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Generalizing the Johnson–Lindenstrauss lemma
to k-dimensional affine subspaces

by

Alon Dmitriyuk and Yehoram Gordon (Haifa)

Abstract. Let ε > 0 and 1 ≤ k ≤ n and let {Wl}pl=1 be affine subspaces of Rn, each of
dimension at most k. Let m = O(ε−2(k + log p)) if ε < 1, and m = O(k + log p/log(1 + ε))
if ε ≥ 1. We prove that there is a linear map H : Rn → Rm such that for all 1 ≤ l ≤ p
and x, y ∈ Wl we have ‖x − y‖2 ≤ ‖H(x) − H(y)‖2 ≤ (1 + ε)‖x − y‖2, i.e. the distance
distortion is at most 1+ε. The estimate on m is tight in terms of k and p whenever ε < 1,
and is tight on ε, k, p whenever ε ≥ 1. We extend these results to embeddings into general
normed spaces Y .

1. Introduction. In 1984 Johnson and Lindenstrauss [17] proved the
following important result, henceforth called the JL-lemma.

Theorem 1.1. Fix 0 < ε < 1. Any n-point set in Euclidean space can
be embedded into O(ε−2 lnn)-dimensional Euclidean space with distance dis-
tortion smaller than 1 + ε.

Any embedding of the vertices of the standard n-simplex into m-dimen-
sional Euclidean space with distortion 1 + ε satisfies m ≥ c(ε) lnn where
c(ε) is a constant depending only on ε. Noga Alon [2] proved that c(ε) ≥
cε−2(ln(1/ε))−1 where c is an absolute constant.

The JL-lemma has been shown to be useful in applications in computer
science and in engineering, and various proofs were given in [1, 3, 7, 10, 16].

We obtain some results which we then apply to compressed sensing,
which is an important notion studied and applied by many authors (see
e.g. [6, 8]). The relevant classical setup for compressed sensing is as follows:
A set T ⊂ `n2 = (Rn, ‖ · ‖2) and an orthogonal basis F = {f1, . . . , fn} are
given. For x ∈ `n2 and J ⊂ {1, . . . , n} we denote by xJ the sparse vector in
`n2 whose coordinates with respect to F are zero outside of J and are equal
to the coordinates of x with respect to F on J . Given natural numbers
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n > m > k we wish to know whether there is an embedding G of T into
a smaller dimensional normed space Y = (Rm, ‖ · ‖Y ) such that for every
J ⊂ {1, . . . , n} with |J | ≤ k, the distance distortion of G on xJ is small.
More precisely, given ε > 0 we seek an embedding G of T into Y such that
for every J ⊂ {1, . . . , n} with |J | ≤ k,

(1− ε)‖xJ‖2 ≤ ‖G(xJ)‖Y ≤ (1 + ε)‖xJ‖2.
This is easily obtained using Theorem 2.6 below by choosing the

(
n
k

)
subspaces whose coordinates relative to F are supported on k elements.
In the particular case of Y = `m2 , we obtain a linear map G of Rn into
Rm where m is of the order of magnitude k ln(n/k) or, equivalently, the
order of magnitude of k is m/ln(n/m). In fact Theorem 2.6 extends this
to embeddings into a general Banach space Y , by using the Gaussian min-
max theorem together with methods and tools applied in the asymptotic
geometry of high dimensional convex bodies. In Theorem 2.3 we also improve
and extend results obtained in [13, 14].

There are many applications of the compressed sensing theory and meth-
ods to reconstruct and recover digital signals and large amounts of sparse
discrete information by embedding the data into a small dimensional space
and maintaining very good 1 + ε accuracy.

Our results generalize the JL-lemma in various directions including em-
beddings into general Banach spaces Y , and in particular give sharp results
when Y = `m2 . To do this we employ among other tools the Gaussian min-
max theorem originally proved in [11] and extended in [12, 13]. The methods
employed here have not been used in this context before, and we believe this
new approach to the various extensions of the Johnson–Lindenstrauss lemma
is important, as they usually provide sharp bounds and combine the prob-
abilistic tools with other methods and tools employed in high dimensional
asymptotic geometry. Though we use the Gaussian approach our methods
and some theorems can be extended to any ψ2 distributions, e.g., Bernouli
random variables; we summarize how this may be done in the last section.
It is important in applications, e.g. to compressed sensing, that a suitable
random method provides the desired results, and in addition that with very
high probability, a random selection yields the results. We prove this holds
in all cases considered in this paper.

In the special case of embeddings between Hilbert spaces we obtain:

Theorem 1.2. Let 1 ≤ k ≤ n and let {Wl}pl=1 be subspaces of dimension
at most k in `n2 .

