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Beurling algebra analogues of theorems of
Wiener—Lévy—Zelazko and Zelazko

by

S. J. BuATT, P. A. DABHI and H. V. DEDANIA (Vallabh Vidyanagar)

Abstract. Let 0 < p < 1, let w : Z — [1,00) be a weight on Z and let f be a
nowhere vanishing continuous function on the unit circle I" whose Fourier series satisfies

Y onez |f(n) |Pw(n) < oo. Then there exists a weight v on Z such that 3, |(T/7)(n)|py(n)
< oo. Further, v is non-constant if and only if w is non-constant; and v = w if w is non-
quasianalytic. This includes the classical Wiener theorem (p = 1, w = 1), Domar theorem
(p = 1, w is non-quasianalytic), Zelazko theorem (w = 1) and a recent result of Bhatt and
Dedania (p = 1). An analogue of the Lévy theorem at the present level of generality is also
developed. Given a locally compact group G with a continuous weight w and 0 < p < 1,
the locally bounded space L?(G,w) is closed under convolution if and only if G is discrete
if and only if G admits an atom. This generalizes and refines another result of Zelazko.

Let f be a continuous function on the unit circle I'. Let f have absolutely
convergent Fourier series. The celebrated Wiener theorem [12]| implies that
if f(z) # 0 for all z € I', then 1/f has absolutely convergent Fourier series.
Lévy’s generalization [8] of Wiener’s theorem implies that, for every function
¢ holomorphic on some neighbourhood of the range of f, the function ¢ o f
has absolutely convergent Fourier series if so does f. Zelazko proved in [13]
that both these theorems hold if absolute convergence is replaced by pth
power absolute convergence for 0 < p < 1.

Let w be a weight on Z, that is, w : Z — [1,00) satisfies w(m + n) <
w(m)w(n) (m,n € Z). A complex sequence (Ap)nez is w-absolutely conver-
gent if 3 |Aplw(n) < oo.

Domar proved in [4, Theorem 2.11] that if f has w-absolutely conver-
gent Fourier series and is nowhere vanishing on I", then 1/ f has w-absolutely
convergent Fourier series provided w is non-quasianalytic in the sense that
> nez (logw(n))/(1+n?) < oo. On the other hand, given f having w-
absolutely convergent Fourier series, it is established in [2] that there ex-
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ists a weight v on Z such that 1/f (and analogously ¢ o f) has v-absolutely
convergent Fourier series.

We prove the following theorem that includes all these results, which also
gives a pth power analogue of Domar’s theorem.

THEOREM 1. Let 0 < p < 1, let w be a weight on Z, and let f € C(I)
have pth power w-absolutely convergent Fourier series.

(I) If f(2) #0 (z € I'), then there ezists a weight v on Z such that

(i) 1/f has pth power v-absolutely convergent Fourier series;
(ii) v is non-constant if and only if w is non-constant;
(ili) v(n) <w(n) (n € Z).
(IT) If ¢ is a holomorphic function on some neighbourhood of the range
of f, then there exists a weight x on Z such that

(i) wo f has pth power x-absolutely convergent Fourier series;
(i) x 4s non-constant if and only if w is non-constant;
(iii) x(n) <w(n) (n € Z).

COROLLARY 1. Let 0 < p < 1, let w be a non-quasianalytic weight on 7Z,
and let f € C(I') be nowhere vanishing. If f has pth power w-absolulely
convergent Fourier series, then 1/f has pth power w-absolutely convergent
Fourier series.

Analogous to Gel’fand’s proof of the Wiener theorem |7, p. 33|, which is
based on Banach algebras, we shall use Gel’fand theory of p-Banach algebras
developed by Zelazko in the framework of locally bounded Beurling algebras.

Let A be a (complex) algebra and let 0 < p < 1. Then a mapping
|-l : A—Risapnormon A if, for z,y € A and for o € C,

(i) |||l > 0 and ||z|| = 0 if and only if z = 0;
(i) [l + gl < [lz]l + llyll;
(iii) [Joz]| = |exf?||]|;
() flzyll <l ly]-

If A is complete in the p-norm, then (A, | - ||) is a p-Banach algebra. Among
unital algebras, p-Banach algebras are precisely the complete locally bound-
ed algebras [13, Theorem 2.3|. Given a continuous weight w : G — [1,00)
on a locally compact group G satisfying w(st) < w(s)w(t) (s,t € G), let
LP(G,w) be the set of all measurable functions f : G — C such that

1f I == § IF O Fw(t) dm(t) = | |f (@) dm(t) < oo,
G G
where m is the left invariant Haar measure on G, and dm,, = wdm. Though
a complete locally bounded space can be dual-less, i.e., have no non-zero
continuous linear functionals (which could be a hurdle in construction of
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vector-valued integrals), Zelazko [13] constructed a functional calculus in p-
Banach algebras; and an offshot of his Gel’fand theory is that a semisimple,
commutative, complete locally bounded algebra has sufficiently many con-
tinuous linear functionals. For a discrete abelian group G and for 0 < p <1,
the space /P(G) is a p-Banach algebra with convolution. In fact, Zelazko
proved that, for a locally compact group G and for 0 < p < 1, the complete
locally bounded space LP(G) is closed under convolution if and only if G is
discrete. The following theorem gives a Beurling algebra analogue of this.

