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Real method of interpolation on
subcouples of codimension one

by

S. V. ASTASHKIN (Samara) and P. SUNEHAG (Canberra)

Abstract. We find necessary and sufficient conditions under which the norms of the
interpolation spaces (No, N1)g,q and (Xo, X1)e,q are equivalent on N, where N is the kernel
of a nonzero functional ¢ € (Xo N X1)* and N; is the normed space N with the norm
inherited from X; (¢ = 0,1). Our proof is based on reducing the problem to its partial
case studied by Ivanov and Kalton, where 1 is bounded on one of the endpoint spaces.
As an application we completely resolve the problem of when the range of the operator
Tp = S — 2°T (S denotes the shift operator and I the identity) is closed in any £,(u),
where the weight © = (un)nez satisfies the inequalities pn < pnt1 < 2un (n € Z).

1. Introduction. Interpolation of subspaces is an important and rather
complicated problem in interpolation theory [5]. It has been stated as early
as in the monograph [12] by Lions and Magenes. Various aspects of this
problem have been treated in [1, 6-9, 13-15, 18, 19] (the authors are very far
from claiming the completeness of this citation list). Here, we shall consider
a partial case of this general subspace interpolation problem, interpolation
of intersections by the real method.

Let (Xo,X1) be a Banach couple, i.e., a pair of Banach spaces linearly
and continuously embedded in a Hausdorff topological vector space 7. Every
linear subspace N of T generates a normed (in general, non-Banach) couple
(XoNN, X1NN), where the norm on X;NN is just obtained by the restriction
of the norm of X; (i =0, 1).

The problem of interpolation of intersections is the problem of finding
conditions on the triple (X, X1, V) and the parameters 6 € (0,1) and ¢ €
[1,00] of the real interpolation method under which the natural formula
(with equivalence of norms)

(1) (XoNN,X1NN)gg = (Xo,X1)gq "N
is valid.
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Note that when N is the kernel of a linear functional ¢ € (Xo N X1)*
formula (1) means just the equivalence of the norms of the spaces Ny, =
(XoNN,X1NN)gq and Xg, = (Xo,X1)sq on the subspace N. In [2, 3]
and independently in [17] four dilation indices of the Peetre K-functional
K(t,¢; X, X7) in the dual couple (X, X{) have been introduced and the
problem has been solved under an extra condition on these indices. Here we
shall give a solution of this problem without any additional conditions.

An important particular case of the problem on the interpolation of in-
tersections generated by a linear functional was treated in [11|. Namely,
sufficient conditions on 6 € (0,1), p € [1,00), and on weight functions wg(x)
and w; (x) were found ensuring the formula

(2) (Lp(wo) NN, Lp(wi) N N)G,p = (Lp(wo), Lp(wl))e,p NN,

where L,(w) is a weighted Lj-space on (0,00) with the usual norm and N
is the space of all functions f: (0,00) — R satisfying

[e.e]

(3) | f)dz=0.

0

It turned out that the validity of (2) is closely related to the possibility of
“interpolating” certain Hardy-type integral inequalities. In the same paper
[11], the following more general question was asked: under what conditions
on wy(x), wi(zx), po,p1 € [1,00), 8 € (0,1), and ¢ € [1,00] do we have the
identity

(4) (Lpo(wo) NN, Ly, (w1) N N)g,g = (Lpg (wo), Lp, (w1))g,qg N N?

(Generally speaking, here py # p1, and N is still determined by (3).) We
note that our main results (Theorems 1 and 2) imply a solution of this
problem. Not entering into details, we will concentrate here only on the case
of Li-spaces (for more detailed consideration of this topic see [3]).

In [6], a connection was discovered between interpolation of subspaces
and the problem of determining if the range of the operator Ty = S —2°T on
weighted £,,-spaces is closed or not. Here, S denotes the shift operator and I
the identity. We will completely resolve this problem in the case when the
weight p = (pn)nez satisfies the inequalities py, < pipy1 < 2up (n € Z).

2. Definitions, notation, and auxiliary results. For an arbitrary
normed couple (Xo, X7) and ¢ > 0 we define the Peetre K -functional:

K(t,; Xo, X1) = inf _ ([zollxo +tlzillx,), = e Xo+Xi.

r=x0+x1,T;EX;
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If 0 <0 <1and 1 < g < oo, then the real interpolation space Xg, =
(X0, X1)g,q consists of all x € Xo + X such that

©0 dt 1/q
1]lx,,, = { J (K (1, 2; Xo, X1))* 7} < o0.
0
Analyzing the proof of the equivalence theorem [5, Theorem 3.3.1], we see
that it remains true for normed (and not only Banach) couples. Thus, the
space Xg, (with an equivalent norm) can be defined in terms of the J-
functional

J(t,x; Xo, X1) = max(||z]| x,, t]|z]|x,), =€ XoNXi.
Specifically, Xy , consists of all z € Xg + X representable in the form

T = Z 2%z, (convergence in Xo 4 X1)
keZ
with the norm
(5) inf { 3724, s X0, X))
kEZ
where the infimum is taken over all representations indicated above.

We will say that a Banach couple (X, X1) is regular if XoN X; is dense
in both Xy and X;. If (Xo, X;) is regular it follows that X and X7 are
naturally embedded into (Xo N X1)*, and so we may consider the Banach
couple (X§,X7) of the dual spaces. Moreover, (Xo N X1)* = X§ + X{ |5,
Theorem 2.7.1].

