Hyers–Ulam constants of Hilbert spaces

by

TANELI HUUSKONEN and JUSSI VÄISÄLÄ (Helsinki)

Abstract. The best constant in the Hyers–Ulam theorem on isometric approximation in Hilbert spaces is equal to the Jung constant of the space.

1. Introduction

1.1. Nearisometries. We first introduce some notation. Throughout the paper, E will be a real Banach space (possibly a Hilbert space) with dim $E \ge 1$. The norm of a vector $x \in E$ is written as |x|. We let $\overline{B}(x,r)$ denote the closed ball with center x and radius r, and we set $\overline{B}(r) = \overline{B}(0,r)$. The diameter of a set $A \subset E$ is d(A). For maps $f, g: E \to E$ we set

$$d(f,g) = \sup_{x \in E} |fx - gx|,$$

with the possibility $d(f,g) = \infty$.

We say that a map $f:E\to E$ is a nearisometry if there is a number $\varepsilon\geq 0$ such that

$$|x-y| - \varepsilon \le |fx - fy| \le |x-y| + \varepsilon$$

for all $x, y \in E$. More precisely, such a map is an ε -nearisometry. We do not assume that f is continuous.

1.2. Background. D. H. Hyers and S. M. Ulam [HU] proved in 1945 that every surjective ε -nearisometry $f : E \to E$ of a Hilbert space E can be approximated by a surjective isometry $T : E \to E$ such that

(1.3)
$$d(T,f) \le c\varepsilon$$

with c = 10. The result was extended to all Banach spaces with c = 5 by J. Gevirtz [Ge] in 1983; an important step towards this proof was made by P. M. Gruber [Gr] in 1978. M. Omladič and P. Šemrl [OŠ] proved in 1995 that the result is true with c = 2. Moreover, if f(0) = 0, the isometry T can be chosen so that T(0) = 0, that is, T is linear. They also proved that the

²⁰⁰⁰ Mathematics Subject Classification: Primary 46B20; Secondary 46C05.

Research of T. Huuskonen partially supported by the Academy of Finland, grant 40734, and the Mittag-Leffler Institute.

constant 2 is best possible for such T. In 1998 Šemrl [Še, 1.1] proved that even without the condition T(0) = 0, the bound 2ε is best possible in the class of all Banach spaces. However, he also proved [Še, 1.2] that for a given Banach space E, the result holds for all c greater than the Jung constant J(E) of E.

1.4. DEFINITIONS. The Jung constant J(E) of E is the infimum of all r > 0 such that every set $A \subset E$ with $d(A) \leq 2$ is contained in a ball of radius r. We say that J(E) is attained if this infimum is a minimum, that is, A is contained in some ball $\overline{B}(x, J(E))$.

For all spaces we have $1 \leq J(E) \leq 2$, and $J(\mathbb{R}^n) = \sqrt{2n/(n+1)} < \sqrt{2}$ by the classical result proved by H. W. E. Jung [Ju] in 1901. Furthermore, $J(E) = \sqrt{2}$ for infinite-dimensional Hilbert spaces; see [Ro, Th. 1] for separable spaces, and [Da, Th. 2] or [Še, p. 704] for arbitrary spaces. Moreover, the Jung constant of a Hilbert space is always attained; see [Ro, Th. 9] and [Da, Th. 1].

The Hyers-Ulam constant H(E) of E is the infimum of all c > 0 such that for each surjective ε -nearisometry $f : E \to E$ there is a surjective isometry $T : E \to E$ satisfying (1.3). This constant is attained if T can always be chosen so that $d(T, f) = H(E)\varepsilon$.

We let $H_c(E)$ denote the constant defined as H(E) but considering only continuous surjective nearisometries $f: E \to E$. Clearly $H_c(E) \leq H(E)$.

We summarize the results given above as follows.

1.5. THEOREM (Hyers–Ulam–Gruber–Gevirtz–Omladič–Šemrl). Let E be a Banach space with dim $E \geq 1$ and let $f : E \to E$ be a surjective ε -nearisometry with f(0) = 0. Then there is a surjective linear isometry $T : E \to E$ such that $d(T, f) \leq 2\varepsilon$. Moreover, $H(E) \leq J(E)$. If J(E) is attained, there is a surjective isometry $T : E \to E$ with $d(T, f) \leq J(E)\varepsilon$.

