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Hyers–Ulam constants of Hilbert spaces

by

Taneli Huuskonen and Jussi Väisälä (Helsinki)

Abstract. The best constant in the Hyers–Ulam theorem on isometric approximation
in Hilbert spaces is equal to the Jung constant of the space.

1. Introduction

1.1. Nearisometries. We first introduce some notation. Throughout the
paper, E will be a real Banach space (possibly a Hilbert space) with dimE
≥ 1. The norm of a vector x ∈ E is written as |x|. We let B(x, r) denote
the closed ball with center x and radius r, and we set B(r) = B(0, r). The
diameter of a set A ⊂ E is d(A). For maps f, g : E → E we set

d(f, g) = sup
x∈E
|fx− gx|,

with the possibility d(f, g) =∞.
We say that a map f : E → E is a nearisometry if there is a number

ε ≥ 0 such that

|x− y| − ε ≤ |fx− fy| ≤ |x− y|+ ε

for all x, y ∈ E. More precisely, such a map is an ε-nearisometry . We do not
assume that f is continuous.

1.2. Background. D. H. Hyers and S. M. Ulam [HU] proved in 1945 that
every surjective ε-nearisometry f : E → E of a Hilbert space E can be
approximated by a surjective isometry T : E → E such that

d(T, f) ≤ cε(1.3)

with c = 10. The result was extended to all Banach spaces with c = 5 by
J. Gevirtz [Ge] in 1983; an important step towards this proof was made by
P. M. Gruber [Gr] in 1978. M. Omladič and P. Šemrl [OŠ] proved in 1995
that the result is true with c = 2. Moreover, if f(0) = 0, the isometry T can
be chosen so that T (0) = 0, that is, T is linear. They also proved that the
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constant 2 is best possible for such T . In 1998 Šemrl [Še, 1.1] proved that
even without the condition T (0) = 0, the bound 2ε is best possible in the
class of all Banach spaces. However, he also proved [Še, 1.2] that for a given
Banach space E, the result holds for all c greater than the Jung constant
J(E) of E.

1.4. Definitions. The Jung constant J(E) of E is the infimum of all
r > 0 such that every set A ⊂ E with d(A) ≤ 2 is contained in a ball of
radius r. We say that J(E) is attained if this infimum is a minimum, that
is, A is contained in some ball B(x, J(E)).

For all spaces we have 1 ≤ J(E) ≤ 2, and J(Rn) =
√

2n/(n+ 1) <
√

2
by the classical result proved by H. W. E. Jung [Ju] in 1901. Furthermore,
J(E) =

√
2 for infinite-dimensional Hilbert spaces; see [Ro, Th. 1] for sepa-

rable spaces, and [Da, Th. 2] or [Še, p. 704] for arbitrary spaces. Moreover,
the Jung constant of a Hilbert space is always attained; see [Ro, Th. 9] and
[Da, Th. 1].

The Hyers–Ulam constant H(E) of E is the infimum of all c > 0 such
that for each surjective ε-nearisometry f : E → E there is a surjective
isometry T : E → E satisfying (1.3). This constant is attained if T can
always be chosen so that d(T, f) = H(E)ε.

We let Hc(E) denote the constant defined as H(E) but considering only
continuous surjective nearisometries f : E → E. Clearly Hc(E) ≤ H(E).

We summarize the results given above as follows.

1.5. Theorem (Hyers–Ulam–Gruber–Gevirtz–Omladič–Šemrl). Let E
be a Banach space with dimE ≥ 1 and let f : E → E be a surjective
ε-nearisometry with f(0) = 0. Then there is a surjective linear isometry
T : E → E such that d(T, f) ≤ 2ε. Moreover, H(E) ≤ J(E). If J(E) is
attained, there is a surjective isometry T : E → E with d(T, f) ≤ J(E)ε.

The proof of the first part is given in [OŠ] and (slightly simplified) in
[BL, Th. 15.2]. The second part follows rather easily from the first part, as
shown in [Še, 1.2].

The purpose of this paper is to prove that Hc(E) = H(E) = J(E) for
all Hilbert spaces. Some remarks on Banach spaces are given in Section 3.

