

Proof. All constants C' in this proof may depend on w. Let U = [u, a 3, d].
The estimate for ||U|lggo from below is obvious due to the definition of
IU|lgg= . The estimate from above is also immediate except for the inequality

11700 s < €YU
for t € [0,w]. The only part of this statement requiring any thought is
lu(®)llyzs < ClIU
for ¢ € [0,w]. Now this is also easy to see as
23) 0l < Clu®)lys20 < Cllullg oy < CIU e

by Theorem 1.8.2 in [12], owing to the fact that 5/3 < 2 — 2/p. The last
claim is straightforward.

LEMMA 5. Assume Oy, (k = 1,2) are open sets with C* boundaries whose
closures are compact, lying either in R™ or in C? manifolds of dimension
my. Then there exists a constant C' such that for s, se € [0,1] we have, for
any p € (1,00) and u,v € Wp*?(01 x O3) N Lo (01 x O3),

[wulygnez < Cllullon e + [l oo,
[uv]lyysis2 < Clljull Lo [0llyzie2 + ullysrsa (o] 2]
If s €10,1] and u,v € W;(O1) N Loo(O1) then
luvl[wy < Clllullzollvllwg + llullwg llv] Lo )-
If sp > my then also
[wvllyystr < Clllullyserllvliwg + lullwglloll ]
for u,v € Wt (0y).

Proof. Tt is easy to derive the claim for subsets of manifolds once it is
proved for subsets of R™*. The first three inequalities are easy to see from
(20)—(22). For the last one note that as W, is embedded into Lo we have

[uvl[ws < Cllullwsllvflwg,
and therefore
[uv[lyys+r < Clluvllwg +[V(wo)llwy) = Clluvllwg +lvVullwg +[[uVolwy)
< C(l[ullwsllvllws + l[vlws IVullws + llullws [Vollws),

proving the claim.
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The following three lemmas contain refinements of estimates given in [9].

LEMMA 6. There exists a constant C < oo such that if u € W;?(BR),
then

D7 (u) = Da(u)llw, + | Lr(u) — La(u)llL,
< OUIT = Tllwgllullyyss + T = Tllor g lullwg)-

Proof. For all k,m,n,q € {1,2,3} we have, by Lemma 3.1 in [9], the
Sobolev embedding theorem and some elementary calculations,

v [ Qe (7, _ zT)nq]

D
<[ (v52)ier -2

< Cllullwzl2r - fHCO(gR) + CllUllcl(ER)HZT = Zzllwy

Zf)nq

Ly

< Cllullwg IT = Fllen gy + Cllully 1T — Tz
From this our claim follows easily.

LEMMA 7. There exists a constant C' < oo such that if u € W2(Bg) and
o € Wy (Bg), then

1£7(u, @) = Lj(u, )|z,
< O(IT = Tller(lullwz + lallwy) + 1T = Tliwzlul, 5/5)-
Proof. This inequality follows easily from Lemmas 5 and 6.
LEMMA 8. There exists a constant C < 0o such that if U € D', then
[20rU — 27Ul < CIT = Tllwz [TV pss + CIIT = Tlen [TV 1.,
Proof. Let U = [u, «, 3,d]. The estimate for the first component follows
from Lemma 7 here together with Lemma 3.1 of [9] and inequality (27) of [8].

The last component of the difference is zero. We also infer, using Lemma 5,
that

i+ (mr = m) g2/ o

< Cllullyavnllmr = mzly-sim + Cllulyasnllmr = malya-sm

< Cllullwy s IT - Tng(BR) + Cllullwz ) IT = Tlw (r)»

and the proof of the estimate for the remaining component is similar to the
proof of Lemma 6.
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THEOREM 9. There exists a constant C' < oo independent of w such that
if U € 0¥ then

247U — A 3U[[py < C[|T = T|ge||U]|ap- -
Proof. By Lemma 8, for t € [0,w — 1],
t+1