(i) Let 0 < ε < 1. Then there is a linear map H : `n2 → `m2 with
m = O(ε−2(k + ln p)) such that for all 1 ≤ l ≤ p and x, y ∈Wl,

(1− ε)‖x− y‖2 ≤ ‖H(x)−H(y)‖2 ≤ (1 + ε)‖x− y‖2.
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(ii) Let D ≥ 2. Then there is a linear map H : `n2 → `m2 with m =
O(k + ln p/lnD) such that for all 1 ≤ l ≤ p and x, y ∈Wl,

1
D
‖x− y‖2 ≤ ‖H(x)−H(y)‖2 ≤ ‖x− y‖2.

(iii) If p ≤
(
n
k

)
then the estimate for the dimension m in (ii) is tight. In

particular , the estimate for m in (i) is tight in terms of k, p.

Remark 1.3. The maps H in Theorem 1.2(i), (ii) are random and we
shall show in Section 2 that they satisfy the conclusions with high probability
estimates, which is an important ingredient in applications.

Proof. The proofs of (i) and (ii) appear in Section 2.1. We now prove (iii).
Recall that the Grassmann manifold Gm,k is the collection of all k-dimen-
sional subspaces of Rm equipped with the metric

ρ(V,W ) = max
v∈V ∩Sm−1

d(v,W ∩ Sm−1)

where V,W are k-dimensional subspaces of Rm and the metric d is Euclidean.
For A,B ⊂ Rn denote by daff(A,B) the distance between the affine

subspaces spanned by A and by B. If A = {x} then we write daff(x,B).
Let D ≥ 2 and p ≤

(
n
k

)
. We may assume k ≤ p. Let A = {0, e1, . . . , en}

where {ei}ni=1 is the standard basis of `n2 . Choose p distinct subsetsB1, . . . , Bp
of A, each with k + 1 elements one of which is zero. For every 1 ≤ i 6=
j ≤ p choose vi,j ∈ Bi \ Bj and for every 1 ≤ i ≤ p choose an ordering
bi,0, bi,1, . . . , bi,k of Bi where bi,0 = 0. Note that daff(vi,j , Bj) = 1 for every
1 ≤ i 6= j ≤ p.

First we prove a lower bound on the dimension for maps that distort
affine distances by D at most: Assume F : A → `m2 is any map which
satisfies F (0) = 0 and such that for all 1 ≤ i 6= j ≤ p,

1
D
≤ daff(F (vi,j), F (Bj))

daff(vi,j , Bj)
= daff(F (vi,j), F (Bj)) ≤ 1,(1)

1
D
≤ daff(F (vi,j), 0)

daff(vi,j , 0)
=
d(F (vi,j), 0)
d(vi,j , 0)

= ‖F (vi,j)‖2 ≤ 1,

and for all 1 ≤ i ≤ p and 1 ≤ l ≤ k,

(2)
1
D
≤
daff(F (bi,l), F ({bi,0, . . . , bi,l−1}))

daff(bi,l, {bi,0, . . . , bi,l−1})
≤ 1.

Thus F has distortion at most D for at most 2p(p − 1) + kp ≤ 3p2 affine
distances. Put Vi = span(F (Bi)). Then by (2), Vi are k-dimensional sub-
spaces of `m2 . Consider Vi as elements of the Grassmann manifold Gm,k. Then
by (1), {Vi}pi=1 satisfy ρ(Vi, Vj) ≥ 1/D for every 1 ≤ i 6= j ≤ p. Hence the
Grassmann manifold Gm,k contains p disjoint balls of radius 1/2D and there-
fore p · µm,k(Bρ(V1, 1/2D)) ≤ 1 where µm,k is the normalized Haar measure
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on Gm,k. It is known that there is a universal constant C > 0 such that for
every 0 < r < 1/2,

µm,k(Bρ(W, r)) ≥ Crm−k/
√
m.

Hence m ≥ c(k + ln p/lnD) for some universal constant c > 0. We now
observe that if F : `n2 → `m2 is linear and for all 1 ≤ i 6= j ≤ p and x, y in
the affine span of {vi,j} ∪Bj ,

1
D
‖x− y‖2 ≤ ‖F (x)− F (y)‖2 ≤ ‖x− y‖2,

then F : A → `m2 satisfies (1) and (2) and therefore m ≥ c(k + ln p/lnD).
In particular, for D = 2 we conclude that the estimate for m in (i) is tight
in terms of k, p.

Remark 1.4. The proof shows in fact that if p ≤
(
n
k

)
then there is a

choice of an (n + 1)-point set A and 3p2 distinct pairs {(xi, Yi)}3p
2

i=1 where
xi ∈ A and Yi ⊂ A with |Yi| ≤ k such that any map F : A → `m2 which
satisfies

1
D
≤ daff(F (xi), F (Yi))

daff(xi, Yi)
≤ 1

for every 1 ≤ i ≤ 3p2 must satisfy m ≥ c(k + ln p/lnD).

