Hyers-Ulam constants of Hilbert spaces

by
Taneli Huuskonen and Jussi Väisälä (Helsinki)

Abstract

The best constant in the Hyers-Ulam theorem on isometric approximation in Hilbert spaces is equal to the Jung constant of the space.

1. Introduction

1.1. Nearisometries. We first introduce some notation. Throughout the paper, E will be a real Banach space (possibly a Hilbert space) with $\operatorname{dim} E$ ≥ 1. The norm of a vector $x \in E$ is written as $|x|$. We let $\bar{B}(x, r)$ denote the closed ball with center x and radius r, and we set $\bar{B}(r)=\bar{B}(0, r)$. The diameter of a set $A \subset E$ is $d(A)$. For maps $f, g: E \rightarrow E$ we set

$$
d(f, g)=\sup _{x \in E}|f x-g x|
$$

with the possibility $d(f, g)=\infty$.
We say that a map $f: E \rightarrow E$ is a nearisometry if there is a number $\varepsilon \geq 0$ such that

$$
|x-y|-\varepsilon \leq|f x-f y| \leq|x-y|+\varepsilon
$$

for all $x, y \in E$. More precisely, such a map is an ε-nearisometry. We do not assume that f is continuous.
1.2. Background. D. H. Hyers and S. M. Ulam [HU] proved in 1945 that every surjective ε-nearisometry $f: E \rightarrow E$ of a Hilbert space E can be approximated by a surjective isometry $T: E \rightarrow E$ such that

$$
\begin{equation*}
d(T, f) \leq c \varepsilon \tag{1.3}
\end{equation*}
$$

with $c=10$. The result was extended to all Banach spaces with $c=5$ by J. Gevirtz [Ge] in 1983; an important step towards this proof was made by P. M. Gruber [Gr] in 1978. M. Omladič and P. Šemrl [OŠ] proved in 1995 that the result is true with $c=2$. Moreover, if $f(0)=0$, the isometry T can be chosen so that $T(0)=0$, that is, T is linear. They also proved that the

[^0]constant 2 is best possible for such T. In 1998 Šemrl [Še, 1.1] proved that even without the condition $T(0)=0$, the bound 2ε is best possible in the class of all Banach spaces. However, he also proved [Še, 1.2] that for a given Banach space E, the result holds for all c greater than the Jung constant $J(E)$ of E.
1.4. Definitions. The Jung constant $J(E)$ of E is the infimum of all $r>0$ such that every set $A \subset E$ with $d(A) \leq 2$ is contained in a ball of radius r. We say that $J(E)$ is attained if this infimum is a minimum, that is, A is contained in some ball $\bar{B}(x, J(E))$.

For all spaces we have $1 \leq J(E) \leq 2$, and $J\left(\mathbb{R}^{n}\right)=\sqrt{2 n /(n+1)}<\sqrt{2}$ by the classical result proved by H. W. E. Jung [Ju] in 1901. Furthermore, $J(E)=\sqrt{2}$ for infinite-dimensional Hilbert spaces; see [Ro, Th. 1] for separable spaces, and [Da, Th. 2] or [Še, p. 704] for arbitrary spaces. Moreover, the Jung constant of a Hilbert space is always attained; see [Ro, Th. 9] and [Da, Th. 1].

The Hyers-Ulam constant $H(E)$ of E is the infimum of all $c>0$ such that for each surjective ε-nearisometry $f: E \rightarrow E$ there is a surjective isometry $T: E \rightarrow E$ satisfying (1.3). This constant is attained if T can always be chosen so that $d(T, f)=H(E) \varepsilon$.

We let $H_{\mathrm{c}}(E)$ denote the constant defined as $H(E)$ but considering only continuous surjective nearisometries $f: E \rightarrow E$. Clearly $H_{\mathrm{c}}(E) \leq H(E)$.

We summarize the results given above as follows.
1.5. Theorem (Hyers-Ulam-Gruber-Gevirtz-Omladič-Šemrl). Let E be a Banach space with $\operatorname{dim} E \geq 1$ and let $f: E \rightarrow E$ be a surjective ε-nearisometry with $f(0)=0$. Then there is a surjective linear isometry $T: E \rightarrow E$ such that $d(T, f) \leq 2 \varepsilon$. Moreover, $H(E) \leq J(E)$. If $J(E)$ is attained, there is a surjective isometry $T: E \rightarrow E$ with $d(T, f) \leq J(E) \varepsilon$.

