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Real method of interpolation onsub
ouples of 
odimension onebyS. V. Astashkin (Samara) and P. Sunehag (Canberra)Abstra
t. We �nd ne
essary and su�
ient 
onditions under whi
h the norms of theinterpolation spa
es (N0, N1)θ,q and (X0,X1)θ,q are equivalent on N, where N is the kernelof a nonzero fun
tional ψ ∈ (X0 ∩ X1)
∗ and Ni is the normed spa
e N with the norminherited from Xi (i = 0, 1). Our proof is based on redu
ing the problem to its partial
ase studied by Ivanov and Kalton, where ψ is bounded on one of the endpoint spa
es.As an appli
ation we 
ompletely resolve the problem of when the range of the operator

Tθ = S − 2θI (S denotes the shift operator and I the identity) is 
losed in any ℓp(µ),where the weight µ = (µn)n∈Z satis�es the inequalities µn ≤ µn+1 ≤ 2µn (n ∈ Z).1. Introdu
tion. Interpolation of subspa
es is an important and rather
ompli
ated problem in interpolation theory [5℄. It has been stated as earlyas in the monograph [12℄ by Lions and Magenes. Various aspe
ts of thisproblem have been treated in [1, 6�9, 13�15, 18, 19℄ (the authors are very farfrom 
laiming the 
ompleteness of this 
itation list). Here, we shall 
onsidera partial 
ase of this general subspa
e interpolation problem, interpolationof interse
tions by the real method.Let (X0, X1) be a Bana
h 
ouple, i.e., a pair of Bana
h spa
es linearlyand 
ontinuously embedded in a Hausdor� topologi
al ve
tor spa
e τ. Everylinear subspa
e N of τ generates a normed (in general, non-Bana
h) 
ouple
(X0∩N,X1∩N), where the norm onXi∩N is just obtained by the restri
tionof the norm of Xi (i = 0, 1).The problem of interpolation of interse
tions is the problem of �nding
onditions on the triple (X0, X1, N) and the parameters θ ∈ (0, 1) and q ∈
[1,∞] of the real interpolation method under whi
h the natural formula(with equivalen
e of norms)(1) (X0 ∩N,X1 ∩N)θ,q = (X0, X1)θ,q ∩Nis valid.2000 Mathemati
s Subje
t Classi�
ation: Primary 46M35; Se
ondary 46E30, 46A45.Key words and phrases: interpolation, real method of interpolation, sub
ouple,weighted spa
es, shift operator, spe
trum. [151℄ 
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152 S. V. Astashkin and P. SunehagNote that when N is the kernel of a linear fun
tional ψ ∈ (X0 ∩ X1)
∗formula (1) means just the equivalen
e of the norms of the spa
es Nθ,q =

(X0 ∩N,X1 ∩N)θ,q and Xθ,q = (X0, X1)θ,q on the subspa
e N. In [2, 3℄and independently in [17℄ four dilation indi
es of the Peetre K-fun
tional
K(t, ψ;X∗

0 , X
∗
1 ) in the dual 
ouple (X∗

0 , X
∗
1 ) have been introdu
ed and theproblem has been solved under an extra 
ondition on these indi
es. Here weshall give a solution of this problem without any additional 
onditions.An important parti
ular 
ase of the problem on the interpolation of in-terse
tions generated by a linear fun
tional was treated in [11℄. Namely,su�
ient 
onditions on θ ∈ (0, 1), p ∈ [1,∞), and on weight fun
tions w0(x)and w1(x) were found ensuring the formula(2) (Lp(w0) ∩N,Lp(w1) ∩N)θ,p = (Lp(w0), Lp(w1))θ,p ∩N,where Lp(w) is a weighted Lp-spa
e on (0,∞) with the usual norm and Nis the spa
e of all fun
tions f : (0,∞) → R satisfying

(3) ∞\
0

f(x) dx = 0.

It turned out that the validity of (2) is 
losely related to the possibility of�interpolating� 
ertain Hardy-type integral inequalities. In the same paper[11℄, the following more general question was asked: under what 
onditionson w0(x), w1(x), p0, p1 ∈ [1,∞), θ ∈ (0, 1), and q ∈ [1,∞] do we have theidentity(4) (Lp0(w0) ∩N,Lp1(w1) ∩N)θ,q = (Lp0(w0), Lp1(w1))θ,q ∩N?(Generally speaking, here p0 6= p1, and N is still determined by (3).) Wenote that our main results (Theorems 1 and 2) imply a solution of thisproblem. Not entering into details, we will 
on
entrate here only on the 
aseof L1-spa
es (for more detailed 
onsideration of this topi
 see [3℄).In [6℄, a 
onne
tion was dis
overed between interpolation of subspa
esand the problem of determining if the range of the operator Tθ = S−2θI onweighted ℓp-spa
es is 
losed or not. Here, S denotes the shift operator and Ithe identity. We will 
ompletely resolve this problem in the 
ase when theweight µ = (µn)n∈Z satis�es the inequalities µn ≤ µn+1 ≤ 2µn (n ∈ Z).

2. De�nitions, notation, and auxiliary results. For an arbitrarynormed 
ouple (X0, X1) and t > 0 we de�ne the Peetre K-fun
tional :
K(t, x;X0, X1) = inf

x=x0+x1, xi∈Xi

(‖x0‖X0
+ t‖x1‖X1

), x ∈ X0 +X1.



Sub
ouples of 
odimension one 153If 0 < θ < 1 and 1 ≤ q < ∞, then the real interpolation spa
e Xθ,q =
(X0, X1)θ,q 
onsists of all x ∈ X0 +X1 su
h that

‖x‖Xθ,q
=

{∞\
0

(t−θK(t, x;X0, X1))
q dt

t

}1/q

<∞.Analyzing the proof of the equivalen
e theorem [5, Theorem 3.3.1℄, we seethat it remains true for normed (and not only Bana
h) 
ouples. Thus, thespa
e Xθ,q (with an equivalent norm) 
an be de�ned in terms of the J-fun
tional
J(t, x;X0, X1) = max(‖x‖X0

, t‖x‖X1
), x ∈ X0 ∩X1.Spe
i�
ally, Xθ,q 
onsists of all x ∈ X0 +X1 representable in the form

x =
∑

k∈Z

2θkxk (
onvergen
e in X0 +X1)with the norm(5) inf
{ ∑

k∈Z

(J(2k, xk;X0, X1))
q
}1/q

,where the in�mum is taken over all representations indi
ated above.We will say that a Bana
h 
ouple (X0, X1) is regular if X0 ∩X1 is densein both X0 and X1. If (X0, X1) is regular it follows that X∗
0 and X∗