1.6. Remark. More generally, Theorem 1.5 holds for nearisometries
f : E → F onto another Banach space F . Since it follows that E and F
are isometrically isomorphic, the restriction to the case E = F is no loss of
generality from the point of view of the present paper.

1.7. The role of surjectivity. The surjectivity condition in 1.5 can some-
times be weakened (see [Di, Th. 2]), and it can be entirely omitted if
dimE < ∞; see [BŠ, Th. 1] and [Di, Th. 1]. For our purposes it is con-
venient to consider ε-nearisometries f : E → E for which E \ fE is a
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bounded set. We let H0(E) denote the infimum of all c > 0 such that for
each such f there is a surjective isometry T : E → E with d(T, f) ≤ cε.
Trivially H(E) ≤ H0(E).

We give the following variation of 1.5.

1.8. Theorem. In Theorem 1.5 one can replace the surjectivity of f by
the condition that E \ fE be bounded. In particular, H0(E) ≤ J(E).

Proof. Suppose that f : E → E is an ε-nearisometry with f(0) = 0 and
that E \ fE ⊂ B(2R) with R > ε. Define a map g : E → E by gx = 2x for
|x| ≤ R and by gx = fx for |x| > R. Then g is a surjective nearisometry
with d(g, f) < ∞. By 1.5 there is a surjective linear isometry T : E → E
with d(T, f) <∞.

Replacing f by T−1f we may assume that T = id. We can now proceed
as in the lower half of p. 362 of [BL], since the points zn are defined for large
n. Note, however, a misprint in the estimate for ‖zn‖. It should read

‖zn‖ ≤ ‖f(x+ zn)− f(x)‖+ ε = ‖x+ (n+ a)y − (ay + x)‖+ ε = n+ ε.

We obtain |fx − x| ≤ 2ε for all x ∈ E. The second part of the theorem
follows as in [Še, 1.2].

1.9. Remarks. 1. The condition of 1.8 can still be relaxed as follows:

(1) The function x 7→ d(x, fE) is bounded in E.
(2) The set R ∩ fE is unbounded for each ray R ⊂ E.

Indeed, the proof of [Di, Th. 2] gives a surjective nearisometry g : E → E
with d(g, f) <∞, and we can proceed essentially as in 1.8.

2. We always have

1 ≤ Hc(E) ≤ H(E) ≤ H0(E) ≤ J(E) ≤ 2.(1.10)

It suffices to prove the first inequality, since the other inequalities either
follow from 1.8 or are trivial.

Let q > 0 and define a function ϕ : [0,∞[→ R by

ϕ(t) =

{−t for 0 ≤ t ≤ 1,
−1 + (2 + q)(t− 1)/q for 1 ≤ t ≤ 1 + q,
t for t ≥ 1 + q.

The map f : E → E, defined by f(0) = 0 and by f(x) = ϕ(|x|)x/|x| for
x 6= 0, is surjective and continuous with d(f, id) < ∞. If T : E → E is
an isometry with d(T, f) = c < ∞, the unit ball is contained in a ball of
radius c/2 by Lemma 1.13 below, and thus c ≥ 2. Since f = id outside the
ball B(1 + q) and since f maps this ball onto itself, we easily see that f
is a (2 + 2q)-nearisometry. Hence Hc(E) ≥ 1/(1 + q), which gives the first
inequality as q → 0.

We are ready to state the main result of the paper.
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1.11. Theorem. For every Hilbert space E with dimE ≥ 1 we have
Hc(E) = H(E) = H0(E) = J(E). Moreover, the constants Hc(E), H(E)
and H0(E) are attained. Thus H(Rn) =

√
2n/(n+ 1), and H(E) =

√
2 if

dimE =∞.

By (1.10) it suffices to show that J(E) ≤ Hc(E). This will be done in
2.12. However, we shall first give a proof for the weaker inequality J(E) ≤
H0(E) in 2.11, because it is more straightforward.

Since the Jung constant of a Hilbert space is attained, the constants
Hc(E), H(E) and H0(E) are attained by 1.5.

The following observations are used several times in the paper.