Using Theorem 1.2 we obtain as a corollary a strengthened form of a
theorem of Magen [18]:

Corollary 1.5. Let 1 ≤ k ≤ n/4 and let A be an n-point subset of `n2 .

(i) Let 0 < ε < 1. There is a linear map H : `n2 → `m2 with m =
O
(
ε−2k ln(n/k)) such that for every Y ⊂ A with at most k elements

and all x, y in the affine subspace spanned by Y ,

(1− ε)‖x− y‖2 ≤ ‖H(x)−H(y)‖2 ≤ (1 + ε)‖x− y‖2.
Hence, for any two subsets X,Y ⊂ A with |X ∪ Y | ≤ k,

(1− ε)daff(X,Y ) ≤ daff(H(X), H(Y )) ≤ (1 + ε)daff(X,Y ).

(ii) Let D ≥ 2. There is a linear map H : `n2 → `m2 with m=O
(k ln(n/k)

lnD

)
such that for every Y ⊂ A with at most k elements and all x, y in
the affine subspace spanned by Y ,

1
D
‖x− y‖2 ≤ ‖H(x)−H(y)‖2 ≤ ‖x− y‖2.

Hence, for any two subsets X,Y ⊂ A with |X ∪ Y | ≤ k,
1
D
daff(X,Y ) ≤ daff(H(X), H(Y )) ≤ daff(X,Y ).

(iii) The estimate for the dimension m in (ii) is tight. In particular , the
estimate for m in (i) is tight in terms of k, p.
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Proof. Put p =
(
n
k

)
. Let {Wl}pl=1 be the affine subspaces of Rn which are

spanned by k elements of A. Theorem 1.2, applied to the parallel subspaces
of {Wl}pl=1, and the simple inequality 1

2k ln n
k ≤ ln

(
n
k

)
≤ 3k ln n

k conclude
the proof.

2. Embedding Euclidean subsets into Banach spaces. We begin
with some preliminaries. Henceforth gi,j , gj , hi, g will denote independent
N (0, 1) random variables, i.e. independent standard Gaussian variables. For
a positive integer m define

am = E

√√√√ m∑
j=1

g2
j =
√

2Γ ((m+ 1)/2)
Γ (m/2)

.

It is well known that

(3)
√

m

m+ 1
≤ am√

m
≤ 1 .

We shall need estimates on the expectations of random variables which are
functions of Gaussian variables and concentration estimates. The first result
we need is the Maurey–Pisier concentration theorem (see [20, pp. 176–184]).

Theorem 2.1. Let F : `m2 → R have Lipschitz constant σ and let {gj}mj=1

be independent standard Gaussian variables. Then for every λ > 0,

Pr(F (g1, . . . , gm)− EF (g1, . . . , gm) < λ) ≥ 1− exp
(
− λ2

2σ2

)
,(4)

Pr(F (g1, . . . , gm)− EF (g1, . . . , gm) > −λ) ≥ 1− exp
(
− λ2

2σ2

)
.(5)

Let u : `m2 → Y be a linear map from Euclidean space into a Banach
space Y . The `-norm of u, as defined by Figiel and Tomczak-Jaegermann [9],
is `(u) = E‖

∑m
j=1 gju(ej)‖Y where {ej}mj=1 is the standard basis for `m2 . The

`-norm of Y is

`(Y ) = sup
{
`(u) | u : `m2 → Y, ‖u‖ = 1 and m ≥ 1}.

If Y is finite-dimensional then the supremum is a maximum and it is at-
tained for some u : `m2 → Y where m = dim(Y ). It is known that `(`m2 )
= am, `(`mp ) ≈ √pm1/p whenever 2 < p ≤ lnm, and `(`mp ) ≈

√
m when-

ever 1 ≤ p < 2. For a general m-dimensional Banach space Y we have
c1

√
lnm ≤ `(Y ) ≤ am. Given Banach spaces X,Y and x∗ ∈ X∗ and y ∈ Y ,

the linear operator x∗ ⊗ y : X → Y is defined by (x∗ ⊗ y)(x) = 〈x, x∗〉y
where 〈x, x∗〉 = x∗(x).

The second result we need is a restatement of results by Gordon [11, 13].

Theorem 2.2. Let X,Y be Banach spaces, let S ⊂ X be a compact sub-
set and {x∗i }ni=1 ⊂ X∗ and {yj}mj=1 ⊂ Y . Define linear maps v : X → `n2 by
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v(x) = {〈x, x∗i 〉}ni=1 and u : `m2 → Y by u(ej) = yj. Assume gi,j , gj , hi, g are
independent standard Gaussian variables. Put G =

∑n
i=1

∑m
j=1 gi,j x

∗
i ⊗ yj.

