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Continuous Reinhardt domains from a Jordan viewpoint

by

L. L. Stachó (Szeged)

Abstract. As a natural extension of bounded complete Reinhardt domains in C
N to

spaces of continuous functions, continuous Reinhardt domains (CRD) are bounded open
connected solid sets in commutative C∗-algebras with respect to the natural ordering.
We give a complete parametric description for the structure of holomorphic isomorphisms
between CRDs and characterize the partial Jordan triple structures which can be associ-
ated with some CRDs. On the basis of these results, we test two conjectures concerning
the Jordan structure of bounded circular domains. It turns out that both the problems
of bidualization and unique extension of inner derivations have positive solution in the
setting of CRDs.

1. Introduction. A classical complete Reinhardt domain is an open
connected subset in the space C

n of all complex n-tuples, which is invariant
under all coordinate multiplications (z1, . . . , zn) 7→ (λ1z1, . . . , λnzn) with
|λ1|, . . . , |λn| ≤ 1. If we regard C

n as the complex ordered space of functions
z : {1, . . . , n} → C, this property can be stated as

(CR) f ∈ D and |g| ≤ |f | ⇒ g ∈ D.
Postulating (CR) for the order absolute value, we can speak of bounded
complete Reinhardt domains in complex Banach lattices in a natural man-
ner.

1974 Sunada [18] obtained a rather thorough description of classical
bounded Reinhardt domains containing the origin from the viewpoint of
holomorphic equivalence. Later on several authors investigated holomorphic
equivalence of generalized Reinhardt domains in atomic Banach lattices [1,
2, 12]. Motivated by an interesting work of Vigué [19] on the possible lack
of symmetry of continuous products of discs with different radii, in [17] we
introduced the concept of continuous Reinhardt domains (CRD for short).
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By definition, a CRD is a bounded complete Reinhardt domain in the C∗-
algebra of all bounded continuous functions over some topological space, or
more generally, in a commutative C∗-algebra. In [17] we have shown that
a symmetric CRD is a continuous mixture of finite-dimensional Euclidean
balls, essentially more involved than direct sums of topological products of
balls. In [7] we found matrix representations for linear isomorphisms be-
tween two symmetric CRDs. To achieve these results we intensively used
the Jordan theory of the bidual embedding of symmetric domains. How-
ever, the main points of both Sunada’s and Vigué’s papers concern the non-
symmetric case. Recently, based upon the Lie theory of Hermitian operators
in the dual space, in [16] we managed to extend the matrix representations
of [7] to a Banach–Stone type theorem on isomorphisms of general Banach
lattice normed commutative C∗-algebras. This result includes implicitly the
description of all possible linear isomorphisms between CRDs because the
convex hull of any CRD can be regarded as the unit ball of some lattice norm
in a commutative C∗-algebra and linear isomorphisms preserve convex hulls.

The aim of this paper is a description of all possible holomorphic equiva-
lences of CRDs. According to a classical result of [4], every bounded circular
domain and hence even a non-symmetric CRD admits a natural partial Jor-
dan ∗-triple structure, a so-called partial JB∗-triple, which gives rise to the
description of its complete holomorphic vector fields—a crucial piece of in-
formation about its holomorphic geometry. In particular, every holomorphic
isomorphism between two bounded circular domains is the composition of a
linear isomorphism with the exponential of a suitable complete holomorphic
vector field over one of the two domains.

In Section 2 we review the basic material [4, 13, 14] concerning partial
JB∗-triples. The bidual embedding arguments used in [17] to treat the Jor-
dan structure in the symmetric case are not available for general CRDs.
Although Dineen [5] and Barton–Timoney [3] established a satisfactory bid-
ual Jordan theory for all bounded convex circular domains already in 1986,
it is still one of the fundamental open questions in geometric Jordan theory,
with no interesting partial results so far, whether the canonical partial triple
product associated with any non-convex bounded circular domain extends in
a weak∗-continuous manner to the canonical partial triple product of some
bounded circular domain in the bidual. Instead, in Section 3 we develop an
alternative approach for determining the partial JB∗-triple product associ-
ated with a CRD. The conclusion, Theorem 3.5, is an integral representation
of this triple product. In classical finite-dimensional complex analysis, Rein-
hardt domains are popular test objects for conjectures. In the second half
of the paper we use this integral representation as a starting point to solve
the special case of two open problems on bounded circular domains in the
setting of CRDs.
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The first problem we treat has its origin in a work of Panou [10] where
it is shown that every inner derivation of the Jordan triple associated with
the symmetric part of a finite-dimensional bounded circular domain admits
a unique extension to an inner derivation of the partial Jordan triple associ-
ated with the whole domain. Though it is natural to expect that the analog
holds in general Banach spaces, the only known infinite-dimensional results
concern domains with nearly atomic symmetric part [15]. On the basis of
Theorem 3.5 along with the fine structure description of the Jordan triple
product associated with a symmetric CRD [7], in Section 4 we can estab-
lish immediately that the partial Jordan triple of a CRD has the unique
extension property for inner derivations.
The second question we solve for CRDs is the above mentioned open

problem of the Jordan structure of the second dual of a partial JB∗-triple.
First, in Section 5 we refine Theorem 3.5 to a natural extension of the
results for symmetric CRDs given in [7] whose proofs relied upon some
bidual considerations in [17]. By proceeding the opposite way, in Section 6
we apply the fine structure description obtained in Section 5 along with
function representations of C0(Ω)′′ spaces to establish that the Jordan triple
product associated with a CRD admits a separately weak∗-continuous bidual
extension which can be regarded as the canonical Jordan triple of some not
necessarily unique CRD.
In the course of Section 5 we apply a Riesz type representation theorem

for positive multilinear functionals on products of C0-spaces which seems to
have never been stated explicitly in the literature. Actually the result we
need is contained implicitly in a recent work of Villanueva [20]. We close the
paper with an Appendix including a short direct proof.

2. Preliminaries on partial JB∗-triples. Recall [14] that given a
complex Banach space E (with norm ‖ · ‖), the tuple (E,E0, {. . .}) is called
a partial Jordan ∗-triple if E0 is a closed complex subspace of E, and {. . .}
is a continuous operation E × E0 × E → E with the following properties:

(J1) {xay} is symmetric bilinear in the variables x, y (∈ E), conjugate
linear in a (∈ E0) and {E0E0E0} ⊂ E0;

(J2) the Jordan identity holds, i.e. for all a, b, c ∈ E0 and x, y ∈ V ,
{ab{xcy} = {{abx}cy} − {x{bac}y}+ {xc{abz}};

(J3) we have the weak associativity

{{xax}bx} = {xa{xbx}}, a, b ∈ E0, x ∈ E.
Notice that in the case of full Jordan ∗-triples, i.e. if E0 = E, axiom (J3)
is a consequence of (J2) (see e.g. [6, Ch. 10]). The geometric importance
of partial Jordan ∗-triples relies upon the fact established first implicitly in
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[4, 9, 6] that given any bounded circular domain D in a Banach space E,
there is a necessarily unique partial Jordan ∗-triple (E,ED, {. . .}D) called
the canonical partial Jordan ∗-triple of D such that D ∩ED consists of the
centers of holomorphic symmetries of D and limt↓0 StaS0(x) = a− {xax}D
for all a ∈ ED and x ∈ E where Sc denotes the holomorphic symmetry of D
with center c ∈ D ∩ ED. We say that (E,E0, {. . .}) is a partial JB∗-triple
if it is a subtriple of some canonical partial Jordan ∗-triple (E,ED, {. . .}D).
In other words, this means that all the vector fields [a−{xax}]∂/∂x, a∈E0,
are complete in a suitable bounded circular domain D (⊂ E). This termi-
nology is in accordance with the customary use of the term JB∗-triple for
full Jordan triples. Indeed, by Kaup’s Riemann mapping theorem [8], in the
case E = ED the domain D is necessarily convex and hence the carrier space
E can be renormed so that D becomes the unit ball and the usual C∗ and
hermitian positivity axioms are satisfied. By the results of [13, 14], we have
a complete axiomatic description of partial JB∗-triples. A partial Jordan
∗-triple (E,E0, {. . .}) is a partial JB∗-triple if and only if

(J4) the operators L(a) : x 7→ {aax}, a ∈ E0, have spectrum ≥ 0 with

inf
‖a‖=1

‖L(a)a‖ 6= 0;

(J5) L(a) ∈ Her(B), a ∈ E0, for some bounded circular domain B.