P 1/p
| § 1207, 0(r) = 2,7 UG dr |
t
t+1 R 1/p
SCHHﬂ—E%ﬁUWﬂ%%M}
t+1 l/p

+C| [T = Tl MU, dr]
t
Now
t+1 R
| § I = T | TO)P g dr
t b -1

< .
<, max (17 = Tz TU()] o

} 1/p

< C||T = Tlg= (1 + )" *[Ula < C|IT = Tllge (1 + ) ~*/*|[U] |0

and
t+1 . ) 1/p
| § 1T = T2, 5, 1TU IR, ]
¢ R t+1 1/p
_ p
< max [T~ Trllen | | [TU@), dr

t
< C|T — Tlge (1 + )" 3[Ul (1 + )7
< O|T — Tlge (1 + )73 (1 + ) 7Y U | age,

and therefore
t+1
4/3 P 1/p T
L+ Y2 | T 20, U(r) = 2,5, Ul dr| " < CIIT = Tl [ U e
t
This proves our claim.

Now we deal with the boundary conditions.

LEMMA 10. There ezists a constant C < oo such that for t € [0,w — 1],

12— Z'i‘HW,}_I/p’l/Q_I/Qp(aBRX(t,t+1)) +lnr -~ n'i‘HW,}_I/p’l/Q_I/Qp(BBRX(t,t+1))
< C|T — T|gew-
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Proof. Using the formula
1
|zt 27, (2)]

from Lemma 3.2 in [9] and the definition of Zt this easily follows as

(24) nr, (x) = ‘TtZTt (‘T)7

121 = Zgllcors i i1y.c0@y) + 107 = 2gll oz 41,00 B )
<C|T- Tllcz/3([t,t+1],cl(BR))’

which allows us to estimate the fractional time derivatives in these norms,
while estimates for the space derivatives directly follow from Lemmas 3.1
and 3.3 of [9].

THEOREM 11. There is a constant C independent of w such that for
U e v,
1B1(U) — B3(U)llpy < C|IT — T|lg || Ul|ap--

Proof. Let t € [0,w— 1]. All spaces in the following sequences of inequal-
ities consist of functions on dBg X [t,t + 1], unless otherwise stated, and
during the proof let § =1 — 1/p. As usual let U = [u, o, 3,d].

First observe

Br(U) - np — B4 (U) - ng = (Dr(u) — Dg(u)) - nt + B4 (U) - (nT — ng).
Also
1D () = Dg(u) - nrllyss < ClDr(u) = Dg(w)llyssllnrllyss
< C|Dr(u) - DT(“)HW&W%

as ||nT H 5:5/2 is bounded by Lemma 10, and this space is embedded into L,

allowing us to use Lemma 5. Now, using Lemma 5 again as well as Lemma
10 and Theorem 1.8.2 in [12], we obtain

IDr () = D ()55
< C(|VulyasellZr = Zglleo + [ VulloollZr = 2zl s6)
< Ol gy 127 — Zgllon

+ sup Hu( H 513 HZT Z4 H 55/2
t<rt<t+

< CUL A+ )T = Tlleogsay.cr By + ClUL(L+6) | T = Tlse
<O+ )7 A+ 83T = Tllge + (1 + )3T - Tlge) | Ul
<O+ T = Tlgs | U ap- -
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Also by the lemmas mentioned above,
[B2(V) - (nr — g s

< ClB3(U) Lo llnt = nglly 0002 + ClBg(U)|[ypasr2[nr = nglre
< CMU (14T = Tllge + CIULL+ )T = Tllgoges .0t (Br))

< O+ 1) T - T|ge U ap--

Then our claim easily follows.

4. Maximum regularity estimates. In the following let T € B, and
also assume that T} satisfies condition (10) as well as
IT = Eg,llczrsow,crmay < 1
For the relationship between T and T} recall (4).