The proof of the first part is given in [OŠ] and (slightly simplified) in [BL, Th. 15.2]. The second part follows rather easily from the first part, as shown in [Še, 1.2].

The purpose of this paper is to prove that $H_{\mathrm{c}}(E)=H(E)=J(E)$ for all Hilbert spaces. Some remarks on Banach spaces are given in Section 3.
1.6. Remark. More generally, Theorem 1.5 holds for nearisometries $f: E \rightarrow F$ onto another Banach space F. Since it follows that E and F are isometrically isomorphic, the restriction to the case $E=F$ is no loss of generality from the point of view of the present paper.
1.7. The role of surjectivity. The surjectivity condition in 1.5 can sometimes be weakened (see [Di, Th. 2]), and it can be entirely omitted if $\operatorname{dim} E<\infty$; see [BS, Th. 1] and [Di, Th. 1]. For our purposes it is convenient to consider ε-nearisometries $f: E \rightarrow E$ for which $E \backslash f E$ is a
bounded set. We let $H_{0}(E)$ denote the infimum of all $c>0$ such that for each such f there is a surjective isometry $T: E \rightarrow E$ with $d(T, f) \leq c \varepsilon$. Trivially $H(E) \leq H_{0}(E)$.

We give the following variation of 1.5.
1.8. TheOrem. In Theorem 1.5 one can replace the surjectivity of f by the condition that $E \backslash f E$ be bounded. In particular, $H_{0}(E) \leq J(E)$.

Proof. Suppose that $f: E \rightarrow E$ is an ε-nearisometry with $f(0)=0$ and that $E \backslash f E \subset \bar{B}(2 R)$ with $R>\varepsilon$. Define a map $g: E \rightarrow E$ by $g x=2 x$ for $|x| \leq R$ and by $g x=f x$ for $|x|>R$. Then g is a surjective nearisometry with $d(g, f)<\infty$. By 1.5 there is a surjective linear isometry $T: E \rightarrow E$ with $d(T, f)<\infty$.

Replacing f by $T^{-1} f$ we may assume that $T=\mathrm{id}$. We can now proceed as in the lower half of p .362 of [BL], since the points z_{n} are defined for large n. Note, however, a misprint in the estimate for $\left\|z_{n}\right\|$. It should read

$$
\left\|z_{n}\right\| \leq\left\|f\left(x+z_{n}\right)-f(x)\right\|+\varepsilon=\|x+(n+a) y-(a y+x)\|+\varepsilon=n+\varepsilon .
$$

We obtain $|f x-x| \leq 2 \varepsilon$ for all $x \in E$. The second part of the theorem follows as in [Še, 1.2].
1.9. Remarks. 1. The condition of 1.8 can still be relaxed as follows:
(1) The function $x \mapsto d(x, f E)$ is bounded in E.
(2) The set $R \cap f E$ is unbounded for each ray $R \subset E$.

Indeed, the proof of [Di, Th. 2] gives a surjective nearisometry $g: E \rightarrow E$ with $d(g, f)<\infty$, and we can proceed essentially as in 1.8.
2. We always have

$$
\begin{equation*}
1 \leq H_{\mathrm{c}}(E) \leq H(E) \leq H_{0}(E) \leq J(E) \leq 2 \tag{1.10}
\end{equation*}
$$

It suffices to prove the first inequality, since the other inequalities either follow from 1.8 or are trivial.

Let $q>0$ and define a function $\varphi:[0, \infty[\rightarrow \mathbb{R}$ by

$$
\varphi(t)= \begin{cases}-t & \text { for } 0 \leq t \leq 1 \\ -1+(2+q)(t-1) / q & \text { for } 1 \leq t \leq 1+q \\ t & \text { for } t \geq 1+q\end{cases}
$$

The map $f: E \rightarrow E$, defined by $f(0)=0$ and by $f(x)=\varphi(|x|) x /|x|$ for $x \neq 0$, is surjective and continuous with $d(f, \mathrm{id})<\infty$. If $T: E \rightarrow E$ is an isometry with $d(T, f)=c<\infty$, the unit ball is contained in a ball of radius $c / 2$ by Lemma 1.13 below, and thus $c \geq 2$. Since $f=$ id outside the ball $B(1+q)$ and since f maps this ball onto itself, we easily see that f is a $(2+2 q)$-nearisometry. Hence $H_{\mathrm{c}}(E) \geq 1 /(1+q)$, which gives the first inequality as $q \rightarrow 0$.