It is well-known that the domain B in (J5) can be chosen to be convex and
such that its gauge function ‖ · ‖B should satisfy the C∗-axiom

(J4′) Sp(L(a)) ≥ 0 with ‖L(a)a‖B = ‖a‖3B for all a ∈ E0.

Given any bounded circular domain B satisfying (J5), there exists ε > 0
such that for any δ ∈ (0, ε), (E,E0, {. . .}) is a subtriple of (E,EDδ , {. . .}Dδ)
with the bounded circular domain

(2.1) Dδ :=
⋃

a∈E0

[exp((a− {xax})∂/∂x)](δB).

Our next aim will be to describe the canonical partial JB∗-triples of CRDs.
Recall [4] that the group Aut(E,E0, {. . .}) := {L ∈ L(E) : LE0 ⊂ E0,
L{xay} = {(Lx)(La)(Ly)} for a ∈ E0, x, y ∈ E} of all automorphisms of
the triple E = (E,E0, {. . .}) coincides with the set of all injective linear
transformations L : E → E such that LD = D whenever E is the canonical
JB∗-triple of a bounded circular domain D. In particular, if D ⊂ C0(Ω)
is a CRD, all multiplications with continuous functions of absolute value
one belong to Aut(E,ED, {. . .}D). So first we consider the effect of linear
automorphisms on the construction (2.1).
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2.2. Lemma. Let (E,E0, {. . .}) be a partial JB∗-triple and Ψ a bounded
subgroup of Aut(E,E0, {. . .}). Then there exists a Ψ -invariant bounded cir-
cular domain D⊂E such that (E,E0, {. . .}) is a subtriple of (E,ED, {. . .}D).
Proof. Choose a bounded circular domain B in E satisfying axiom (J5).

Define B1 :=
⋃
ψ∈Ψ ψB. Since Φ is a bounded group of linear mappings,

B1 is a bounded Ψ -invariant circular domain in E. Given any a ∈ E0 and
ψ ∈ Ψ , since ψ ∈ Aut(E,E0, {. . .}), we have L(ψ−1a) = ψ−1L(a)ψ. Since
ψ−1a ∈ E0, by axiom (J5) it follows that exp(itL(ψ−1a))ψB = ψB, t ∈ R.
Since ψ−1a can be any element in E0, we also get exp(itL(a))ψB = ψB
for all a ∈ E0, t ∈ R and ψ ∈ Ψ . That is, L(a) ∈ Her(ψB), ψ ∈ Ψ , and
hence L(a) ∈ Her(⋃φ∈Ψ ψB) = Her(B1) for all a ∈ E0. Thus the domain
B1 satisfies axiom (J5) and we can use it in the construction (2.1) instead
of B with some δ > 0. Given any ψ ∈ Ψ , it only remains to prove that
ψ
⋃

a∈E0

[exp((a− {xax})∂/∂x)](δB1) =
⋃

a∈E0

[exp((a− {xax})∂/∂x)](δB1).

However, this is again a direct consequence of the facts ψ(δB1) = δB1 and

ψ exp((a− {xax})∂/∂x) = [exp((ψa− {x(ψa)x})∂/∂x)]ψ.
The latter identity follows from the relation ψ ∈ Aut(E,E0, {. . .}).

3. Integral formula for the canonical partial triple product for

a CRD. Let (E,E0, {. . .}) denote a fixed partial JB∗-triple over E :=
C0(Ω) with a locally compact topological Hausdorff space Ω. Throughout
this section we assume the Reinhardt property

(R) Ψ ⊂ Aut(E,E0, {. . .}) where Ψ := {ψ · : ψ ∈ C(Ω), |ψ| = 1}
and ψ · denotes the multiplication operator C0(Ω) ∋ f 7→ ψf . As we men-
tioned, the canonical partial JB∗-triple (E,ED, {. . .}D) of any CRD D has
property (R). Moreover, from Lemma 2.2, (E,E0, {. . .}) can be regarded as
a subtriple of the canonical JB∗-triple of some CRD in C0(Ω).
As a first consequence of (R), we have eitφE0 ⊂ E0 and

eitφ{xay} = {(eitφx)(eitφa)(eitφy)}, t ∈ R,

for any bounded continuous function φ : Ω → R (with a ∈ E0, x, y ∈ E).
Hence derivation with respect to the variable t yields

(3.1) ψE0 ⊂ E0, ψ{xay} = {(ψx)ay} − {x(ψa)y}+ {xa(ψy)}
for all bounded continuous functions ψ : Ω → C. In particular E0 is a closed
ideal in C0(Ω) regarded as a commutative C∗-algebra with the pointwise
product of functions. Therefore necessarily

E0 = C0(Ω0) := {f ∈ C0(Ω) : f(Ω \Ω0) = 0}
with the open set Ω0 := {ω ∈ Ω : ∃a ∈ E0 a(ω) 6= 0}.
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3.2. Lemma. {xay}(ω) = 0 whenever x(ω) = y(ω) = 0.

Proof. By the symmetry (J1), it suffices to prove the statement for x = y.
Furthermore, by the continuity of the triple product and since continuous
functions vanishing at ω (∈ Ω) can be uniformly approximated by contin-
uous functions vanishing on some neighborhood of ω, it suffices to see that
{xax}(ω) = 0 if x(U) = 0 for some neighborhood U ⊂ Ω of ω.
Assume ω ∈ U where U is open in Ω, x ∈ E, and x(U) = 0. Choose

a compact neighborhood V of ω within U and let φ : Ω → [0, 1] be a
continuous function such that φ(ω) = 1 and φ(Ω \ V ) = 0. Observe that if
c ∈ E0 is a function with c(V ) = 0 then φx = φc = 0 and, by (5.1),

{xcx}(ω) = φ{xcx}(ω) = 2{(φx)cx}(ω)− {x(φc)x}(ω) = 0.
Consider any a ∈ E0. Choose a continuous function ψ : Ω → [0, 1] with
ψ(V ) = 0 and ψ(Ω \ U) = 1. Since ψx = x, applying the function c := ψa
vanishing on V we get

0 = ψ{xax}(ω) = 2{(ψx)ax}(ω)− {x(ψa)x}(ω)
= 2{xax} − {xcx} = 2{xax}.

3.3. Corollary. We have

{xay} = 12x{z(ya)z}+ 12y{z(xa)z} if z ∈ E with xz = x and yz = y.

Proof. Suppose xz = x and yz = y. For any ω ∈ Ω apply Lemma 3.2
to the functions xω := x − x(ω)z and yω := y − y(ω)z satisfying xω(ω) =
yω(ω) = 0 to get

0 = {xωayω}(ω) = {[x− x(ω)z]a[y − y(ω)z]}(ω)
= {xay}(ω) + x(ω)y(ω){zaz}(ω)− x(ω){zay}(ω)− y(ω){zax}(ω).

Thus, everywhere on Ω,

{xay} = −xy{zaz}+ x{zay}+ y{zax}.
Observe that, by (3.1) and since yz = y, here we have

xy{zaz} = x[2{yaz} − {z(ya)z}]
and similarly yx{zaz} = y[2{xaz} − {z(xa)z}]. Therefore
xy{zaz} = x{zay}+ y{zax} − 12{z(xa)z} − 12{z(ya)z},

{xay} = −xy{zaz}+ x{zay}+ y{zax} = 12x{z(ya)z}+
1

2
y{z(xa)z}.

3.4. Lemma. The triple product {. . .} is positive in the sense that
x, a, y ≥ 0 ⇒ {xay} ≥ 0.
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Proof. Fix 0 ≤ x, y ∈ E and 0 ≤ a ∈ E0. Since the functions with
compact support are dense in C0-spaces, we may assume

supp(x), supp(y) compact ⊂ Ω, supp(a) compact ⊂ Ω0.
Then we can choose 0 ≤ x0, x1, y0, y1, z ∈ C0(Ω) with compact support such
that

x = x0 + x1, y = y0 + y1,

supp(x0), supp(y0) ⊂ Ω0,
supp(x1) ∩ supp(a) = supp(y1) ∩ supp(a) = ∅,
supp(x) ∪ supp(y) ∪ supp(a) ⊂ {ζ ∈ Ω : z(ζ) = 1}.