THEOREM 12. Let w € (0,w]|. Then there exists a constant C(w) inde-
pendent of W such that if

Fy € Ly(Bgr x (0,@)), ug € W2™2/P(Bg), g € Wy /P22 (9B x (0,8))
with g(0) = Dp,(ug) - ng, are given, then there is exactly one solution u €
W (Br x (0,@)) of the equation
’LL/ — LT(U) = F1

with the boundary condition Dy (u) - np = g and the initial value w(0) = up.
This solution satisfies the estimate
lull21 (5 03)
< C@)gllyyr-1mrr-120 58, 0.5y T 1Ly (Brx ) + w0l 2-20 5, ))-

Proof. This claim follows directly from Theorem 5.4 of [6], by using some
remarks in that treatise about less regular coefficients.

Now we want to proceed to the entire operator.

THEOREM 13. There exists a constant C(w) such that if F € BY, Uy €
BLINDI2/P and g € Wy /P22 (9BRx (0, w)) with (0, z) = By, (Uo)(x)
are given, then there is exactly one solution U € 0% of the equation

U =217U+F
with the boundary condition
Br(U) =g
and the initial value U(0) = Uy. Also U(t) € D' for almost all t € [0,w],

and

IUllgn < C@)(llgllBs + 1EllBg + Uollst + [uollyy2-2rm ., )-
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Proof. Let U = [u, o, 8,d] and Uy = [ug, oo, Bo, do]- Note that in view of
Lemma 4 we can replace ||U||gg- in the estimate by [[Ul/qp, as our constant
is allowed to depend on w.

The last three components of the equation U’ = ;U + F are

o = (tr(V((0e 0 T)u)Zr)) + Fa,
B =u-mp+F;, d=u+Fy.

Together with the initial values «(0) = ayg, 5(0) = B, d(0) = do the function
u therefore determines «, 3,d. The first component of the equation can be
written as

' — Lp(u) = (V((ve o T)a) — VI(a, 3)) Z1 + F1.
Together with the boundary conditions

Da(u) nr = g + 7e(Roe(Ran + 2E(R)fnr

and the initial condition u(0) = ug Theorem 12 allows us to conclude that
given o and [ with a(0) = ap, B(0) = [y there is exactly one function
u € WY Bg x (0,w)) satisfying these equations. For sufficiently small
w the mapping taking u to the next w in this cycle is a contraction in
szl(BR X (0,w)). It is possible and sometimes necessary to choose w < 1
for this part of the argument. Verifying this takes some work, but is com-
pletely straightforward. Thus we can prove existence and uniqueness of such
solutions by the Banach fixed point theorem. Then we can continue the con-
struction to any longer interval by a finite number of steps, also obtaining
the estimate we claimed.

THEOREM 14. There ezists a number n > 0 and a constant C(w) such
that if ||Tt—EBR”W§ <, then the following is true. For F' € BY with F(t) €
B for almost all t,Uy € BND'"2/?_and g € Wz}fl/p’l/zflﬂp(aBR x (0,w))
with g(0) = By, (Up) there is exactly one solution U € 2 of the equation

(25) U =AU+ F

with the boundary condition

(26) BT<U> -

and the initial value U(0) = Uy. Also U(t) € B for t € [0,w], and

[Ul[ap < C(w (Ilglle + [1FlBg + 10l + 1Tl p1-2/»)-

Proof. Let U(t) = [u(t), a(t) 3(t),d(t)] and let N7 be the space spanned
by [0, 2k, 2k, 0] (k =1,2,3) and [0,1,1,0], and with v} = ej and v} = = X ey,
(k =1,2,3) let N3 be the space spanned by [v}",0,0,0] for m = 1,2, k =
1,2,3. These spaces are perpendicular to each other. Then let PS, : § — N
be the orthogonal projectors, resulting in P¢ = Pf 4+ PS. In order to solve
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equations (25) and (26) we initially solve the equations