1 arenaturally embedded into (X0 ∩ X1)
∗, and so we may 
onsider the Bana
h
ouple (X∗

0 , X
∗
1 ) of the dual spa
es. Moreover, (X0 ∩ X1)

∗ = X∗
0 + X∗

1 [5,Theorem 2.7.1℄.Suppose that (X0, X1) is a regular Bana
h 
ouple and ψ ∈ (X0 ∩X1)
∗.Then ψ ∈ X∗

0 +X∗
1 . In what follows, the K-fun
tional k(t) = K(t, ψ;X∗

0 , X
∗
1 )will play a 
ru
ial role. De�ne the fun
tions

M(t) = sup
s>0

k(ts)

k(s)
, M0(t) = sup

0<s≤min(1,1/t)

k(ts)

k(s)
,

M∞(t) = sup
s≥max(1,1/t)

k(ts)

k(s)
.They are submultipli
ative for t > 0, and therefore the following numbersare well de�ned:

α = lim
t→0

log2M(t)

log2 t
, α0 = lim

t→0

log2M0(t)

log2 t
, α∞ = lim

t→0

log2M∞(t)

log2 t
,

β = lim
t→∞

log2M(t)

log2 t
, β0 = lim

t→∞

log2M0(t)

log2 t
, β∞ = lim

t→∞

log2M∞(t)

log2 t
,whi
h are 
alled the dilation indi
es of k(t). It is easily seen that 0 ≤ α ≤

α0 ≤ β0 ≤ β ≤ 1 and 0 ≤ α ≤ α∞ ≤ β∞ ≤ β ≤ 1. In [3℄ and [17℄ onlyfour indi
es were introdu
ed and even though we will here use six indi
es, in



154 S. V. Astashkin and P. Sunehagour formulations they in fa
t redu
e to four, sin
e the relationship presentedbelow holds.Lemma 1. We have
α = min(α0, α∞), β = max(β0, β∞).Proof. These equalities have very similar proofs and we give only theproof for the β part. First, the following formula is true:

(6) log2

(k(ts)
k(s)

)

log2 t
= (1 − λ)

log2

(k(t1−λ)
k(1)

)

log2(t
1−λ)

+ λ
log2

(k(tλt−λ)
k(t−λ)

)

log2(t
λ)

,where t > 1, λ ∈ (0, 1), and s = 1/tλ. In fa
t,
log2

(k(ts)
k(s)

)

log2 t
=

log2

(k(ts)
k(1)

)
+ log2

(k(1)
k(s)

)

log2 t

= (1 − λ)
log2

(k(t1−λ)
k(1)

)

log2(t
1−λ)

+ λ
log2

(k(tλt−λ)
k(t−λ)

)

log2(t
λ)

,and (6) is proved.It is 
lear that the 
laim will be proved if we show that
lim
t→∞

log2

(
sups>0

k(ts)
k(s)

)

log2 t
= lim

t→∞

log2

(
sups/∈(1/t,1)

k(ts)
k(s)

)

log2 t
.For every t > 1 
hoose s(t) ∈ [1/t, 1] su
h that

sup
s∈[1/t,1]

k(ts)

k(s)
=
k(ts(t))

k(s(t))
.Then s(t) = t−λ(t), where 0 ≤ λ(t) ≤ 1. If there is a sequen
e tn > 0 su
hthat tn → ∞, t

λ(tn)
n → ∞, and t

1−λ(tn)
n → ∞ as n → ∞, then the resultfollows from formula (6). If there is no sequen
e (tn) su
h that tn → ∞ and

t
λ(tn)
n → ∞, then λ(t) → 0 as t→ ∞. In su
h a 
ase we 
an use (6) again torea
h our result, and likewise if there is no sequen
e (tn) su
h that tn → ∞and t1−λ(tn)

n → ∞ sin
e then λ(t) → 1 as t→ ∞.The se
ond lemma will be useful for redu
ing our problem to the 
asewhen a fun
tional is bounded on one of the endpoint spa
es.Lemma 2. If ψ ∈ (X0 ∩X1)
∗ then

α0(ψ, (X0 ∩X1, X1)) = α0(ψ, (X0, X1)),

β0(ψ, (X0 ∩X1, X1)) = β0(ψ, (X0, X1)),

α∞(ψ, (X0 ∩X1, X1)) = α(ψ, (X0 ∩X1, X1)) = 0,

β∞(ψ, (X0 ∩X1, X1)) = 0



Sub
ouples of 
odimension one 155and
α∞(ψ, (X0, X0 ∩X1)) = α∞(ψ, (X0, X1)),

β∞(ψ, (X0, X0 ∩X1)) = β∞(ψ, (X0, X1)),

β0(ψ, (X0, X0 ∩X1)) = β(ψ, (X0, X0 ∩X1)) = 1,

α0(ψ, (X0, X0 ∩X1)) = 1.Proof. It is true that
K(t, ψ;X∗

0 , X
∗
1 ) =

{
K(t, ψ;X∗

0 , (X0 ∩X1)
∗) if t ≥ 1,

K(t, ψ; (X0 ∩X1)
∗, X∗

1 ) if t ≤ 1.Also noti
e that sin
e ψ ∈ (X0 ∩ X1)
∗ we know that k1(t) := K(t, ψ;

(X0 ∩ X1)
∗, X∗

1 ) is bounded from above and the same is true for k0(t)/t,where k0(t) := K(t, ψ;X0, (X0 ∩X1)
∗). The results follow from these prop-erties.3. Main results. Suppose that (X0, X1) is a regular Bana
h 
ouple.Let ψ ∈ (X0 ∩ X1)

∗ be a nonzero fun
tional, let N = kerψ, and let Ni bethe normed spa
e N with the norm inherited from Xi (i = 0, 1).Theorem 1. The norms of the interpolation spa
es Nθ,q = (N0, N1)θ,qand Xθ,q = (X0, X1)θ,q are equivalent on N (i.e., Nθ,q = Xθ,q ∩ N) if andonly if(7) θ ∈ (0, α) ∪ (β∞, α0) ∪ (β0, α∞) ∪ (β, 1).Moreover , if θ ∈ (0, α) ∪ (β0, α∞) ∪ (β, 1), then Nθ,q is dense in Xθ,q; if
θ ∈ (β∞, α0), then Nθ,q is dense in some subspa
e of Xθ,q of 
odimension 1.Using the following de�nition from [17℄, we 
an state Theorem 1 in an-other way. As above, (X0, X1) is a regular Bana
h 
ouple, ψ ∈ (X0 ∩X1)

∗,and N = kerψ. For arbitrary 0 < θ < 1 and 1 ≤ q < ∞, we denote by
Xθ,q,ψ = (X0, X1)θ,q,ψ the set of all x ∈ X0 +X1 representable in the form(8) x =