Then

`(u) min
x∈S
‖v(x)‖2 − ‖u‖E max

x∈S

n∑
i=1

〈x, x∗i 〉hi ≤ E min
x∈S
‖G(x)‖Y

≤ E max
x∈S
‖G(x)‖Y ≤ `(u) max

x∈S
‖v(x)‖2 + ‖u‖E max

x∈S

n∑
i=1

〈x, x∗i 〉hi.

We will use Theorem 2.2 and (7) in the case where X = `n2 and v is
the identity and S ⊂ Sn−1 is closed. For a closed subset S ⊂ Sn−1 define
E(S) = E maxx∈S

∑n
i=1〈x, ei〉hi. Then

(6) `(u)− ‖u‖E(S) ≤ E min
x∈S
‖G(x)‖Y

≤ E max
x∈S
‖G(x)‖Y ≤ `(u) + ‖u‖E(S).

It is also well known that in this case

max(`(u), ‖u‖E(S)) ≤ E max
x∈S
‖G(x)‖2.(7)

Let Y be a Banach space. Following the definition in [14] we say that
{yj}mj=1 ⊂ Y satisfies a (C, s)-estimate for C > 0 and s > 0 if for all
{aj}mj=1 ∈ Rm and h ≤ m,

Ch−1/s
( h∑
j=1

(a∗j )
2
)1/2

≤
∥∥∥ m∑
j=1

ajyj

∥∥∥ ≤ ( m∑
j=1

a2
j

)1/2

where {a∗j}mj=1 is a decreasing rearrangement of {|aj |}mj=1. By a result of
Bourgain and Szarek [5], there exists C > 0 such that any n-dimensional
Banach space contains a sequence u1, . . . , uN , with N ≥ n/2, which satisfies
a (C, 2)-estimate.

In Section 2.1 we shall use the following theorem which generalizes results
by Gordon [13] and by Gordon, Guédon, Meyer and Pajor [14] who needed
it for special cases.

Theorem 2.3. There are constants c1, c2, d1, d2 such that given a closed
S ⊂ Sn−1 the following holds:

(i) Assume Y is an m-dimensional Banach space for which ε−1E(S) ≤
`(Y ) for some 0 < ε ≤ 1/2. Choose u : `m2 → Y for which `(u) =
`(Y ) and ‖u‖ = 1. Put yj = u(ej) where {ej}mj=1 is the standard
basis for `m2 and let

H =
1
`(u)

G =
1
`(u)

n∑
i=1

m∑
j=1

gi,j ei ⊗ yj : `n2 → Y.
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Then the probability that

(1− ε)2 ≤ ‖H(x)‖Y ≤ (1 + ε)2

for every x ∈ S is at least 1− 2 exp(−ε2(1− ε)2`(Y )2/2).
(ii) Assume Y is a Banach space and {yj}mj=1 ⊂ Y satisfies a (C, s)-

estimate for some C > 0 and s ≥ 2 and put 1/q = max(1/2 −
1/s, 1/lnm). Let

G =
n∑
i=1

m∑
j=1

gi,j ei ⊗ yj : `n2 → Y.

(a) If 1
2`(Y ) ≤ E(S) ≤ c1C

√
qme−q/2 then with positive probabil-

ity ,
maxx∈S ‖G(x)‖Y
minx∈S ‖G(x)‖Y

≤ d1E(S)
C
√
q m1/q

.

(b) If c1C
√
qme−q/2 ≤ E(S) ≤ c2

√
m then with positive probabil-

ity ,
maxx∈S ‖G(x)‖Y
minx∈S ‖G(x)‖Y

≤ d2E(S)1−2/q

C(ln(m/E(S)2))1/2
.

Proof. (i) Using (6) and ‖u‖ = 1 and `(u) = `(Y ) and E(S) ≤ ε`(Y ) we
obtain

(8) `(Y )(1− ε) ≤ E min
x∈S
‖G(x)‖Y ≤ E max

x∈S
‖G(x)‖Y ≤ `(Y )(1 + ε).