(27) U =270 — P°(/hyt — Aipg, )U = Pyig, U+ F,
(28) Br(U) =g

instead. Now Lemma 3.10 in [9] states that for U € D! we have

(Aip,, U, [0,1,1,0])5 = 0,

(29)
(QlIEBR Uv [0) Ly Ty 0])57) = (Uv [ek‘a Oa Oa O])S’J

and
s, U, [07,0,0,0)5 = | Bag, (U)o do
OBr
for m =1,2,k = 1,2, 3. Therefore
Pyig,, U = M(Beg, (U)),
where 9 is a bounded linear mapping from L1 (0Bg) to D' and

19 (R) | pr < CllhllL, (0Br)
for h € L1(0BR). Thus equation (27) can be written as

(30)  U'(t) =ArU(t) + F(t) + M(g)(¢)
— PR — Mipp, YU () + M((Beg, — Br)(U(1))-

Now the expression F(t) + 9M(g)(t) is given, and, at least if we fix w = 1,
the expressions in the second line of (30) are small perturbations if 7 is
sufficiently small. This gives us the existence and uniqueness of solutions of
equation (30) with boundary condition (28) using the Banach fixed point
theorem, and we obtain an estimate for this solution as well. Now (27) is
equivalent to

U =A1U + Piigg, U+ F,

thus for v € N we have, as F(t) € B for almost all ¢,

d
0= (F+ATU,v)g = (UI_PlchlEBRU7U)ﬁ = E(U,U)ﬁ—('PfﬂlEBRU,v)ﬁ.

Thus

d c
%(Uv v)ﬁ = (QllEBRU7 Plv)ﬁ'

For v € N3 this implies 0 = (Up,v)s = (U(t),v)q, so U(t) L N, and
by (29) then (21p,, U, Piv)y = 0 as well. Thus we have U(t) L N, and
Pl gy RU = 0, which means we have actually solved our original problem
for w = 1. For larger values of w we have to use a suitable partition of the
interval [0, w].
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5. Asymptotic estimates for an abstract Green operator. The
abstract theory developed here will be applied in the next section.

Let w € (0,00] and let Z be an arbitrary set. For any f : [0,w] "R — T
we define f!:[0,w —t]NR — Z for t € [0,w] "R by fi(7) = f(t+ 1) for
7 € [0,w —t]NR. This notation will only be used for objects in this section,
and of course also where the results of this section are applied. As there are
no matrices in this section, it is hoped that no confusion with the transpose
will arise. This definition immediately carries over to classes of functions
consisting of all functions agreeing almost everywhere in [0,w] N R.

Let 71,75 be two Banach spaces, let w € [1, 00] and

SY={u:[0,w]NR =T}/, S ={u:[0,w]NR — I}/,
where two functions are considered equivalent in the sense of « if they agree

almost everywhere. We also assume Sy, C g,i (k = 1,2) are Banach spaces

with norms || - ||s,. For f € 3\,‘? with @ € [1,w] the statement f € Sy is used
instead of f|[0,1] € Sy and likewise || f||s, means || f][0,1]|s,, a practice we
follow throughout this section. Then we define

(31) S¢={fe8:ffeSforte[0,w—1and sup |f|s, < oo}
0 1

<t<w—

and

(32) Ifllsg = sup || f[ls,-
1<t<w—1

Now 8,85 are Banach spaces and S = S;. We also assume that there
exists a constant C such that if f € S; and ¢ € [0,1] then

(33) 1f @)z < Cillf s,

for all t € [0, 1], and that if f € S and ¢ € C1([0,1]) and (o f)(t) = @(t) f(t)
then ¢ f € S and

(34) lefllse < Cillellerlflls, (B =1,2).

We assume there is a bounded linear operator C : Z; X Zy — Z5 such that
if up € Z; and f € Sa, then the function class ¢t — C(uo, f(t)) contains a
representative which is a continuous function from [0, 1] to Z2, and we denote
this representative by C(ug, f). Let us define

D = {(uo, f) € T1 X Sz : Clug, f)(0) = 0}.