∑

k∈Z

2θkxk, xk ∈ N (
onvergen
e in X0 +X1)with the norm (5), where the in�mum is taken over all representations of theform (8).Theorem 2. The spa
e Xθ,q,ψ is 
losed in the real interpolation spa
e
Xθ,q = (X0, X1)θ,q if and only if 
ondition (7) holds. Moreover , if θ ∈ (0, α)∪
(β0, α∞) ∪ (β, 1), then Xθ,q,ψ = Xθ,q; if θ ∈ (β∞, α0), then Xθ,q,ψ = Xθ,q ∩

ker ψ̃, where the fun
tional ψ̃ is a 
ontinuous extension of ψ to the spa
e
Xθ,q.Remark 1. In what follows, the interval (α, β), as usual, is the set of allreals x satisfying the inequality α < x < β. Thus, the inequalities α0 ≤ β0



156 S. V. Astashkin and P. Sunehagand α∞ ≤ β∞ imply that at most one of the intervals (β0, α∞) and (β∞, α0)may be nonempty.Remark 2. Theorems 1 and 2 strengthen Theorem 1 from [3℄ and Propo-sition 5.6 from [17℄, whi
h 
ontain the extra 
ondition β∞ ≤ α0.4. Proofs: Redu
tion to the Ivanov�Kalton 
ase. Our proof of themain results is based on redu
ing the problem to two problems of the kindstudied by Ivanov and Kalton in [6℄, i.e., to a 
ase where we have a linearfun
tional that is bounded on one of the endpoint spa
es.Suppose that we have a Bana
h 
ouple X = (X0, X1) and a linear fun
-tional ψ ∈ (X0 ∩ X1)
∗. Suppose also that X is an intermediate spa
e for

(X0, X1) and that ψ 
an be extended to a bounded linear fun
tional on X.Then we will write ψ ∈ X∗, whi
h is meant to imply that we have extended
ψ to X. For every ψ ∈ (X0 ∩ X1)

∗ there is a minimal interpolation spa
enorm for whi
h ψ is bounded. It is unique up to equivalen
e. That norm is
‖x‖ψ = sup

‖T‖
X→X

≤1
|〈ψ, Tx〉|.Whenever we write kerψ in this se
tion, we assume that ψ has been extendedto the 
orresponding maximal interpolation spa
e for whi
h ψ is bounded.Theorem 3. Suppose that X = (X0, X1) is a regular Bana
h 
ouple,that ψ ∈ (X0∩X1)

∗ and that ψ 6= 0. Then (X0, X1)θ,q,ψ is a 
losed subspa
e ofthe interpolation spa
e (X0, X1)θ,q if and only if both (X0, X0∩X1∩kerψ)θ,qis a 
losed subspa
e of (X0, X0∩X1)θ,q and (X0∩X1∩kerψ,X1)θ,q is a 
losedsubspa
e of (X0 ∩X1, X1)θ,q. Moreover :(i) The formula
(X0, X1)θ,q,ψ = (X0, X1)θ,q ∩ kerψis valid if and only if both

(X0, X0 ∩X1 ∩ kerψ)θ,q = (X0, X0 ∩X1)θ,q ∩ kerψand
(X0 ∩X1 ∩ kerψ,X1)θ,q = (X0 ∩X1, X1)θ,q ∩ kerψ.(ii) The formula

(X0, X1)θ,q,ψ = (X0, X1)θ,qis valid if and only if both
(X0, X0 ∩X1 ∩ kerψ)θ,q = (X0, X0 ∩X1)θ,qand
(X0 ∩X1 ∩ kerψ,X1)θ,q = (X0 ∩X1, X1)θ,q,
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ouples of 
odimension one 157or both
(X0, X0 ∩X1 ∩ kerψ)θ,q = (X0, X0 ∩X1)θ,qand

(X0 ∩X1 ∩ kerψ,X1)θ,q = (X0 ∩X1, X1)θ,q ∩ kerψ,or both
(X0, X0 ∩X1 ∩ kerψ)θ,q = (X0, X0 ∩X1)θ,q ∩ kerψand

(X0 ∩X1 ∩ kerψ,X1)θ,q = (X0 ∩X1, X1)θ,q.For the proof of the theorem we need four lemmas.Lemma 3.
(X0, X1)θ,q = (X0, X1)θ,q ∩X0 + (X0, X1)θ,q ∩X1,

(X0, X1)θ,q,ψ = (X0, X1)θ,q,ψ ∩X0 + (X0, X1)θ,q,ψ ∩X1.Proof. It is 
lear that
(X0, X1)θ,q ∩X0 + (X0, X1)θ,q ∩X1 ⊂ (X0, X1)θ,qsin
e the latter spa
e is a ve
tor spa
e.Assume that x ∈ (X0, X1)θ,q. Then there are xk ∈ X0 ∩ X1 su
h that

x =
∑
xk2

θk and ‖(J(2k, xk;X0, X1))‖q < ∞. We now want to �nd x0 ∈
(X0, X1)θ,q ∩ X0 and x1 ∈ (X0, X1)θ,q ∩ X1 su
h that x = x0 + x1. Let
x0 =

∑0
k=−∞ xk2

θk, x1 =
∑∞

k=1 xk2
θk. The 
onvergen
e of these two se-ries in X0 and X1 follows from the fa
ts that ∑0

k=−∞ ‖2θkxk‖X0
< ∞ and∑∞

k=1 ‖2
θkxk‖X1

<∞ and that X0 and X1 are Bana
h spa
es.The se
ond 
laim has the same proof.The following lemma is proved in [3℄ (see also [14℄).Lemma 4.
(X0, X0 ∩X1)θ,q = (X0, X1)θ,q ∩X0,

(X0 ∩X1, X1)θ,q = (X0, X1)θ,q ∩X1.Lemma 5.(i) If ψ ∈ (X0, X0 ∩X1)
∗
θ,q, then

(X0, X0 ∩X1 ∩ kerψ)θ,q = (X0, X1)θ,q,ψ ∩X0 ∩ kerψ,

(X0 ∩X1 ∩ kerψ,X1)θ,q = (X0, X1)θ,q,ψ ∩X1.(ii) If ψ ∈ (X0 ∩X1, X1)
∗
θ,q, then

(X0 ∩X1 ∩ kerψ,X1)θ,q = (X0, X1)θ,q,ψ ∩X1 ∩ kerψ,

(X0, X0 ∩X1 ∩ kerψ)θ,q = (X0, X1)θ,q,ψ ∩X0.