1.12. Lemma. Let T : E → E be a surjective isometry of a Banach
space E with d(T, id) < ∞. Then T is of the form Tx = x + w for some
w ∈ E.

Proof. Replacing Tx by Tx−T (0) we may assume that T (0) = 0. Then
T is linear by the Mazur–Ulam theorem. Hence T − id is a linear map with
bounded image, and thus T = id.

1.13. Lemma. Suppose that A ⊂ E and that f : E → E is a map such
that d(f, id) <∞ and fx = −x for all x ∈ A. Suppose also that T : E → E
is an isometry with d(T, f) ≤ q <∞. Then A is contained in a ball of radius
q/2.

Proof. By Lemma 1.12, T is of the form Tx = x + w for some w ∈ E.
For x ∈ A we have q ≥ |Tx− fx| = |2x+ w|. Hence A ⊂ B(−w/2, q/2).

We thank Pekka Alestalo and Eero Saksman for carefully reading the
manuscript and for valuable remarks.

2. Proofs

2.1. Notation. In this section we assume that E is a real Hilbert space
with dimE ≥ 1. The inner product of vectors x, y ∈ E is written as x · y.
The unit sphere of E is S(1) = {x ∈ E : |x| = 1}. For each u ∈ S(1) we let
pu : E → R denote the projection pux = x ·u. The line spanned by u is writ-
ten as Lu, and d(x,Lu) denotes the distance between a point x ∈ E and Lu.

2.2. Lemma. Suppose that u ∈ S(1), that s, t ∈ R, and that a, b ∈ E
with d(a, Lu) = d(b, Lu). Then

∣∣|su− a| − |tu− b|
∣∣ ≤

∣∣|s− pua| − |t− pub|
∣∣.

Proof. By performing auxiliary isometries of the triples {a, (pua)u, su}
and {b, (pub)u, tu} we may assume that a = b, pua = pub = 0, s ≥ 0, t ≥ 0,
and the lemma follows from the triangle inequality.



Hyers–Ulam constants of Hilbert spaces 35

2.3. The basic construction. In the rest of the section we assume that
A ⊂ E is a set with 0 ∈ A ⊂ B(3/4) and d(A) ≤ 1. We associate to A a
map f : E → E as follows.

For each u ∈ S(1) we set

αu = inf puA, βu = sup puA.

Then
αu ≤ 0 ≤ βu ≤ αu + 1.(2.4)

Define a function h : S(1)→ R by

h(u) =





2βu − 1 if βu ≥ 1/2,
1 + 2αu if αu ≤ −1/2,
0 if αu ≥ −1/2 and βu ≤ 1/2.

(2.5)

Since βu ≤ αu + 1 by (2.4), the function h is well defined. Furthermore,

α−u = −βu, β−u = −αu, h(−u) = −h(u), |h(u)| ≤ 1/2(2.6)

for all u ∈ S(1). Clearly h is continuous.
The map f : E → E is now defined by

f(x) =
{
−x for x ∈ A,
x− h(u)u for x ∈ Lu \A, u ∈ S(1).(2.7)

Since 0 ∈ A and since h(−u) = −h(u) by (2.6), the map f is well defined.
Furthermore,

d(f, id) = 2 sup{|x| : x ∈ A} ≤ 3/2.(2.8)

2.9. Lemma. The map f : E → E defined by (2.7) is a 1-nearisometry.

Proof. Let x, y ∈ E. We must show that

δ =
∣∣|fx− fy| − |x− y|

∣∣ ≤ 1.(2.10)

If x, y ∈ A, then δ = 0. Assume that x, y ∈ E \ A. Choose u ∈ S(1) with
x ∈ Lu. Then |fx − x| = |h(u)| ≤ 1/2 by (2.6). Similarly |fy − y| ≤ 1/2,
and (2.10) follows.

In the rest of the proof we assume that x ∈ A and y ∈ E \ A. Write
y = su with u ∈ S(1), s ∈ R. We may assume that h(u) ≥ 0 replacing u by
−u if necessary. To simplify notation we write

p = pu, α = αu, β = βu, h = h(u).