We are ready to state the main result of the paper.
1.11. Theorem. For every Hilbert space E with $\operatorname{dim} E \geq 1$ we have $H_{\mathrm{c}}(E)=H(E)=H_{0}(E)=J(E)$. Moreover, the constants $H_{\mathrm{c}}(E), H(E)$ and $H_{0}(E)$ are attained. Thus $H\left(\mathbb{R}^{n}\right)=\sqrt{2 n /(n+1)}$, and $H(E)=\sqrt{2}$ if $\operatorname{dim} E=\infty$.

By (1.10) it suffices to show that $J(E) \leq H_{\mathrm{c}}(E)$. This will be done in 2.12. However, we shall first give a proof for the weaker inequality $J(E) \leq$ $H_{0}(E)$ in 2.11, because it is more straightforward.

Since the Jung constant of a Hilbert space is attained, the constants $H_{\mathrm{c}}(E), H(E)$ and $H_{0}(E)$ are attained by 1.5.

The following observations are used several times in the paper.
1.12. Lemma. Let $T: E \rightarrow E$ be a surjective isometry of a Banach space E with $d(T, \mathrm{id})<\infty$. Then T is of the form $T x=x+w$ for some $w \in E$.

Proof. Replacing $T x$ by $T x-T(0)$ we may assume that $T(0)=0$. Then T is linear by the Mazur-Ulam theorem. Hence T-id is a linear map with bounded image, and thus $T=\mathrm{id}$.
1.13. Lemma. Suppose that $A \subset E$ and that $f: E \rightarrow E$ is a map such that $d(f, \mathrm{id})<\infty$ and $f x=-x$ for all $x \in A$. Suppose also that $T: E \rightarrow E$ is an isometry with $d(T, f) \leq q<\infty$. Then A is contained in a ball of radius $q / 2$.

Proof. By Lemma 1.12, T is of the form $T x=x+w$ for some $w \in E$. For $x \in A$ we have $q \geq|T x-f x|=|2 x+w|$. Hence $A \subset \bar{B}(-w / 2, q / 2)$.

We thank Pekka Alestalo and Eero Saksman for carefully reading the manuscript and for valuable remarks.

2. Proofs

2.1. Notation. In this section we assume that E is a real Hilbert space with $\operatorname{dim} E \geq 1$. The inner product of vectors $x, y \in E$ is written as $x \cdot y$. The unit sphere of E is $S(1)=\{x \in E:|x|=1\}$. For each $u \in S(1)$ we let $p_{u}: E \rightarrow \mathbb{R}$ denote the projection $p_{u} x=x \cdot u$. The line spanned by u is written as L_{u}, and $d\left(x, L_{u}\right)$ denotes the distance between a point $x \in E$ and L_{u}.
2.2. Lemma. Suppose that $u \in S(1)$, that $s, t \in \mathbb{R}$, and that $a, b \in E$ with $d\left(a, L_{u}\right)=d\left(b, L_{u}\right)$. Then

$$
||s u-a|-|t u-b|| \leq\left|\left|s-p_{u} a\right|-\left|t-p_{u} b\right|\right| .
$$

Proof. By performing auxiliary isometries of the triples $\left\{a,\left(p_{u} a\right) u, s u\right\}$ and $\left\{b,\left(p_{u} b\right) u, t u\right\}$ we may assume that $a=b, p_{u} a=p_{u} b=0, s \geq 0, t \geq 0$, and the lemma follows from the triangle inequality.
2.3. The basic construction. In the rest of the section we assume that $A \subset E$ is a set with $0 \in A \subset \bar{B}(3 / 4)$ and $d(A) \leq 1$. We associate to A a map $f: E \rightarrow E$ as follows.

