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Linear combinations of partitions of unity
with restricted supports

by

Christian Richter (Paris)

Abstract. Given a locally finite open covering C of a normal space X and a Hausdorff
topological vector space E, we characterize all continuous functions f : X → E which
admit a representation f=

∑
C∈C aCϕC with aC ∈E and a partition of unity {ϕC : C∈C}

subordinate to C.
As an application, we determine the class of all functions f ∈ C(|P|) on the underlying

space |P| of a Euclidean complex P such that, for each polytope P ∈ P, the restriction
f |P attains its extrema at vertices of P . Finally, a class of extremal functions on the
metric space ([−1, 1]m, d∞) is characterized, which appears in approximation by so-called
controllable partitions of unity.

1. The representation theorem and first conclusions. Let X be a
topological space. A system {ϕι : ι ∈ I} of continuous real-valued functions
is called a partition of unity on X if ϕι ≥ 0 for all ι ∈ I,

∑
ι∈I ϕι ≡ 1, and

the open covering {ϕ−1
ι ((0, 1]) : ι ∈ I} is locally finite. For a locally finite

open covering C = {Cι : ι ∈ I} of X, a partition of unity {ϕι : ι ∈ I} is said
to be subordinate to C if ϕ−1

ι ((0, 1]) ⊆ Cι for all ι ∈ I (cf. [10], p. 352).

For a fixed locally finite open covering C of X and for a Hausdorff topo-
logical vector space E, we want to characterize all continuous functions
f : X → E which admit a representation f =

∑
C∈C aCϕC with vectors

aC ∈ E and a partition of unity {ϕC : C ∈ C} subordinate to C. The follow-
ing theorem solves this question for normal spaces X. We shall see that the
claim of this very general theorem can even be used for characterizing nor-
mal spaces among T1-spaces. Besides that, we shall present an application
concerning continuous real-valued functions on polytopes and on Euclidean
complexes in Rm as they appear in optimization theory (see Section 2).

2000 Mathematics Subject Classification: 54D15, 49J99, 52B11, 41A30.
Key words and phrases: partition of unity subordinate to a covering, continuous

selection, polyhedral complex, entropy numbers, non-linear approximation.
The research was partially supported by DFG Grant RI 1087/2.

[1]



2 C. Richter

A further application deals with continuous real-valued functions on com-
pact metric spaces (X, d) and their approximation by linear combinations of
partitions of unity related to the entropy numbers of (X, d) (see Section 3).

In the theorem we use the symbol conv(·) for the convex hull.

Theorem 1. Let X be a normal space, C a locally finite open covering
of X, E a Hausdorff topological vector space, f : X → E a continuous
function, and aC ∈ E for C ∈ C. Then the following are equivalent :

(i) There exists a partition of unity {ϕC : C ∈ C} subordinate to C such
that

f =
∑

C∈C
aCϕC .

(ii) For all x ∈ X,
f(x) ∈ conv{aC : x ∈ C ∈ C}.

Proof. The implication (i)⇒(ii) is evident (cf. [10], p. 354).
For the proof of the converse we assume C to be well ordered. The par-

tition functions ϕC0 , C0 ∈ C, will be obtained by transfinite induction as
continuous selections of set-valued functions ΦC0 : X → 2R using a selection
theorem from Michael’s paper [5]. The beginning of the induction will be
treated in the same way as the inductive steps.

We define

ΦC0(x) =
{
µC0 : there exist {µC ≥ 0}C∈C such that

∑

C∈C
µC = 1, µC = 0

if x 6∈ C,
∑

C∈C
aCµC = f(x), and µC = ϕC(x) for all C < C0

}
,

where the functions ϕC , C < C0, are supposed to be already known. Note
that for fixed x all but finitely many values µC vanish. Obviously, ΦC0(x) is
convex and compact. If C0 is the smallest element of C, then ΦC0(x) 6= ∅ by
assumption (ii). Otherwise one obtains ΦC0(x) 6= ∅, because ΦC(x) 6= ∅ for
all C < C0 according to the induction hypothesis. Now Theorem 3.1′ of [5]
says that ΦC0 admits a continuous selection ϕC0 if ΦC0 is lower semicontin-
uous (l.s.c.).