For fixed x={〈x, ei〉}ni=1∈Sn−1 the function ‖
∑n

i=1

∑m
j=1 ti,j〈x, ei〉yj‖Y from

`n×m2 to R has Lipschitz constant at most one. Indeed,∣∣∣ ∥∥∥ n∑
i=1

m∑
j=1

ti,j〈x, ei〉yj
∥∥∥
Y
−
∥∥∥ n∑
i=1

m∑
j=1

si,j〈x, ei〉yj
∥∥∥
Y

∣∣∣
≤
∥∥∥ n∑
i=1

m∑
j=1

(ti,j − si,j)〈x, ei〉yj
∥∥∥
Y

= sup
‖y∗‖=1

〈 n∑
i=1

m∑
j=1

(ti,j − si,j)〈x, ei〉yj , y∗
〉

= sup
‖y∗‖=1

n∑
i=1

m∑
j=1

(ti,j − si,j)〈x, ei〉〈yj , y∗〉

≤ sup
‖y∗‖=1

( n∑
i=1

m∑
j=1

(ti,j − si,j)2
)1/2( n∑

i=1

m∑
j=1

〈x, ei〉2〈yj , y∗〉2
)1/2

= ‖{ti,j}i,j − {si,j}i,j‖2‖u‖ = ‖{ti,j}i,j − {si,j}i,j‖2.



234 A. Dmitriyuk and Y. Gordon

This clearly implies that maxx∈S ‖
∑n

i=1

∑m
j=1 ti,j〈x, ei〉yj‖Y has Lipschitz

constant at most one. We now show that minx∈S ‖
∑n

i=1

∑m
j=1 ti,j〈x, ei〉yj‖Y

also has Lipschitz constant one:∥∥∥ n∑
i=1

m∑
j=1

ti,j〈x, ei〉yj
∥∥∥
Y
≤
∥∥∥ n∑
i=1

m∑
j=1

si,j〈x, ei〉yj
∥∥∥
Y

+ ‖{ti,j}i,j − {si,j}i,j‖2,

hence

min
x∈S

∥∥∥ n∑
i=1

m∑
j=1

ti,j〈x, ei〉yj
∥∥∥
Y
≤ min

x∈S

∥∥∥ n∑
i=1

m∑
j=1

si,j〈x, ei〉yj
∥∥∥
Y

+‖{ti,j}i,j − {si,j}i,j‖2,
which proves the claim.

We now apply Theorem 2.1 to maxx∈S ‖
∑n

i=1

∑m
j=1 ti,j〈x, ei〉yj‖Y and

minx∈S ‖
∑n

i=1

∑m
j=1 ti,j〈x, ei〉yj‖Y , and using (8) we obtain

Pr(max
x∈S
‖G(x)‖Y < (1 + ε)2`(Y )) ≥ 1− exp(−ε2(1− ε)2`(Y )2/2),

Pr(min
x∈S
‖G(x)‖Y > (1− ε)2`(Y )) ≥ 1− exp(−ε2(1− ε)2`(Y )2/2),

which concludes the proof of (i).
(ii) Note that if 1/2 − 1/s < 1/lnm then {yj}mj=1 satisfies a (C/e, s′)-

estimate where 1/s′ = 1/2 − 1/lnm. Hence we may assume that 1/q =
1/2− 1/s ≥ 1/lnm, i.e. q ≤ lnm.

Define u : `m2 → Y by u(ej) = yj . Then ‖u‖ ≤ 1 because {yj}mj=1 satisfies
a (C, s)-estimate.

Fix 1 ≤ h ≤ m to be determined later. Define a new norm on span{yj}mj=1

by ∥∥∥ m∑
j=1

ajyj

∥∥∥
(h)

= Ch−1/s
( h∑
j=1

(a∗j )
2
)1/2

.

Then ‖G(x)‖Y ≥ ‖G(x)‖(h) for every x ∈ S because {yj}mj=1 satisfies a
(C, s)-estimate and therefore

E min
x∈S
‖G(x)‖Y ≥ E min

x∈S
‖G(x)‖(h).

Applying (6) to G : `n2 → (span{yj}mj=1, ‖ · ‖(h)) we obtain

E min
x∈S
‖G(x)‖(h) ≥ E

∥∥∥ m∑
j=1

gjyj

∥∥∥
(h)
− Ch−1/sE(S)

≥ Ch−1/s
(
E
( h∑
j=1

(g∗j )
2
)1/2

− E(S)
)

≥ Ch−1/s

(
c0h

1/2

(
ln
(

1 +
m

h

))1/2

− E(S)
)
,
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where the last inequality is a classical estimate of E(
∑h

j=1(g∗j )
2)1/2 (see [15]).

Applying (6) to G : `n2 → Y we obtain

E max
x∈S
‖G(x)‖Y ≤ `(u) + E(S) ≤ `(Y ) + E(S) ≤ 3E(S).

Hence
E maxx∈S ‖G(x)‖Y
E minx∈S ‖G(x)‖Y

≤ 3E(S)
Ch−1/s(c0h1/2(ln(1 +m/h))1/2 − E(S))

.

To prove (a) choose h ≈ me−q. Then

E maxx∈S ‖G(x)‖Y
E minx∈S ‖G(x)‖Y

≤ d1E(S)
C
√
q m1/q

.