We assume there exists a linear operator I' : D — Sy, referred to as a Green
operator here, and a constant C7 with

(35) 17 (uwo, f)lls; < Cillluollz, + [ fls2)
for all (ug, f) € D, which also has the property that for (ug, f) € D,

(36) I(uo, f)(0) = uo
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and

(37) C(I(uo, f)(£), f)(£) =0
for t € [0, 1]. Finally, we make the following consistency assumption.

If 7€ (0,1) and f:[0,1+4 7] — Za,up € Z; are such that f, f7 € Sy and
(uo, f) € D, then for ¢t € [0,1 — 7] we have

(38) (I (uo, f)(7), [7) () = I'(uo, [)(t + 7).
Note that (37) implies the left-hand side of the equation is well-defined.

Now we will define a Green operator for the interval [0,00), which we
will also denote by I". For the definition of Sp° see (31).

DEFINITION 15. Let
D> ={(uo, ) € T x 83° : C(uo, f)(0) = 0}.
We define I' : D*®° — S7° as follows. For any ¢ € [0,w] and (ug, f) € D>
let 0 =tg < - <tph1 <tp=twithty —1t_1 <1. Then for k=1,...,n
let ur = I(ug_1, f%1)(tp — tp_1), defined inductively, and finally
F(u07 f) = Un.

It is not clear whether I' is well-defined. This, together with some of the
properties of this operator, is the content of the next lemma.

LEMMA 16. The operator I' : D> — S7° is well-defined and linear, and
for s,t > 0 we have I'(I'(uo, f)(s), f*)(t) = I'(uo, f)(s + t). Given Cy (see
(35)) and w € [1,00) there is a constant C(w,C1) such that if (uo, f) € D,
then

(39) 11 (w0, f)llsy < Clw, Cr)(lluollzy + [1fllsg)-

This constant is an increasing function of C1 and w. Also fort > 1 the value
I'(up, f)(t) is independent of f(s) for s > t.

Proof. First we prove that the definition for I" we just gave is independent
of the partition 0 = g < t; < --- < t, = t. As an initial step we consider
only partitions for which n is the same. Then, for given ug, ¢t and f, this
procedure at least defines a mapping from

(Zn:{(tl,...,tn_l) GRnil ’O<tk+1—tk <lfork=0,...,n—1
with tg =0, t, =t}
to Z;. Now let (tl,...,tn_l),(fl,...,?n_l) € %, and t; = ty, for k # m,
while t,,, # t;n. Let u, and g be the elements of Z; produced by these two

partitions. Without restriction we may assume t~m < tm. Then up = uy, for
k < m. Now

U = I'(Upp—1, ft’"—l)(fm —tm—1) and Uy = I'(Ump-1, ftm‘l)(tm —tm—1).
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Owing to (38) we have

L (im, f5)(r) = DL (um—1, f) (T — tim—1), f7)(7)
= I'(um-—1, ftmfl)(r + t~m —tm—1)

for0 <7< 1—?m—|-tm_1. Now with 7 = tm—?m we have 7 < 1—fm+tm_1,
and therefore

T (@i, 1)t = ) = T(tm1, f ) (b = tm1) = -
Using (38) again, we get
U1 = I (U, ftm)(tm-i-l —lm)
= DI G, ) (b = Ton), £ (b1 — )
= F(ﬂm, f;m)(tm-i-l - tNm) = Um+1-
From then on all u;, will of course be equal. So we have now proved that if we
have two elements of ¥, differing in only one component, then the procedure

we claim defines I" gives the same result. Now ¥, is open, thus for any point
(t1,...,tp—1) in T, there exists a § > 0 such that

{(n,...,Tn_l)e]R"’l]|tk—Tk|<5,k:1,...,n—1}cf€n.