Let x0 ∈ X be fixed. We choose an open neighbourhood U of x0 which
intersects only finitely many sets from C, say C1, . . . , Cn, and which, more-
over, satisfies

U ⊆
⋂

x0∈C∈C
C.(1)

If C0 6∈ {C1, . . . , Cn} then ΦC0 is l.s.c. at x0, since then ΦC0(x) = {0} for all
x ∈ U . Now let us assume that C0 ∈ {C1, . . . , Cn}, say C1 < . . . < Ck+1 =
C0 < Ck+2 < . . . < Cn. We use the subsimplex S(x) = {(µ1, . . . , µn) ∈ S :
µi = 0 for x 6∈ Ci} of the simplex S = {(µ1, . . . , µn) : µi ≥ 0,

∑n
i=1 µi = 1},
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the linear map π(µ1, . . . , µn) = (
∑n

i=1 aCiµi;µ1, . . . , µk), the continuous map
g(x) = (f(x);ϕC1(x), . . . , ϕCk(x)), and the set-valued function

Ψ(x) = {(µ1, . . . , µn) ∈ S(x) : π(µ1, . . . , µn) = g(x)} = S(x) ∩ π−1(g(x))

in order to rewrite ΦC0(x), x ∈ U , as

ΦC0(x) = {µk+1 : there exists (µ1, . . . , µn) ∈ Rn
with (µ1, . . . , µn) ∈ Ψ(x)}.

Now it suffices to show that Ψ is l.s.c. at x0, since this obviously implies
that ΦC0 is l.s.c. at x0.

Let an open set W ⊆ Rn be fixed such that Ψ(x0) ∩W 6= ∅. We must
find a neighbourhood V of x0 such that Ψ(x) ∩W 6= ∅ for all x ∈ V . For
every simplex S(x), the restriction of the linear map π : Rn → E × Rk
to S(x) is an open map onto its image π(S(x)). Hence there exists an open
set GS(x) ⊆ E × Rk such that

π(S(x) ∩W ) = π(S(x)) ∩GS(x).

Moreover, g(x0) ∈ GS(x). Indeed, we can choose a vector (µ1, . . . , µn) ∈
Ψ(x0) ∩W . Hence g(x0) = π(µ1, . . . , µn) ∈ π(S(x0) ∩W ) by the definition
of Ψ(x0). The inclusion (1) yields S(x0) ⊆ S(x) for all x ∈ U . Hence g(x0) ∈
π(S(x) ∩W ) ⊆ GS(x).

Since there exist only finitely many simplices S(x), x ∈ U , the set V =
U ∩ g−1(

⋂
x∈U GS(x)) is an open neighbourhood of x0. For all x ∈ V , we

trivially have g(x) ∈ GS(x) and, moreover, g(x) ∈ π(S(x)), for Ψ(x) 6= ∅.
Accordingly, g(x) ∈ π(S(x))∩GS(x) = π(S(x)∩W ) and finally Ψ(x)∩W =
S(x) ∩ π−1(g(x)) ∩W 6= ∅. Hence Ψ is l.s.c. at x0.

Now Theorem 3.1′ of [5] yields a continuous selection ϕC0 of ΦC0 . It fol-
lows from the definition of the multifunctions ΦC , C ∈ C, that the resulting
functions ϕC form a partition of unity with the properties claimed in (i).

As a special case we consider peaked coverings C of X. A covering C is
called peaked if, for all C0 ∈ C, the set C0 \

⋃
C∈C\{C0} C is non-empty. All

points x ∈ C0 \
⋃
C∈C\{C0}C are called peaks of the covering set C0.

The motivation for this name is given by the concept of a peaked parti-
tion of unity {ϕι : ι ∈ I} introduced in [6], which is defined by the property
that, for all ι ∈ I, there exists a point x ∈ X with ϕι(x) = 1. Clearly, a
peaked partition of unity gives rise to a peaked covering {ϕ−1

ι ((0, 1]) : ι ∈ I}.
Conversely, any partition of unity {ϕι : ι ∈ I} subordinate to a peaked
covering {Cι : ι ∈ I} is peaked.

Corollary 1. Let X be a normal space, C a locally finite peaked open
covering of X with peaks xC ∈ C, E a Hausdorff topological vector space,
and f : X → E a continuous function. Then the following are equivalent :
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(i) There exists a partition of unity {ϕC : C ∈ C} subordinate to C and
vectors aC ∈ E such that

f =
∑

C∈C
aCϕC .

(ii) For all x ∈ X,

f(x) ∈ conv{f(xC) : x ∈ C ∈ C}.
Proof. The points xC ∈ C being peaks we get f(xC) = aC from (i).