For each $u \in S(1)$ we set

$$
\alpha_{u}=\inf p_{u} A, \quad \beta_{u}=\sup p_{u} A
$$

Then

$$
\begin{equation*}
\alpha_{u} \leq 0 \leq \beta_{u} \leq \alpha_{u}+1 \tag{2.4}
\end{equation*}
$$

Define a function $h: S(1) \rightarrow \mathbb{R}$ by

$$
h(u)= \begin{cases}2 \beta_{u}-1 & \text { if } \beta_{u} \geq 1 / 2 \tag{2.5}\\ 1+2 \alpha_{u} & \text { if } \alpha_{u} \leq-1 / 2 \\ 0 & \text { if } \alpha_{u} \geq-1 / 2 \text { and } \beta_{u} \leq 1 / 2\end{cases}
$$

Since $\beta_{u} \leq \alpha_{u}+1$ by (2.4), the function h is well defined. Furthermore,

$$
\begin{equation*}
\alpha_{-u}=-\beta_{u}, \quad \beta_{-u}=-\alpha_{u}, \quad h(-u)=-h(u), \quad|h(u)| \leq 1 / 2 \tag{2.6}
\end{equation*}
$$

for all $u \in S(1)$. Clearly h is continuous.
The map $f: E \rightarrow E$ is now defined by

$$
f(x)= \begin{cases}-x & \text { for } x \in A \tag{2.7}\\ x-h(u) u & \text { for } x \in L_{u} \backslash A, u \in S(1)\end{cases}
$$

Since $0 \in A$ and since $h(-u)=-h(u)$ by (2.6), the map f is well defined. Furthermore,

$$
\begin{equation*}
d(f, \mathrm{id})=2 \sup \{|x|: x \in A\} \leq 3 / 2 \tag{2.8}
\end{equation*}
$$

2.9. Lemma. The map $f: E \rightarrow E$ defined by (2.7) is a 1-nearisometry.

Proof. Let $x, y \in E$. We must show that

$$
\begin{equation*}
\delta=||f x-f y|-|x-y|| \leq 1 \tag{2.10}
\end{equation*}
$$

If $x, y \in A$, then $\delta=0$. Assume that $x, y \in E \backslash A$. Choose $u \in S(1)$ with $x \in L_{u}$. Then $|f x-x|=|h(u)| \leq 1 / 2$ by (2.6). Similarly $|f y-y| \leq 1 / 2$, and (2.10) follows.

In the rest of the proof we assume that $x \in A$ and $y \in E \backslash A$. Write $y=s u$ with $u \in S(1), s \in \mathbb{R}$. We may assume that $h(u) \geq 0$ replacing u by $-u$ if necessary. To simplify notation we write

$$
p=p_{u}, \quad \alpha=\alpha_{u}, \quad \beta=\beta_{u}, \quad h=h(u) .
$$

By Lemma 2.2 we get

$$
\delta \leq||s-h+p x|-|s-p x|| \leq|2 p x-h|
$$

If $h=0$, then $|p x| \leq \max \{|\alpha|, \beta\} \leq 1 / 2$ and $\delta \leq 1$. Assume that $h>0$. Then $h=2 \beta-1$ and $|\alpha|<1 / 2<\beta$. Since $\alpha \leq p x \leq \beta$ and $\beta \leq \alpha+1$, we obtain

$$
2 p x-h \leq 2 \beta-2 \beta+1=1, \quad h-2 p x \leq 2 \beta-1-2 \alpha \leq 1
$$

Thus $\delta \leq 1$.

We turn to the proof of Theorem 1.11. It will follow from Proposition 2.12 below, but we first prove a weaker result.
2.11. Proposition. $H_{0}(E) \geq J(E)$.

Proof. Let $0<\varepsilon \leq 3 / 4-\sqrt{2} / 2$ and set $r=J(E) / 2+\varepsilon$. By the definition 1.4 of the Jung constant, there is a set $A \subset E$ such that $d(A)=1, A \subset \bar{B}(r)$ and A is not contained in any ball of radius $r-2 \varepsilon$. Since $A \subset \bar{B}(3 / 4) \subset \bar{B}(1)$, the set $A \cup\{0\}$ has the same properties. Hence we may assume that $0 \in A$. Since $J(E) \leq \sqrt{2}$, we have $r \leq 3 / 4$. We can thus apply the construction of 2.3 and obtain the map $f: E \rightarrow E$ defined by (2.7). Since $|h(u)| \leq 1 / 2$ for all $u \in S(1)$ by (2.6), we have $E \backslash f E \subset \bar{B}(5 / 4)$. Since f is a 1-nearisometry by 2.9, there is a surjective isometry $T: E \rightarrow E$ with $d(T, f) \leq H_{0}(E)+\varepsilon=q$. By 1.13 , there is a ball of radius $q / 2$ containing A. Hence $r-2 \varepsilon<q / 2$, which yields $J(E)<H_{0}(E)+3 \varepsilon$. As $\varepsilon \rightarrow 0$, this proves the proposition.
2.12. Proposition. $H_{\mathrm{c}}(E) \geq J(E)$.