By (J1) we have {xay} = ∑1k,l=0{xkayl}. Here {x0ay0} ≥ 0 for the fol-
lowing reasons. The subtriple (E0, E0, {. . .}|E30) is a JB∗-triple with Ψ ⊂
Aut(E0, E0, {. . .}|E30). Therefore it is necessarily the canonical JB∗-triple
of a bounded symmetric continuous Reinhardt domain in E0 = C0(Ω0).
However, by [17, Theorem 2] the triple product is non-negative for non-
negative functions for symmetric CRDs. Thus indeed {x0ay0} ≥ 0 since
a, x0, y0 ∈ E0. On the other hand, by Corollary 3.3,

{x1ay1} = 12x1{z(y1a)z}+ 12y1{z(x1a)z} = 0
because x1a = y1a = 0. It only remains to see that {x0ay1} ≥ 0 (since the
proof of {x1ay0} = {y0ax1} ≥ 0 is analogous). Define

c :=
√
x0a.

Since supp(c) ⊂ supp(a) ⊂ Ω0, we have c ∈ E0 and cz = c. By Corollary 3.3
(applied with y1 instead of y and first with c instead both of a and x and
then with x0 instead of x),

{ccy1} = 12c{z(y1c)z}+ 12y1{z(c2)z} = 12y1{z(c2)z},
{x0ay1} = 12x0{z(y1a)z}+ 12y1{z(x0a)z} = 12y1{z(x0a)z}

because y1a = y1c = 0. That is,

{x0ay1} = {ccy1} = 12y1{z(x0a)z}.
According to (J4), Sp(L(c)) ≥ 0. However, it is a basic fact about the spectra
of multipliers in commutative Banach algebras that

u(X) ⊂ Sp[C0(X) ∋ f 7→ uf ] if X open ⊂ Ω and u ∈ C0(Ω).
In particular, by taking X := Ω \ supp(a) and u := {z(x0a)z} we have

{z(x0a)z}(Ω \ supp(a)) ⊂ SpL(c) ⊂ [0,∞).
Thus {z(x0a)z} ≥ 0 on supp(y1) and hence 2{x0ay1} = y1{z(x0a)z} ≥ 0.
We can summarize the results of this section in the following theorem.
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3.5. Theorem. Let Ω be a locally compact space, E := C0(Ω) and
suppose (E,E0, {. . .}) is a partial JB∗-triple with the Reinhardt property
(R). Then there exists an open subset Ω0 in Ω such that E0 = {f ∈ E :
f(Ω \ Ω0) = 0}. Given any ω ∈ Ω, there is a (unique) positive Radon
measure µω on Ω0 with total mass ≤M := sup0≤x,a,y≤1max{xay} and

(3.6) {xay}(ω) = 12x(ω)
\
ay dµω +

1
2y(ω)

\
ax dµω, x, y ∈ E, a ∈ E0.

Proof. We have already established the relation E0 = C0(Ω0) and the
positivity of the triple product in the sense of Lemma 3.4. Fix ω ∈ Ω.
According to [20] (1), the positivity of the bounded 3-linear functional
(x, a, y) 7→ {xay}(ω) implies the existence of a positive Radon measure
νω of finite total variation on Ω ×Ω0 ×Ω such that

{xay}(ω) =
\
x⊗ a⊗ y dνω, x, y ∈ E, a ∈ E0,

where x⊗a⊗y denotes the function (ξ, α, η) 7→ x(ξ)a(α)y(η) onΩ×Ω0×Ω. It
is well-known that νω(Ω×Ω0×Ω) = sup{

T
x⊗a⊗y dνω : a ∈ C0(Ω0), x, y ∈

C0(Ω), 0 ≤ a, x ≤ 1} = M . By the inner compact regularity of Radon
measures, given any functions x, y ∈ E with compact support and a ∈ E0,
we can choose an increasing sequence K1 ⊂ K2 ⊂ · · · ⊂ Ω of compact sets
such that supp(x)∪ supp(y) ⊂ K1 and limn→∞ ν(Ω \Kn) = 0. Also we can
choose a sequence (zn) ⊂ C0(Ω) = E such that 0 ≤ z1 ≤ z2 ≤ · · · ≤ 1 and
zn(Kn) = 1 (n = 1, 2 . . .). Then, by Corollary 3.3, we have

{xay}(ω) = 12x(ω){zn(ya)zn}+ 12y(ω){zn(xa)zn}
= 12x(ω)

\
zn ⊗ (ay)⊗ zn dνω + 12y(ω)

\
zn ⊗ (ax)⊗ zn dνω

→ 1
2x(ω)

\
1Ω ⊗ (ay)⊗ 1Ω dνω + 12y(ω)

\
1Ω ⊗ (ax)⊗ 1Ω dνω

where 1Ω denotes the function identically 1 on Ω. Thus with the measure

µω(X) := νω(Ω ×X ×Ω) (X Borel ⊂ Ω)
we have the stated relation for x, y ∈ E with compact support. The state-
ment follows by the uniform density in E of functions with compact sup-
port.

3.7. Remark. It would be tempting to conjecture that every partial
JB∗-triple satisfying the hypothesis of Theorem 3.5 is the canonical JB∗-
triple of some CRD. However, there is a counterexample even in two dimen-
sions.

Let Ω := {1, 2}, Ω0 := {1} and
{xay} := [1 7→ x(1)a(1)y(1), 2 7→ x(1)a(1)y(2)/2 + x(2)a(1)y(1)/2].

(1) This fact is implicit in [20]. For the sake of completeness, we include a short direct
proof in the Appendix.
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Then any CRD D over Ω such that the vector fields [a − {xax}]∂/∂x are
complete in D must be an ellipsoid of the form D={x : |x(1)|2+λ|x(1)|2<1}
for some λ > 0 with ED = E 6= E0.

4. Extension from the symmetric part. Next we are going to study
partial Jordan ∗-triples with triple product of the form obtained in Theo-
rem 3.5 for canonical JB∗-triples of CRDs. With the aid of bidual embed-
ding, a technique not yet available for general partial JB∗-triples, in [17] we
have achieved a finer analog of Theorem 3.5 in the special case of symmet-
ric CRDs. Applying [17, Theorem 2] to the restriction of the triple product
to the symmetric part E0 in Theorem 3.5, we see that the measures µω,
ω ∈ Ω0, have finite support. Moreover, there exists a partition {Ωi : i ∈ I}
of Ω0 consisting of finite sets along with a function m : Ω0 → R such that,
by writing i(ω) for the unique i ∈ I with ω ∈ Ωi, we have
(4.1) µω =

∑

η∈Ωi(ω)

m(η)δη, ω ∈ Ω0, 0 < infm ≤ sup
i∈I

∑

η∈Ωi

m(η) <∞.

4.2. Theorem. Let (E,E0, {. . .}) be a partial Jordan ∗-triple where
E := C0(Ω) with a locally compact topological space Ω, E0 := {f ∈ E :
f(Ω \ Ω0) = 0} with a non-empty open subset Ω0 ⊂ Ω, and let the triple
product {. . .} have the form (3.6). If the measures µω are all positive and
(4.1) holds then (E,E0, {. . .}) is a subtriple of the canonical partial JB∗-
triple of some CRD.

Proof. By assumption, the triple product {. . .} satisfies axioms (J1)–(J3)
in Section 2. Thus to see that (E,E0, {. . .}) is a partial JB∗-triple, we have
to verify axioms (J4) and (J5). According to [17, Theorem 2], the restriction
of {. . .} to the symmetric part E0×E0×E0 is the canonical JB∗-triple prod-
uct of the symmetric CRD D0 := {f ∈ E0 : supi∈I

∑
η∈Ωi

m(η)|f(η)|2 < 1}
in E0. Hence inf‖a‖∞=1 ‖L(a)a‖∞ > 0. Consider the set

B :=
{
f ∈ E : [infm] max |f |2 < 1, sup

i∈I

∑

η∈Ωi

m(η)|f(η)|2 < 1
}
.