The proof of the first part is given in [OS] and (slightly simplified) in [BL, Th. 15.2]. The second part follows rather easily from the first part, as shown in [Se, 1.2].

The purpose of this paper is to prove that $H_c(E) = H(E) = J(E)$ for all Hilbert spaces. Some remarks on Banach spaces are given in Section 3.

1.6. REMARK. More generally, Theorem 1.5 holds for nearisometries $f : E \to F$ onto another Banach space F. Since it follows that E and F are isometrically isomorphic, the restriction to the case E = F is no loss of generality from the point of view of the present paper.

1.7. The role of surjectivity. The surjectivity condition in 1.5 can sometimes be weakened (see [Di, Th. 2]), and it can be entirely omitted if dim $E < \infty$; see [BŠ, Th. 1] and [Di, Th. 1]. For our purposes it is convenient to consider ε -nearisometries $f : E \to E$ for which $E \setminus fE$ is a bounded set. We let $H_0(E)$ denote the infimum of all c > 0 such that for each such f there is a surjective isometry $T : E \to E$ with $d(T, f) \leq c\varepsilon$. Trivially $H(E) \leq H_0(E)$.

We give the following variation of 1.5.

1.8. THEOREM. In Theorem 1.5 one can replace the surjectivity of f by the condition that $E \setminus fE$ be bounded. In particular, $H_0(E) \leq J(E)$.

Proof. Suppose that $f: E \to E$ is an ε -nearisometry with f(0) = 0 and that $E \setminus fE \subset \overline{B}(2R)$ with $R > \varepsilon$. Define a map $g: E \to E$ by gx = 2x for $|x| \leq R$ and by gx = fx for |x| > R. Then g is a surjective nearisometry with $d(g, f) < \infty$. By 1.5 there is a surjective linear isometry $T: E \to E$ with $d(T, f) < \infty$.

Replacing f by $T^{-1}f$ we may assume that T = id. We can now proceed as in the lower half of p. 362 of [BL], since the points z_n are defined for large n. Note, however, a misprint in the estimate for $||z_n||$. It should read

$$|z_n|| \le ||f(x+z_n) - f(x)|| + \varepsilon = ||x + (n+a)y - (ay+x)|| + \varepsilon = n + \varepsilon.$$

We obtain $|fx - x| \leq 2\varepsilon$ for all $x \in E$. The second part of the theorem follows as in [Še, 1.2].

1.9. REMARKS. 1. The condition of 1.8 can still be relaxed as follows:

- (1) The function $x \mapsto d(x, fE)$ is bounded in E.
- (2) The set $R \cap fE$ is unbounded for each ray $R \subset E$.

Indeed, the proof of [Di, Th. 2] gives a surjective nearisometry $g: E \to E$ with $d(g, f) < \infty$, and we can proceed essentially as in 1.8.

2. We always have

(1.10)
$$1 \le H_{c}(E) \le H(E) \le H_{0}(E) \le J(E) \le 2.$$

It suffices to prove the first inequality, since the other inequalities either follow from 1.8 or are trivial.

Let q > 0 and define a function $\varphi : [0, \infty[\to \mathbb{R}$ by

$$\varphi(t) = \begin{cases} -t & \text{for } 0 \le t \le 1, \\ -1 + (2+q)(t-1)/q & \text{for } 1 \le t \le 1+q, \\ t & \text{for } t \ge 1+q. \end{cases}$$

The map $f: E \to E$, defined by f(0) = 0 and by $f(x) = \varphi(|x|)x/|x|$ for $x \neq 0$, is surjective and continuous with $d(f, \mathrm{id}) < \infty$. If $T: E \to E$ is an isometry with $d(T, f) = c < \infty$, the unit ball is contained in a ball of radius c/2 by Lemma 1.13 below, and thus $c \geq 2$. Since $f = \mathrm{id}$ outside the ball B(1+q) and since f maps this ball onto itself, we easily see that f is a (2+2q)-nearisometry. Hence $H_c(E) \geq 1/(1+q)$, which gives the first inequality as $q \to 0$.

We are ready to state the main result of the paper.

1.11. THEOREM. For every Hilbert space E with dim $E \ge 1$ we have $H_c(E) = H(E) = H_0(E) = J(E)$. Moreover, the constants $H_c(E)$, H(E) and $H_0(E)$ are attained. Thus $H(\mathbb{R}^n) = \sqrt{2n/(n+1)}$, and $H(E) = \sqrt{2}$ if dim $E = \infty$.