Suppose that (X, X1) is a regular Banach couple and ¢ € (Xo N X7p)*.
Then ¢ € X+ X/. In what follows, the K-functional k(t) = K (t,v; X5, X7)
will play a crucial role. Define the functions

Ek(ts) k(ts)
M(t) =sup ——=, My(t) = sup ,
( ) 5>0 k‘(S) O( ) 0<s<min(1,1/t) k‘(S)
Moso(t) = sup (ts)

s>max(1,1/t) kj(S) ‘

They are submultiplicative for ¢ > 0, and therefore the following numbers
are well defined:

logy M (t logy My(t log, M. (¢

o= limw, ag = 1jm0g2—0()’ Qe = lim 0gy M (t)
t—0 logyt t—0  logyt t—0  logyt

log, M(t logy Mo (¢ logy Moo (t
t—oo  logyt t—oo  logyt t—oo  logyt

which are called the dilation indices of k(t). It is easily seen that 0 < a <
a0 < fp <P <land 0 < a< aw < P <G < 1. In 3] and [17] only
four indices were introduced and even though we will here use six indices, in
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our formulations they in fact reduce to four, since the relationship presented
below holds.

LEMMA 1. We have
a = min(ap, o), B = max(So, Boo)-

Proof. These equalities have very similar proofs and we give only the
proof for the § part. First, the following formula is true:

k(ts k(> k(>
10g2(k(€s))) logs (( ))) logs (( )))
(6) —— ==X -
logy logy (1) logy (%)
where ¢ > 1, A € (0,1), and s = 1/t*. In fact,
k(ts k(ts k(1
logs ( k((s))) _ logy k((l))) + 10g2(kEs§)
logyt logy t
Ar—A
_a )\)logz(k(t( 1) )) )\logQ(_k(t( 5 )))
a logy(t!=2) logy(tY) 7

and (6) is proved.
It is clear that the claim will be proved if we show that

logy (sup,sg k((ts))) - log, (suPsg(1/¢,1) 'Z'f)))

t—oo logy t t—00 logy t
For every t > 1 choose s(t) € [1/t,1] such that
k(t k(ts(t
IR 0))
sefije) k(s) — K(s(t))
Then s(t) = t~*®), where 0 < A(t) < 1. If there is a sequence t, > 0 such

that ¢, — oo, t,/}b(t") — 00, and t, — 00 as n — 00, then the result
follows from formula (6). If there is no sequence (¢,) such that ¢, — oo and

£altn) 00, then A(t) — 0 as ¢t — oo. In such a case we can use (6) again to
reach our result, and likewise if there is no sequence (t,) such that ¢, — oo

1-A(tn)

and tp, — 00 since then A\(t) - 1 ast — 00. =

The second lemma will be useful for reducing our problem to the case
when a functional is bounded on one of the endpoint spaces.

LEMMA 2. If¢ € (XoN X1)* then
(¥, (Xo N X1, X1))

Bo(1, (Xo N X1, X1)

Qoo (Y, (Xo N X1, X1)

Boo (¥, (Xo N X1, X71)

(¢, (Xo, X1)),
(¥, (Xo, X1)),
(1/17 (Xo N X1, X1)) =0,

0

o
Bo

)
)
)
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and

(d) ( )) = aoo(¢7 (Xo,Xl)),
500(@/1, (X07X0 N Xl)) = /BOO<'¢7 (X07X1))7
(¥, ( ) = B, (X0, XoN X1)) =1,
=1

Proof. 1t is true that
. o K(t,¢; X5, (XonXy)*) ift>1,
K(t,¢; Xg, X7) = ) 0 % v\ .
K(t,; (XoNX1)*, X7) ift < 1.
Also notice that since ¢ € (Xo N X1)* we know that ki(t) = K(¢,v;

(Xo N X1)*, X7) is bounded from above and the same is true for ko(t)/t,

where ko(t) := K(t,v; Xo, (Xo N X1)*). The results follow from these prop-
erties. m

3. Main results. Suppose that (X, X1) is a regular Banach couple.
Let ¢ € (Xo N X1)* be a nonzero functional, let N = ker, and let N; be
the normed space N with the norm inherited from X; (i =0,1).

THEOREM 1. The norms of the interpolation spaces Ny, = (No, N1)g,q
and Xgq = (Xo,X1)a,q are equivalent on N (i.e., Ngg = Xg4 N N) if and
only if
(7) NS (O,CY)U(,Boo,ao)U(ﬁo,Oéoo)U(ﬁ,l).

Moreover, if 0 € (0,a) U (Bo, as0) U (B,1), then Ny 4 is dense in Xg g5 if
0 € (Boo, ), then Ny 4 is dense in some subspace of Xg 4 of codimension 1.

Using the following definition from [17], we can state Theorem 1 in an-
other way. As above, (Xg, X1) is a regular Banach couple, ¥ € (Xo N X7)*,
and N = ker). For arbitrary 0 < 6 < 1 and 1 < ¢ < oo, we denote by
Xo.q.0 = (X0, X1)p,4,0 the set of all x € X+ X representable in the form

(8) x = Z 2% 2, xp € N (convergence in Xo + X1)
keZ

with the norm (5), where the infimum is taken over all representations of the
form (8).

