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Johnson’s projection, Kalton’s property (M*),
and M-ideals of compact operators

by

OrLAv NYGAARD (Kristiansand) and MART POLDVERE (Tartu)

Abstract. Let X and Y be Banach spaces. We give a “non-separable” proof of the
Kalton—Werner—Lima—Qja theorem that the subspace K(X, X) of compact operators forms
an M-ideal in the space £(X, X) of all continuous linear operators from X to X if and
only if X has Kalton’s property (M*) and the metric compact approximation property.
Our proof is a quick consequence of two main results. First, we describe how Johnson’s
projection P on L£(X,Y)* applies to f € L(X,Y)* when f is represented via a Borel

(with respect to the relative weak® topology) measure on By« @ By~ C L(X,Y)*: If
Y™ has the Radon-Nikodym property, then P “passes under the integral sign”. Our basic
theorem en route to this description—a structure theorem for Borel probability measures

on Bx++ ® By~ “"_also yields a description of K(X,Y)* due to Feder and Saphar. Second,

we show that property (M*) for X is equivalent to every functional in Bx++ ® Bx+
behaving as if (X, X) were an M-ideal in £(X, X).

1. Introduction. Throughout this paper, X and Y will be Banach
spaces over the same scalar field K where K = R or K = C. The closed unit
ball and the unit sphere of X will be denoted, respectively, by Bx and Sx,
and B(w,r) is the closed ball in X with center z and radius r. For a set
A C X, we denote its convex hull by co A, and its linear span by span A.
The symbol £(X,Y") will stand for the space of continuous linear operators
from X to Y, and K(X,Y) for its subspace of compact operators. We shall
write £(X) and (X)) instead of £(X,X) and K(X, X), respectively. The
identity operator on X will be denoted by Ix or simply by I.

According to the terminology in [GKS], a closed subspace Z of X is said
to be an ideal in X if there exists a continuous linear projection P on X*
with ker P = Z+ = {2* € X*: 2|z = 0} and || P|| = 1. It is straightforward
to verify that if Z is an ideal in X, then, for every x* € X*, the functional
Px* € X* is a norm-preserving extension of the restriction z*|z € Z*. If the

2000 Mathematics Subject Classification: Primary 46B20; Secondary 46B28.
Key words and phrases: Johnson’s projection, Kalton’s property (M™), the Feder-Saphar
description of the dual of compact operators, M-ideals of compact operators.

DOI: 10.4064/sm195-3-4 [243] © Instytut Matematyczny PAN, 2009



244 O. Nygaard and M. Pdldvere

ideal projection P satisfies ||z*|| = || Pz*|| + ||z* — Px*|| for all z* € X*, then
Z is said to be an M -ideal in X (for M-ideals, see the monograph [HWW]).

The space X is said to have the metric compact approrimation property
(briefly, MCAP) if there is a net (K,) in By (x) such that lim, Kqx = x for
all z € X. The net (K,) is called a metric compact approximation of the
identity (briefly, MCAI). If also lim,, K z* = x* for all z* € X*, then (K,)
is called a shrinking MCAI, and X is said to have the shrinking MCAP.

Note that (see [J, proof of Lemma 1]) if (K,) is any weak® convergent
(in £(Y)*™) MCAI of Y, then K£(X,Y) is an ideal in L(X,Y’) with respect
to the Johnson projection P on L£(X,Y)* defined by

(1.1) Pf(T) =lim f(K.T), T €L(X,Y), feLXY)"

The space X is said to have property (M*) (see [HWW, p. 296]) if when-
ever z*,u* € X*, |[u*|| < ||z*], and (x},) C X* is a bounded net such that

w*
x}, — 0, one has

limsup |[u* + 2 || < limsup ||z* + 2 ||.
(0% (03

The following Kalton—Werner—Lima—QOja theorem characterizes M-ideals of
compact operators on X.

THEOREM 1.1. The following assertions are equivalent.

(i) K(X) is an M-ideal in L(X).
(ii) X has property (M*) and the MCAP.