It is clear that we can reach any point in this neighborhood from the center
by moving in the direction of the coordinate axes only, so our procedure
gives us the same value as at (¢1,...,t,—1) throughout this set. Thus the set
of all points where the procedure leads to a certain value is an open subset
of T,. As T, is also connected, there cannot be more than one result of this
procedure, as otherwise we would be able to split ,, up into at least two open
sets. Due to (38) we can always add points to any partition without changing
the result. This proves that the result of the procedure is independent of the
partition. Also one immediately sees, using a partition containing s as one
of its points, that for s,7 > 0 we have

(I (uo, f)(s), f*)(t) = T'(uo, f)(s +1).
With this it is easy to prove the linearity and the estimate (39) by induction
over an upper bound for w, and the last remark is obvious by construction.
Now all our claims are proved.

For w € [0,00],az > 0 let us define
(40) [fllgzae = sup (1+ )] f[ls,,
0<t<

and
S5 = {f € 85 | [ Fllgoen < o).

Then we obtain
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THEOREM 17. Let [-]s be a seminorm defined on Sy. Assume that there
are constants Co, Co and a number aq > 0 such that for u € Sy,

(41) [u]. < Collulls,,
and for (up,0) € D> and t € [0, 00),
(42) (1" (w0, 0))']s < Co(1+ )" |uo|lz,-

Then for az > 1 with as > a1 there exists a constant Cs, which only depends
on Cy, C2, Ca, a1 and az, such that for all (ug, f) € D™ with f € S5,

(43) [(F(uo, £)) s < C3(1+ )" (|| fllgzore2 + Iluollz, )
for t € ]0,00).

Proof. Let ¢ € C*°(R) be such that 0 < ¢(t) <1 for t € R, ¢(t) =0 for
[t| > 1,0(t) =1 for |t| < 1/2, ¢'(t)t <0 for all t € R, and |¢/| < 2. Then it
is easy to see that

1< > p(t-p)<3
p=—00

for all t € R, and this sum is 1-periodic and belongs to C*°(R). Now let

v =) 3 wlt—n)

p=—00

U(t) = U(t — k) and fr(t) = P(t)f(t). Also letting up, = 0 for k > 1 we
have

fO= > ful®),

0<k<t+1
and fx(0) = 0 and C(uyg, fx(0)) =0for k > 1. As¥,(0) = 1 we have (ug, f) €
D> even for k > 0. Now, owing to the linearity of I and Lemma 16,
T(ug, /()= > T(ug, fi)(t)
0<k<t+1
and I'(ug, f)(t) = 0 for t < k — 1. Therefore

(P (uo, )0, =Y (I (uk, fx))'1[0,1]

0<k<t+2

and

(44) (T (uo, M)« < Y (I (uk, fr))]s-
0<k<t+2

We first consider the case k —2 <t < k + 2 < 5. Then, remembering (31)
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for the definition of 7, S¢, by Lemma 16 and (34) we have
I Cury fe)'lls < 1T (s, fio)llso
< O fxllsg + llurllz,) < CI fllsg + [luollzy)
< C(If s + uollz).
Ifk—2<t<k—+2>5thenforr>k-—2,
I (ug, f1)(r) = L0, fi) (1) = T(L(0, fi)(k = 2), fi ) (T =k +2)
=T(0, fE2) (1 —k+2).
Therefore, again using Lemma 16 and (34),
1 Gk £ llsy = T, 52 4215, < 170, £ < CUFE g
< I 2lsg < OO+ R f gonm.
Putting these two cases together we find that for k — 2 <t < k + 2,
(15) (o i), < O + By (1 gzace + uollz,)

with a fixed constant C.
Now we consider the case ¢t > k + 2. Then

(I (us 1)t = (D (g, fr)(k +2), fiF2) 742
Now f,f‘LQ = 0, and therefore by (42),
[(F (ugy fi)' = (LI (ug, fi) (k +2),0)) 21,
<C(l+t—k—=2)" I (uk, fr)(k+2)|z,-
Thus, keeping in mind that t > k£ 4+ 2, we obtain
(I (uk, fi))'] < C(¢+5— k)~ | T (u, fi) (k +2)|z,
< C(t+5— k)T (ug, fo)* s,
Combining this with (45) and (41), we have
(L (s f) ) < Ot +5 = k)™ (2+ k)72 (|| fllggome + [Juollz,)
for t > k — 2. Using (44), we therefore even obtain
[(T(u, )] < CUUIfll sgoe + [[uollz,)S(2)
with
St)= > G+t—k)"(k+2)"".