This is clearly a bounded convex CRD in E. We have

B =
⋂

ω∈Ω\Ω0

Bω ∩
⋂

i∈I

B(i)

with the (unbounded) CRDs Bω := {f ∈ E : |f(ω| < 1/infm} and B(i) :=
{f ∈ E : 〈[f |Ωi] | [f |Ωi]〉 < 1} where 〈· | ·〉i denotes the scalar product
〈ϕ |ψ〉i :=

∑
η∈Ωi

m(η)ϕ(η)ψ(η). Given any function a ∈ E0, we have

L(a)x(ω) = {aax}(ω) = 12x(ω)
\

η∈Ω0

|a(η)|2 dµω(η), ω ∈ Ω \Ω0;
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L(a)x|Ωi = 12 〈[a|Ωi] | [a|Ωi]〉i[x|Ωi] + 12 〈[x|Ωi] | [a|Ωi]〉i[a|Ωi], i ∈ I.
For any fixed ω ∈ Ω \Ω0 and τ ∈ C,

exp(iτL(a))x(ω) = eiτ
T
|a|2 dµωx(ω).

As a consequence, exp(iτL(a))Bω ⊂ Bω whenever Im τ ≥ 0. Similarly,
exp(iτL(a))B(i) ⊂ B(i) for Im τ ≥ 0 and i ∈ I because any mapping
ϕ 7→ 1

2 〈α |α〉iϕ + 12 〈ϕ |α〉iα is a positive linear operator with respect to
the scalar product 〈· | ·〉i. Therefore exp(iτL(a))B ⊂ B if Im τ ≥ 0. Hence
axioms (J4) and (J5) are immediate. Thus (E,E0, {. . .}) is a partial JB∗-
triple.

Due to the form (3.6) of the triple product, the group Ψ of multiplications
with functions of modulus 1 consists of automorphisms of (E,E0, {. . .}). In
view of Lemma 2.2 we conclude that (E,E0, {. . .}) is a subtriple of the
canonical triple of some bounded domain which is invariant under multipli-
cations with continuous functions of modulus 1, that is, a CRD.

We can also apply the structural descriptions of Section 3 together with
Theorem 4.2 to test if all inner derivations of the canonical partial JB∗-
triple of a CRD can be extended in a uniformly continuous manner from
the symmetric part to the whole space. As we shall see, this category does
not give any counterexample.

4.3. Theorem. On the space E := C0(Ω), let (E,E0, {. . .}) be a partial
JB∗-triple such that {ψ · : ψ ∈ C(Ω), |ψ| = 1} ⊂ Aut(E,E0, {. . .}). Then
there exists a finite constant M such that ‖∆‖ ≤ M‖∆|E0‖ for all inner
derivations ∆ of (E,E0, {. . .}).

Proof. We know there exists an open subset Ω0 of Ω with E0 = {f ∈
C0(Ω0) : f(Ω \ Ω0) = 0}. Furthermore, for any ω ∈ Ω, there is a positive
Radon measure µω on Ω0 such that

{xax}(ω) = x(ω)
\
Ω0

xa dµω, x ∈ E, a ∈ E0, ω ∈ Ω.

Since C0(Ω0) = {xa|Ω0 : x ∈ E, a ∈ E0}, the function ω 7→
T
Ω0
f dµω is

necessarily continuous for all fixed f ∈ C0(Ω0). Finally, we may assume the
measures µω, ω ∈ Ω0, to be of the form (4.1). Thus, by writing S(ω) := Ωi(ω)
for short, we have\

Ω0

f dµω =
∑

η∈S(ω)

m(η)f(η), ω ∈ Ω0, f ∈ C0(Ω0).

Notice also that ω ∈ S(ω) for all ω ∈ Ω0 and 0 < infm ≤ supm < ∞
and supω∈Ω0 #S(ω) <∞. Consider an inner derivation ∆ of (E,E0, {. . .}).
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That is,

∆x =
N∑

k=1

{akbkx}, x ∈ E,

for some finite sequence a1, b1, . . . , aN , bN ∈ E0. In particular, given any
function x ∈ E = C0(Ω),

2∆x(ω) =
∑

η∈S(ω)

m(η)
N∑

k=1

[ak(η)bk(η)x(ω) + x(η)bk(η)ak(ω)] for ω ∈ Ω0,

∆x(ω) =
\
Ω0

N∑

k=1

ak(ζ)bk(ζ) dµω(ζ)x(ω) for ω ∈ Ω \Ω0.

The continuity ‖{xay}‖ ≤ K‖x‖ ‖a‖ ‖y‖ of the partial triple product implies
that supω∈Ω µω(Ω0) ≤ K <∞. Hence it suffices to see that

(4.4) sup
ζ∈Ω0

∣∣∣
N∑

k=1

ak(ζ)bk(ζ)
∣∣∣ ≤ 4‖∆|E0‖

infm
.

To prove this inequality, fix ζ ∈ Ω0. Since the set S(ζ) is finite, for each
ω ∈ S(ζ) we can find eω ∈ E0 ≡ C0(Ω0) such that 1 = eω(ζ) = sup |eω(·)|
but eω(η) = 0 for ζ 6= η ∈ S(ζ). Then

2∆eω =
[ N∑

k=1

∑

η∈S(ζ)

m(η)ak(η)bk(η)
]
eω +

N∑

k=1

m(ω)bk(ω)ak,

2
∑

ω∈S(ζ)

[∆eω](ω) =
N∑

k=1

#S(ζ)
∑

ω∈S(ζ)

m(ω)ak(ω)bk(ω)

+
N∑

k=1

∑

ω∈S(ζ)

m(ω)ak(ω)bk(ω)

= [#S(ζ) + 1]
∑

ω∈S(ζ)

N∑

k=1

m(ω)ak(ω)bk(ω).

It follows that

m(ζ)

N∑

k=1

bk(ζ)ak(ζ) = 2[∆eζ ](ζ)−
∑

ω∈S(ζ)

m(ω)

N∑

k=1

ak(ω)bk(ω),

∑

ω∈S(ζ)

m(ω)

N∑

k=1

ak(ω)bk(ω) =
2

#S(ζ) + 1

∑

ω∈S(ζ)

[∆eω](ω).
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Notice that ‖eω‖ = max |eω(·)| = 1 and hence |[∆eω](ω)| ≤ ‖∆|E0‖ for all
ω ∈ Ω. Therefore

m(ω)
∣∣∣
N∑

k=1

ak(ω)bk(ω)
∣∣∣ ≤ 2‖∆|E0‖+

2

#S(ζ) + 1

∑

ω∈S(ζ)

‖∆|E0‖ ≤ 4‖∆|E0‖.

This completes the proof of (4.4) and hence the proof of the theorem.

5. The fine structure of the canonical partial JB∗-triple of a
CRD. Throughout this section, Ω denotes a locally compact Hausdorff
space, Ω0 6= ∅ is a fixed open subset of Ω, and we write E := C0(Ω) and
E0 := {f ∈ E : f(Ω \ Ω0) = 0}. Also we reserve the notations [µω :
ω ∈ Ω], {Ωi : i ∈ I} and m, respectively, for a given measure-valued map
Ω →M(Ω0)+, a partition of Ω0 into finite non-empty sets, and a function
m : Ω0 → R+ such that (4.1) holds. We know from Theorems 3.5 and 4.2
that the canonical triple product of a CRD has necessarily the form (3.6) in
terms of these objects.

Our purpose will be to find a description in terms of the topological
properties of the partition {Ωi : i ∈ I} when a triple product of the form
(3.6) is the canonical triple product of some CRD. It is clear that there are
plenty of mappings ω 7→ µω, even satisfying (4.1), for which the operation
(3.6) is not a partial JB∗-triple product. Indeed, the following observation
is an immediate but fundamental consequence of Theorem 3.5 and its proof.
Given a bounded Reinhardt domain D in E, the canonical triple product
{. . .} := {. . .}D has the form
(5.1) {xay} = 12xA(ay) + 12yA(ax), a ∈ E0, x, y ∈ E,
with some positive linear map A : E0 → Cb(Ω) :={bounded continuous func-
tions Ω → C}. It is well-known [11] that the positivity of A entails its
boundedness automatically. Notice also that, by the Riesz–Kakutani rep-
resentation theorem, any positive linear mapping A : C0(Ω0) → Cb(Ω)
has the form Af(ω) =

T
Ω0
f dµω with a uniquely determined mapping

Ω ∋ ω 7→ µω ∈M(Ω0)+.