THEOREM 2. The space Xg 4 15 closed in the real interpolation space
Xo.q = (X0, X1)o,q if and only if condition (7) holds. Moreover, if 0 € (0, o)U
(/607900) U (6,1), then X97q7¢~: Xg’q; if 0 € (B0, ), then X@,q,w = X97q N

ker, where the functional 1 is a continuous extension of 1 to the space
Xo,q-

REMARK 1. In what follows, the interval (o, [3), as usual, is the set of all
reals x satisfying the inequality o < x < (3. Thus, the inequalities ag < Gy
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and ao < (oo imply that at most one of the intervals (5y, doo) and (Boo, )
may be nonempty.

REMARK 2. Theorems 1 and 2 strengthen Theorem 1 from [3] and Propo-
sition 5.6 from [17], which contain the extra condition fs < ay.

4. Proofs: Reduction to the Ivanov—Kalton case. Our proof of the
main results is based on reducing the problem to two problems of the kind
studied by Ivanov and Kalton in [6], i.e., to a case where we have a linear
functional that is bounded on one of the endpoint spaces.

Suppose that we have a Banach couple X = (X, X1) and a linear func-
tional ¥ € (Xo N X1)*. Suppose also that X is an intermediate space for
(X0, X1) and that 9 can be extended to a bounded linear functional on X.
Then we will write » € X™*, which is meant to imply that we have extended
¥ to X. For every ¢ € (Xo N X1)* there is a minimal interpolation space
norm for which % is bounded. It is unique up to equivalence. That norm is

lzlly = sup|(4,T)].

1Tl x - x<1
Whenever we write ker ¢ in this section, we assume that ¢ has been extended
to the corresponding maximal interpolation space for which 1 is bounded.

THEOREM 3. Suppose that X = (Xg, X1) is a regular Banach couple,
that € (XoNX1)* and that # 0. Then (Xo, X1)g,q,¢ is a closed subspace of
the interpolation space (Xo, X1)g,q if and only if both (Xo, XoNX1Nker)g 4
is a closed subspace of (Xo, XoNX1)g,q and (XoNX1Nker, X1)g 4 is a closed
subspace of (Xo N X1, X1)g,q. Moreover:

(i) The formula
(X0, X1),g,0 = (X0, X1),qg Nkerp
1s valid if and only if both
(Xo, Xo N X1 Nkert)g, = (Xo, Xo N X1)gqNkery
and
(Xon X1 Nkerey, X1)gq = (XoN X1, X1)gq Nker.
(ii) The formula
(Xo, X1)0,0,0 = (X0, X1)o,4
1s valid if and only if both
(Xo, Xo N X1 Nker)g, = (Xo, Xo N X1)og

and

(Xo NnNXiN kerz/J,Xl)(%q = (Xo N X17X1)€,q7
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or both
(Xo, Xo N Xy Nkert)gq = (Xo, Xo N X1)oq
and
(Xon X1 Nkerey, X1)gq = (XoN X1, X1)p,q Nker,
or both
(X0, Xo N X1 Nkert)gq = (Xo, Xo N X1)gqNkery
and
(XoNn X1 Nkervy, X1)gq = (XoN X1, X1)oq
For the proof of the theorem we need four lemmas.

LEMMA 3.
(X0, X1)p,g = (X0, X1)o,g N Xo + (X0, X1)s,4 N X1,
(X0, X1)0,q,6 = (X0, X1)o,g,0 N Xo + (Xo, X1)g,4,6 N X1
Proof. 1t is clear that
(X0, X1)o,g N Xo + (X0, X1)o,g N X1 C (X0, X1)o,q

since the latter space is a vector space.

Assume that x € (X, X1)pq. Then there are z;, € Xo N Xy such that
= > xx2% and ||(J(2%, 2x; Xo, X1))|lq < 0o. We now want to find zy €
(XO,Xl)Q’q N Xy and z; € (X(),Xl)@q N X1 such that = xg + z1. Let
Ty = 22:_00 2% 1 = dorey 229 . The convergence of these two se-
ries in Xo and X follows from the facts that >.0_ _ [|2%%z| x, < oo and
S 2% x, < oo and that X and X; are Banach spaces.

The second claim has the same proof. m

The following lemma is proved in [3] (see also [14]).

LEMMA 4.
(Xo, Xo N X1)g,q = (Xo, X1)g,¢ N Xo,

(Xo N X1, X1)o,q = (Xo, X1)o,4 N X1

LEMMA 5.