Proof. Assume first that $\operatorname{dim} E=n<\infty$. Set $K=J(E) / 2=\sqrt{n /(2(n+1))}$. Choose a regular n-simplex Δ centered at the origin with $d(\Delta)=1$. Let v_{0}, \ldots, v_{n} be the vertices of Δ. Then $\left|v_{j}\right|=K$ for all $0 \leq j \leq n$. Moreover, Δ is not contained in any ball of radius less than K.

Setting $A=\left\{0, v_{0}, \ldots, v_{n}\right\}$ we have $d(A)=1$ and $A \subset \bar{B}(K) \subset \bar{B}(3 / 4)$. Hence we may apply the construction of 2.3 and obtain a function $h: S(1) \rightarrow$ \mathbb{R} and a map $f: E \rightarrow E$, defined by (2.5) and (2.7). The map f is a 1-nearisometry by 2.9 , and f is continuous in $E \backslash A$. We next modify f in a neighborhood of A to get a continuous nearisometry.

Choose a small number $r>0$ such that the balls $\bar{B}(a, r)$ are disjoint for $a \in A$. For each $a \in A$ we define $g_{r}: \bar{B}(a, r) \rightarrow E$ by

$$
g_{r}((1-t) a+t z)=(1-t) f a+t f z
$$

where $|z-a|=r$. Setting $g_{r} x=f x$ for $x \notin A+\bar{B}(r)$ we obtain a continuous map $g_{r}: E \rightarrow E$ such that $g_{r} x=f x=-x$ for $x \in A$ and such that $d\left(g_{r}, \mathrm{id}\right)<\infty$.

FACT 1. The map g_{r} is a λ-nearisometry where $\lambda=\lambda(r) \rightarrow 1$ as $r \rightarrow 0$.
Let $x, y \in E$. To prove Fact 1 we must find an estimate

$$
\begin{equation*}
\left|\left|g_{r} x-g_{r} y\right|-|x-y|\right| \leq \lambda \tag{2.13}
\end{equation*}
$$

where $\lambda=\lambda(r) \rightarrow 1$ as $r \rightarrow 0$.
To simplify the proof we only consider the limiting case $r=0$. Then g_{0} is not a genuine map but a one-to-many relation at the points of A. More precisely, the image of a point v_{j} is the line segment $I\left(v_{j}\right)=\left[-v_{j},-v_{j}+u_{j}\right]$ where $u_{j}=v_{j} /\left|v_{j}\right|$. The image of 0 is

$$
I(0)=\bigcup\{[0,-h(u) u]: u \in S(1)\}
$$

Moreover, $g_{0} x=f x$ for $x \in E \backslash A$. It clearly suffices to prove that

$$
\begin{equation*}
\delta=\left|\left|g_{0} x-g_{0} y\right|-|x-y|\right| \leq 1 \tag{2.14}
\end{equation*}
$$

where now $g_{0} x$ [or $\left.g_{0} y\right]$ can be an arbitrary point of $I(x)$ [or $I(y)$] if $x[$ or $y]$ is in A. For example, rough estimates show that if $a \in A$ and $|x-a| \leq r \leq K / 4$, then $d\left(g_{r} x, I(a)\right) \leq 3 r$. Hence (2.14) implies (2.13) with $\lambda=1+8 r$ for $r \leq K / 4$.

We consider six cases.
Case 1: $x, y \notin A$. Since f is a 1-nearisometry, (2.14) is true.
Case 2: $x, y \in A \backslash\{0\}$. Now $|x-y| \leq 1$. It is easy to see that $d(I(x) \cup$ $I(y))=1$. Hence $\left|g_{0} x-g_{0} y\right| \leq 1$, and (2.14) follows.