By (1.10) it suffices to show that $J(E) \leq H_c(E)$. This will be done in 2.12. However, we shall first give a proof for the weaker inequality $J(E) \leq H_0(E)$ in 2.11, because it is more straightforward.

Since the Jung constant of a Hilbert space is attained, the constants $H_c(E)$, H(E) and $H_0(E)$ are attained by 1.5.

The following observations are used several times in the paper.

1.12. LEMMA. Let $T : E \to E$ be a surjective isometry of a Banach space E with $d(T, id) < \infty$. Then T is of the form Tx = x + w for some $w \in E$.

Proof. Replacing Tx by Tx - T(0) we may assume that T(0) = 0. Then T is linear by the Mazur–Ulam theorem. Hence T – id is a linear map with bounded image, and thus T = id.

1.13. LEMMA. Suppose that $A \subset E$ and that $f : E \to E$ is a map such that $d(f, id) < \infty$ and fx = -x for all $x \in A$. Suppose also that $T : E \to E$ is an isometry with $d(T, f) \leq q < \infty$. Then A is contained in a ball of radius q/2.

Proof. By Lemma 1.12, T is of the form Tx = x + w for some $w \in E$. For $x \in A$ we have $q \ge |Tx - fx| = |2x + w|$. Hence $A \subset \overline{B}(-w/2, q/2)$.

We thank Pekka Alestalo and Eero Saksman for carefully reading the manuscript and for valuable remarks.

2. Proofs

2.1. Notation. In this section we assume that E is a real Hilbert space with dim $E \ge 1$. The inner product of vectors $x, y \in E$ is written as $x \cdot y$. The unit sphere of E is $S(1) = \{x \in E : |x| = 1\}$. For each $u \in S(1)$ we let $p_u : E \to \mathbb{R}$ denote the projection $p_u x = x \cdot u$. The line spanned by u is written as L_u , and $d(x, L_u)$ denotes the distance between a point $x \in E$ and L_u .

2.2. LEMMA. Suppose that $u \in S(1)$, that $s, t \in \mathbb{R}$, and that $a, b \in E$ with $d(a, L_u) = d(b, L_u)$. Then

$$||su - a| - |tu - b|| \le ||s - p_u a| - |t - p_u b||.$$

Proof. By performing auxiliary isometries of the triples $\{a, (p_u a)u, su\}$ and $\{b, (p_u b)u, tu\}$ we may assume that a = b, $p_u a = p_u b = 0$, $s \ge 0$, $t \ge 0$, and the lemma follows from the triangle inequality. **2.3.** The basic construction. In the rest of the section we assume that $A \subset E$ is a set with $0 \in A \subset \overline{B}(3/4)$ and $d(A) \leq 1$. We associate to A a map $f: E \to E$ as follows.

For each $u \in S(1)$ we set

$$\alpha_u = \inf p_u A, \quad \beta_u = \sup p_u A.$$

Then

(2.4)
$$\alpha_u \le 0 \le \beta_u \le \alpha_u + 1.$$

Define a function $h: S(1) \to \mathbb{R}$ by

(2.5)
$$h(u) = \begin{cases} 2\beta_u - 1 & \text{if } \beta_u \ge 1/2, \\ 1 + 2\alpha_u & \text{if } \alpha_u \le -1/2, \\ 0 & \text{if } \alpha_u \ge -1/2 \text{ and } \beta_u \le 1/2. \end{cases}$$

Since $\beta_u \leq \alpha_u + 1$ by (2.4), the function h is well defined. Furthermore, (2.6) $\alpha_{-u} = -\beta_u$, $\beta_{-u} = -\alpha_u$, h(-u) = -h(u), $|h(u)| \leq 1/2$ for all $u \in S(1)$. Clearly h is continuous.