(i) If ¢ € (Xo,XD le)eq’ then
(X XoN Xy ﬂker?,[))gq (Xo,Xl)ngﬂXoﬂker’lﬁ,
(Xo N X1 Nkery), X1)o,q = (Xo, X1)o,g,0 N X1

(i) If ¢ € (Xo le;Xl)gqy then
(XoﬂXlﬂkemb Xl)gq (Xo,Xl)gqq/}ﬂXlﬂkeri/J,
(Xo,XoﬂXl ﬂker?,[))gq (Xo,Xl)ng N Xo.
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(i) If ¢ ¢ (Xo, Xo ﬂXl)* and (Xo,Xl)gq (Xo,Xl)ng, then
(Xo, Xo N X1 Nkery)g, = (Xo, X1)g,q,0 N Xo-

(1v) If o ¢ (Xo lele)gq and (Xo,Xl)gq (X(),Xl)gq¢, then
(XoN X1 Nkert, X1)q = (Xo, X1)a,4,0 N X1

Proof. Assume that ¢ € (Xo, Xo N X1)p, and that @ € (Xo, X1)g,g,p N

Xo Nkere. Then there are 2, € Xo N X; Nkerty such that z = > 2%z,
with convergence in the Xy + X norm and [|(J (2%, zx; Xo, X1))|l; < oo.
It is readily seen that J(2F, z;; Xo, Xo N X1 Nkervp) = J(2F, z1; Xo, X1) if
k < 0. Therefore, the series u = Y ,—_ 20k 1. converges in the norm of
(X0, X0 N X1)g,q, and hence ¢(u) = 0. Since € X N kere), we see that
s=r—u= 202029’“3% € XonXjNnker. Let yp, =z if k < 0, yg = s, and
yr = 0if k > 0. Then y, € XoN Xy Nker, [|(J(2%, yx; Xo, XoNX1))|lq < o0,
and 3" 2%y, = z (convergence in Xg). Thus,

(Xo,Xl)ng N Xy Nkery C (X(),XO NXiN ker(ﬁ)@’q.

From the assumption that ¢ € (Xo, Xo N X1); 0. it follows that the opposite
inclusion is valid as well, and the first formula from (i) is proved.

Next, assume that 1) € (XN Xy, Xl)qu. We will use the same idea again.
For each = € (Xo, X1)g,q,4 N Xo there are x;, € XoN X Nker ) such that x =
>~ 2%z, with convergence in the Xo + X; norm and ||(J(2%, 2x; Xo, X1))|lq
< 0o. Again the series Z,;:lfoo 2% 21, converges in Xo and s = Y o, 2%z, €
Xo N X1. Moreover, 9(s) is well defined since s € Xo N X;. Note that
J(2F, 21: Xo N X1 Nkerep, X1) = J(2%, 21; Xo, X1) if & > 0. This implies
that the series s = Y 32, 2%z, converges in the norm of (Xo N X1, X1)g 4-
Since ¢ € (Xo N X1, X1)j ., we have ¢(s) = 0 and we can as above conclude
that x € (Xo, Xo N X1 Nkerv)g,. Therefore,

(X(),Xl)qu’w N Xy C (Xo,XO NXiN kerw)qu.

Since the opposite inclusion is obvious the second formula of (ii) is proved.

Finally, we consider (iii). We keep previous arguments and notation. If
¢ (XoN X1,X1)§7q it is possible that 1(s) # 0. If there are elements wy,
in Xo N X1 Nker such that > 2%wy, = 0, ||(J(2¥, wi; Xo, X1))|lq < o0 and
(> o 2%%wy,) = 1, then there is another representation x = 3 2%%v;, such
that ||(J(2%, vk; Xo, X1))|lq < 00 and ¥(3°32,2%%vx) = 0 and we can draw
the desired conclusion.

To finish this proof we now assume that there are no such elements, i.e.,
(U10rai 2%%wy,) = 0 whenever wy, are elements in Xo N X1 Nkert) such that
> 2%, = 0 and ||(J(2¥, wy; Xo, X1))|lq < co. In other words, if an element
x € (Xo, X1)p,q N Xo has two representations:

T = ZQekmk and z = ZQekyk
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such that
(T (2%, z; Xo, X1))[lg < 00, 1T (2%, yis Xo, X1))|lg < 00,
and (zx) U (yx) C Xo N X1 Nker, then

[0.9] oo
B(D 2% ) = v (2% u).
k=0 k=0
Thus, we can define a linear functional ¢ on (Xo, X1)sq N Xo. In fact, if
x € (Xo,X1)a,q N Xo, then by the extra assumption from part (iii) of the
lemma, i.e., that (Xo, X1)gq = (X0, X1)44, we have z = > 32 2%kqy
where x; € Xo N X1 Nkervy. Then we set

o(x) == 1/1( i 2€kxk) :

k=0

If z € XoNXNker, then ¢(z) = 0, since we can represent z as > 2%z,
by letting 29 = z and z; = 0 for k # 0. This means that there is a constant
~ such that ¢ = v on Xg N X;. If v = 0 it follows that ¢ = 0 also on
(X0, X1)p,gNXo and the proof can be concluded as in the other cases above.

If v # 0 it follows that %gb is an extension of 9| x,nx,. Let us check that this
extension is continuous on the space (Xo, Xo N X1)aq = (X0, X1)e,q¢ N Xo.
Let 2 € (Xo, X1)p,4N X0 and denote by « the norm z in (Xo, X1)g,qNXo. As
above, x = u+s, where u = Z,;:l_oo 20k € Xo, 5 = Yo 20k € XoN X1,

and [|(J(2*, 2; Xo, X1))|lq < 20v. Then

— 00
ul|x, < 20k (2%, x; Xo, X1) < Cra
0
k=-—1

and [sl|x, < llx, + [ullx, < (C1 + Da. Similarly,
[e.e]

Isllx, <D 207 VEI(2F, 2 Xo, X1) < Coar.
k=0

Therefore, ||s||x,nx, < Ca. Since ¢ € (XpN X7)*, we have

|6(2)] = |(s)] < Callsll xonx: < C3C|2 |l (x0,%1)4,40 X0
ie., gf) S ((XD,Xl)quﬂXo)* = (Xl)aXOle)z’q- Hence, 9 € (X07X00X1)27q7
which contradicts the assumption that ¢ ¢ (Xo, Xo N X1)j .