158 S. V. Astashkin and P. Sunehag(iii) If ψ /∈ (X0, X0 ∩X1)
∗
θ,q and (X0, X1)θ,q = (X0, X1)θ,q,ψ, then

(X0, X0 ∩X1 ∩ kerψ)θ,q = (X0, X1)θ,q,ψ ∩X0.(iv) If ψ /∈ (X0 ∩X1, X1)
∗
θ,q and (X0, X1)θ,q = (X0, X1)θ,q,ψ, then

(X0 ∩X1 ∩ kerψ,X1)θ,q = (X0, X1)θ,q,ψ ∩X1.Proof. Assume that ψ ∈ (X0, X0 ∩ X1)
∗
θ,q and that x ∈ (X0, X1)θ,q,ψ ∩

X0 ∩ kerψ. Then there are xk ∈ X0 ∩ X1 ∩ kerψ su
h that x =
∑

2θkxkwith 
onvergen
e in the X0 + X1 norm and ‖(J(2k, xk;X0, X1))‖q < ∞.It is readily seen that J(2k, xk;X0, X0 ∩ X1 ∩ kerψ) = J(2k, xk;X0, X1) if
k ≤ 0. Therefore, the series u =

∑−1
k=−∞ 2θkxk 
onverges in the norm of

(X0, X0 ∩ X1)θ,q, and hen
e ψ(u) = 0. Sin
e x ∈ X0 ∩ kerψ, we see that
s = x−u =

∑∞
k=0 2θkxk ∈ X0∩X1∩kerψ. Let yk = xk if k < 0, y0 = s, and

yk = 0 if k > 0. Then yk ∈ X0∩X1∩kerψ, ‖(J(2k, yk;X0, X0∩X1))‖q <∞,and ∑
2θkyk = x (
onvergen
e in X0). Thus,

(X0, X1)θ,q,ψ ∩X0 ∩ kerψ ⊂ (X0, X0 ∩X1 ∩ kerψ)θ,q.From the assumption that ψ ∈ (X0, X0 ∩X1)
∗
θ,q it follows that the oppositein
lusion is valid as well, and the �rst formula from (i) is proved.Next, assume that ψ ∈ (X0∩X1, X1)

∗
θ,q.We will use the same idea again.For ea
h x ∈ (X0, X1)θ,q,ψ∩X0 there are xk ∈ X0∩X1∩kerψ su
h that x =∑

2θkxk with 
onvergen
e in the X0 +X1 norm and ‖(J(2k, xk;X0, X1))‖q
<∞. Again the series ∑−1

k=−∞ 2θkxk 
onverges in X0 and s =
∑∞

k=0 2θkxk ∈
X0 ∩ X1. Moreover, ψ(s) is well de�ned sin
e s ∈ X0 ∩ X1. Note that
J(2k, xk;X0 ∩ X1 ∩ kerψ,X1) = J(2k, xk;X0, X1) if k ≥ 0. This impliesthat the series s =

∑∞
k=0 2θkxk 
onverges in the norm of (X0 ∩ X1, X1)θ,q.Sin
e ψ ∈ (X0 ∩X1, X1)

∗
θ,q, we have ψ(s) = 0 and we 
an as above 
on
ludethat x ∈ (X0, X0 ∩X1 ∩ kerψ)θ,q. Therefore,

(X0, X1)θ,q,ψ ∩X0 ⊂ (X0, X0 ∩X1 ∩ kerψ)θ,q.Sin
e the opposite in
lusion is obvious the se
ond formula of (ii) is proved.Finally, we 
onsider (iii). We keep previous arguments and notation. If
ψ /∈ (X0 ∩ X1, X1)

∗
θ,q it is possible that ψ(s) 6= 0. If there are elements wkin X0 ∩X1 ∩ kerψ su
h that ∑

2θkwk = 0, ‖(J(2k, wk;X0, X1))‖q <∞ and
ψ(

∑∞
k=0 2θkwk) = 1, then there is another representation x =

∑
2θkvk su
hthat ‖(J(2k, vk;X0, X1))‖q < ∞ and ψ(

∑∞
k=0 2θkvk) = 0 and we 
an drawthe desired 
on
lusion.To �nish this proof we now assume that there are no su
h elements, i.e.,

ψ(
∑∞

k=0 2θkwk) = 0 whenever wk are elements in X0 ∩X1 ∩ kerψ su
h that∑
2θkwk = 0 and ‖(J(2k, wk;X0, X1))‖q <∞. In other words, if an element

x ∈ (X0, X1)θ,q ∩X0 has two representations:
x =

∑
2θkxk and x =

∑
2θkyk
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h that
‖(J(2k, xk;X0, X1))‖q <∞, ‖(J(2k, yk;X0, X1))‖q <∞,and (xk) ∪ (yk) ⊂ X0 ∩X1 ∩ kerψ, then

ψ
( ∞∑

k=0

2θkxk

)
= ψ

( ∞∑

k=0

2θkyk

)
.Thus, we 
an de�ne a linear fun
tional φ on (X0, X1)θ,q ∩ X0. In fa
t, if

x ∈ (X0, X1)θ,q ∩ X0, then by the extra assumption from part (iii) of thelemma, i.e., that (X0, X1)θ,q = (X0, X1)θ,q,ψ, we have x =
∑∞

k=−∞ 2θkxk,where xk ∈ X0 ∩X1 ∩ kerψ. Then we set
φ(x) := ψ

( ∞∑

k=0

2θkxk

)
.

If x ∈ X0∩X1∩kerψ, then φ(x) = 0, sin
e we 
an represent x as ∑
2θkxkby letting x0 = x and xk = 0 for k 6= 0. This means that there is a 
onstant

γ su
h that φ = γψ on X0 ∩ X1. If γ = 0 it follows that φ = 0 also on
(X0, X1)θ,q ∩X0 and the proof 
an be 
on
luded as in the other 
ases above.If γ 6= 0 it follows that 1

γφ is an extension of ψ|X0∩X1
. Let us 
he
k that thisextension is 
ontinuous on the spa
e (X0, X0 ∩ X1)θ,q = (X0, X1)θ,q ∩ X0.Let x ∈ (X0, X1)θ,q∩X0 and denote by α the norm x in (X0, X1)θ,q∩X0. Asabove, x = u+s, where u =

∑−1
k=−∞ 2θkxk ∈ X0, s =

∑∞
k=0 2θkxk ∈ X0∩X1,and ‖(J(2k, xk;X0, X1))‖q ≤ 2α. Then

‖u‖X0
≤

−∞∑

k=−1

2θkJ(2k, xk;X0, X1) ≤ C1αand ‖s‖X0
≤ ‖x‖X0

+ ‖u‖X0
≤ (C1 + 1)α. Similarly,

‖s‖X1
≤

∞∑

k=0

2(θ−1)kJ(2k, xk;X0, X1) ≤ C2α.Therefore, ‖s‖X0∩X1
≤ Cα. Sin
e ψ ∈ (X0 ∩X1)