Property (M*) (in its sequential form) was introduced in [K] where it
was proven that, for separable X, K(X) is an M-ideal in £(X) if and only
if X has property (M*) and a very strong form of the MCAP; this result
was extended to the non-separable case in [O1]. In [KW], Theorem 1.1 was
proven for separable X, a simpler proof was given in [L]. Finally, in [02],
it was shown that K(X) is an M-ideal in L(X) if and only if K(Z) is an
M-ideal in L(Z) for all separable closed subspaces Z of X having the MCAP
(a somewhat simpler proof can be modeled after [P]), thus proving Theo-
rem 1.1 also in the general case (note that if X has property (M*), then also
every closed subspace of X has property (M*); moreover, X has property
(M*) if and only if every separable closed subspace of X has property (M*)
(see [03])). The shortest known proof of Theorem 1.1 is given in [O3].

The aim of this paper is to give a direct “non-separable” proof of Theo-
rem 1.1. We develop ideas from [L] and [O3].

Let us fix some more notation, point out some observations, and agree
on some conventions.

Recall that, for z** € X** and y* € Y™, the functional z** ® y* €
L(X,Y)* is defined by (2™ @ y*)(T) = ™ (T*y*), T € L(X,Y). Define
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further
By« ® By« = {#™* @ y*: 2™ € By, y* € By«} C L(X,Y)".

Let ¢ € By« ® By*w*. Observe that ¢[x(x,y) = 2™ ® y*[k(x,y) for some
T @ y* € Bx« ® Bys. Moreover, if ¢|x(xy) # 0, and T € X* and
g* € Y™ are such that ¢|x(xy) = T @ §*[k(x,y), then 2 = az™ and
§* = a~ly* for some o € K. Thus the functional g,:= 2™ ® y* € L(X,Y)*
is well-defined.

Let us make the convention that, unless explicitly stated otherwise,

whenever considering topological properties (such as compactness, open-

ness, Borelness) of subsets of the sets By« ® By*w* C Bg(x,y)«s Bx+, and
By, the topology we have in mind is the relative weak* topology of the
respective set.

Since, for every T' € L(X,Y), there is some ¢ € C:= Bx ® By*w* C
Br(x,y) such that Re¢(T) = || T]|, by the Hahn-Banach separation theo-
rem, it quickly follows that co®” C' = Br(x,y)- Thus, for every f € Sp(xy),
as a consequence of the Riesz representation theorem, there is a regular Borel
probability measure 4 on C' such that f(T) = {, ¢(T) du(¢), T € L(X,Y).
In Section 2, we prove the following characterization of Johnson’s projec-
tion.

THEOREM 1.2. Let Y* have the Radon—Nikodym property, let Y have the
shrinking MCAP with (Ka) C By (y) being a weak™ convergent (in K(Y)*")
shrinking MCAI, and let u be a regular Borel (with respect to the relative
weak® topology) probability measure on C':= Bx«~ ® By« C Br(x,yy«-
Then there is a Borel set C' C C such that

(@) §onor [0(9) dp(¢) = 0 for all S € K(X,Y);

(b) for every T € L(X,Y), the function C 3 ¢ — g4(T)xcr(¢) € K is
measurable;

(c) letting P be the Johnson projection defined by (1.1), and defining
feL(X,Y) by f(T)=S,0(T)du(¢), T € L(X,Y), one has

Pf(T) =\ gs(T)du(¢) = | P (T)du(¢), T € L(X.Y).
c’ c’

If C(X,Y) were an M-ideal in L(X,Y), then, for any ¢ € Bx+ ® By*w*7
one would have [|gg| + ||¢ — gl < 1. In Section 3, we prove the fol-
lowing theorem revealing the essence of property (M*): Every ¢ €
By~ ® Bx-" behaves, in a sense, like it would if K(X) were an M-ideal
in £(X). We write £:= span(K(X) U {I}) C L£(X) and, for f € L(X)*,
1flle= [Iflell-
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THEOREM 1.3. The following assertions are equivalent:

(i) X has property (M*).

(i) For every ¢ € By ® Bx-" , one has gol + 16 — ggll < 1.
(iii) For every ¢ € Bx @ Bx-" , one has |gs]| + |16 — gsllc < 1.

Theorems 1.2 and 1.3 put together easily yield (the implication (ii)=-(i)
of) Theorem 1.1. We also use Theorem 1.2 to indicate a large class of pairs
of Banach spaces X and Y for which K(X,Y) has Phelps’ property U in
L(X,Y) (i.e., every functional f € IC(X,Y)* has a unique norm-preserving
extension to £(X,Y)).