The other formulas of the lemma follow from the proved ones by consid-
ering the reversed couple. n

REMARK 3. If ¢ € (Xo N Xl,Xl);q and ¥ € (Xo, Xo ﬁXl)gq, then
Lemma 3 implies that ¢ € (Xo, X1)j , and therefore

(X0, X1),g,0 = (X0, X1)a,g Nkerp.
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So, in this case
(X(), X1)97q’w N X() = (X(), X1)97q’w N keI"lﬂ N )(07
and we do not get any contradiction.

EXAMPLE 1. Let Xo = Li(z), X1 = Li(z™!) and ¢(f) = {° f(s)ds. It
is true that (Xo, X1)p1 = L1(z'172%) for 6 € (0,1). It is not hard to check
that ¥ € (XoN X1, X1)5, and ¢ ¢ (X0, XoN X1)p, 10 <6 < 1/2, and
) € (Xo,Xo N X1)j, and ¢ ¢ (Xo N X1, X1)5, if 1/2 < 0 < 1. On the
other hand, we know [17, Theorem 6.1] that (Xo, X1)g,1,4 = (X0, X1)s1 =
L1(2'72%) whenever 6 # 1/2. So, by Lemma 5,

{ 2172 A Lz Nkeryy, 0<6<1/2,

Li(
Li(z'=2) N Ly(z71), 1/2<0<1,
L

(Xo, XoN X1 Nkert))g, = { 1(

(XoﬂXl ﬂkeIWﬁ,Xl)gJ _
1=20) N Ly (z), 0<6<1/2,
Li(z'29) N Ly(z) Nkerp, 1/2 <6< 1.

LEMMA 6. LetY = (Y, Y1) be a Banach couple, and ¢ # 0 be a bounded
linear functional on Yo N Y.

(i) If¢y € Yy and o € Y{*, then
YoNkery + Y Nkery = (Yo + Y1) Nker.
(ii) If+ € Y}, then
Yo+ YiNnkery =Yy + Y.
(iii) If ¢y €Yy, then
YoNkery +Y; =Yy + Y.
Proof. We will only prove the first point because the others are proved in

the same way. Without loss of generality we can assume that [[1)|(y,ny; )« < 1.
It is clear that

YoNkery + Yy Nkery C (Yo + Y7) Nker.

If y € (Yo + Y1) Nkerp, there are yo € Yp and y; € Y7 such that yo +y1 =y

and [lyolly, +ly1lly; < 2[[yllvo+y:- Since ¢(y) = 0 we have ¢(yo) +9(y1) = 0.
We can find w € Yp NY; such that ¢(w) = 1 and max(||w|y,, [|w]y,) < 2.

Let 5o = yo —9(yo)w and y1 = y1+ ¢ (yo)w = y1 =¥ (y1)w. Then y = yo+ 11
and

19ollyo + [172llva < llwollve + [ (wo)l lwllys + lyallva + =¥ ()] wliv,

< 3(llyollve + lly1llya) < 6llyllvo+v:- =

Proof of Theorem 8. First, we recall the following statements (see
[3, Lemma 5 and Corollary 1| or [17, Property 2|): (I) if (Xo, X1)p,q,
is closed in (Xo, X1)g,q, then either (Xo, X1)g,q4 = (Xo,X1)g,q Nker (if
v € (Xo,X1),) or (Xo,X1)ogqu = (Xo.X1)og (if ¥ & (Xo,X1)j,);
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(II) (X0, X1)6,4,40 = (X0, X1)p,q Nker ¢ if and only if ¢ € (Xo, X1)j .. More-
over, it follows easily that

(Xo, Xo N X1 Nker ¢)6’,q = (XD, XoN X1)97q7¢,

(XO N X1 Nker, Xl)qu = (XO N Xy, X1)97q7w.
Therefore, the “if and only if” statement at the beginning of the theorem is
a consequence of (i) and (ii). So, it is sufficient to prove (i) and (ii).