∗, we have
|φ(x)| = |ψ(s)| ≤ C3‖s‖X0∩X1

≤ C3C‖x‖(X0,X1)θ,q∩X0
,i.e., φ ∈ ((X0, X1)θ,q∩X0)

∗ = (X0, X0∩X1)
∗
θ,q. Hen
e, ψ ∈ (X0, X0∩X1)

∗
θ,q,whi
h 
ontradi
ts the assumption that ψ /∈ (X0, X0 ∩X1)

∗
θ,q.The other formulas of the lemma follow from the proved ones by 
onsid-ering the reversed 
ouple.Remark 3. If ψ ∈ (X0 ∩ X1, X1)

∗
θ,q and ψ ∈ (X0, X0 ∩ X1)

∗
θ,q, thenLemma 3 implies that ψ ∈ (X0, X1)

∗
θ,q and therefore

(X0, X1)θ,q,ψ = (X0, X1)θ,q ∩ kerψ.
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ase
(X0, X1)θ,q,ψ ∩X0 = (X0, X1)θ,q,ψ ∩ kerψ ∩X0,and we do not get any 
ontradi
tion.Example 1. Let X0 = L1(x), X1 = L1(x

−1) and ψ(f) =
T∞
0 f(s) ds. Itis true that (X0, X1)θ,1 = L1(x

1−2θ) for θ ∈ (0, 1). It is not hard to 
he
kthat ψ ∈ (X0 ∩ X1, X1)
∗
θ,1 and ψ /∈ (X0, X0 ∩ X1)

∗
θ,1 if 0 < θ < 1/2, and

ψ ∈ (X0, X0 ∩ X1)
∗
θ,1 and ψ /∈ (X0 ∩ X1, X1)

∗
θ,1 if 1/2 < θ < 1. On theother hand, we know [17, Theorem 6.1℄ that (X0, X1)θ,1,ψ = (X0, X1)θ,1 =

L1(x
1−2θ) whenever θ 6= 1/2. So, by Lemma 5,

(X0 ∩X1 ∩ kerψ,X1)θ,1 =

{
L1(x

1−2θ) ∩ L1(x
−1) ∩ kerψ, 0 < θ < 1/2,

L1(x
1−2θ) ∩ L1(x

−1), 1/2 < θ < 1,

(X0, X0 ∩X1 ∩ kerψ)θ,1 =

{
L1(x

1−2θ) ∩ L1(x), 0 < θ < 1/2,

L1(x
1−2θ) ∩ L1(x) ∩ kerψ, 1/2 < θ < 1.Lemma 6. Let Y = (Y0, Y1) be a Bana
h 
ouple, and ψ 6= 0 be a boundedlinear fun
tional on Y0 ∩ Y1.(i) If ψ ∈ Y ∗

0 and ψ ∈ Y ∗
1 , then

Y0 ∩ kerψ + Y1 ∩ kerψ = (Y0 + Y1) ∩ kerψ.(ii) If ψ ∈ Y ∗
1 , then

Y0 + Y1 ∩ kerψ = Y0 + Y1.(iii) If ψ ∈ Y ∗
0 , then

Y0 ∩ kerψ + Y1 = Y0 + Y1.Proof. We will only prove the �rst point be
ause the others are proved inthe same way. Without loss of generality we 
an assume that ‖ψ‖(Y0∩Y1)∗ ≤ 1.It is 
lear that
Y0 ∩ kerψ + Y1 ∩ kerψ ⊂ (Y0 + Y1) ∩ kerψ.If y ∈ (Y0 + Y1)∩ kerψ, there are y0 ∈ Y0 and y1 ∈ Y1 su
h that y0 + y1 = yand ‖y0‖Y0

+‖y1‖Y1
≤ 2‖y‖Y0+Y1

. Sin
e ψ(y) = 0 we have ψ(y0)+ψ(y1) = 0.We 
an �nd w ∈ Y0 ∩ Y1 su
h that ψ(w) = 1 and max(‖w‖Y0
, ‖w‖Y1

) ≤ 2.Let ỹ0 = y0−ψ(y0)w and ỹ1 = y1 +ψ(y0)w = y1−ψ(y1)w. Then y = ỹ0 + ỹ1and
‖ỹ0‖Y0

+ ‖ỹ1‖Y1
≤ ‖y0‖Y0

+ |ψ(y0)| ‖w‖Y0
+ ‖y1‖Y1

+ |−ψ(y1)| ‖w‖Y1

≤ 3(‖y0‖Y0
+ ‖y1‖Y1

) ≤ 6‖y‖Y0+Y1
.Proof of Theorem 3. First, we re
all the following statements (see[3, Lemma 5 and Corollary 1℄ or [17, Property 2℄): (I) if (X0, X1)θ,q,ψis 
losed in (X0, X1)θ,q, then either (X0, X1)θ,q,ψ = (X0, X1)θ,q ∩ kerψ (if

ψ ∈ (X0, X1)
∗
θ,q) or (X0, X1)θ,q,ψ = (X0, X1)θ,q (if ψ /∈ (X0, X1)

∗
θ,q);
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odimension one 161(II) (X0, X1)θ,q,ψ = (X0, X1)θ,q ∩ kerψ if and only if ψ ∈ (X0, X1)
∗
θ,q. More-over, it follows easily that

(X0, X0 ∩X1 ∩ kerψ)θ,q = (X0, X0 ∩X1)θ,q,ψ,

(X0 ∩X1 ∩ kerψ,X1)θ,q = (X0 ∩X1, X1)θ,q,ψ.Therefore, the �if and only if� statement at the beginning of the theorem isa 
onsequen
e of (i) and (ii). So, it is su�
ient to prove (i) and (ii).(i) Assume that (X0, X1)θ,q,ψ = (X0, X1)θ,q∩kerψ. Then ψ ∈ (X0, X1)
∗
θ,qand Lemmas 4 and 5 imply that

(X0, X0 ∩X1 ∩ kerψ)θ,q = (X0, X1)θ,q,ψ ∩X0 ∩ kerψ

= (X0, X1)θ,q ∩X0 ∩ kerψ

= (X0, X0 ∩X1)θ,q ∩ kerψand similarly
(X0 ∩X1 ∩ kerψ,X1)θ,q = (X0, X1)θ,q,ψ ∩X1 ∩ kerψ