By Theorem 1, condition (i) implies that f(x) ∈ conv{aC : x ∈ C ∈ C} =
conv{f(xC) : x ∈ C ∈ C} for all x ∈ X. This proves the implication (i)⇒(ii).
The converse direction (ii)⇒(i) can easily be seen by applying Theorem 1
to the vectors aC = f(xC).

Let us point out that the normality of X cannot be weakened in Theo-
rem 1 as well as in Corollary 1. In fact, the implications (ii)⇒(i) from Theo-
rem 1 and Corollary 1 can be used to characterize normal spaces among
T1-spaces.

Theorem 2. Let X be a T1-space. Then the following are equivalent :

(α) X is normal.
(β) The implication (ii)⇒(i) from Theorem 1 holds true for all locally

finite open coverings C of X, all Hausdorff topological vector spaces E, all
continuous functions f : X → E, and all vectors aC ∈ E, C ∈ C.

(γ) The implication (ii)⇒(i) from Corollary 1 holds true for all locally
finite peaked open coverings C of X with peaks xC ∈ C, all Hausdorff topo-
logical vector spaces E, and all continuous functions f : X → E.

The equivalences remain valid if E is replaced by the particular space R.

Proof. The implication (α)⇒(β) is given by Theorem 1. (β)⇒(γ) was
shown in the proof of Corollary 1. To prove (γ)⇒(α), let A,B ⊆ X be two
disjoint closed non-empty sets. Applying Corollary 1 to C = {X \A, X \B},
E = R, and f ≡ 1 one obtains a partition function ϕ = ϕX\B such that
ϕ|A ≡ 1 and ϕ|B ≡ 0.

We close this section with a corollary on partitions of unity which is
well-known from the literature (cf. [10], p. 353). However, Theorem 1 gives
rise to a very simple proof. One only has to apply the implication (ii)⇒(i)
to the constant function f ≡ 1 and the reals aC = 1.

Corollary 2. For any locally finite open covering C of a normal space
X, there exists a partition of unity {ϕC : C ∈ C} on X subordinate to C.

2. A question from optimization theory. Another application of
Theorem 1 concerns a question from optimization theory. We consider an
m-dimensional polytope P ⊆ Rm. A polytope is meant to be the convex hull
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of a finite set of points. The face lattice F(P ) of P is the set of all k-faces
of P , −1 ≤ k ≤ m. A k-face of P with 0 ≤ k ≤ m − 1 is a k-dimensional
intersection of P with a supporting hyperplane of P . Besides that, the empty
set ∅ and the polytope P itself are considered as the (−1)-face and them-face
of P , respectively. For example, the face lattice F(S) of a square S ⊆ R2

consists of ∅ (the (−1)-face), the four singletons {v} formed by the vertices
v ∈ vert(S) (the 0-faces), the four edges (the 1-faces), and S (the 2-face).
Note that all faces of a polytope P are polytopes themselves.

The following simple fact is widely used in optimization theory: Let the
continuous real-valued function f ∈ C(P ) be convex (resp. concave) and let
F ∈ F(P ) be a face of P . Then the restriction f |F attains its maximum
(resp. minimum) at a vertex of F .

We want to tackle a related problem: Given a polytope P , we ask for a
characterization of all functions f ∈ C(P ) such that, for all faces F ∈ F(P ),
f |F attains its minimum and its maximum at vertices of F , that is,

min f(F ),max f(F ) ∈ f(vert(F )).

Before giving the solution we generalize the problem in so far as we consider
Euclidean complexes instead of single polytopes.

A Euclidean complex P in Rm is a non-empty collection of polytopes
P ⊆ Rm satisfying the following three conditions (cf. [9], p. 313):

(C1) For all P ∈ P, all faces of P belong to P:

P ∈ P ⇒ F(P ) ⊆ P.
(C2) For all P,Q ∈ P, the intersection P ∩Q is a face of both P and Q:

P,Q ∈ P ⇒ P ∩Q ∈ F(P ) ∩ F(Q).

(C3) The system P is locally finite in the so-called underlying space

|P| =
⋃

P∈P
P

of P. (Clearly, the topology of |P| is induced by the usual topology of Rm.)

Euclidean complexes generalize the concept of a polytope in the sense
that the face lattice of any polytope is a Euclidean complex. A useful refe-
rence concerning Euclidean complexes is [4], Chapter 2. Although the com-
plexes considered there are supposed to be finite and the emphasis is even
on the particular case where all polytopes are simplices, many arguments of
that exposition apply to the general case.