(i) Assume that (Xo, X1)g,q,6 = (Xo, X1)g,¢Nkertp. Then ¢ € (Xo, X1)z,,

and Lemmas 4 and 5 imply that

()(07 XoN X1 Nker @/})97(1 = ()(07 X1)97q7¢ N Xo Nkery
= (X(), X1)97q N Xo Nkery
= (Xo, XoN X1)97q N ker ¢
and similarly
(XoN X1 Nkery, X1)p,q = (Xo, X1)o,4,0 N X1 Nkeryp
= ()(07 X1)97q NXiN kerz/J
= (X() N Xy, X1)97q N ker .
Conversely, assume that
(XQ, Xo N X7 Nker 1/})9’(1 = (X(), XoN Xl)g’q Nkery,
(XO N X1 Nkery, Xl)qu = (XD N Xy, Xl)qu N ker .
Then ¢ € (Xo, XoﬂXl)aq and ¢ € (XoNXy, Xl)Z,q' Therefore, by Lemmas 3
and 4, ¢ € (XO,Xl)gq, which implies that
(X0, X1)0,0,0 = (Xo, X1)g,¢ N ker ).
(11) Let (X()aXl)Q,q,w = (X(),Xl)gjq. If (a) P € (X(),XO N Xl);’q and
P ¢ (XoN X1, Xo)y o then, by Lemmas 4 and 5,
()(07 XoN X1 Nker w)aq = ()(07 X1)97q7¢ N Xg Nker
= (Xo, X1)97q N Xo Nkery
= (X07 XD N Xl)@,q N ke“ﬁa
= (X0, X1)o,g0 N X1
= (Xo, X1)o, N X1 = (Xo N X1, X1)o,4-
In the cases (b) ¢ ¢ (Xo,Xo N X1)5, and ¢ € (Xo N X1, Xo)y,, and (c)
¥ ¢ (Xo,XoNX1)j, and ¢ ¢ (XoN X1, Xo)j, we end up in a very similar
manner. If ¢ € (Xo, Xo N Xl)zq and ¢ € (XoN Xl,XO)Zq then again ¢ €
(Xo, X1)p,, and (Xo, X1)a,q,» C (Xo,X1)a,q N kery), which contradicts the

assumption that (Xo, X1)s 40 = (X0, X1)s,q-
Conversely, assume, for example, that both

(X(), XoN X7 Nker w)G,q = (X(), XoN X1)97q N ker

(XO N X1 Nker, X1)97q
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and

(XD N X1 Nkery, Xl)qu = (XD N Xy, Xl)qu.
Then condition (a) is true. So, by Lemmas 3-6 with Yy = (X0, Xo N X1)g,4
and Y7 = (Xo N X1, X1)pq, we have

(XO,Xl)G,q = (XO,XI)G,q N Xo+ (XO,XI)G,q N X3
= (X0, XoN Xl)qu + (XoN Xl,Xl)qu
= (X(),Xo N Xl)g’q Nkery + (X() N Xl,Xl)g’q
= (XD,XO NXiN ker¢)97q + (XD NnNXiN ker@b,Xl)g?q.

Using Lemma 6 for the second time for the spaces Yy = (Xo, X1)g,4,4 N Xo
and Y7 = (Xo, X1)g,q,» N X1 shows that the last expression is equal to

()(07 X1)97q7¢ n X() N kerz/; =+ ()(07 X1)97q7¢ N X3
= (X0, X1)g.q.0 N Xo + (X0, X1)a,q,6 N X1 = (X0, X1)0,9,0-
The other two cases are considered in the same way. m

We now have everything we need to prove Theorem 2 (equivalently, The-
orem 1).

Proof of Theorem 2. The special cases when 1 is bounded on one of
the endpoint spaces were proved by Ivanov and Kalton [6]. If ¢ € X it
follows that s = B = a = 0 and therefore we have a closed subspace
when 6 > 8 = By and when 0 < ag and for no other #. That subspace has
codimension one in the latter case and zero in the former. If instead ¢ € X7,
it follows that ag = By = 8 = 1 and we have a closed subspace that equals
the whole space if § < o = as and a closed subspace of codimension one if
0 > Boo. The subspace is not closed for any other . The rest of Theorem 2
follows from that result, Theorem 3, and Lemmas 1 and 2. =

5. Interpolation of intersections of weighted L, -spaces generated
by the integral functional. Let w(z) be a positive measurable function on
(0,00), 1 < p < o0. As usual, we define L,(w) as the space of all measurable
functions f : (0,00) — R with the norm

1w = (§ 7@ P d2) "
0

(with the usual modification for p = c0). Let us consider the linear functional
[e.9]

o(f) = | fw)da
0
with the domain D consisting of all measurable functions f : (0,00) — R
such that § | f(z)| dz < oo for all 0 < a < b < 00 and lim, g 400 | f(2) dz
exists. Denote its kernel by N.
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It might seem restrictive to choose a particular linear functional but
actually it is sufficient for understanding the corresponding situation for a
larger class of positive linear functionals. If we used a linear functional of
the form ¢(f) = {° f(#)g(x) dz where g is bounded and strictly positive, we
could perform a change of measure by considering the measure g(z)dz and
we end up in a situation with the standard integral functional and weights
w;i/g, i = 0,1. The K-functional of ¢ in the dual couple of the couple with
weights w;, ¢ = 0,1, is equal to the K-functional of the standard integral
functional ¢ in the dual couple of the couple with weights w;/g, and the
answer to the interpolation of intersections question only depends on that
K-functional.

Assume that the restriction of the standard integral functional ¢ to the
intersection Ly, (wo) N Ly, (w1) is bounded. Using Theorem 1 and arguing as
in [3], we can find necessary and sufficient conditions for equality (4) to hold
(without any restrictions on the dilation indices of the Peetre K-functional
of the integral functional ¢ in the couple (Ly,(wo)*, Ly, (w1)*)). We state
here only a result in the case when py = p1 = 1. Let w(x) = wo(z)/w1(x)
and let w~!(x) be the function inverse to w(zx).