5.2. Lemma. Suppose A : E0 → Cb(Ω) is a positive linear mapping.
Then the structure (E,E0, {. . .}) with the operation (5.1) is a partial Jordan
∗-triple if and only if

(5.3)
A(fA(g)) = A(gA(f)),

A(fA(g))|Ω0 = A(f)A(g)|Ω0, f, g ∈ E0.

Proof. Since E0 and E are closed ideals in Cb(Ω) with respect to the
pointwise product of functions, the operation (5.1) is a well-defined positive
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continuous sesquitrilinear map E × E0 × E → E. It satisfies the identities

{xa{xbx}} = 12xA(axA(bx)) + 12xA(bx)A(bx),
{xa{xbx}} − {xb{xax}} = 12xA[axA(bx))− bxA(ax)].

Hence, by taking f := ax and g := bx, we see that (5.3) implies axiom
(J3). Conversely, assume (J3) holds. Then xA[axA(bx))− bxA(ax)] = 0 for
a, b ∈ E0 and x ∈ E. Consider any functions f, g ∈ E0 with compact support.
Then, given any point ω ∈ Ω, we can choose a function xω ∈ E with compact
support such that the interior of supp(xω) contains {ω}∪supp(f)∪supp(g).
Then we can write f = aωxω and g = bωxω with some aω, bω ∈ E0 and
hence (J3) implies 0 = A[fA(g)− gA(f)](ω). Thus, since the functions with
compact support are dense in E0, axiom (J3) is equivalent to the identity
A(fA(g)) = A(gA(f)) in (5.3).

Let us now proceed to the axiom (J2) of the Jordan identity. By polar-
ization, (J2) is equivalent to its special case

(J2′) {aa{xbx}} = 2{{aax}bx} − {x{aab}x}, a, b ∈ E0, x ∈ E.
In terms of the operation A, this identity (multiplied by 2) can be stated as

aA(axA(bx)) + xA(bx)A(|a|2)
= [aA(ax) + xA(|a|2)]A(bx) + xA(b[aA(ax) + xA(|a|2)])
− xA([aA(ab) + bA(|a|2)]−x).

By the positivity of A, we can write the last term above as −xA([aA(ab) +
bA(|a|2)]x). Thus, by the linearity of A, axiom (J2′) is equivalent to

aA(axA(bx)) + xA(bx)A(|a|2)
= aA(ax)A(bx) + xA(|a|2)A(bx) + xA(baA(ax)) + xA(bxA(|a|2))

− xA(axA(ab))− xA(bxA(|a|2)).
Here the terms xA(bx)A(|a|2) and xA(bxA(|a|2)) cancel each other, whence
we get

(J2′′) aA(axA(bx)) = aA(ax)A(bx) + xA(baA(ax))− xA(axA(ab)).
Observe that (5.3) implies (J2′′) immediately. To finish the proof, assume
(J2)+(J3). As we have shown, this is nothing else than the identityA(fA(g))
= A(gA(f)) along with (J2′′). By substituting f := ax and g := ab in
(J2′′), we see that two terms cancel each other and the remaining identity
aA(axA(bx)) = aA(ax)A(bx) is equivalent to its polarized form

a1A(a2xA(bx)) = a1A(a2x)A(bx), a1, a2, b ∈ E0, x ∈ E.
Since each a1 ∈ E0 vanishes outside Ω0, but for any ω ∈ Ω0 there is a func-
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tion a1,ω ∈ E0 with a1,ω(ω) 6= 0, the polarized identity is further equivalent
to

A(axA(bx)) |Ω0 = A(ax)A(bx) |Ω0, a, b ∈ E0, x ∈ E.
As we have seen, any functions f, g ∈ E0 with compact support can be
written in the form f = ax, g = bx for suitable a, b ∈ E0 and x ∈ E with
compact support. This implies the second identity in (5.3) for functions
with compact support, and the statement follows by a standard density
argument.

5.4. Remark. An application of the results in [7] concerning symmetric
CRDs to the symmetric part of the canonical partial JB∗-triple of a CRD
yields the following observation. If (E,E0, {. . .}) is a partial JB∗-triple with
a triple product of the form (3.6) and having property (4.1), then the set-
valued function ω 7→ Ωi(ω) ∪ {∞} (where i(ω) denotes the unique i ∈ I
with ω ∈ Ωi) is continuous with respect to the Hausdorff topology on the
set of non-empty compact subsets of Ω0 ∪ {∞}. As a consequence, given a
relatively closed subset F of Ω0 and a point ω ∈ F such that #[F ∩Ωi(ω)] =
NF := maxη∈F #[F ∩Ωi(η)], there are disjoint open sets U1, . . . , UNF ⊂ Ω0
such that ω ∈ U1 and #[Uk ∩F ∩Ωi(η)] = 1 for any η ∈ U1 ∪ · · · ∪UNF and
k = 1, . . . , NF .

5.5. Lemma. Assume the mapping ω 7→ Ωi(ω) ∪ {∞} is Hausdorff con-
tinuous in the sense of 5.4. Then given any ω ∈ Ω, there exists a finite family
of disjoint Borel subsets G1, . . . , GN ⊂ Ω0 such that µω(Ω0 \

⋃N
k=1Gk) = 0

and #[Ωi ∩Gk] ≤ 1 for all i ∈ I and k = 1, . . . , N .
Proof. We use countable transfinite exhaustion to construct the sets

G1, . . . , GN . To start, let N := NΩ0 , F
(0) := Ω0 and U

(0)
1 , . . . , U

(0)
N := ∅.

For any countable ordinal r ≻ 0, if until each set U (s)k with s ≺ r and

1 ≤ k ≤ N is open and µω(
⋃
s≺r

⋃N
k=1 U

(s)
k ) < µω(Ω0), define F

(r) :=

Ω0 \
⋃
s≺r

⋃N
k=1 U

(s)
k , Nr := maxη∈F (r) #[F

(r) ∩ Ωi(η)]. We also choose
ωr ∈ F (r) with #[F (r) ∩ Ωi(ωr)] = Nr along with a finite disjoint fam-

ily U
(r)
1 , . . . , U

(r)
Nr
such that µω(U

(r)
1 ) > 0 and #[U

(r)
k ∩ Ωi(η)] = 1 for

all η ∈ U
(r)
1 ∪ · · · ∪ U

(r)
Nr
and k = 1, . . . , Nr. Finally, we set U

r
k := ∅ for

Nr < k ≤ N . This can be done in view of Remark 5.4 and the fact that triv-
ially Nr ≤ N . Since the measure µω is finite, in this manner, for some count-
able ordinal r∗, we get a family {U (r)k : r ≺ r∗, k = 1, . . . , N} of open subsets
of Ω0 such that µω(Ω0\

⋃
s≺r∗
⋃N
k=1 U

(s)
k ) = 0 and #[U

(r)
k ∩F (r)∩Ωi(η)] ≤ 1,

1 ≤ k ≤ N , but Ωi(η) ⊂
⋃N
k=1[U

(r)
k ∩F (r)] for all η ∈

⋃N
k=1[U

(r)
k ∩F (r)] for all

ordinals r ≺ r∗. Therefore the choice Gk :=
⋃
s≺r∗ [U

(s)
k ∩F (s)], k = 1, . . . , N ,

suits our requirements.



Continuous Reinhardt domains 191

5.6. Corollary. Let K := {K ⊂ I :
⋃
i∈K Ωi is Borel measurable}

and define µ̃ω(K) := µω(
⋃
i∈K Ωi), K ∈ K. Then (under the hypothe-

sis of Lemma 5.5) there is a Borel function pω : Ω0 → [0, 1] such that∑
η∈Ωi

pω(η) = 1, i ∈ I, and for all bounded Borel functions f : Ω0 → C we

have \
Ω0

f dµω =
\
i∈I

∑

η∈Ωi

f(η)pω(η) dµ̃ω(i).