THEOREM 2. Let 0 < p < 1, let G be a non-compact, locally compact
group, and let w be a continuous weight on G. Then the following are equiv-
alent.

(i) LP(G,w) is closed under convolution.
(ii) G is dzscrete
(i) LP(G,w) admits a non-zero continuous linear functional.
)

The set of continuous linear functionals on LP(G,w) separates the
points of LP(G,w).

(v) G admits an atom.

(vi) G admits sufficiently many atoms.

(iv

In this case, if G is abelian or w is symmetric, LP(G,w) is semisimple.

Note that, in general, it is not known whether L'(G,w) or (G, w)
(0 < p < 1) is semisimple or not [3, p. 175].

Rolewicz [11] has discussed multi-dimensional generalizations of Wiener—
Zelazko and LévyZelazko theorems. In the same spirit, it would be inter-
esting to investigate multi-dimensional analogues of Domar’s theorem [4,
Theorem 2.11| as well as the theorem in [2].

Recall that a measurable set E C G is an atom if 0 < m(E) < oo, and, for
any measurable set F' C E, m(F) =0 or m(F) = m(E). A Banach x-algebra
A is an A*-algebra if it admits a C*-norm (not necessarily complete).

Proof of Theorem 1. Let
P(Z,0) = {)\ = () Mo = 3 AalPw(n) < oo}.

nez

Then (P(Z,w) is a convolution algebra. It is a p-Banach algebra with the
p-norm | - |p. Let Ap(w) = {g € C(I') : g € P(Z,w)}. It is a p-Banach
algebra with the pointwise operations and the p-norm being ||g||p.w = |g]pw-
Thus g € C(I") has pth power w-absolulely convergent Fourier series if and
only if g € Ap(w) if and only if g € P(Z,w).

We claim that the Gel'fand space A(Ap(w)) of Ap(w) is homeomorphic
to the closed annulus I'(w) = {z € C: p(2,w) < |z| < p(1,w)}, where

p(1,w) = inf{w(n)™ :n>1} and p(2,w) = sup{w(n)/™:n < —1}.
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For z € I'(w), define
=S5 (g€ Apw)).

nez
Then, for large ny,

Yo lgm=tl < Y0 gl < Y [gn)Pwn

[n|>n0 [n|>n0 In|>no

It is routine to check that ¢, is a complex homomorphism on A,(w). Thus
v, € A(Ap(w)) (z € I'(w)). Let p € A(Ap(w)). Then [j¢|| < 1. Let e,(2) =
2" (n€Z,ze€T). So|plen)| < llenllpw = w(n) (n € Z). Set p(e1) = 2.
Then, for each n € Z, p(e,) = @(e1)™ = 2. It is clear that p(2,w) < |z| <
p(1,w). So, for any g € Ap(w), we have

= (D gm)en) = D Gm)elen) = 3G = v (9).

nez nez nez
Thus ¢ = ¢,,. This quickly gives the desired homeomorphism and establishes
our claim. Thus each function g € Ap,(w) extends uniquely as an element
(denoted by g itself) in the set B(w) consisting of all continuous functions
on I'(w) which are holomorphic in the interior of I'(w). Now the construction
of desired weights v and x is exactly as in [2]. =

Proof of Corollary 1. By the hypothesis, Y, . (logw(n))/n? is conver-
gent. Notice that > -, 1/(nlogn) is divergent. For infinitely many n € N,

log u;(n) - 1

n ~ nlogn’
hence inf{(logw(n))/n :n € N} =0, and p(1,w) = 1. Similarly, p(2,w) = 1.
Then, from Theorem 1(I), ¥ = w; and the result follows. m
Proof of Theorem 2. (i)=-(ii). We prove that if G is not discrete, then
LP(G,w) is not closed under convolution. Let V' be a symmetric, open sub-
set of G containing the identity of G such that V is compact. Since w is
continuous on G,

(a) mw(V?) = § xv2 (tw(t) dm(t) < oc.
Now choose a sequence (V},) of measurable subsets of G such that

(b) my, (V) > 0;

(c) Vi €V

(d) ViN'V; = 0 whenever i # j.
From the properties (a), (¢) and (d), we have >~ 7 my,(V,,) < oco. We may
assume that m, (V) < 27" (n € N). Define f,g: G — C as

o0

f=xy2 and g= Z[mw(Vn)nQ}fl/van.

n=1
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Then || f|lpw = mw(V?) < 0o and

Hngaw = Z[mw(vn)nQ]il S XVn(t>w(t) dm(t) = anZ < o0
n=1 G n=1

Thus f,g € LP(G,w). On the other hand,
(Fx9)(t) = | F(s~10)g(s) dmls) = | g(s) dm(s).