THEOREM 4. Suppose that weight functions wo(x) and wy(x) satisfy the
following conditions:

e wy(x) is increasing,

e wi(x) is decreasing,

. lin%)w(x) = lim 1/w(z) =0.
Let o, B, o, o, oo, and Poo be the dilation indices of the function k(t) =
1/wo(w™1(1/t)). Then the formula

(9) (Ll(wo) NN, Ll(wl) N N)97q = (Ll(wo), Ll(wl))e,q NN
is equivalent to condition (7).

Proof. Since the restriction of ¢ to the intersection Lj(wg) N Lq(w1) is
a bounded functional, the necessity of condition (7) follows at once from
Theorem 1 and [3, Corollary 2].

Conversely, assume that (7) is satisfied. By Theorem 2, it is sufficient to
prove that

(10) (Ll(wo), Ll(wl))@q NN C Ll(wo) NN + Ll(wl) N N.

For every f € (Li(wp), L1(w1))g,4NN consider the representation f = fo+ f1,
where fo = f - X1, /1 = [ — fo. The conditions on the weights wy and
wy imply that fo € Lij(wo) and f; € Li(w;). Moreover, it is not hard
to check that fp and f; belong to the domain D of the functional ¢. Let
g € Li(wo) N Li(w1) be such that ¢(g) = 1 and let go = fo — ¢(fo)g and
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g1 = fo+ &(fo)g. Then f = go + ¢1 and ¢; € Li(w;) "N (i = 0,1). So,
inclusion (10) is proved, and hence we have (9). m

Complementing Corollary 7 from |[3], we shall show that for arbitrary
numbers a, b, ¢, and d with 0 < a < min(b,c¢) < max(b,c¢) < d < 1 there
exist weight functions wy(x) and w;(x) such that the dilation indices «, fy,
(oo, and f3 of the function k(t) = 1/wo(w™1(1/t)) coincide with a, b, ¢, and d,
respectively.

Following [3], we take a two-sided increasing sequence (xj)3>
itive numbers such that xo = 1 and limy|_oo Ty1/7% = 0.

of pos-

—00

If b > 0, we define a function v/ in the following way: /(1) = 1,

V(z) = { (z/w2) V' (22k), Top < T < Topya,
(x/2ok41) " (Tokt1), Toks1 < @ < Topyo,
for k=0,1,2,..., and

V() = { (/) V' (22k), Tog—1 < T < Tog,
(x/zor—1)"V (x2-1), Top—o < @ < Top1,
for k=0,-1,-2,...

If b =0 and d > 0, we define v/(z) as before if € [1,00), and for
z € (0,1] we put v/(z) = 1/In(e/x).

Finally, if d = 0, we put v/(z) = 1/In(e/x) for z € (0,1] and /'(z) =
In(ex) for z € [1, 00).

It can easily be checked that v/(z) is increasing, v/(x)/z is decreasing,
and the range of /() is (0, 00). There exists an increasing concave function
v(z) such that v/(z) < v(z) < 2/(z) (x > 0) (see [10, Theorem 2.1.1]).
The definition of v/ readily implies that its dilation indices «, By, Qso, and
(therefore, also those of v/) coincide with a, b, ¢, and d, respectively.

We define wo(z) = x and wy(z) = zv~(1/x) (v ! is the inverse function
to v). Since these functions satisfy the conditions of Theorem 4 and v(z) =
1/wo(w~t(1/t)), applying this theorem we arrive at the following result: if

the weight functions wy and w; are defined as earlier, then equality (9) holds
if and only if 6 € (0,a) U (b,c) U (d,1).

6. The shift operator and its spectrum on weighted ¢, spaces. In
[2, 3, 17|, weaker versions of Theorems 1 and 2 were proved using an approach
developed by Ivanov and Kalton in [6] for comparison of the interpolation
spaces (Xo, X1)p,, and (No, X1)gq, where p € X§ and Ny = kere. The
key idea of that approach is to reduce the general interpolation problem for
subspaces to the study of the shift operator on a certain weighted ¢,-space.
Note that the theorems obtained here imply the interpolation results of [6]
(see also [3] and [17]). In the remainder of this article we will work in the
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opposite direction and use our interpolation results to derive more general
results concerning the shift operator and its spectrum on weighted ¢,-spaces.
We start with some notation and preliminary remarks. Putting

(11) o = (k(27) " (n€Z)

we see that p, > 0, and since k(t) = K(t,v; X, X{) is an increasing and
concave function on (0, 00), we have

(12) fin < o1 < 20y (n € Z).

Furthermore, it is easy to check that

1 1
a= — lim —logysup Kk , f = lim —log,sup ,
n—oon keZ Hn+k n—oeon keZ Hk—n
1 _ 1
Qoo = — lim —logy supuk—", Boo = lim —log, sup Hik ,
n—oo N k<0 Mk n—oon k<0 Mk—n
1 1
ap = — lim —log, sup ali , Bo = lim — logy sup Mk+n.
n—oon k>0 Hn+k n—on k>0 Mk
Let £4(pt) be the space of two-sided numerical sequences a = (a)3> _ ., with
the norm y
q
lallg = { 3 lanltuf }
keZ

In what follows, we shall consider the shift operator S((ax)) = (ax—1), its
inverse S™!, and also the operators Ty = S — 271 (0 < 0 < 1), where I is
the identity mapping. By (12), both S and S~! are bounded on ¢,(x), and
ISl <2, IS~ < 1.