The map $f: E \to E$ is now defined by

(2.7)
$$f(x) = \begin{cases} -x & \text{for } x \in A, \\ x - h(u)u & \text{for } x \in L_u \setminus A, \ u \in S(1). \end{cases}$$

Since $0 \in A$ and since h(-u) = -h(u) by (2.6), the map f is well defined. Furthermore,

(2.8)
$$d(f, id) = 2\sup\{|x| : x \in A\} \le 3/2.$$

2.9. LEMMA. The map $f: E \to E$ defined by (2.7) is a 1-nearisometry.

Proof. Let $x, y \in E$. We must show that

(2.10)
$$\delta = \left| \left| fx - fy \right| - \left| x - y \right| \right| \le 1.$$

If $x, y \in A$, then $\delta = 0$. Assume that $x, y \in E \setminus A$. Choose $u \in S(1)$ with $x \in L_u$. Then $|fx - x| = |h(u)| \le 1/2$ by (2.6). Similarly $|fy - y| \le 1/2$, and (2.10) follows.

In the rest of the proof we assume that $x \in A$ and $y \in E \setminus A$. Write y = su with $u \in S(1)$, $s \in \mathbb{R}$. We may assume that $h(u) \ge 0$ replacing u by -u if necessary. To simplify notation we write

$$p = p_u, \quad \alpha = \alpha_u, \quad \beta = \beta_u, \quad h = h(u).$$

By Lemma 2.2 we get

$$\delta \le \left| |s - h + px| - |s - px| \right| \le |2px - h|.$$

If h = 0, then $|px| \le \max\{|\alpha|, \beta\} \le 1/2$ and $\delta \le 1$. Assume that h > 0. Then $h = 2\beta - 1$ and $|\alpha| < 1/2 < \beta$. Since $\alpha \le px \le \beta$ and $\beta \le \alpha + 1$, we obtain

$$2px - h \le 2\beta - 2\beta + 1 = 1, \quad h - 2px \le 2\beta - 1 - 2\alpha \le 1.$$
 Thus $\delta \le 1$.

We turn to the proof of Theorem 1.11. It will follow from Proposition 2.12 below, but we first prove a weaker result.

2.11. PROPOSITION. $H_0(E) \ge J(E)$.

Proof. Let $0 < \varepsilon \leq 3/4 - \sqrt{2}/2$ and set $r = J(E)/2 + \varepsilon$. By the definition 1.4 of the Jung constant, there is a set $A \subset E$ such that d(A) = 1, $A \subset \overline{B}(r)$ and A is not contained in any ball of radius $r-2\varepsilon$. Since $A \subset \overline{B}(3/4) \subset \overline{B}(1)$, the set $A \cup \{0\}$ has the same properties. Hence we may assume that $0 \in A$. Since $J(E) \leq \sqrt{2}$, we have $r \leq 3/4$. We can thus apply the construction of 2.3 and obtain the map $f : E \to E$ defined by (2.7). Since $|h(u)| \leq 1/2$ for all $u \in S(1)$ by (2.6), we have $E \setminus fE \subset \overline{B}(5/4)$. Since f is a 1-nearisometry by 2.9, there is a surjective isometry $T : E \to E$ with $d(T, f) \leq H_0(E) + \varepsilon = q$. By 1.13, there is a ball of radius q/2 containing A. Hence $r - 2\varepsilon < q/2$, which yields $J(E) < H_0(E) + 3\varepsilon$. As $\varepsilon \to 0$, this proves the proposition. ■

2.12. Proposition. $H_c(E) \ge J(E)$.

Proof. Assume first that dim $E=n<\infty$. Set $K=J(E)/2=\sqrt{n/(2(n+1))}$. Choose a regular *n*-simplex Δ centered at the origin with $d(\Delta) = 1$. Let v_0, \ldots, v_n be the vertices of Δ . Then $|v_j| = K$ for all $0 \le j \le n$. Moreover, Δ is not contained in any ball of radius less than K.

Setting $A = \{0, v_0, \ldots, v_n\}$ we have d(A) = 1 and $A \subset \overline{B}(K) \subset \overline{B}(3/4)$. Hence we may apply the construction of 2.3 and obtain a function $h: S(1) \to \mathbb{R}$ and a map $f: E \to E$, defined by (2.5) and (2.7). The map f is a 1-nearisometry by 2.9, and f is continuous in $E \setminus A$. We next modify f in a neighborhood of A to get a continuous nearisometry.

Choose a small number r > 0 such that the balls $\overline{B}(a, r)$ are disjoint for $a \in A$. For each $a \in A$ we define $g_r : \overline{B}(a, r) \to E$ by

$$g_r((1-t)a + tz) = (1-t)fa + tfz,$$

where |z-a| = r. Setting $g_r x = fx$ for $x \notin A + \overline{B}(r)$ we obtain a continuous map $g_r : E \to E$ such that $g_r x = fx = -x$ for $x \in A$ and such that $d(g_r, id) < \infty$.