To prove (b) choose h ≈ E(S)2. Then

E maxx∈S ‖G(x)‖Y
E minx∈S ‖G(x)‖Y

≤ d2E(S)2/s

C(ln(m/E(S)2))1/2
.

Remark 2.4. A closer look at the proof of (ii) shows that the probability
of the conclusion of (a) is at least 1− exp(−cC2q m2/q) and the probability
of the conclusion of (b) is at least 1− exp(−cC2+2/qq m1/q).

2.1. On neighborhoods of affine subspaces. We now consider particular
subsets of Sn−1. We shall need the following proposition in order to estimate
various distortions in various cases associated with embeddings of affine
subspaces into general Banach spaces.

Proposition 2.5. Let 1 ≤ k ≤ n and let {Wl}pl=1 be linear subspaces of
dimension at most k in `n2 . Fix 0 ≤ r < 1. Put

S = {x ∈ Sn−1 : there exists 1 ≤ l ≤ p such that d(x,Wl ∩ Sn−1) ≤ r}.

Then

E(S) = E max
x∈S

n∑
i=1

〈x, ei〉hi ≤ 3(
√

ln p+ ak + r(
√

ln p+ an−k)).

Proof. Fix 1 ≤ l ≤ p. Put

Sl = {x ∈ Sn−1 : d(x,Wl ∩ Sn−1) ≤ r}.

Choose Ul ∈ O(n) such that Ul(Wl) = Rk ⊂ Rn. Then

Ul(Sl) = {x ∈ Sn−1 : d(x, Sk−1) ≤ r}.

Let Zl,i be the entries of Ul(h) where h = (hi)ni=1 and hi are indepen-
dent standard Gaussian variables. Then {Zl,i}ni=1 are independent standard
Gaussian variables. We have
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E(S) = E max
x∈S

n∑
i=1

〈x, ei〉hi = E max
1≤l≤p

max
x∈Sl

〈x, h〉(9)

= E max
1≤l≤p

max
x∈Sl

〈Ul(x), Ul(h)〉 = E max
1≤l≤p

max
x∈Ul(Sl)

〈x, Ul(h)〉

≤ E max
1≤l≤p

(√√√√ k∑
i=1

Z2
l,i + r

√√√√ n∑
i=k+1

Z2
l,i

)

≤ E max
1≤l≤p

√√√√ k∑
i=1

Z2
l,i + rE max

1≤l≤p

√√√√ n∑
i=k+1

Z2
l,i .

Let Xl =
√∑k

i=1 Z
2
l,i . Using (5) we find that for all 1 ≤ l ≤ p and t > ak,

Pr(Xl ≥ t) = Pr
(
Xl ≥

t

ak
ak

)
(10)

≤ exp
(
−1

2

(
t

ak
− 1
)2

a2
k

)
= exp(−(t− ak)2/2).

Using (10) we infer that for a > ak,

E max
1≤l≤p

Xl =
∞�

0

Pr( max
1≤l≤p

Xl ≥ t) dt

=
a�

0

Pr
( ⋃

1≤l≤p
(Xl ≥ t)

)
dt+

∞�

a

Pr
( ⋃

1≤l≤p
(Xl ≥ t)

)
dt

≤ a+ p

∞�

a

Pr(X1 ≥ t) dt ≤ a+ p

∞�

a

exp(−(t− ak)2/2) dt

≤ a+ p

∞�

a

t− ak
a− ak

exp(−(t− ak)2/2) dt

= a+
p

a− ak
exp(−(a− ak)2/2).

Choose a = 2(
√

ln p+ ak) to obtain

(11) E max
1≤l≤p

√√√√ k∑
i=1

Z2
l,i = E max

1≤l≤p
Xl ≤ 3(

√
ln p+ ak).

Similarly

(12) E max
1≤l≤p

√√√√ n∑
i=k+1

Z2
l,i ≤ 3(

√
ln p+ an−k).



Generalizing the Johnson–Lindenstrauss lemma 237

Combining (9), (11) and (12) we obtain

E(S) = E max
x∈S

n∑
i=1

〈x, ei〉hi ≤ 3
(√

ln p+ ak + r(
√

ln p+ an−k)
)
.

Combining Theorem 2.3(i) and Proposition 2.5 yields

Theorem 2.6. Fix 0 < ε < 1/2 and 1 ≤ k ≤ n. Let {Wl}pl=1 be linear
subspaces of dimension at most k in `n2 and let Y be a Banach space which
satisfies `(Y ) ≥ 3ε−1(ak +

√
ln p). Then there is a linear map H : `n2 → Y

such that for all 1 ≤ l ≤ p and x, y ∈Wl,

(1− ε)‖x− y‖2 ≤ ‖H(x)−H(y)‖Y ≤ (1 + ε)‖x− y‖2.