0<k<t+2
For 7 € [k, k 4 1] we have
Bb+t—Fk)“(k+2) 2 <(d+t—7) A +71)*
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and for this reason

k+1
sey< Y V@+t—-m 47 ®dr
0<k<t+2 k
t+3
< \@+t—m @+ 2dr
0

Substituting 7 = o(t +5) — 1 and letting § = (t +5)7!, we get, as a1 < ay
and 0 <o <1,

1-6 1-6
S(t) < gurtaz—l S (1—-0) g %2 do < jutal S (1—0) "0 *do
é 1)
and for reasons of symmetry, and as as > 1,
1-6 1/2 1/2

S (1—0)" 0 "do=2 S (1—0) 20 2dg < 2112 S o 2do

6 é )
< 2 sz,
T ag—1

Thus
S(t) < comterlsgl=e = 05" = C(t45)"".

This proves our theorem.

6. The proof of Theorem 3. First we prove the following theorem,
which implies Theorem 3 in case T does not depend on time.

THEOREM 18. There exist numbers n > 0 and C' < co with the following
properties. Assume that T € W2(Bg) and

IT = Epgllwz <,

and for w € [1,00) let T(x,t) = T(x) (x € Bg, t € [0,w]). Then for F € BY,
g € By, Uy € BN D'2/P with Br(Uy) = g(0) there is exactly one function
U € 2% with U(t) € B fort € [0,w] which solves the initial boundary value
problem given by the equations
U' =AxU+F, Br(U) =y,

which are equations (18) and (17), and U(0) = Uy. This function also satis-
fies the inequality

[Ullgpe < C(I1Fls + llgllzg + [Uollssr + 1Tl p1-2/»)
with a constant C independent of w.

Proof. The existence and uniqueness immediately follow from Theo-
rem 14, therefore we only need to prove the estimate.
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We obtain this result by combining Theorem 1, which, as we saw, is an
immediate consequence of Theorem 1.2 of [9], with Theorems 14 and 17. In
applying this latter theorem to our problem we use

Sy ={(F.g)| F € Bi,g € By} = Bi x B,
and 7y = B x L,(0Bpg) with the norms

ICE 9)lls = 1F gy + llgllzy,  1(F9) Ol = [F@ s + 9z, -
It is easy to verify that Sp has property (34), and that if (F,g) € Sy, then
(F,g)(t) € Iy for almost all t, and S§ = B} x BY for w € [1,00). Also it is
easy to see that there is a constant C' € (0, 00) independent of w such that

CHIFlBy + llgllsy) < I(F, 9)llgars0 < CAIF By + llgllmy)-

(For the definition of 8;1 /3% see (40).) Unfortunately the use of Theorem 17
requires (F,g) € 83/3’00. Now, if we are given (F,g) € S§/3’w we can extend
(F,g) to infinity by defining
Ft) = {F(t) for t < w,
0 for t > w.
and with a function p € C®°(R) with 0 < p(t) <1, ¢'(t) <0 and p(t) =1
for t <0, ¢(t) =0 for ¢t > 1 we can define

g(t) for t <w,
gt) =19 92w —t)p(t —w) forw <t < 2w,
0 for t > 2w.