Proof. As already noted, the sets

G
(r)
k := U

(r)
k ∩ F (r) = U

(r)
k \
⋃

s≺r

Nr⋃

k=1

U
(s)
k , r ≺ r∗, 1 ≤ k ≤ Nr,

form a disjoint covering of Ω0 up to a set of µω-measure 0. Let p̃
(r)
k denote

the Radon–Nikodým derivative dµ̃
(r)
ω,k/dµ̃ω with the measure µ̃

(r)
ω,k(K) :=

µω(G
(r)
k ∩
⋃
i∈K Ωi), K ∈ K. These are functions I → R defined up to a set

of µ̃ω-measure 0, and we can choose Borel measurable representatives with

0 ≤ p̃
(r)
k ≤ 1 and

∑Nr
k=1 p̃

(r)
k = 1 on I

(r) := {i ∈ I : Ωi ⊂
⋃Nr
k=1G

(r)
k } and

vanishing outside I(r). This can be done because every Ωi meets any set

G
(r)
k in at most one point and for the sets G

(r) :=
⋃Nr
k=1G

(r)
k we have either

Ωi ⊂ G(r) or Ωi ∩ G(r) = ∅. Hence the statement holds with the function
p(η) :=

∑
r≺r∗
∑Nr
k=1 p̃

(r)
k (i(η)), η ∈ Ω0.

5.7. Corollary. Suppose we have (4.1) with a weight function m > 0
and let A : C0(Ω0) → Cb(Ω) have the form Af(ω) =

T
η∈Ω0

f dµω with suit-

able Radon measures µω, ω ∈ Ω. Then the identity A(fA(g)) = A(gA(f))
is equivalent to the fact that

(5.8) µω(X) =
\
i∈I

∑

η∈X∩Ωi

m(η) dκω(i), X ⊂ Ω0,

with suitable measures κω : {K ⊂ I :
⋃
i∈K Ωi is Borel measurable} → R+,

ω ∈ Ω.
Proof. Using Corollary 5.6, we can write

[A(fA(g))](ω) =
\
i∈I

∑

η∈Ωi

f(η)[A(g)](η)pω(η) dµ̃ω(i)

=
\
i∈I

∑

η∈Ωi

f(η)
∑

ζ∈Ωi(η)

g(ζ)m(ζ)pω(η) dµ̃ω(i)

=
\
i∈I

∑

ζ,η∈Ωi

f(η)g(ζ)m(ζ)pω(η) dµ̃ω(i)

because i(η) = i for η ∈ Ωi. Thus the identity A(fA(g)) = A(gA(f)) is
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equivalent to

(5.9) 0 =
\
i∈I

∑

ζ,η∈Ωi

f(η)g(ζ)[m(ζ)pω(η)−m(η)pω(ζ)] dµ̃ω(i)

for all f, g ∈ C0(Ω0) and ω ∈ Ω. By passing to limits of monotone sequences,
we see that (5.9) holds for all f, g ∈ C0(Ω0) if and only if it holds for all
bounded Borel measurable functions f, g : Ω0 → C. Consider (5.9) for the

partition Ω0 =
⋃
r≺r∗
⋃Nr
k=1G

(r)
k ∪ [µω-zero-set] constructed in the proof of

Corollary 5.6. By writing ζ
(r)
i,k for the unique element of Ωi ∩G

(r)
k , we get

(5.9′) 0 =
∑

r≺r∗

Nr∑

k,l=1

\
i∈I(r)

f(ζ
(r)
i,k )g(ζ

(r)
i,l )[m(ζ

(r)
i,k )pω(ζ

(r)
i,l )

−m(ζ(r)i,l )pω(ζ
(r)
i,k )] dµ̃ω(i).

This holds for all bounded Borel functions f, g : Ω0 → C if and only if, given
any r ≺ r∗, for µ̃ω-almost every i ∈ I(r) we have

m(ζ
(r)
i,k )pω(ζ

(r)
i,l )−m(ζ

(r)
i,l )pω(ζ

(r)
i,k ) = 0, 1 ≤ k, l ≤ Nr.

Indeed, if we just consider functions f, g vanishing outside G
(r)
k respectively

G
(r)
l (with fixed r ≺ r∗ and 1 ≤ k, l ≤ Nr), we obtain (5.9

′) without the

summations
∑
r≺r∗ and

∑Nr
k,l=1, whence the statement is immediate. Thus,

since
∑
ζ∈Ωi

pω(ζ) = 1 for µ̃ω-almost every i ∈ I, (5.9′) holds for all bounded
Borel functions if and only if

pω(η) = m(η)
[∑

ζ∈Ωi

m(ζ)
]−1

for µ̃-almost every i ∈ I and η ∈ Ωi.

This observation establishes the statement of 5.7 with the measures κω(K)
:=
T
i∈K
[
∑
ζ∈Ωi

m(ζ)]−1dµ̃ω(i), K ∈ K.

6. Bidual of the canonical JB∗-triple of a CRD. On the basis of
the previous section, first we give an exhaustive parametric description of
the canonical JB∗-triples of continuous Reinhardt domains. Also we answer
in the affirmative the question if the bidual of the canonical JB∗-triple of a
continuous Reinhardt domain can be regarded as the canonical JB∗-triple
of a continuous Reinhardt domain in the bidual commutative C∗-algebra.
As in the previous sections, Ω denotes a fixed locally compact Hausdorff

space, Ω0 is a non-empty open subset of Ω, m is a function Ω0 → R and
Π = {Ωi : i ∈ I} is a partition of Ω0. We shall write Ω0/Π for the index set
I of Π equipped with the topology inherited from the Hausdorff topology of
Ω̃0 := {Ωi∪{∞} : i ∈ I}. That is, a set J ⊂ I is open if {Ωi∪{∞} : i ∈ J} is
an open subset of Ω̃0 with respect to the Hausdorff topology of the compact
subsets on Ω0 ∪ {∞} restricted to Ω̃0.
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6.1. Definition (cf. [7, 1.1-2]). We say that the couple (m,Π) is ad-
missible if supi∈I #Ωi < ∞, 0 < infm ≤ supm < ∞ and all the functions
Ω0 ∋ ω 7→

∑
η∈Ωi(ω)

m(η)f(η), f ∈ C0(Ω0), are continuous.

According to [7, 1.2], the couple (m,Π) is admissible if and only if
the function space C0(Ω0) endowed with the triple product polarized from
{xax}(ω) := ∑ζ∈Ωi(ω)

m(ζ)x(ζ)a(ζ)x(ω) (where i(ω) denotes the (unique)

index with ω ∈ Ωi(ω)) is the canonical triple of some symmetric Reinhardt
domain in C0(Ω0). Furthermore, as a conseqence of [7, 1.3(iii)], given an ad-
missible couple (m,Π), the topological space Ω0/Π is locally compact and
Hausdorff.

6.2. Lemma. Let (m,Π) be an admissible couple.

(1) A function φ : I → C belongs to C0(Ω0/Π) if and only if the function
fφ := [ω 7→ φ(i(ω))] is bounded , continuous on Ω0, constant on the
sets Ωi, i ∈ I, and such that for any ε > 0 there exists a compact
subset Kε ⊂ Ω0 with |fφ(Ωi)| < ε whenever Ωi ∩Kε = ∅.

(2) The range of the operator Ã0 on C0(Ω0) defined by

(6.3) Ã0f(i) :=
∑

ζ∈Ωi(ω)

m(ζ)f(ζ), i ∈ I, f ∈ C0(Ω0),

is a uniformly dense multiplicative ideal in C0(Ω0/Π).
Proof. (1) Let φ ∈ C0(Ω0/Π). By construction, fφ is constant on eachΩi.

Also the ranges of φ and fφ coincide, thus fφ is necessarily bounded. Con-
sider a convergent net ωj → ω0 in Ω0. According to [7, 1.2(iv)], we have
Ωi(ωj)∪{∞} → Ωi(ω0)∪{∞} with respect to the Hausdorff topology. There-
fore fφ(ωj)→ fφ(ω0), showing that fφ ∈ Cb(Ω0). The stated vanishing prop-
erty of fφ at infinity is straightforward. Conversely, assume that φ : I → C

is such that fφ ∈ Cb(Ω0) with the behavior at infinity as in (1). Then φ
vanishes at infinity in the sense of the locally compact inherited Hausdorff
topology of Ω0/Π. We show the continuity of φ as follows. Let [ij : j ∈ J ] be
a net in I such that Ωij ∪ {∞} → Ωi0 ∪ {∞} in the Hausdorff sense. By [7,
1.3(i)] we can find a convergent net ωj → ω0 in Ω0 with ωj ∈ Ωij , j ∈ J and
ω0 ∈ Ωi0 . Hence φ(ij) = fφ(Ωij ) = fφ(ωj)→ fφ(ω0) = fφ(Ωi0) = φ(i0).