The set vert(P) of the vertices of the complex P contains all vertices of
polytopes fromP. The relative interior relint(P ) of a polytope P is meant to
be the interior of P with respect to the topology of the affine space spanned
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Fig. 1

by P . For a vertex v ∈ vert(P), the star of v is defined by

st(v) =
⋃

P∈P, v∈vert(P )

relint(P ).

Examples of stars are illustrated in Figure 1.

Lemma. A Euclidean complex P in Rm has the following properties:

(a) The underlying space |P| can be expressed as the disjoint union

|P| =
⋃

P∈P
relint(P ).

(b) For all P ∈ P, v ∈ vert(P), and x ∈ |P|,
x ∈ relint(P ) ⇒ (x ∈ st(v) ⇔ v ∈ vert(P )).

(c) The system {st(v) : v ∈ vert(P)} is a locally finite peaked open cover-
ing of the topological space |P| with peaks v ∈ st(v).

Proof. Part (a) can be obtained by following the proof of Theorem 2.2.2
from [4].

To prove (b), assume that x ∈ relint(P ). First suppose that x ∈ st(v) =⋃
Q∈P, v∈vert(Q) relint(Q). Then, by (a), P ∈ {Q ∈ P : v ∈ vert(Q)} and

hence v ∈ vert(P ). The opposite implication is a trivial consequence of the
definition of st(v) and of the inclusion x ∈ relint(P ).

Now we turn to (c). Applying the proofs of Assertions 2.3.12 and 2.3.15
from [4] one shows that {st(v) : v ∈ vert(P)} is an open covering of |P|.

The peak property of a star st(v) can be seen as follows: By (a), the only
polytope P ∈ P with v ∈ relint(P ) is P = {v}. By (b), we obtain v ∈ st(w)
if and only if w ∈ vert({v}), i.e. w = v. Thus v is a peak of st(v).

Finally, we fix a point x ∈ |P| in order to show that {st(v) : v ∈ vert(P)}
is locally finite. By (C3), there exists a neighbourhood U ⊆ |P| of x inter-
secting at most finitely many of the relatively open polytopes relint(P ),
P ∈ P. We assume that U ∩ relint(P ) 6= ∅ for P ∈ {P1, . . . , Pl} only.
By (b), all the sets st(v) covering at least one point y ∈ U must satisfy
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v ∈ vert(P1) ∪ . . . ∪ vert(Pl). Accordingly, U intersects only finitely many
sets from {st(v) : v ∈ vert(P)}.

Given a Euclidean complex P, we have to characterize all functions f ∈
C(|P|) with

min f(P ),max f(P ) ∈ f(vert(P )) for all P ∈ P.
These functions turn out to be linear combinations of partitions of unity
subordinate to the covering {st(v) : v ∈ vert(P)}.

Theorem 3. Let P be a Euclidean complex in Rm and let f ∈ C(|P|).
Then the following are equivalent :

(i) The function f can be represented as

f =
∑

v∈vert(P)

λvϕv

with coefficients λv ∈ R and a partition of unity {ϕv : v ∈ vert(P)} on |P|
subordinate to the covering {st(v) : v ∈ vert(P)}.

(ii) For all polytopes P ∈ P,

min f(P ),max f(P ) ∈ f(vert(P )).

Proof. The above preparations make the proof rather easy, although
the implication from the global condition (i) to the more or less local one
(ii) is not as trivial as in Theorem 1. We apply Corollary 1 to the locally
finite peaked open covering {st(v) : v ∈ vert(P)} and the peaks v ∈ st(v).
Accordingly, condition (i) is equivalent to

(2) ∀x ∈ |P| : f(x) ∈ conv{f(v) : x ∈ st(v)}.
The arguments we shall give below show that the following six claims are
equivalent to (i) as well:

(3) ∀x ∈ |P|, ∀P ∈ P : x ∈ relint(P ) ⇒ f(x) ∈ conv{f(v) : x ∈ st(v)},
(4) ∀x ∈ |P|, ∀P ∈ P : x ∈ relint(P ) ⇒ f(x) ∈ conv(f(vert(P ))),

(5) ∀x ∈ |P|, ∀P ∈ P : x ∈ P ⇒ f(x) ∈ conv(f(vert(P ))),

(6) ∀P ∈ P : f(P ) ⊆ conv(f(vert(P ))),

(7) ∀P ∈ P : min f(P ),max f(P ) ∈ conv(f(vert(P ))),

(8) ∀P ∈ P : min f(P ),max f(P ) ∈ f(vert(P )).