By Lemma 2.2 we get

δ ≤
∣∣|s− h+ px| − |s− px|

∣∣ ≤ |2px− h|.
If h = 0, then |px| ≤ max{|α|, β} ≤ 1/2 and δ ≤ 1. Assume that h > 0.

Then h = 2β − 1 and |α| < 1/2 < β. Since α ≤ px ≤ β and β ≤ α + 1, we
obtain

2px− h ≤ 2β − 2β + 1 = 1, h− 2px ≤ 2β − 1− 2α ≤ 1.

Thus δ ≤ 1.
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We turn to the proof of Theorem 1.11. It will follow from Proposition
2.12 below, but we first prove a weaker result.

2.11. Proposition. H0(E) ≥ J(E).

Proof. Let 0 < ε ≤ 3/4−
√

2/2 and set r = J(E)/2+ε. By the definition
1.4 of the Jung constant, there is a set A ⊂ E such that d(A) = 1, A ⊂ B(r)
and A is not contained in any ball of radius r−2ε. Since A ⊂ B(3/4) ⊂ B(1),
the set A ∪ {0} has the same properties. Hence we may assume that 0 ∈ A.
Since J(E) ≤

√
2, we have r ≤ 3/4. We can thus apply the construction of

2.3 and obtain the map f : E → E defined by (2.7). Since |h(u)| ≤ 1/2 for all
u ∈ S(1) by (2.6), we have E \ fE ⊂ B(5/4). Since f is a 1-nearisometry by
2.9, there is a surjective isometry T : E → E with d(T, f) ≤ H0(E) + ε = q.
By 1.13, there is a ball of radius q/2 containing A. Hence r − 2ε < q/2,
which yields J(E) < H0(E) + 3ε. As ε → 0, this proves the proposi-
tion.

2.12. Proposition. Hc(E) ≥ J(E).

Proof. Assume first that dimE=n<∞. Set K=J(E)/2=
√
n/(2(n+1)).

Choose a regular n-simplex ∆ centered at the origin with d(∆) = 1. Let
v0, . . . , vn be the vertices of ∆. Then |vj| = K for all 0 ≤ j ≤ n. Moreover,
∆ is not contained in any ball of radius less than K.

Setting A = {0, v0, . . . , vn} we have d(A) = 1 and A ⊂ B(K) ⊂ B(3/4).
Hence we may apply the construction of 2.3 and obtain a function h : S(1)→
R and a map f : E → E, defined by (2.5) and (2.7).The map f is a 1-near-
isometry by 2.9, and f is continuous in E \ A. We next modify f in a
neighborhood of A to get a continuous nearisometry.

Choose a small number r > 0 such that the balls B(a, r) are disjoint for
a ∈ A. For each a ∈ A we define gr : B(a, r)→ E by

gr((1− t)a+ tz) = (1− t)fa+ tfz,

where |z−a| = r. Setting grx = fx for x 6∈ A+B(r) we obtain a continuous
map gr : E → E such that grx = fx = −x for x ∈ A and such that
d(gr, id) <∞.

Fact 1. The map gr is a λ-nearisometry where λ = λ(r)→ 1 as r → 0.

Let x, y ∈ E. To prove Fact 1 we must find an estimate
∣∣|grx− gry| − |x− y|

∣∣ ≤ λ,(2.13)

where λ = λ(r)→ 1 as r → 0.
To simplify the proof we only consider the limiting case r = 0. Then g0

is not a genuine map but a one-to-many relation at the points of A. More
precisely, the image of a point vj is the line segment I(vj) = [−vj ,−vj +uj ]
where uj = vj/|vj|. The image of 0 is
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I(0) =
⋃
{[0,−h(u)u] : u ∈ S(1)}.

Moreover, g0x = fx for x ∈ E \A. It clearly suffices to prove that

δ =
∣∣|g0x− g0y| − |x− y|

∣∣ ≤ 1,(2.14)

where now g0x [or g0y] can be an arbitrary point of I(x) [or I(y)] if x [or y] is
in A. For example, rough estimates show that if a ∈ A and |x−a| ≤ r ≤ K/4,
then d(grx, I(a)) ≤ 3r. Hence (2.14) implies (2.13) with λ = 1 + 8r for
r ≤ K/4.