Remark 2.7. Since `(`m2 ) = am ∼
√
m we obtain Theorem 1.2(i).

Moreover, Proposition 2.5 actually implies that Theorem 2.6 holds for
every affine subspace W of `n2 whose parallel subspace Y through the origin
is within distance O((

√
k +
√

ln p)/
√
n) to one of the subspaces {Wl}pl=1, or

equivalently, Theorem 2.6 holds for every affine subspace W of `n2 whose par-
allel subspace Y through the origin is in

⋃p
l=1Bρ(Wl, O((

√
k +
√

ln p)/
√
n))

where ρ is the metric on the Grassmann manifold.

The result below is a quantitative version of Theorem 1.2(ii) for large
distortions D, and by Theorem 1.2(iii), the estimate on m is tight. For m,n
let G =

∑n
i=1

∑m
j=1 gi,j ei⊗ej : `n2 → `m2 where gi,j are independent standard

Gaussian variables.

Theorem 2.8. There is a positive constant c such that the following
holds: Given D ≥ c and 1 ≤ k ≤ n and p subspaces {Wl}pl=1 of dimension
at most k in `n2 and any m ≥ 5(k + ln p/lnD), there is a number E such
that the probability that for all 1 ≤ l ≤ p and x, y ∈Wl,

E

√
lnD
D

‖x− y‖2 ≤ ‖G(x)−G(y)‖2 ≤ 4E
√

lnD ‖x− y‖2

is at least 1− 2/p.

Proof. Put S =
⋃p
l=1(Wl ∩ Sn−1) and E = E maxx∈S ‖G(x)‖2. We shall

prove that the probability that

E

√
lnD
D

≤ min
x∈S
‖G(x)‖2 ≤ max

x∈S
‖G(x)‖2 ≤ 4E

√
lnD

is at least 1− 2/p, which will prove the theorem.
Since in Sk−1, for every 0 < ε < 1 there is an ε-net N with |N | ≤ (3/ε)k,

it follows that there is a 1/4D-net {xh}h∈A of S with |A| ≤ p(12D)k.
Put Λ =

{
maxx∈S ‖G(x)‖2 ≤ 4E

√
lnD

}
. Using conditional probability

we obtain
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(13) Pr
(
E

√
lnD
D

≤ min
x∈S
‖G(x)‖2 ≤ max

x∈S
‖G(x)‖2 ≤ 4E

√
lnD

)
= Pr

(
E

√
lnD
D

≤ min
x∈S
‖G(x)‖2

∣∣∣ Λ) · Pr(Λ)

≥ Pr
(⋂
h∈A

{
2E

√
lnD
D

≤ ‖G(xh)‖2
} ∣∣∣ Λ)Pr(Λ)

= Pr
(⋂
h∈A

{
2E

√
lnD
D

≤ ‖G(xh)‖2
}
∩ Λ
)

≥ 1− Pr
(⋃
h∈A

{
‖G(xh)‖2 ≤ 2E

√
lnD
D

})
− Pr(Λc).

Using (6), (7) with u the identity on `m2 and then `(u) = am, and ln p ≤
1
5m lnD and Proposition 2.5, we obtain

(14)
1
2
√
m ≤ am ≤ E ≤ am + E(S) ≤ am + 3ak + 3

√
ln p ≤ 6

√
m lnD

and therefore as ln p ≤ 1
5m lnD, by (14) and Theorem 2.1,

(15) Pr(Λc) ≤ exp(−(4
√

lnD − 1)2a2
m/2) ≤ exp(− ln p) = 1/p.

We now estimate Pr(
⋃
h∈A

{
‖G(xh)‖2 ≤ 2c1E

√
lnD/D}). We shall

need the following estimate obtained using the formula Volm(Bm
2 ) =

πm/2/Γ (1 +m/2) and the well known estimate Γ (1 + t) ≥ (t/e)t: For all
x ∈ Sn−1 and λ > 0,

(16) Pr(‖G(x)‖2 ≤ λ) =
1

(2π)m/2
�

λBm
2

exp
(
−1

2
‖y‖22

)
dy

≤ Volm(λBm
2 )

(2π)m/2
=
λm Volm(Bm

2 )
(2π)m/2

≤ exp
(
m lnλ− m

2
ln
m

e

)
.

Using (14), (16) and k ≤ m/5 and a large enough c we obtain

(17) Pr
(⋃
h∈A

{
‖G(xh)‖2 ≤ 2E

√
lnD
D

})

≤ p(12D)k · exp
(
m ln

(
2E
√

lnD
D

)
− m

2
ln
m

e

)
≤ exp

(
m ln

(
12
√
m lnD
D

)
− m

2
ln
m

e
+ ln p+ k ln(12D)

)
≤ exp

(
−1

5
m lnD

)
≤ exp(− ln p) =

1
p
,

and substituting (15) and (17) into (13) concludes the proof.
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Combining Theorems 2.6 and 2.8 gives the following corollary.