G tv2
If t € V, then tV? C V and so
(f*g)(t) = i[mw(vn)nQ]_l/pm(Vn) = i[mw(vn)ng]_l/me(Vn) T:Ln((‘(;)) .
n=1 n=1 w\¥n

Since w is bounded on compact subsets of GG, there exists K > 0 such that
w(t) < K (te€V). Now

mo(Va) = | w(t)dm(t) < | K dm(t) = Km(V,).

Vn Vi
Thus
721((‘(/)) > % (n € N).
Therefore
(f*g)(t Zgnl/p Dp=2/p — 5o

Hence fxg cannot be in LP(G,w) as it becomes infinite on a set V' of positive
measure.

(ii)=-(i). If G is discrete, then it is easy to verify that LP(G,w) is closed
under convolution.

(ii)=(iv). Let G be discrete. Let f,g € LP(G,w) and f # g. Therefore
f(t) # g(t) for some t € G. Define p; : LP(G,w) — C as pi(h) = h(t) (h €
LP(G,w)). It is easy to verify that ¢; is a continuous linear functional on

LP(G,w). Also pi(f) = f(t) # g(t) = ¢i(g). Thus (iv) follows.

(V)<:>( i). Since w is continuous, E C G is an my-atom if and only if £
is m-atom; and due to left translation invariance of m, this happens if and
only if tF is an atom for any t € G.

(iii)=(vi). Let LP(G,w) have a non-zero continuous linear functional.
Then, by [10, Corollary 4.2.3], G admits an atom, say E. Since the Haar
measure on G is left translation invariant, we may assume that F contains
the identity e of G.

Next we claim that every set of positive measure contains an atom
(measure-theoretically). Let F' C G be of positive measure. If ' = G a.e. m,
we are done. Let m(G\F) > 0. Now, either FNE = () a.e. m or m(FNE) > 0.
Since E' is an atom, in the latter case F N E = E C F a.e. m. Suppose that
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FNE =0 ae m. Then G\F = E a.e. m. Now, for any ¢t € G, either
tENE =0QortE =FE ae. m. IftE = FE forallt € G, then G = E a.e.
m, which is not possible as m(F) = m(G\E) > 0. Therefore there exists
t € G such that tENE = () a.e. m. Then tE C G\FE = F a.e. m. Thus
tFE is an atom contained in F. This proves our claim. Now G is a union of
its atomic part, which is a union of atoms, and a non-atomic part. In this
case the measure of the non-atomic part is zero; otherwise it will contain an
atom. Thus (vi) follows.

(v)=-(ii). Suppose that G admits an atom, say E. We may assume that
e € E. First we assert that E is an atom if and only if £~! is an atom. Since
m is left invariant, it follows from [6, 2.32, p. 48] that m(E) = 0 if and only if
m(E~Y) = 0. Let F C E~! be measurable. Then FF~! C FE is measurable. If
m(F) > 0, then m(F~!) > 0. Since F~! C E, we have F~! = E. Therefore
F = E~'. This proves our assertion.

Now define g = m(E~')"xg. Then g € LY(G). We claim that g is the
identity of L(G). Let f € L'(G) and t € G. Then

1

(f x9)(t) = (S;f(slt)g(S) dm(s) = m(E-T) ]Sﬂf(slt) dm(s)
= m(;_l) S f(s)dm(s).

tE—1
Note that tE£~! is an atom, ¢ € tE~!, and every measurable function is
constant on an atom. Therefore

1
(f*x9)(t) = mf(t) S dm(s) = f(t).
tE—1
Hence f x g = f; similarly, g x f = f. Thus g is the identity of L!(G). It
follows that G is discrete.
(vi)=-(iv). Assume that G admits sufficiently many atoms. Now let f, g €
LP(G,w) be such that f # g. Then there exists an atom, say F, on which

f # g. Also since every measurable function on an atom is constant, f =
cf # cg = g on E. Define pp : LP(G,w) — C as

pp(h) = | h(s)dmy(s) (b€ LP(G,w)).
E

Then ¢g is a continuous linear functional on LP(G,w). Moreover, pg(f) =
my(E)cy # my(E)cqg = ¢r(g). Thus (iv) follows.

(i)=(vi). Since G is discrete, it is clear that G is a union of atoms.

(iv)=-(iii) is clear.

Since G is discrete, LP(G,w) = P(G,w). If w is symmetric, then (G, w)
is a x-subalgebra of £1(G). Since £}(G) admits a C*-norm, it is an A*-algebra.
So, by [9, Theorem 4.1.19], ¢?(G,w) is semisimple. If G is abelian, then
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¢P(G,w) is a subalgebra of the commutative Banach algebra ¢!(G,w). Since
(Y(G,w) is semisimple [1], (G, w) is semisimple [9, Corollary 2.3.7]. =
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