Indeed, (2)⇔(3) and (3)⇔(4) are consequences of claims (a) and (b), re-
spectively, from the lemma. (4)⇔(5) is due to the continuity of f . The
equivalences (5)⇔(6) and (6)⇔(7) are obvious. The final step (7)⇔(8) is
based on the trivial inclusion vert(P ) ⊆ P .

Hence the assertion (i)⇔(ii) is shown, since (8) coincides with (ii).
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3. An approximation class on ([−1, 1]m, d∞). In this section we shall
sketch the approximation by so-called controllable partitions of unity (see
[11], [8], [7]). This method of approximating real-valued continuous func-
tions on compact metric spaces gave rise to the fairly general considerations
of the present paper. Theorem 3 will be applied to describe a particular
approximation class on the cube ([−1, 1]m, d∞).

Let (X, d) be a compact metric space. Then the kth entropy number of
a subset S ⊆ X is given by

εk(S) = inf{ε > 0 : S can be covered by k balls of radius ε}
(cf. [3], p. 7). A finite partition of unity {ϕ1, . . . , ϕk} on X is called control-
lable if either k = 1, i.e. {ϕ1} = {1X} is the trivial partition of unity, or the
partition satisfies the geometric uniformity condition

ε1(supp(ϕi)) < εk−1(X) for 1 ≤ i ≤ k
restricting the size of the supports supp(ϕi) = {x ∈ X : ϕi(x) 6= 0} of the
single functions ϕi. One uses linear combinations of controllable partitions
of unity from the classes

Φn(X) =
{ k∑

i=1

λiϕi : λi ∈ R, {ϕ1, . . . , ϕk} is a controllable

partition of unity on X with cardinality k ≤ n
}
,

n = 1, 2, . . . , in order to define a sequence of approximation numbers an(f)
for functions f ∈ C(X) by

an(f) = inf{‖f − ϕ‖ : ϕ ∈ Φn(X)},
‖ · ‖ denoting the maximum norm of C(X). These approximation quantities
give rise to the Jackson type estimate

an(f) ≤ ω(f, εn(X))

for all f ∈ C(X) and n ∈ {1, 2, . . .}, where ω(f, δ) = sup{|f(x) − f(y)| :
d(x, y) ≤ δ} is the modulus of continuity.

Now we turn to approximation on the cube [−1, 1]m equipped with the
maximum metric d∞. In [11] it is shown that controllable partitions of unity
of cardinality k ≥ 2 on a space X exist if and only if the jump condition
εk(X) < εk−1(X) is satisfied. The cube [−1, 1]m has the entropy numbers
εlm([−1, 1]m) = εlm+1([−1, 1]m) = . . . = ε(l+1)m−1([−1, 1]m) = 1/l for l ≥ 1
(cf. [1], [2]). Thus there exist controllable partitions of unity exactly for
the cardinalities k = 1, 2m, 3m, . . . In particular, the approximation classes
Φn([−1, 1]m), 1 ≤ n ≤ 2m−1, coincide and consist of the constant functions
only. The first interesting class is Φ2m([−1, 1]m) formed by all linear combi-
nations of controllable partitions of unity of cardinality 2m. We shall charac-
terize all functions f ∈ C([−1, 1]m) belonging to the closure Φ2m([−1, 1]m),
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which means that a2m(f) = 0. In [8] this characterization is already given
for the one-dimensional case m = 1.

Theorem 4. Let f be a continuous real-valued function on the compact
metric space ([−1, 1]m, d∞). Then the following are equivalent :

(i) f ∈ Φ2m([−1, 1]m).
(ii) For all faces Q ∈ F([−1, 1]m),

min f(Q),max f(Q) ∈ f(vert(Q)).

Proof. First we point out that a partition of unity Φ of cardinality 2m

on [−1, 1]m is controllable if and only if there exists some ε > 0 such that
the partition has the structure

Φ = {ϕv : v ∈ vert([−1, 1]m)} with supp(ϕv) ⊆ B2−ε(v),

B2−ε(v) denoting the open ball of radius 2− ε centred at v. Indeed, Φ must
satisfy the uniformity condition ε1(supp(ϕ)) < ε2m−1([−1, 1]m) = 1 for all
ϕ ∈ Φ. That is, there exists some ε > 0 such that ε1(supp(ϕ)) ≤ 1− ε/2 or,
in other words, each support supp(ϕ) is contained in a closed subcube with
edges of length 2−ε. Thus each vertex v ∈ [−1, 1]m belongs to exactly one of
the 2m supports, say v ∈ supp(ϕv) and Φ = {ϕv : v ∈ vert([−1, 1]m)}. The
condition of being contained in a cube with edges of length 2 − ε amounts
to supp(ϕv) ⊆ B2−ε(v) for v ∈ vert([−1, 1]m).