Case 3: $x=0$ and $y \in A \backslash\{0\}$. Since $|h(u)| \leq 1 / 2$ for all $u \in S(1)$ by (2.6), we have $I(0) \subset \bar{B}(1 / 2)$ and hence $\left|g_{0} x-g_{0} y\right| \leq\left|g_{0} x\right|+\left|g_{0} y\right| \leq 1 / 2+K$. Since $|x-y|=K<1$, (2.14) follows.

Case 4: $x=y=0$. Now $\delta=\left|g_{0} x-g_{0} y\right| \leq d(I(0)) \leq 1$.
Case 5: $x=0$ and $y \notin A$. Since $\left|g_{0} x\right| \leq 1 / 2$ and $\left|y-g_{0} y\right|=|y-f y| \leq$ $1 / 2,(2.14)$ is true.

Case 6: $x \in A \backslash\{0\}$ and $y \notin A$, say $x=v_{0}$. Then $g_{0} y=f y$ and $g_{0} x \in I\left(v_{0}\right)=\left[-v_{0},-v_{0}+u_{0}\right]$. We must show that

$$
\begin{align*}
& |z-f y| \leq|x-y|+1 \tag{2.15}\\
& |z-f y| \geq|x-y|-1 \tag{2.16}
\end{align*}
$$

for all $z \in I\left(v_{0}\right)$.
Since $-v_{0}=f x$ and $-v_{0}+u_{0}=v_{0}-h\left(u_{0}\right) u_{0}=\lim _{x^{\prime} \rightarrow x} f x^{\prime}$ and since f is a 1-nearisometry, the inequalities (2.15) and (2.16) are true if z is an endpoint of $I\left(v_{0}\right)$. This implies (2.15) for all $z \in I\left(v_{0}\right)$, and it remains to prove (2.16). Define $p: E \rightarrow \mathbb{R}$ by $p w=w \cdot u_{0}$.

FACT 2. (2.16) is true whenever pfy $\notin]-K,-K+1[$.
To prove this let $z \in I\left(v_{0}\right)$. Then $|z-f y| \geq\left|z_{0}-f y\right|$ where z_{0} is one of the endpoints of $I\left(v_{0}\right)$. Since (2.16) holds at the endpoints, Fact 2 follows.

Choose $u \in S(1)$ such that $y=s u$ for some $s \in \mathbb{R}$ and $h(u) \geq 0$. Set $h=h(u)$ and define functions $F, G: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
F(s)=|s u-x|, \quad G(s)=d\left(s u-h u, I\left(v_{0}\right)\right)
$$

Since $f(s u)=s u-h u$ whenever $s u \in E \backslash A$, it suffices to show that

$$
\begin{equation*}
F(s)-G(s) \leq 1 \tag{2.17}
\end{equation*}
$$

for all $s \in \mathbb{R}$.
Assume first that $u \cdot x \neq 0$. Then there are real numbers $a<b$ such that $p(s u-h u) \in[-K,-K+1]$ if and only if $s \in[a, b]$. For $s \notin] a, b[,(2.17)$ follows from Fact 2. Suppose that $s \in[a, b]$. Clearly $h \in[a, b]$. The function
G is affine on the intervals $[a, h]$ and $[h, b]$. Hence $F-G$ is convex on these intervals. Consequently, it suffices to prove (2.17) at the points $s=a, h, b$. The cases $s=a, b$ were already considered above. Since $G(h)=0$, it suffices to show that

$$
\begin{equation*}
|h u-x| \leq 1 \tag{2.18}
\end{equation*}
$$

In the case $u \cdot x=0$, the function $F-G$ is convex on the intervals $]-\infty, h]$ and $[h, \infty[$. Moreover, $F(s)-G(s) \rightarrow \pm h$ as $s \rightarrow \pm \infty$. Since $|h| \leq 1 / 2<1$, it again suffices to verify (2.18).

The case $h=0$ is clear and we assume that $h>0$. Then $h=2 \beta_{u}-1=$ $2 v \cdot u-1$ for some $v \in A$. Thus

$$
|h u-x|^{2}=h(h-2 u \cdot x)+|x|^{2}=h[2 u \cdot(v-x)-1]+K^{2} .
$$

Here $u \cdot(v-x) \leq|v-x| \leq 1, h \leq 2 K-1$ and $K<\sqrt{2} / 2$. Hence $|h u-x|^{2} \leq$ $\sqrt{2}-1 / 2<1$, and (2.18) follows. This completes the proof of Fact 1.