Then one can easily verify
I(F )l ga50 < CIE,9)] gors

and (F,§)(t) = (F,g)(t) for t < w. Furthermore, let
S ={Ue!|U{t)eBfortel0,1]}, I,=BnD'27
with the norms
IUlls: = 1Ullgm,  1Ullze = Ut + llullyy 2270

Using the inequalities
: 1/p

max U < C[J 0By + [V dr] 7 < Uy

- 0
and inequality (23), we can easily verify condition (33). Condition (34) for
S is also easy to see. We define C(U, (F, g)) = (0, Br(U)—g). For (F,g) € Sa
and Uy € Z; with C(Uy, (F,g)) = 0 by Theorem 14 we have a solution U
on [0, 1] of the equation U" = A;pU + F with initial value U(0) = Up and
boundary condition Br(U) = g. Then we define I'(Uy, (F,g)) = U.
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It is easy to see that C(U(t), (F(t),g(t))) is a continuous function from
[0, 1] to Zo, as the first component of the pair is zero. Conditions (35)—(37)
follow from Theorem 14. Condition (38) is due to the uniqueness of that
solution. The same fact implies that the abstract I" we constructed in Lemma,
16 is identical with the solution operator that one obtains from Theorem 14
for w > 1.

Now we apply Theorem 17 several times with as = 4/3. In the first
application let a; = 4/3 and

1
1/p
U], = [g 1T (7)o dr| "+ sup [ITU(T)]] 2.
0 -1 0<7<1 -1
Using Lemma 4 we see that [U], < C Ul g1, and by Theorem 1 we deduce
that if Uy € Z; and U = I'(Up,0), then with s = 2/3,

AU ()| pr | + HTU @) p2ss) < CllUoll st
for t > 1. Therefore
(1+ )*?[U". < C(||Uolgr + [ull y2-270)

for t > 1, while for ¢ < 1 this follows directly from Theorem 14. Thus
Theorem 17 implies that for ¢t > 0,

(1 +0)*3[0(Uo, (F, )"+ < C(|Uo]l g + ull 227 + ”(ﬁaﬁ)”SS/S,w)
< C(1Tollssr + [[ull 227 + [I(F, D garse)
< C(l0ollsgr + l[ully2-2r0 + [ Fll5y + llgllBs)-
Thus
[I'(Uo, (F, g))]2 = [I'(Uo, (F.3))]2
< C([1Wollr + l[ullyy2-2 + [ Fll5y + llgllss),

as for t < w we have I'(Uy, (F, 9))(t) = I'(Uo, (F,§)). We omit the details of
the completely analogous argument which gives us with a; = 1 and

1
O = ({00 Ol + 1TOOIE ) ar]

0
that

[I'(Uo, (F,9))l1 = C[Uollagr + llullyyz-2r0 + 1 Fll 5y + llgllBg)

and finally for a; = 0 and
(UL, = U]y
that
1o, (£, 9))llawy < C([Uollwr + NIl 22w + 1 FllBg + ll9llBg)-
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Putting these inequalities together, we conclude that if F' € BY, g € By,

Uy € BN D'72/P then for w € [1, 00),
IUllgp> = [[Ullgny +[Uli +[Ulz < C(|[Uollopr + [[ullyy2-2r0 + 1 Fll By + N9l 55 )

with U = I'(Uy, (F, g)). This completes the proof of Theorem 18.

Now we can proceed to the case of variable T in order to prove Theorem 3

in its generality. Again Theorem 14 implies the existence and uniqueness of
the solution. To obtain the estimate we can rewrite our equation

U' = AirU + F,

using T(t,z) = T,,(z), as

U = .Al,fU + (AT — Al’i‘)U + F

and the boundary conditions as

B

+(U) = B3(U) — Br(U) +g.

Using Theorem 18, we obtain
[Ullage < C(IF|IB+ + llgllBs + [ (ArT — A7) Ul B + |B5(U) — Br(U) || By ).
By Theorem 9 we have

(At — A,7)U| g < C||T — T|lge||U|lag- < Cn|U]lgp-,

while Theorem 11 implies

1B%(U) — Br(U)||pg < C|T — T|lg= || Ullazs < Cl|U]|qpe-

Combining these estimates we get

IUllap- < C([F 3 + llgllBg) + CnllUllap--

For C'n < 1/2 this concludes the proof of Theorem 3.
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