FACT 1. The map g_r is a λ -nearisometry where $\lambda = \lambda(r) \rightarrow 1$ as $r \rightarrow 0$.

Let $x, y \in E$. To prove Fact 1 we must find an estimate

(2.13)
$$||g_r x - g_r y| - |x - y|| \le \lambda,$$

where $\lambda = \lambda(r) \to 1$ as $r \to 0$.

To simplify the proof we only consider the limiting case r = 0. Then g_0 is not a genuine map but a one-to-many relation at the points of A. More precisely, the image of a point v_j is the line segment $I(v_j) = [-v_j, -v_j + u_j]$ where $u_j = v_j/|v_j|$. The image of 0 is

$$I(0) = \bigcup \{ [0, -h(u)u] : u \in S(1) \}.$$

Moreover, $g_0 x = f x$ for $x \in E \setminus A$. It clearly suffices to prove that

(2.14)
$$\delta = ||g_0 x - g_0 y| - |x - y|| \le 1,$$

where now g_0x [or g_0y] can be an arbitrary point of I(x) [or I(y)] if x [or y] is in A. For example, rough estimates show that if $a \in A$ and $|x-a| \leq r \leq K/4$, then $d(g_rx, I(a)) \leq 3r$. Hence (2.14) implies (2.13) with $\lambda = 1 + 8r$ for $r \leq K/4$.

We consider six cases.

Case 1: $x, y \notin A$. Since f is a 1-nearisometry, (2.14) is true.

Case 2: $x, y \in A \setminus \{0\}$. Now $|x - y| \leq 1$. It is easy to see that $d(I(x) \cup I(y)) = 1$. Hence $|g_0 x - g_0 y| \leq 1$, and (2.14) follows.

Case 3: x = 0 and $y \in A \setminus \{0\}$. Since $|h(u)| \le 1/2$ for all $u \in S(1)$ by (2.6), we have $I(0) \subset \overline{B}(1/2)$ and hence $|g_0x - g_0y| \le |g_0x| + |g_0y| \le 1/2 + K$. Since |x - y| = K < 1, (2.14) follows.

Case 4: x = y = 0. Now $\delta = |g_0 x - g_0 y| \le d(I(0)) \le 1$.

Case 5: x = 0 and $y \notin A$. Since $|g_0 x| \le 1/2$ and $|y - g_0 y| = |y - fy| \le 1/2$, (2.14) is true.

Case $6: x \in A \setminus \{0\}$ and $y \notin A$, say $x = v_0$. Then $g_0 y = f y$ and $g_0 x \in I(v_0) = [-v_0, -v_0 + u_0]$. We must show that

(2.15)
$$|z - fy| \le |x - y| + 1,$$

$$(2.16) |z - fy| \ge |x - y| - 1$$

for all $z \in I(v_0)$.

Since $-v_0 = fx$ and $-v_0 + u_0 = v_0 - h(u_0)u_0 = \lim_{x'\to x} fx'$ and since f is a 1-nearisometry, the inequalities (2.15) and (2.16) are true if z is an endpoint of $I(v_0)$. This implies (2.15) for all $z \in I(v_0)$, and it remains to prove (2.16). Define $p: E \to \mathbb{R}$ by $pw = w \cdot u_0$.

FACT 2. (2.16) is true whenever $pfy \notin [-K, -K+1[.$

To prove this let $z \in I(v_0)$. Then $|z - fy| \ge |z_0 - fy|$ where z_0 is one of the endpoints of $I(v_0)$. Since (2.16) holds at the endpoints, Fact 2 follows.

Choose $u \in S(1)$ such that y = su for some $s \in \mathbb{R}$ and $h(u) \ge 0$. Set h = h(u) and define functions $F, G : \mathbb{R} \to \mathbb{R}$ by

$$F(s) = |su - x|, \quad G(s) = d(su - hu, I(v_0)).$$

Since f(su) = su - hu whenever $su \in E \setminus A$, it suffices to show that

(2.17)
$$F(s) - G(s) \le 1$$

for all $s \in \mathbb{R}$.