FACT 3. $d\left(T, g_{r}\right) \geq 2 K=J(E)$ for every isometry $T: E \rightarrow E$.
If Fact 3 is not true, there is an isometry $T: E \rightarrow E$ with $d\left(T, g_{r}\right)=$ $q<2 K$. By Lemma $1.13, A$ is contained in a ball of radius $q / 2<K$, which gives a contradiction.

Since $\operatorname{dim} E<\infty$ and since $g_{r}: E \rightarrow E$ is a continuous nearisometry, g_{r} is surjective by [Bo, 4.1]; the surjectivity can also be seen directly. Let $\varepsilon>0$. By the definition 1.4 of $H_{\mathrm{c}}(E)$, there is an isometry $T: E \rightarrow E$ with $d\left(T, g_{r}\right) \leq\left(H_{\mathrm{c}}(E)+\varepsilon\right) \lambda$. Applying Fact 3 and letting $\varepsilon \rightarrow 0$ and $\lambda \rightarrow 1$ yields $J(E) \leq H_{\mathrm{c}}(E)$. The proposition is now proved in the case $\operatorname{dim} E<\infty$.

Finally assume that $\operatorname{dim} E=\infty$. We must show that $H_{\mathrm{c}}(E) \geq J(E)=$ $\sqrt{2}$. Assume that $H_{\mathrm{c}}(E)=c<\sqrt{2}$. Choose an integer n such that $J\left(\mathbb{R}^{n}\right)=$ $\sqrt{2 n /(n+1)}=M>c$, and let F be a linear subspace of E with $\operatorname{dim} F=n$. Let $1<\lambda<M / c$. The proof of the finite-dimensional case gives a continuous surjective λ-nearisometry $g: F \rightarrow F$ such that $d(g, \mathrm{id})<\infty$ and such that $d(T, g) \geq M$ for every isometry $T: F \rightarrow F$ (Fact 3).

Let $P: E \rightarrow F$ and $P^{\prime}: E \rightarrow F^{\perp}$ be the orthogonal projections. Define $f: E \rightarrow E$ by $f x=g P x+P^{\prime} x$. Then f is a continuous surjective λ-nearisometry. Since $c \lambda<M$, there is a surjective isometry $S: E \rightarrow E$ with $d(S, f)=c^{\prime}<M$. Since $d(f, \mathrm{id})=d(g, \mathrm{id})<\infty$, we have $d(S, \mathrm{id})<\infty$. By Lemma $1.12, S$ is of the form $S x=x+w$ for some $w \in E$. Setting $T x=x+P w$ we obtain an isometry $T: F \rightarrow F$. For each $x \in F$ we have

$$
|g x-T x|=|P(f x-S x)| \leq|f x-S x| \leq c^{\prime}
$$

and hence $d(g, T) \leq c^{\prime}$. Since $d(g, T) \geq M>c^{\prime}$, this is a contradiction and proves the proposition.

3. Banach spaces

3.1. Conjecture. The equality $H(E)=J(E)$ of 1.11 holds for all Banach spaces E.

Šemrl [Še, 1.1] proved that $H(E)=J(E)=2$ for the space $E=C(X)$ where X is a countable compact space with a single cluster point. Thus E is isometrically isomorphic to the space c of all convergent sequences with the sup-norm. In fact, he constructed a surjective 1-nearisometry $f: E \rightarrow E$ such that $d(T, f) \geq 2$ for all surjective isometries $T: E \rightarrow E$.

We give a short proof for the equality in the space c_{0} of all sequences converging to 0 .
3.2. Theorem. $H\left(c_{0}\right)=J\left(c_{0}\right)=2$.

Proof. Let $0<q \leq 1 / 2$. We define a function $g: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
g(t)= \begin{cases}-t & \text { for } t \in[-q, 1-q], \\ t-1+2 q & \text { for } t \notin[-q, 1-q] .\end{cases}
$$

Then g is clearly a bijective 1 -nearisometry. Define a map $f: c_{0} \rightarrow c_{0}$ by $(f x)_{j}=g\left(x_{j}\right)$. As $j \rightarrow \infty$, we have $x_{j} \rightarrow 0$, and thus $g\left(x_{j}\right) \rightarrow 0$. Hence the sequence $f x$ is indeed in c_{0}. Moreover, f is a bijective 1-nearisometry. Its inverse is given by $\left(f^{-1} x\right)_{j}=g^{-1}\left(x_{j}\right)$.