Corollary 2.9. There are positive constants c1, c2 such that given D ≥
c1 and 1 ≤ k ≤ n and p affine subspaces {Wl}pl=1 of dimension at most k
in `n2 and a Banach space Y for which `(Y )2 ≥ c2(k + ln p/lnD), there is a
map H : `n2 → Y such that for all 1 ≤ l ≤ p and x, y ∈Wl,

1
D
‖x− y‖2 ≤ ‖H(x)−H(y)‖Y ≤ ‖x− y‖2.

3. Random mappings into Euclidean spaces. In the special case
when the target space is Euclidean, the question arises whether random
variables other than Gaussian random variables can be used. This is a
consequence of Proposition 2.5 above, a result of Mendelson, Pajor and
Tomczak-Jaegermann [19] and a result of Talagrand [21]. We recall some
definitions.

The ψ2 norm of a random variable X is

‖X‖ψ2 = inf{C > 0 : E exp(X2/C2) ≤ 2}.

Definition 3.1. A probability measure µ on Rn is called isotropic if
for every y ∈ Rn we have E|〈X, y〉|2 = ‖y‖22 where X is distributed ac-
cording to µ. We say that µ is a ψ2 probability measure with constant α if
additionally, for every y ∈ Rn we have ‖〈X, y〉‖ψ2 ≤ α‖y‖2.

Given a compact metric space (T, d), define

γ2(T ) = inf sup
t∈T

∞∑
s=0

2s/2d(t, Ts)

where the infimum is taken over all subsets Ts ⊂ T with cardinality |Ts| ≤
22s

and |T0| = 1. The result of Talagrand [21] states that there are positive
constants c1, c2 such that given a Gaussian process {Xt : t ∈ T} for which
d(s, t)2 = E(Xt −Xs)2, we have

(18) c1γ2(T ) ≤ E sup
t∈T

Xt ≤ c2γ2(T ).

The results from [19] (Theorem 2.3 combined with Corollary 2.7) state:

Theorem 3.2. There are positive constants c1, c2 for which the following
holds: Let T ⊂ Sn−1 and 0 < ε < 1, and let µ be an isotropic ψ2 probability
measure with constant α ≥ 1. For m ≥ 1, let X1, . . . , Xm be independent ,
distributed according to µ, and define Γ : Rn → Rm to be the matrix whose
rows are X1, . . . , Xm. If m ≥ c1(α4/ε2)E(T )2 then with probability at least
1− exp(−c2ε

2m/α4), for every x ∈ T ,

1− ε ≤ 1
m
‖Γx‖22 ≤ 1 + ε.
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It is known that n-dimensional random vectors distributed uniformly on
Sn−1 satisfy the conditions of Theorem 3.2 for some α. It is also known that if
X is a random variable satisfying EX = 0 and EX2 = 1 and ‖X‖ψ2 ≤ β then
the rows of the m×n random matrix whose entries are Xi,j where Xi,j ∼ X
are independent, satisfy the conditions of Theorem 3.2 for some α depending
only on β. In particular, Bernoulli {−1, 1} random variables and standard
Gaussian random variables satisfy these conditions. Examples of random
vectors whose coordinates are not independent identically distributed and
satisfy the conditions of Theorem 3.2 are random vectors with the uniform
distribution on the unit ball of `np for p ≥ 2 (see [4]).

Combining Proposition 2.5 and Theorem 3.2 we obtain the following
analogue of Theorem 2.3(i) when the target space is Euclidean.

Theorem 3.3. There are positive constants c1, c2 such that the following
holds: Fix 0 < ε < 1 and 1 ≤ k ≤ n. Let {Wl}pl=1 be affine subspaces of
dimension at most k in `n2 . Let µ be an isotropic ψ2 probability measure with
constant α ≥ 1 and Γ1, . . . , Γm be independent distributed according to µ.
Choose m such that m ≥ c1α

4(k + ln p)/ε2. Then the random matrix whose
rows are Γi is a linear map Γ : `n2 → `m2 such that with probability at least
1− p−1/α4

, for all 1 ≤ l ≤ p and x, y ∈Wl,

(1− ε)‖x− y‖2 ≤ ‖Γ (x)− Γ (y)‖2 ≤ (1 + ε)‖x− y‖2.
Proof. Put T = (

⋃n
l=1Wl) ∩ Sn−1. Using Proposition 2.5 we obtain

E(T ) ≤ 3(ak +
√

ln p). Apply this estimate in Theorem 3.2.
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