REMARK 4. If r(S) denotes the spectral radius of the shift operator, then
2% = 1/r(S71) and 2% = r(S). Therefore, it is clear that Tj is invertible if
0 <aorf>g.

The proof of Theorem 1 from [3] (see also [17, Theorems 4.2 and 4.3])
shows that the following proposition is a consequence of Theorems 1 and 2.

PROPOSITION 1. Let 0 < 6 < 1 and 1 < q < oo. The operator Ty is
closed in L) if and only if
0 € (0,) U (Boo, a0) U (Bo, o) U (B, 1).

Moreover, lf9 € (O,OZ>U(60,CMOO)U(67 1)5 then Im Ty = Eq(:u)v Zf@ € (ﬁooaa())v
then ImTy is a closed subspace of £q(p) of codimension 1 consisting of all

(ar)kez € Ly(p) such that
Z 2k9ak =0.

kEZ

The weight ¢t = (i )nez from the last proposition satisfies the condition:
there are a couple (Xo, X;) and a linear functional ¢ € (X N X1)* such
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that for the K-functional k(t) = K (t,v; X, X]) we have (11). Next, we will
check that assumption (12) is not only necessary for the existence of such
a linear functional but also sufficient. Consider the couple (¢1,¢1(2F)) and
linear functionals of the form ¢ (z) = > vk, where 0 < v < vgy1 < 2vg.
The last condition implies that the linear functional ¢ is bounded on the
intersection ¢1 N £1(2¥). The K-functional k for such a linear functional has
the property that k(2") = v, (n € Z). Thus, the functional we are looking
for is defined by letting vy = 1/p_.

THEOREM 5. Let 0 < 0 < 1,1 < g < 0o and let (pin)nez be a positive
sequence such that py, < pint1 < 2y for all n. The operator Ty is closed in

Ly(p) if and only if
0 € (0,a) U (B, 0) U (B0, o) U (B, 1)
Moreover, if 6 € (0, a)U(So, eo)U(B, 1), then Im Ty = Ly(1); if 0 € (Boo, o),
then ImTy is a closed subspace of Lq(p) of codimension 1 consisting of all
(ar)kez € Ly(p) such that
Z Qkaak =0.

kEZ

If we want to know when Ty is invertible we also have to know if it is
injective or not in the cases when we know that it is surjective, i.e., when
0 € (0,a) U (Lo, e0) U (B,1). When 6 € (0,) U (3,1) it is shown in [3| and
[17] that Ty is injective; we will prove that in the remaining cases it is not.

PROPOSITION 2. If 0 € (fy, o), then Ty is not injective.

Proof. Tt is sufficient to prove that (27%) € £,(u) since that element then
lies in the kernel of Ty. If € > 0 is sufficiently small, then from the inequality
0 > g and from the definition of the index «y it follows that

sup'u—n > 27 k0-9) = 1,2,...,
n>0 Hk+n

whence Lo
w2 %k < Bo=ek =192 ...
c1

Similarly, since 6 < B, for sufficiently small n > 0 we have

gy 20k < BOogmmk 19
C2

Z Q_keq,uz < 00.
keZ

and therefore

Since ag < By and ao < B, the proof is complete. w

COROLLARY 1. The operator Ty is invertible iof and only if 0 < « or
0> 0.
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THEOREM 6. The spectrum of S on £,(u) is the set {z€C | 2 < |z| <2P}.

Proof. The spectrum is invariant under rotation since the operator
Wa((ax)) = (A\Fay,) is an isometry for A on the unit circle in C. Therefore,
the theorem follows from Corollary 1. =

It is worth noting that the Stein—Weiss Theorem |5, Theorem 5.4.4] im-
plies that the space £,(j) is an interpolation space of the couple (£, £,(2%))
if pu satisfies condition (12). The operator Tj is invertible on ¢, if § # 0 and
on Ep(2’“) if 6 £ 1. If we could “interpolate” the inverse of Ty for a certain
6 € (0,1) to the space £y(p), we would know that Ty is surjective on that
space. There is, however, a problem when we try to perform that interpola-
tion: the inverse operators on the endpoint spaces do not have to agree on the
whole of the intersection. In other words, the operator Ty is not an injection
as an operator defined on the sum £, + £,(2%), that is, the inverse of T (on
this sum) does not exist (see [4, Remark 3.1] and references therein). To be
able to formulate results about the spectrum of operators on interpolation
spaces, authors have usually imposed the assumption that the inverses agree,
see e.g. [16]. In our particular case we have two possible inverses,

Uy ((ax)) = (2(7”1)0&0:2%0%) )

n+1 "
Uy (o)) = (_ 9—(n+1)0 ZH:Q%Q’“>”’

and they agree only on (oy,) with 3 2%qy, = 0. This is actually precisely
the same kind of situation that was considered by Krugljak, Maligranda and
Persson in [11] when they interpolated Hardy-type operators. The operators
Ue+ and U, can be seen as discrete Hardy-type averaging operators. They
can be converted to the usual Hardy operator forms

17 17
—Sf(s) ds and — - S f(s)ds

X
0 T

by letting f(s) = ay, for 208 < s < 20(k+1) and z = 20(k+1) We see that Uy
is bounded on ¢, for # > 0 and U, on £,(2") for 6 < 1.
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