We consider six cases.
Case 1 : x, y 6∈ A. Since f is a 1-nearisometry, (2.14) is true.
Case 2 : x, y ∈ A \ {0}. Now |x− y| ≤ 1. It is easy to see that d(I(x) ∪

I(y)) = 1. Hence |g0x− g0y| ≤ 1, and (2.14) follows.
Case 3 : x = 0 and y ∈ A \ {0}. Since |h(u)| ≤ 1/2 for all u ∈ S(1) by

(2.6), we have I(0) ⊂ B(1/2) and hence |g0x−g0y| ≤ |g0x|+|g0y| ≤ 1/2+K.
Since |x− y| = K < 1, (2.14) follows.

Case 4 : x = y = 0. Now δ = |g0x− g0y| ≤ d(I(0)) ≤ 1.
Case 5 : x = 0 and y 6∈ A. Since |g0x| ≤ 1/2 and |y − g0y| = |y − fy| ≤

1/2, (2.14) is true.
Case 6 : x ∈ A \ {0} and y 6∈ A, say x = v0. Then g0y = fy and

g0x ∈ I(v0) = [−v0,−v0 + u0]. We must show that

|z − fy| ≤ |x− y|+ 1,(2.15)

|z − fy| ≥ |x− y| − 1(2.16)

for all z ∈ I(v0).
Since −v0 = fx and −v0 + u0 = v0 − h(u0)u0 = limx′→x fx′ and since

f is a 1-nearisometry, the inequalities (2.15) and (2.16) are true if z is an
endpoint of I(v0). This implies (2.15) for all z ∈ I(v0), and it remains to
prove (2.16). Define p : E → R by pw = w · u0.

Fact 2. (2.16) is true whenever pfy 6∈ ]−K,−K + 1[.

To prove this let z ∈ I(v0). Then |z − fy| ≥ |z0 − fy| where z0 is one of
the endpoints of I(v0). Since (2.16) holds at the endpoints, Fact 2 follows.

Choose u ∈ S(1) such that y = su for some s ∈ R and h(u) ≥ 0. Set
h = h(u) and define functions F,G : R→ R by

F (s) = |su− x|, G(s) = d(su− hu, I(v0)).

Since f(su) = su− hu whenever su ∈ E \A, it suffices to show that

F (s)−G(s) ≤ 1(2.17)

for all s ∈ R.
Assume first that u ·x 6= 0. Then there are real numbers a < b such that

p(su − hu) ∈ [−K,−K + 1] if and only if s ∈ [a, b]. For s 6∈ ]a, b[, (2.17)
follows from Fact 2. Suppose that s ∈ [a, b]. Clearly h ∈ [a, b]. The function
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G is affine on the intervals [a, h] and [h, b]. Hence F −G is convex on these
intervals. Consequently, it suffices to prove (2.17) at the points s = a, h, b.
The cases s = a, b were already considered above. Since G(h) = 0, it suffices
to show that

|hu− x| ≤ 1.(2.18)

In the case u·x = 0, the function F−G is convex on the intervals ]−∞, h]
and [h,∞[. Moreover, F (s)−G(s)→ ±h as s→ ±∞. Since |h| ≤ 1/2 < 1,
it again suffices to verify (2.18).

The case h = 0 is clear and we assume that h > 0. Then h = 2βu − 1 =
2v · u− 1 for some v ∈ A. Thus

|hu− x|2 = h(h− 2u · x) + |x|2 = h[2u · (v − x)− 1] +K2.

Here u · (v−x) ≤ |v−x| ≤ 1, h ≤ 2K−1 and K <
√

2/2. Hence |hu−x|2 ≤√
2− 1/2 < 1, and (2.18) follows. This completes the proof of Fact 1.

Fact 3. d(T, gr) ≥ 2K = J(E) for every isometry T : E → E.

If Fact 3 is not true, there is an isometry T : E → E with d(T, gr) =
q < 2K. By Lemma 1.13, A is contained in a ball of radius q/2 < K, which
gives a contradiction.