Let $\lambda>H\left(c_{0}\right)$. There is a surjective isometry $T: c_{0} \rightarrow c_{0}$ with $d(T, f) \leq \lambda$. Since $|g(t)-t| \leq 2$ for all $t \in \mathbb{R}$, we have $d(f$, id $) \leq 2$. Hence $d(T, \mathrm{id}) \leq 2+\lambda$ $<\infty$. By Lemma 1.12, T is of the form $T x=x+w$ for some $w \in c_{0}$. Thus

$$
\begin{equation*}
\|x+w-f x\| \leq \lambda \tag{3.3}
\end{equation*}
$$

for all $x \in c_{0}$, where $\|\cdot\|$ is the norm of c_{0}.
Let k be a positive integer and let $x \in c_{0}$ be the sequence with $x_{k}=1-q$ and $x_{j}=0$ for $j \neq k$. Since $f x=-x$, (3.3) gives $\|2 x+w\| \leq \lambda$, and hence $\left|2-2 q+w_{k}\right| \leq \lambda$. As $k \rightarrow \infty$, this yields $|2-2 q| \leq \lambda$. Letting $q \rightarrow 0$ and $\lambda \rightarrow H\left(c_{0}\right)$ gives $H\left(c_{0}\right) \geq 2$, and the theorem follows from (1.10).
3.4. Summary. The conjecture $H(E)=J(E)$ is true if E is a Hilbert space (1.11) or if $E=c$ ([Še, 1.1]) or $E=c_{0}$ (3.2). Moreover, by (1.10) it holds whenever $J(E)=1$, for example, for $E=l_{\infty}$. In addition, we have proved that $H(E)=J(E)=4 / 3$ for $E=\mathbb{R}^{2}$ with a regular hexagon as the unit disk.

References

[BL] Y. Benyamini and J. Lindenstrauss, Geometric Nonlinear Functional Analysis I, Colloq. Publ. 48, Amer. Math. Soc., 2000.
[BŠ] R. Bhatia and P. Šemrl, Approximate isometries on Euclidean spaces, Amer. Math. Monthly 104 (1997), 497-504.
[Bo] R. D. Bourgin, Approximate isometries on finite dimensional Banach spaces, Trans. Amer. Math. Soc. 207 (1975), 309-328.
[Da] J. Daneš, On the radius of a set in a Hilbert space, Comment. Math. Univ. Carolin. 25 (1984), 355-362.
[Di] S. J. Dilworth, Approximate isometries on finite-dimensional normed spaces, Bull. London Math. Soc. 31 (1999), 471-476.
[Ge] J. Gevirtz, Stability of isometries on Banach spaces, Proc. Amer. Math. Soc. 89 (1983), 633-636.
[Gr] P. M. Gruber, Stability of isometries, Trans. Amer. Math. Soc. 245 (1978), 263-277.
[HU] D. H. Hyers and S. M. Ulam, On approximate isometries, Bull. Amer. Math. Soc. 51 (1945), 288-292.
[Ju] H. W. E. Jung, Über die kleinste Kugel, die eine räumliche Figur einschliesst, J. Reine Angew. Math. 123 (1901), 241-257.
[OŠ] M. Omladič and P. Šemrl, On nonlinear perturbations of isometries, Math. Ann. 303 (1995), 617-628.
[Ro] N. Routledge, A result in Hilbert space, Quart. J. Math. 3 (1952), 12-18.
[Še] P. Šemrl, Hyers-Ulam stability of isometries, Houston J. Math. 24 (1998), 699-706.

Matematiikan laitos
Helsingin yliopisto
PL 4, Yliopistonkatu 5
00014 Helsinki, Finland
E-mail: taneli.huuskonen@helsinki.fi
jussi.vaisala@helsinki.fi

Received January 15, 2001
Revised version February 8, 2002

[^0]: 2000 Mathematics Subject Classification: Primary 46B20; Secondary 46C05.
 Research of T. Huuskonen partially supported by the Academy of Finland, grant 40734, and the Mittag-Leffler Institute.