= (X0, X1)θ,q ∩X1 ∩ kerψ

= (X0 ∩X1, X1)θ,q ∩ kerψ.Conversely, assume that
(X0, X0 ∩X1 ∩ kerψ)θ,q = (X0, X0 ∩X1)θ,q ∩ kerψ,

(X0 ∩X1 ∩ kerψ,X1)θ,q = (X0 ∩X1, X1)θ,q ∩ kerψ.Then ψ ∈ (X0, X0∩X1)
∗
θ,q and ψ ∈ (X0∩X1, X1)

∗
θ,q. Therefore, by Lemmas 3and 4, ψ ∈ (X0, X1)

∗
θ,q, whi
h implies that
(X0, X1)θ,q,ψ = (X0, X1)θ,q ∩ kerψ.(ii) Let (X0, X1)θ,q,ψ = (X0, X1)θ,q. If (a) ψ ∈ (X0, X0 ∩ X1)

∗
θ,q and

ψ /∈ (X0 ∩X1, X0)
∗
θ,q, then, by Lemmas 4 and 5,

(X0, X0 ∩X1 ∩ kerψ)θ,q = (X0, X1)θ,q,ψ ∩X0 ∩ kerψ

= (X0, X1)θ,q ∩X0 ∩ kerψ

= (X0, X0 ∩X1)θ,q ∩ kerψ,

(X0 ∩X1 ∩ kerψ,X1)θ,q = (X0, X1)θ,q,ψ ∩X1

= (X0, X1)θ,q ∩X1 = (X0 ∩X1, X1)θ,q.In the 
ases (b) ψ /∈ (X0, X0 ∩ X1)
∗
θ,q and ψ ∈ (X0 ∩ X1, X0)

∗
θ,q and (
)

ψ /∈ (X0, X0 ∩X1)
∗
θ,q and ψ /∈ (X0 ∩X1, X0)

∗
θ,q we end up in a very similarmanner. If ψ ∈ (X0, X0 ∩ X1)

∗
θ,q and ψ ∈ (X0 ∩ X1, X0)

∗
θ,q then again ψ ∈

(X0, X1)
∗
θ,q and (X0, X1)θ,q,ψ ⊂ (X0, X1)θ,q ∩ kerψ, whi
h 
ontradi
ts theassumption that (X0, X1)θ,q,ψ = (X0, X1)θ,q.Conversely, assume, for example, that both

(X0, X0 ∩X1 ∩ kerψ)θ,q = (X0, X0 ∩X1)θ,q ∩ kerψ
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(X0 ∩X1 ∩ kerψ,X1)θ,q = (X0 ∩X1, X1)θ,q.Then 
ondition (a) is true. So, by Lemmas 3�6 with Y0 = (X0, X0 ∩X1)θ,qand Y1 = (X0 ∩X1, X1)θ,q, we have

(X0, X1)θ,q = (X0, X1)θ,q ∩X0 + (X0, X1)θ,q ∩X1

= (X0, X0 ∩X1)θ,q + (X0 ∩X1, X1)θ,q

= (X0, X0 ∩X1)θ,q ∩ kerψ + (X0 ∩X1, X1)θ,q

= (X0, X0 ∩X1 ∩ kerψ)θ,q + (X0 ∩X1 ∩ kerψ,X1)θ,q.Using Lemma 6 for the se
ond time for the spa
es Y0 = (X0, X1)θ,q,ψ ∩X0and Y1 = (X0, X1)θ,q,ψ ∩X1 shows that the last expression is equal to
(X0, X1)θ,q,ψ ∩X0 ∩ kerψ + (X0, X1)θ,q,ψ ∩X1

= (X0, X1)θ,q,ψ ∩X0 + (X0, X1)θ,q,ψ ∩X1 = (X0, X1)θ,q,ψ.The other two 
ases are 
onsidered in the same way.We now have everything we need to prove Theorem 2 (equivalently, The-orem 1).Proof of Theorem 2. The spe
ial 
ases when ψ is bounded on one ofthe endpoint spa
es were proved by Ivanov and Kalton [6℄. If ψ ∈ X∗
0 itfollows that α∞ = β∞ = α = 0 and therefore we have a 
losed subspa
ewhen θ > β = β0 and when θ < α0 and for no other θ. That subspa
e has
odimension one in the latter 
ase and zero in the former. If instead ψ ∈ X∗

1 ,it follows that α0 = β0 = β = 1 and we have a 
losed subspa
e that equalsthe whole spa
e if θ < α = α∞ and a 
losed subspa
e of 
odimension one if
θ > β∞. The subspa
e is not 
losed for any other θ. The rest of Theorem 2follows from that result, Theorem 3, and Lemmas 1 and 2.5. Interpolation of interse
tions of weighted Lp-spa
es generatedby the integral fun
tional. Let w(x) be a positive measurable fun
tion on
(0,∞), 1 ≤ p ≤ ∞. As usual, we de�ne Lp(w) as the spa
e of all measurablefun
tions f : (0,∞) → R with the norm

‖f‖w,p =
(∞\

0

|f(x)|pw(x) dx
)1/p

(with the usual modi�
ation for p = ∞). Let us 
onsider the linear fun
tional
φ(f) =

∞\
0

f(x) dxwith the domain D 
onsisting of all measurable fun
tions f : (0,∞) → Rsu
h that Tba |f(x)| dx <∞ for all 0 < a < b <∞ and lima→0, b→∞

Tb
a f(x) dxexists. Denote its kernel by N .
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odimension one 163It might seem restri
tive to 
hoose a parti
ular linear fun
tional buta
tually it is su�
ient for understanding the 
orresponding situation for alarger 
lass of positive linear fun
tionals. If we used a linear fun
tional ofthe form ψ(f) =
T∞
0 f(x)g(x) dx where g is bounded and stri
tly positive, we
ould perform a 
hange of measure by 
onsidering the measure g(x)dx andwe end up in a situation with the standard integral fun
tional and weights

wi/g, i = 0, 1. The K-fun
tional of ψ in the dual 
ouple of the 
ouple withweights wi, i = 0, 1, is equal to the K-fun
tional of the standard integralfun
tional φ in the dual 
ouple of the 
ouple with weights wi/g, and theanswer to the interpolation of interse
tions question only depends on that
K-fun
tional.Assume that the restri
tion of the standard integral fun
tional φ to theinterse
tion Lp0(w0)∩Lp1(w1) is bounded. Using Theorem 1 and arguing asin [3℄, we 
an �nd ne
essary and su�
ient 
onditions for equality (4) to hold(without any restri
tions on the dilation indi
es of the Peetre K-fun
tionalof the integral fun
tional φ in the 
ouple (Lp0(w0)