(2) As already noted, for each f ∈ C0(Ω0) the function A0f := [Ω0 ∋ ω
7→∑ζ∈Ωi(ω)

m(ζ)f(ζ)] is continuous. Obviously, A0f is constant on each Ωi.

Given a net [ij : j ∈ J ] such that Ωij → {∞} in the Hausdorff sense (i.e. for
every K compact ⊂ Ω0 there exists jK ∈ J with K ∩ Ωij = ∅ for j ≥ jK),
we have A0f(Ωij )→ 0 because

|A0f(Ωij )| ≤ sup
ω
m(ω)max

i
#Ωimax

ζ∈∨
|f(ζ)|
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and maxζ∈∨ |f(ζ)| → 0. By (1), A0f = fφ for some φ ∈ C0(Ω0/Π). Thus
ran Ã0 ⊂ C0(Ω0/Π). Observe that, for any ψ ∈ C0(Ω0/Π) we have ψ[Ã0f ] =
Ã0(fψf). Thus ran Ã0 is an ideal in C0(Ω0/Π). For any i ∈ I, there exists
φ ∈ ran Ã0 with φ(i) 6= 0. Indeed, by choosing any element ω ∈ Ωi, there
exists a function f ∈ C0(Ω0) with f(ω) = 1 and f(ζ) = 0 for ζ ∈ Ωi \ {ω}
and Ã0f(i) =

∑
ζ∈Ωi

m(ζ)f(ζ) = m(ω)f(ω) > 0. Hence, by the Stone–

Weierstrass theorem, the ideal ran Ã0 is uniformly dense in C0(Ω0/Π).
6.4. Definition. Given an admissible couple (m,Π) and a non-negative

measure-valued mapping ω 7→ κω from Ω toM(Ω/Π), write
E(Ω,Ω0,m,Π, κ)

for the structure (C0(Ω), {f ∈ C0(Ω) : f(Ω \ Ω0) = 0}, {. . .}) where the
triple product {. . .} is the polarized form of
(6.5) {xax}(ω) = x(ω)

\
i∈I

∑

ζ∈Ωi

m(ζ)a(ζ)x(ζ) dκω(i),

ω ∈ Ω, a ∈ E0, x ∈ E.
We say that the tuple (Ω,Ω0,m,Π, κ) is admissible if (m,Π) is an admis-
sible couple and the measure-valued mapping ω 7→ κω is weakly contin-
uous (2) and such that κω = δi(ω) whenever ω ∈ Ω0.
6.6. Theorem. Let Ω be a locally compact Hausdorff space and ∅ 6=

Ω0 ⊂ Ω an open subset. By setting E := C0(Ω), E0 := {f ∈ E : f(Ω \Ω0) =
0} the triple (E,E0, {. . .}) is a subtriple of the canonical JB∗-triple of some
Reinhardt domain in E if and only if it is of the form E(Ω,Ω0,m,Π, κ)
with an admissible tuple (Ω,Ω0,m,Π, κ).
The canonical JB∗-triple of any Reinhardt domain in C0(Ω) with non-

zero symmetric part has the form E(Ω,Ω0,m,Π, κ) with a suitable admis-
sible tuple (Ω,Ω0,m,Π, κ).

Proof. We already know the following facts from Theorem 3.5 and Corol-
lary 5.7. The canonical JB∗-triple of any Reinhardt domain with non-zero
symmetric part in E := C0(Ω) coincides with E(Ω,Ω0,m,Π, κ) for some
open ∅ 6= Ω0 ⊂ Ω and an admissible couple (Π,m). Moreover any par-
tial Jordan ∗-triple (E,E0, {. . .}) with E0 = {f ∈ E : f(Ω \ Ω0) = 0}
for some ∅ 6= Ω0 ⊂ Ω and such that all multiplications with continuous
functions Ω → T (= {z ∈ C : |z| = 1}) belong to Aut(E,E0, {. . .}) must
have the form E(Ω,Ω0,m,Π, κ) with suitable open ∅ 6= Ω0 ⊂ Ω and an
admissible couple (Π,m). Finally, by Lemma 2.2 and Corollary 5.7, each
E(Ω,Ω0,m,Π, κ) is a subtriple of the canonical JB

∗-triple of some Rein-
hardt domain in E if and only if the triple product maps E ×E0 ×E to E.

(2) That is, ω 7→
T
i∈I
φ(i) dκω(i) is continuous for every φ ∈ C0(Ω/π).
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Thus it remains to prove that, in a structure of the form E(Ω,Ω0,m,Π, κ),
the triple product maps E × E0 × E into E (where E := C0(Ω) and
E0 := {f ∈ E : f(Ω\Ω0) = 0}) if and only if the mapping ω 7→ κω is weakly
continuous. The sufficiency of the weak continuity of κ for {EE0E} ⊂ E
is immediate. Conversely, suppose (m,Π) is an admissible couple and the
triple product (6.5) is continuous and satisfies {EE0E} ⊂ E. Then, by
Corollary 5.7, (E,E0, {. . .}) = E(Ω,Ω0,m,Π, κ) is a partial JB∗-triple and,
in particular, the operation

Af(ω) =
\

η∈Ω0

∑

ζ∈Ωi(η)

m(ζ)f(ζ) dµω(η) =
\̃
A0f dκω, ω ∈ Ω, f ∈ E0,

has values in the space Cb(Ω) of all bounded continuous functions Ω → C.

Therefore also the operation T0g := [Ω ∋ ω 7→
T
ψ dκω], ψ ∈ ran Ã0, has

values in Cb(Ω). We know that the measures µω, ω ∈ Ω, have total mass
bounded by the norm M := supa∈E0, x,y∈E ‖{xay}‖ of the triple product.
It follows that κω(I) ≤ M , ω ∈ Ω, and hence T0 is bounded with norm

≤ M (i.e. supω∈Ω |T0ψ(ω)| ≤ M supi∈I |ψ(i)|, ψ ∈ ran Ã0). Therefore T0
admits a continuous extension T : [ran Ã0]

− → Cb(Ω) to the closure of the
range of Ã0 with Tφ(ω) =

T
φdκω, φ ∈ [ran Ã0]−. By Lemma 6.2, we have

C0(Ω0/Π) = [ran Ã0]−. This implies the weak continuity of ω 7→ κω.

Next we proceed to the bidualization of the partial triple (E,E0, {. . .})
:= E(Ω,Ω0,m,Π, κ). As usual, we shall regard the commutative C

∗-algebra
E := C0(Ω) with the spectral norm as a weak∗-dense subspace of the bid-
ual E := E∗∗ ≡ C(Ω) where Ω is the hyperstonian compact topological
space of all norm-continuous multiplicative functionals with respect to the
jointly weak∗-continuous extension of the product in E equipped with the
weak∗ topology inherited from E∗∗∗. That is, we identify any element a ∈ E
canonically with the evaluation function ω 7→ ω(a) on Ω.

6.7. Theorem. Let D be a bounded Reinhardt domain in E := C0(Ω).
Then there exists a bounded Reinhardt domain D in E := E∗∗ ≡ C(Ω) such
that the canonical JB∗-triple (E,ED,{. . .}D) is a subtriple of (E,ED,{. . .}D)
and ED is the weak

∗ closure of E in E and the triple product {. . .}D is the
jointly weak∗-continuous extension of {. . .}D.
Proof. According to Lemma 5.2, there is a positive and hence norm-

continuous mapping A : ED → F satisfying the identities (5.3) such that
2{xay}D = xA(ay) + yA(ax), a ∈ ED, x, y ∈ E. To study the bidual con-
tinuation of A, let us regard the commutative C∗-algebra F := Cb(Ω) as a
weak∗-dense subspace of the bidual F := F ∗∗ ≡ C(Ω̂) where Ω̂ is a suitable
compact hyperstonian topological space. Since E = C0(Ω) is a closed mul-
tiplicative ideal in F and ED is a closed multiplicative ideal in E, also the
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weak∗ closures E = E
w∗

and E0 := E0
w∗

are weak∗-closed M-ideals in F.
Hence we may assume without loss of generality that

E = {f ∈ F : f(Ω̂ \Ω) = 0}, E0 = {f ∈ F : f(Ω̂ \Ω0) = 0}
for some open-closed subsets Ω0 ⊂ Ω ⊂ Ω̂, and the biadjoint A∗∗ maps E0
into F. Consider the operation