Since dimE < ∞ and since gr : E → E is a continuous nearisometry,
gr is surjective by [Bo, 4.1]; the surjectivity can also be seen directly. Let
ε > 0. By the definition 1.4 of Hc(E), there is an isometry T : E → E with
d(T, gr) ≤ (Hc(E)+ε)λ. Applying Fact 3 and letting ε→ 0 and λ→ 1 yields
J(E) ≤ Hc(E). The proposition is now proved in the case dimE <∞.

Finally assume that dimE = ∞. We must show that Hc(E) ≥ J(E) =√
2. Assume that Hc(E) = c <

√
2. Choose an integer n such that J(Rn) =√

2n/(n+ 1) = M > c, and let F be a linear subspace of E with dimF = n.
Let 1 < λ < M/c. The proof of the finite-dimensional case gives a continuous
surjective λ-nearisometry g : F → F such that d(g, id) < ∞ and such that
d(T, g) ≥M for every isometry T : F → F (Fact 3).

Let P : E → F and P ′ : E → F⊥ be the orthogonal projections. Define
f : E → E by fx = gPx + P ′x. Then f is a continuous surjective λ-near-
isometry. Since cλ < M , there is a surjective isometry S : E → E with
d(S, f) = c′ < M . Since d(f, id) = d(g, id) < ∞, we have d(S, id) < ∞.
By Lemma 1.12, S is of the form Sx = x + w for some w ∈ E. Setting
Tx = x + Pw we obtain an isometry T : F → F . For each x ∈ F we
have

|gx− Tx| = |P (fx− Sx)| ≤ |fx− Sx| ≤ c′,
and hence d(g, T ) ≤ c′. Since d(g, T ) ≥ M > c′, this is a contradiction and
proves the proposition.
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3. Banach spaces

3.1. Conjecture. The equality H(E) = J(E) of 1.11 holds for all
Banach spaces E.

Šemrl [Še, 1.1] proved that H(E) = J(E) = 2 for the space E = C(X)
where X is a countable compact space with a single cluster point. Thus E is
isometrically isomorphic to the space c of all convergent sequences with the
sup-norm. In fact, he constructed a surjective 1-nearisometry f : E → E
such that d(T, f) ≥ 2 for all surjective isometries T : E → E.

We give a short proof for the equality in the space c0 of all sequences
converging to 0.

3.2. Theorem. H(c0) = J(c0) = 2.

Proof. Let 0 < q ≤ 1/2. We define a function g : R→ R by

g(t) =
{
−t for t ∈ [−q, 1− q],
t− 1 + 2q for t 6∈ [−q, 1− q].

Then g is clearly a bijective 1-nearisometry. Define a map f : c0 → c0 by
(fx)j = g(xj). As j → ∞, we have xj → 0, and thus g(xj) → 0. Hence the
sequence fx is indeed in c0. Moreover, f is a bijective 1-nearisometry. Its
inverse is given by (f−1x)j = g−1(xj).

Let λ>H(c0). There is a surjective isometry T : c0→c0 with d(T, f)≤λ.
Since |g(t)− t| ≤ 2 for all t ∈ R, we have d(f, id) ≤ 2. Hence d(T, id) ≤ 2+λ
<∞. By Lemma 1.12, T is of the form Tx = x+ w for some w ∈ c0. Thus

‖x+ w − fx‖ ≤ λ(3.3)

for all x ∈ c0, where ‖ · ‖ is the norm of c0.
Let k be a positive integer and let x ∈ c0 be the sequence with xk = 1−q

and xj = 0 for j 6= k. Since fx = −x, (3.3) gives ‖2x+ w‖ ≤ λ, and hence
|2 − 2q + wk| ≤ λ. As k → ∞, this yields |2 − 2q| ≤ λ. Letting q → 0 and
λ→ H(c0) gives H(c0) ≥ 2, and the theorem follows from (1.10).

3.4. Summary. The conjecture H(E) = J(E) is true if E is a Hilbert
space (1.11) or if E = c ([Še, 1.1]) or E = c0 (3.2). Moreover, by (1.10) it
holds whenever J(E) = 1, for example, for E = l∞. In addition, we have
proved that H(E) = J(E) = 4/3 for E = R2 with a regular hexagon as the
unit disk.
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