Next we observe that the covering C = {st(v) : v ∈ vert([−1, 1]m)} of
the cube [−1, 1]m induced by the face lattice F([−1, 1]m) in the sense of
the previous section is given by st(v) = B2(v), v ∈ vert([−1, 1]m). Hence a
partition of unity {ϕv : v ∈ vert([−1, 1]m)} is subordinate to C if and only if

ϕ−1
v ((0, 1]) ⊆ B2(v) for v ∈ vert([−1, 1]m).

Now let us verify the implication (i)⇒(ii). We have already seen that any
controllable partition of unity of cardinality 2m is subordinate to C. Hence,
by Theorem 3, as any function ϕ ∈ Φ2m([−1, 1]m) is a linear combination of
a partition of unity of this kind, it satisfies the extremality condition

minϕ(Q),maxϕ(Q) ∈ ϕ(vert(Q)) for all Q ∈ F([−1, 1]m).

It can easily be checked that this remains true if one passes from elements
ϕ of the class Φ2m([−1, 1]m) to functions from the closure Φ2m([−1, 1]m).

The proof of the converse direction (ii)⇒(i) again uses Theorem 3. We
assume that f satisfies condition (ii). Then it must admit a representation

f =
∑

v∈vert([−1,1]m)

λvϕv

with λv ∈ R and a partition of unity {ϕv : v ∈ vert([−1, 1]m)} subordinate
to C, i.e. ϕ−1

v ((0, 1]) ⊆ B2(v). Let 0 < ε < 1. We consider the metric
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projection Pε : [−1, 1]m → [−1 + ε, 1− ε]m given by

Pε(x) = y ⇔ d2(x, y) = min{d2(x, z) : z ∈ [−1 + ε, 1− ε]m},
d2 denoting the Euclidean distance. Moreover, let Dε : [−1 + ε, 1 − ε]m →
[−1, 1]m be the dilatation mapping y onto y/(1− ε). Now a new partition
of unity {ϕ(ε)

v : v ∈ vert([−1, 1]m)} can be defined by

ϕ(ε)
v = ϕvDεPε for v ∈ vert([−1, 1]m).

Then obviously

supp(ϕ(ε)
v ) = P−1

ε D−1
ε (ϕ−1

v ((0, 1])) ⊆ P−1
ε D−1

ε (B2(v))

= P−1
ε ([−1 + ε, 1− ε]m ∩B2−ε(v)) = B2−ε(v).

Therefore the partition of unity {ϕ(ε)
v : v ∈ vert([−1, 1]m)} is controllable

and ϕε =
∑

v∈vert([−1,1]m) λvϕ
(ε)
v belongs to Φ2m([−1, 1]m). We obtain ϕε =

fDεPε and

‖f − ϕε‖ ≤ ω(f, 2ε),

since d∞(x,DεPε(x)) ≤ d∞(x, Pε(x)) +d∞(Pε(x),DεPε(x)) ≤ ε+ ε = 2ε for
x ∈ [−1, 1]m.

Consequently, f can be written as a limit f = limε↓0 ϕε of functions
ϕε ∈ Φ2m([−1, 1]m). This is our claim.

One can read Theorem 4 as an approximation-theoretic characterization
of extremal functions on the cube. Besides that, Theorem 4 shows that the
first non-trivial approximation class Φ2m([−1, 1]m) on the cube is surprising-
ly large and serves as an example of a non-linear approximation class.

Note that Theorem 4 is essentially based on the choice of the metric
d∞ on the cube, which reflects the polyhedral structure of [−1, 1]m. We
conjecture that an analogue of the above theorem can be proved for all
polytopes P . Then the extremal functions f ∈ C(P ) would arise as the
functions with ak(f) = 0 where k denotes the number of vertices of P . The
crucial step to such a generalization of Theorem 4 seems to be the definition
of an appropriate metric dP on P . For instance, if P is the unit ball of a
Banach space and if d‖·‖ is the metric on P induced by the norm, then the
above-mentioned analogue of Theorem 4 need not be true for the compact
space (P, d‖·‖) in general.
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