Assume first that $u \cdot x \neq 0$. Then there are real numbers a < b such that $p(su - hu) \in [-K, -K + 1]$ if and only if $s \in [a, b]$. For $s \notin [a, b]$, (2.17) follows from Fact 2. Suppose that $s \in [a, b]$. Clearly $h \in [a, b]$. The function

G is affine on the intervals [a, h] and [h, b]. Hence F - G is convex on these intervals. Consequently, it suffices to prove (2.17) at the points s = a, h, b. The cases s = a, b were already considered above. Since G(h) = 0, it suffices to show that

$$(2.18) |hu - x| \le 1.$$

In the case $u \cdot x = 0$, the function F - G is convex on the intervals $]-\infty, h]$ and $[h, \infty[$. Moreover, $F(s) - G(s) \to \pm h$ as $s \to \pm \infty$. Since $|h| \le 1/2 < 1$, it again suffices to verify (2.18).

The case h = 0 is clear and we assume that h > 0. Then $h = 2\beta_u - 1 = 2v \cdot u - 1$ for some $v \in A$. Thus

$$|hu - x|^{2} = h(h - 2u \cdot x) + |x|^{2} = h[2u \cdot (v - x) - 1] + K^{2}.$$

Here $u \cdot (v-x) \leq |v-x| \leq 1$, $h \leq 2K-1$ and $K < \sqrt{2}/2$. Hence $|hu-x|^2 \leq \sqrt{2} - 1/2 < 1$, and (2.18) follows. This completes the proof of Fact 1.

FACT 3. $d(T, g_r) \ge 2K = J(E)$ for every isometry $T : E \to E$.

If Fact 3 is not true, there is an isometry $T : E \to E$ with $d(T, g_r) = q < 2K$. By Lemma 1.13, A is contained in a ball of radius q/2 < K, which gives a contradiction.

Since dim $E < \infty$ and since $g_r : E \to E$ is a continuous nearisometry, g_r is surjective by [Bo, 4.1]; the surjectivity can also be seen directly. Let $\varepsilon > 0$. By the definition 1.4 of $H_c(E)$, there is an isometry $T : E \to E$ with $d(T, g_r) \leq (H_c(E) + \varepsilon)\lambda$. Applying Fact 3 and letting $\varepsilon \to 0$ and $\lambda \to 1$ yields $J(E) \leq H_c(E)$. The proposition is now proved in the case dim $E < \infty$.

Finally assume that dim $E = \infty$. We must show that $H_c(E) \ge J(E) = \sqrt{2}$. Assume that $H_c(E) = c < \sqrt{2}$. Choose an integer n such that $J(\mathbb{R}^n) = \sqrt{2n/(n+1)} = M > c$, and let F be a linear subspace of E with dim F = n. Let $1 < \lambda < M/c$. The proof of the finite-dimensional case gives a continuous surjective λ -nearisometry $g: F \to F$ such that $d(g, \mathrm{id}) < \infty$ and such that $d(T,g) \ge M$ for every isometry $T: F \to F$ (Fact 3).

Let $P: E \to F$ and $P': E \to F^{\perp}$ be the orthogonal projections. Define $f: E \to E$ by fx = gPx + P'x. Then f is a continuous surjective λ -nearisometry. Since $c\lambda < M$, there is a surjective isometry $S: E \to E$ with d(S, f) = c' < M. Since $d(f, \operatorname{id}) = d(g, \operatorname{id}) < \infty$, we have $d(S, \operatorname{id}) < \infty$. By Lemma 1.12, S is of the form Sx = x + w for some $w \in E$. Setting Tx = x + Pw we obtain an isometry $T: F \to F$. For each $x \in F$ we have

$$|gx - Tx| = |P(fx - Sx)| \le |fx - Sx| \le c',$$

and hence $d(g,T) \leq c'$. Since $d(g,T) \geq M > c'$, this is a contradiction and proves the proposition.

3. Banach spaces

3.1. CONJECTURE. The equality H(E) = J(E) of 1.11 holds for all Banach spaces E.

Semre [Se, 1.1] proved that H(E) = J(E) = 2 for the space E = C(X)where X is a countable compact space with a single cluster point. Thus E is isometrically isomorphic to the space c of all convergent sequences with the sup-norm. In fact, he constructed a surjective 1-nearisometry $f : E \to E$ such that $d(T, f) \geq 2$ for all surjective isometries $T : E \to E$.

We give a short proof for the equality in the space c_0 of all sequences converging to 0.