∗, Lp1(w1)
∗)). We statehere only a result in the 
ase when p0 = p1 = 1. Let w(x) = w0(x)/w1(x)and let w−1(x) be the fun
tion inverse to w(x).Theorem 4. Suppose that weight fun
tions w0(x) and w1(x) satisfy thefollowing 
onditions:

• w0(x) is in
reasing ,
• w1(x) is de
reasing ,
• lim
x→0

w(x) = lim
x→∞

1/w(x) = 0.Let α, β, α0, β0, α∞, and β∞ be the dilation indi
es of the fun
tion k(t) =
1/w0(w

−1(1/t)). Then the formula(9) (L1(w0) ∩N,L1(w1) ∩N)θ,q = (L1(w0), L1(w1))θ,q ∩Nis equivalent to 
ondition (7).Proof. Sin
e the restri
tion of φ to the interse
tion L1(w0) ∩ L1(w1) isa bounded fun
tional, the ne
essity of 
ondition (7) follows at on
e fromTheorem 1 and [3, Corollary 2℄.Conversely, assume that (7) is satis�ed. By Theorem 2, it is su�
ient toprove that(10) (L1(w0), L1(w1))θ,q ∩N ⊂ L1(w0) ∩N + L1(w1) ∩N.For every f ∈ (L1(w0), L1(w1))θ,q∩N 
onsider the representation f = f0+f1,where f0 = f · χ(0,1], f1 = f − f0. The 
onditions on the weights w0 and
w1 imply that f0 ∈ L1(w0) and f1 ∈ L1(w1). Moreover, it is not hardto 
he
k that f0 and f1 belong to the domain D of the fun
tional φ. Let
g ∈ L1(w0) ∩ L1(w1) be su
h that φ(g) = 1 and let g0 = f0 − φ(f0)g and
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g1 = f0 + φ(f0)g. Then f = g0 + g1 and gi ∈ L1(wi) ∩ N (i = 0, 1). So,in
lusion (10) is proved, and hen
e we have (9).Complementing Corollary 7 from [3℄, we shall show that for arbitrarynumbers a, b, c, and d with 0 ≤ a ≤ min(b, c) ≤ max(b, c) ≤ d ≤ 1 thereexist weight fun
tions w0(x) and w1(x) su
h that the dilation indi
es α, β0,
α∞, and β of the fun
tion k(t) = 1/w0(w

−1(1/t)) 
oin
ide with a, b, c, and d,respe
tively.Following [3℄, we take a two-sided in
reasing sequen
e (xk)
∞
k=−∞ of pos-itive numbers su
h that x0 = 1 and lim|k|→∞ xk+1/xk = ∞.If b > 0, we de�ne a fun
tion ν ′ in the following way: ν ′(1) = 1,

ν ′(x) =

{
(x/x2k)

cν ′(x2k), x2k ≤ x ≤ x2k+1,

(x/x2k+1)
dν ′(x2k+1), x2k+1 ≤ x ≤ x2k+2,for k = 0, 1, 2, . . . , and

ν ′(x) =

{
(x/x2k)

aν ′(x2k), x2k−1 ≤ x ≤ x2k,

(x/x2k−1)
bν ′(x2k−1), x2k−2 ≤ x ≤ x2k−1,for k = 0,−1,−2, . . .If b = 0 and d > 0, we de�ne ν ′(x) as before if x ∈ [1,∞), and for

x ∈ (0, 1] we put ν ′(x) = 1/ln(e/x).Finally, if d = 0, we put ν ′(x) = 1/ln(e/x) for x ∈ (0, 1] and ν ′(x) =
ln(ex) for x ∈ [1,∞).It 
an easily be 
he
ked that ν ′(x) is in
reasing, ν ′(x)/x is de
reasing,and the range of ν ′(x) is (0,∞). There exists an in
reasing 
on
ave fun
tion
ν(x) su
h that ν ′(x) ≤ ν(x) ≤ 2ν ′(x) (x > 0) (see [10, Theorem 2.1.1℄).The de�nition of ν ′ readily implies that its dilation indi
es α, β0, α∞, and β(therefore, also those of ν) 
oin
ide with a, b, c, and d, respe
tively.We de�ne w0(x) = x and w1(x) = xν−1(1/x) (ν−1 is the inverse fun
tionto ν). Sin
e these fun
tions satisfy the 
onditions of Theorem 4 and ν(x) =
1/w0(w

−1(1/t)), applying this theorem we arrive at the following result: ifthe weight fun
tions w0 and w1 are de�ned as earlier, then equality (9) holdsif and only if θ ∈ (0, a) ∪ (b, c) ∪ (d, 1).6. The shift operator and its spe
trum on weighted ℓq spa
es. In[2, 3, 17℄, weaker versions of Theorems 1 and 2 were proved using an approa
hdeveloped by Ivanov and Kalton in [6℄ for 
omparison of the interpolationspa
es (X0, X1)θ,q and (N0, X1)θ,q, where ψ ∈ X∗
0 and N0 = kerψ. Thekey idea of that approa
h is to redu
e the general interpolation problem forsubspa
es to the study of the shift operator on a 
ertain weighted ℓp-spa
e.Note that the theorems obtained here imply the interpolation results of [6℄(see also [3℄ and [17℄). In the remainder of this arti
le we will work in the
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odimension one 165opposite dire
tion and use our interpolation results to derive more generalresults 
on
erning the shift operator and its spe
trum on weighted ℓp-spa
es.We start with some notation and preliminary remarks. Putting(11) µn = (k(2−n))−1 (n ∈ Z)we see that µn > 0, and sin
e k(t) = K(t, ψ;X∗
0 , X

∗
1 ) is an in
reasing and
on
ave fun
tion on (0,∞), we have(12) µn ≤ µn+1 ≤ 2µn (n ∈ Z).Furthermore, it is easy to 
he
k that

α = − lim
n→∞

1

n
log2 sup

k∈Z

µk
µn+k

, β = lim
n→∞

1

n
log2 sup

k∈Z

µk
µk−n

,

α∞ = − lim
n→∞

1

n
log2 sup

k≤0

µk−n
µk

, β∞ = lim
n→∞

1

n
log2 sup

k≤0

µk
µk−n

,

α0 = − lim
n→∞

1

n
log2 sup

k≥0

µk
µn+k

, β0 = lim
n→∞

1

n
log2 sup

k≥0

µk+n
µk

.Let ℓq(µ) be the spa
e of two-sided numeri
al sequen
es a = (ak)
∞
k=−∞ withthe norm

‖a‖q,µ =
{∑

k∈Z

|ak|
qµqk

}1/q
.In what follows, we shall 
onsider the shift operator S((ak)) = (ak−1), itsinverse S−1, and also the operators Tθ = S − 2θI (0 < θ < 1), where I isthe identity mapping. By (12), both S and S−1 are bounded on ℓq(µ), and