(6.8) {xay}∗∗ := 12 [A∗∗(xa)]y + 12 [A∗∗(ya)]x, a ∈ E0, x,y ∈ E.
Since the biadjoint of any positive linear operator (between Banach lattices)
is weak∗-continuous and positive, and since the product in F is separately
weak∗-continuous, the product (6.8) is a separately weak∗-continuous exten-
sion of the triple product {. . .}D. From (5.3) it also follows thatA∗∗(fA∗∗(g))
= A∗∗(gA∗∗(f)) and aA∗∗(fA∗∗(g)) = aA∗∗(f)A∗∗(g) for all a, f ,g ∈ E0.
Thus A∗∗ : E0 → F is a positive linear operator with the property (5.3) and,
by Lemma 5.2, the operation {. . .}∗∗ is a partial Jordan ∗-triple product.
To complete the proof, it remains to verify axioms (J4), (J5) for the prod-

uct {. . .}∗∗ with some bounded circular domain B ⊂ E. The weak∗-closure
of the domain D seems a tempting but technically unsuitable choice for B
in our setting. Instead we proceed as follows. Let Ω1 := Ω \Ω0 and regard
E as the ℓ∞-direct sum of the weak∗-closed ideals E0 and E1 := {f ∈ F :
f(Ω̂ \Ω1) = 0}. Define

B := B0 +B1
where

B0 := intE0 D ∩ED
w∗

, B1 := {x ∈ E1 : max |x| < 1}.
Recall [5, 3] that the bidual of a (full) JB∗-triple is a JB∗-triple with the
separately weak∗-continuous extension of the triple product. Hence, since the
set B0 := D ∩ ED is the open unit ball of the canonical norm ‖a‖{...}D :=
[maxSp[ED ∋ c 7→ {aac}D]]1/2 on ED, its weak∗-closure B0 is the norm clo-
sure of the open unit ball of the norm ‖ · ‖{...}∗∗ on E0. We show that
actually B0 is a (bounded symmetric) complete Reinhardt domain in the
function space E0 ≃ C(Ω0). Indeed, by Lemma 5.2 we have A(fA(g))|Ω0 =
A(f)A(g)|Ω0 for f, g ∈ ED. Hence A∗∗(fA∗∗(g))|Ω0 = A∗∗(f)A∗∗(g)|Ω0 for
f ,g ∈ E0. Since B0 is the canonical unit ball of the triple product {. . .}∗∗
restricted to E30, Lemma 5.2 implies the Reinhardt property of B0. On the
other hand, B1 is trivially a (bounded symmetric) complete Reinhardt do-
main in E1 ≃ C(Ω1). Since (E0,E0, {. . .}∗∗|E30) is a (full) JB∗-triple, for
each a ∈ E0, the operator L(a)x := {aax}∗∗, x ∈ E, is B0-hermitian. On
the other hand, the positivity of A∗∗ (in the sense that it preserves the cone
of all non-negative functions) entails the positivity of all L(a), a ∈ E0. Hence
(J4) is immediate for the partial Jordan ∗-triple (E,E0, {. . .}∗∗) with B in
the role of B there. To establish (J5), we only have to see that given any
a ∈ E0, the operator L(a) is B-hermitian. We have L(a) = 12L0(a)+ 12L1(a)
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where L0(a)x := A∗∗(|a|2)x and L1(a)x := A∗∗(xa)a. The operator L1(a)
is multiplication with a non-negative function in E and hence necessarily
both B0- and B1-hermitian. For L0(a) we have L0(a)E ⊂ Fa ⊂ FE0 = E0
and L0(a)E1 = A

∗∗(E1a)a = A
∗∗(0)a = 0. Thus the complementary ideals

E0 and E1 are invariant subspaces of the operator L(a) which acts on Ek as
a Bk-hermitian operator for both k = 0, 1. Therefore L(a) is B = B0 +B1-
hermitian.

7. Appendix

7.1. Theorem. Let Ω be a locally compact Hausdorff space and φ :
C0(Ω)N → R a continuous positive N -linear form (that is, Φ(f1, . . . , fN ) ≥ 0
for f1, . . . , fN ≥ 0). Then with f1 ⊗ · · · ⊗ fN : (ω1, . . . , ωN ) 7→

∏N
k=1 fk(ωk)

we have

Φ(f1, . . . , fN ) =
\
f1 ⊗ · · · ⊗ fN dµ, f1, . . . , fN ∈ C0(Ω),

for some bounded Radon measure µ on ΩN .

Proof. Consider the family U of all finite minimal open coverings of Ω
including at most one non-precompact member. That is, each U ∈ U can
be written in the form U = {U1, . . . , Um} where Ω =

⋃m
k=1 Uk with open

sets Uk such that U1, . . . , Um−1 have compact closure in Ω and
⋃
i∈I Ui 6= Ω

whenever I is a proper subset of {1, . . . ,m}. The latter property means that
the U is minimal. This minimality property guarantees that for any covering
U ∈ U we can fix a system {UωU : U ∈ U} of points such that

UωU ∈ U \
⋃

U 6=V ∈U

V, U ∈ U .

Since locally compact spaces are paracompact, we can also choose a partition

of unity {UϕU : U ∈ U} subordinated to the covering U . That is,
∑U
U∈UϕU

= 1 where 0 ≤ UϕU ∈ C(Ω) with UϕU (Ω \ U) = 0. Notice that necessarily
UϕU (

UωV ) = δUV (= 1 if U = V, 0 otherwise). Hence the linear operator

PUf :=
∑

U∈U
precompact

f(UωU )
UϕU , f ∈ C0(Ω),

is a projection of C0(Ω)) onto its finite-dimensional subspace with linear
basis {UϕU : U ∈ U precompact}.
The class U has the natural net ordering U ≺ V of being finer. That

is, U ≺ V if for each V ∈ V there exists U ∈ U with V ⊂ U . It is well-
known that, given any f ∈ C0(Ω) and ε > 0, there exists U ∈ U such that
supω1,ω2∈U |f(ω1)− f(ω2)| ≤ ε for all U ∈ U . This means that

lim
U∈U
‖PUf − f‖ = 0, f ∈ C0(Ω).
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Consider the linear functionals

Φ̂U f̂ :=
∑

U1,...,UN∈U
precompact

f̂(UωU1 , . . . ,
UωUN )Φ(

UϕU1 , . . . ,
UϕUN )

on C0(ΩN ). Observe that, for f1, . . . , fN ∈ C0(Ω),
Φ(PUf1, . . . , PUfN ) = Φ̂U (f1 ⊗ · · · ⊗ fN ).

Since the form Φ is assumed to be positive, if −1 ≤ f̂ ≤ 1 we have
∑

U1,...,UN∈U
precompact

(−1)Φ(UϕU1 , . . . , UϕUN ) ≤ Φ̂U f̂ ≤
∑

U1,...,UN∈U
precompact

Φ(UϕU1 , . . . ,
UϕUN ),

which shows that

‖Φ̂U‖ ≤
∑

U1,...,UN∈U
precompact

Φ(UϕU1 , . . . ,
UϕUN ), U ∈ U.

On the other hand, the functions Uf :=
∑
U∈U precompact

UϕU satisfy

0 ≤ Uf ≤ 1,
0 ≤ Φ(Uf, . . . , Uf) =

∑

U1,...,UN∈U
precompact

Φ(UϕU1 , . . . ,
UϕUN ), U ∈ U.

Hence
‖Φ̂U‖ =

∑

U1,...,UN∈U
precompact

Φ(UϕU1 , . . . ,
UϕUN )

≤ ‖φ‖ (:= sup
‖f1‖=···=‖fN‖=1

|Φ(f1, . . . , fN )|).

By the continuity of Φ we have ‖Φ‖ < ∞. According to the Alaoglu–
Bourbaki theorem, the bounded net (Φ̂U )U∈U admits cluster points in the
dual of C0(Ω) in the weak∗ sense. (Actually one could even prove its weak∗
convergence but we do not need this finer argument). By taking any cluster

point Φ̂ of
(
Φ̂U
)
U∈U
, for all f1, . . . , fN ∈ C0(Ω) we have

Φ(f1, . . . , fN ) = lim
U∈U

Φ(PUf1, . . . , PUfN ) = lim
U∈U

Φ̂U (f1 ⊗ · · · ⊗ fN )

= Φ̂(f1 ⊗ · · · ⊗ fN ).
The proof is complete.
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