3.2. THEOREM. $H(c_0) = J(c_0) = 2$.

Proof. Let $0 < q \leq 1/2$. We define a function $g : \mathbb{R} \to \mathbb{R}$ by

$$g(t) = \begin{cases} -t & \text{for } t \in [-q, 1-q], \\ t-1+2q & \text{for } t \notin [-q, 1-q]. \end{cases}$$

Then g is clearly a bijective 1-nearisometry. Define a map $f : c_0 \to c_0$ by $(fx)_j = g(x_j)$. As $j \to \infty$, we have $x_j \to 0$, and thus $g(x_j) \to 0$. Hence the sequence fx is indeed in c_0 . Moreover, f is a bijective 1-nearisometry. Its inverse is given by $(f^{-1}x)_j = g^{-1}(x_j)$.

Let $\lambda > H(c_0)$. There is a surjective isometry $T : c_0 \to c_0$ with $d(T, f) \leq \lambda$. Since $|g(t) - t| \leq 2$ for all $t \in \mathbb{R}$, we have $d(f, id) \leq 2$. Hence $d(T, id) \leq 2 + \lambda < \infty$. By Lemma 1.12, T is of the form Tx = x + w for some $w \in c_0$. Thus

$$(3.3) ||x+w-fx|| \le \lambda$$

for all $x \in c_0$, where $\|\cdot\|$ is the norm of c_0 .

Let k be a positive integer and let $x \in c_0$ be the sequence with $x_k = 1-q$ and $x_j = 0$ for $j \neq k$. Since fx = -x, (3.3) gives $||2x + w|| \leq \lambda$, and hence $|2 - 2q + w_k| \leq \lambda$. As $k \to \infty$, this yields $|2 - 2q| \leq \lambda$. Letting $q \to 0$ and $\lambda \to H(c_0)$ gives $H(c_0) \geq 2$, and the theorem follows from (1.10).

3.4. Summary. The conjecture H(E) = J(E) is true if E is a Hilbert space (1.11) or if E = c ([Še, 1.1]) or $E = c_0$ (3.2). Moreover, by (1.10) it holds whenever J(E) = 1, for example, for $E = l_{\infty}$. In addition, we have proved that H(E) = J(E) = 4/3 for $E = \mathbb{R}^2$ with a regular hexagon as the unit disk.

References

- [BL] Y. Benyamini and J. Lindenstrauss, Geometric Nonlinear Functional Analysis I, Colloq. Publ. 48, Amer. Math. Soc., 2000.
- [BŠ] R. Bhatia and P. Šemrl, Approximate isometries on Euclidean spaces, Amer. Math. Monthly 104 (1997), 497–504.

- [Bo] R. D. Bourgin, Approximate isometries on finite dimensional Banach spaces, Trans. Amer. Math. Soc. 207 (1975), 309–328.
- [Da] J. Daneš, On the radius of a set in a Hilbert space, Comment. Math. Univ. Carolin. 25 (1984), 355–362.
- [Di] S. J. Dilworth, Approximate isometries on finite-dimensional normed spaces, Bull. London Math. Soc. 31 (1999), 471–476.
- [Ge] J. Gevirtz, Stability of isometries on Banach spaces, Proc. Amer. Math. Soc. 89 (1983), 633–636.
- [Gr] P. M. Gruber, *Stability of isometries*, Trans. Amer. Math. Soc. 245 (1978), 263–277.
- [HU] D. H. Hyers and S. M. Ulam, On approximate isometries, Bull. Amer. Math. Soc. 51 (1945), 288–292.
- [Ju] H. W. E. Jung, Über die kleinste Kugel, die eine räumliche Figur einschliesst, J. Reine Angew. Math. 123 (1901), 241–257.
- [OŠ] M. Omladič and P. Šemrl, On nonlinear perturbations of isometries, Math. Ann. 303 (1995), 617–628.
- [Ro] N. Routledge, A result in Hilbert space, Quart. J. Math. 3 (1952), 12–18.
- [Še] P. Šemrl, Hyers–Ulam stability of isometries, Houston J. Math. 24 (1998), 699–706.

Matematiikan laitos Helsingin yliopisto PL 4, Yliopistonkatu 5 00014 Helsinki, Finland E-mail: taneli.huuskonen@helsinki.fi

jussi.vaisala@helsinki.fi

Received January 15, 2001 Revised version February 8, 2002

(4668)

40