‖S‖ ≤ 2, ‖S−1‖ ≤ 1.Remark 4. If r(S) denotes the spe
tral radius of the shift operator, then
2α = 1/r(S−1) and 2β = r(S). Therefore, it is 
lear that Tθ is invertible if
θ < α or θ > β.The proof of Theorem 1 from [3℄ (see also [17, Theorems 4.2 and 4.3℄)shows that the following proposition is a 
onsequen
e of Theorems 1 and 2.Proposition 1. Let 0 < θ < 1 and 1 ≤ q < ∞. The operator Tθ is
losed in ℓq(µ) if and only if

θ ∈ (0, α) ∪ (β∞, α0) ∪ (β0, α∞) ∪ (β, 1).Moreover , if θ ∈ (0, α)∪(β0, α∞)∪(β, 1), then ImTθ = ℓq(µ); if θ ∈ (β∞, α0),then ImTθ is a 
losed subspa
e of ℓq(µ) of 
odimension 1 
onsisting of all
(ak)k∈Z ∈ ℓq(µ) su
h that ∑

k∈Z

2kθak = 0.The weight µ = (µn)n∈Z from the last proposition satis�es the 
ondition:there are a 
ouple (X0, X1) and a linear fun
tional ψ ∈ (X0 ∩ X1)
∗ su
h
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tional k(t) = K(t, ψ;X∗
0 , X

∗
1 ) we have (11). Next, we will
he
k that assumption (12) is not only ne
essary for the existen
e of su
ha linear fun
tional but also su�
ient. Consider the 
ouple (ℓ1, ℓ1(2

k)) andlinear fun
tionals of the form ψ(x) =
∑
vkxk, where 0 < vk ≤ vk+1 ≤ 2vk.The last 
ondition implies that the linear fun
tional ψ is bounded on theinterse
tion ℓ1 ∩ ℓ1(2k). The K-fun
tional k for su
h a linear fun
tional hasthe property that k(2n) = vn (n ∈ Z). Thus, the fun
tional we are lookingfor is de�ned by letting vk = 1/µ−k.Theorem 5. Let 0 < θ < 1, 1 ≤ q < ∞ and let (µn)n∈Z be a positivesequen
e su
h that µn ≤ µn+1 ≤ 2µn for all n. The operator Tθ is 
losed in

ℓq(µ) if and only if
θ ∈ (0, α) ∪ (β∞, α0) ∪ (β0, α∞) ∪ (β, 1).Moreover , if θ ∈ (0, α)∪(β0, α∞)∪(β, 1), then ImTθ = ℓq(µ); if θ ∈ (β∞, α0),then ImTθ is a 
losed subspa
e of ℓq(µ) of 
odimension 1 
onsisting of all

(ak)k∈Z ∈ ℓq(µ) su
h that ∑

k∈Z

2kθak = 0.If we want to know when Tθ is invertible we also have to know if it isinje
tive or not in the 
ases when we know that it is surje
tive, i.e., when
θ ∈ (0, α) ∪ (β0, α∞) ∪ (β, 1). When θ ∈ (0, α) ∪ (β, 1) it is shown in [3℄ and[17℄ that Tθ is inje
tive; we will prove that in the remaining 
ases it is not.Proposition 2. If θ ∈ (β0, α∞), then Tθ is not inje
tive.Proof. It is su�
ient to prove that (2−θk) ∈ ℓq(µ) sin
e that element thenlies in the kernel of Tθ. If ε > 0 is su�
iently small, then from the inequality
θ > α0 and from the de�nition of the index α0 it follows that

sup
n≥0

µn
µk+n

≥ c12
−k(θ−ε), k = 1, 2, . . . ,when
e

µk2
−θk ≤

µ0

c1
2−εk, k = 1, 2, . . . .Similarly, sin
e θ < β∞, for su�
iently small η > 0 we have

µ−k2
θk ≤

µ0

c2
2−ηk, k = 1, 2, . . . ,and therefore ∑

k∈Z

2−kθqµqk <∞.Sin
e α0 ≤ β0 and α∞ ≤ β∞, the proof is 
omplete.Corollary 1. The operator Tθ is invertible if and only if θ < α or
θ > β.
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odimension one 167Theorem 6. The spe
trum of S on ℓq(µ) is the set {z∈C | 2α≤|z|≤2β}.Proof. The spe
trum is invariant under rotation sin
e the operator
Vλ((αk)) = (λkαk) is an isometry for λ on the unit 
ir
le in C. Therefore,the theorem follows from Corollary 1.It is worth noting that the Stein�Weiss Theorem [5, Theorem 5.4.4℄ im-plies that the spa
e ℓp(µ) is an interpolation spa
e of the 
ouple (ℓp, ℓp(2

k))if µ satis�es 
ondition (12). The operator Tθ is invertible on ℓp if θ 6= 0 andon ℓp(2k) if θ 6= 1. If we 
ould �interpolate� the inverse of Tθ for a 
ertain
θ ∈ (0, 1) to the spa
e ℓp(µ), we would know that Tθ is surje
tive on thatspa
e. There is, however, a problem when we try to perform that interpola-tion: the inverse operators on the endpoint spa
es do not have to agree on thewhole of the interse
tion. In other words, the operator Tθ is not an inje
tionas an operator de�ned on the sum ℓp + ℓp(2

k), that is, the inverse of Tθ (onthis sum) does not exist (see [4, Remark 3.1℄ and referen
es therein). To beable to formulate results about the spe
trum of operators on interpolationspa
es, authors have usually imposed the assumption that the inverses agree,see e.g. [16℄. In our parti
ular 
ase we have two possible inverses,
U+
θ ((αk)) =

(
2−(n+1)θ

∞∑

n+1

2θkαk

)

n
,

U−
θ ((αk)) =

(
− 2−(n+1)θ

n∑

−∞

2θkαk

)
n
,and they agree only on (αk) with ∑

2θkαk = 0. This is a
tually pre
iselythe same kind of situation that was 
onsidered by Krugljak, Maligranda andPersson in [11℄ when they interpolated Hardy-type operators. The operators
U+
θ and U−

θ 
an be seen as dis
rete Hardy-type averaging operators. They
an be 
onverted to the usual Hardy operator forms
1

x

x\
0

f(s) ds and −
1

x

∞\
x

f(s) dsby letting f(s) = αk for 2θk ≤ s < 2θ(k+1) and x = 2θ(k+1). We see that U−
θis bounded on ℓp for θ > 0 and U+

θ on ℓp(2n) for θ < 1.
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