2. Proof of Theorem 1.2. Theorem 1.2 follows from

THEOREM 2.1. Let Y™ (respectively, X**) have the Radon-Nikodyjm
property, and let p be a regular Borel (with respect to the relative weak*

topology) probability measure on C:= Bxx ® By*w* C Br(x,y)«- Denote by
C the collection of compact subsets A of C with the following property:

e there is a norm compact set Y C Sy« (respectively, X 3* C Sx==) such
that, for every ¢ € A, there are y* € Y} and x** € Bx« (respectively,
y* € By= and x™* € X¥") with g4 = 2™ @ y*.

Then there are pairwise disjoint Borel sets C; C C, j € {0} UN, such that
C = U, Cj, where SCO |6(S)| dp(p) =0 for all S € K(X,Y), and C; €C,
jeN.

Proof. Let D C C be a Borel subset such that {,, [#(S)|du($) > 0 for
some S € Sk(x,y)- By a standard exhaustion argument, it suffices to show
that there is a subset A C D with A € C and u(A) > 0. Without loss of
generality, we may assume that |¢(S)| = [g4(S5)| > 26 for some 6 > 0 and
all ¢ € D, and that D is (weak*) compact. We consider only the case when
Y™ has the Radon—-Nikodym property. (The proof is symmetric if X** has
the Radon—-Nikodym property.) Let Y C By be a finite é-net for S**[Bx==].
For each y € ), define Ly:= Bxs N (5**)71[B(y,d)]; then L, is (weak*)
compact, and thus the set

Dy:={¢ € D: g, =2" ® 2" for some ™ € L, and z* € By~}

is also (weak™) compact. Moreover, for some y € ), one must have p(D,) > 0.
For simplicity, we relabel L, and D,, respectively, as L and D.

Denote by K the collection of compact (in the relative weak® topology)
subsets of By«, and let K5:= {y* € By~: y*(y) = d} € K. For each K € K
and each compact subset H C D, define

Cx={peD:gs=a"ty"
for some z** € L, y* € KN Ky, and t € K with ty* € By}
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and

Kp={y" € Ks: gp =™ @ ty*

for some ¢ € H, ™" € L, and t € K with ty* € By+}.
Observe that C is a compact (and thus Borel) (with respect to the relative
weak™ topology) subset of C, and Ky € K. Indeed, let ¢ € D, x** € L,
y* € Ks, and t € K with ty* € By~ be such that g4 = 2™ ® ty*. One has
d < |ly*|l <1, and since
1> [t[ |y ()] = [6(S)] — |o(S) — ty™(y)| = 26 — [[ty"[| |S™ 2™ — y[| = 4,

we obtain 1 < |t| < 1/§. The (weak®) compactness of both C'x and Ky now
quickly follows. Notice also that H C Ck,.

Observe that g: £ 5 K +— SCK |p(S)| du(¢) € [0,1] is a regular content.
To see that o is regular, let K € K and ¢ > 0. We have to find a K/ €
with K’ D K such that o(K') < o(K) + . To this end, choose a compact
set H C D\ Ck such that {, |¢(S)|du(¢) > SD\CK |6(S)| du(¢) — €. Since
Ky N K = (), there are disjoint open (in the relative weak* topology) sets
U,V C By such that K C U and Ky C V. Letting K':= By~ \V € K one
has K > U D K, and

oK'y = | [o(S)du(@) < | 16(S)du(@) < | [6(S)|du(9)

Crer D\Ck D\H
= V1o du(@) + | [6(S)]du(e) — | |6(9)|du(¢) < o(K) + =,
as desiredCK DAC "

Let v be the regular Borel (with respect to the relative weak* topol-
ogy) measure on By~ induced by the regular content p, i.e., for a Borel set
E C By, v(FE) = inf{\(U): E C U € U} where U is the collection of
open subsets of By~ and A(U) = sup{o(K): U D K € K}, U € U, is the
inner content induced by p. Since Ck,, = D, one has v(Kp) > o(Kp) =
5 10(9)] dp(p) > 0. Since Y* has the Radon-Nikodym property, by [B, The-
orem 4.3.11,(a)=(b), and Lemmas 4.3.6 and 4.3.10], there is a norm compact
set Ko C Kp such that v(Ky) > 0. Now we can take Cg, to be the desired A,
because Ck, C D, Ck, € C (one can take YC*,KO ={v*/llv*|l: yv* € Ko}), and

since by the regularity of o, SCKO |6(S)| du(¢) = o(Ko) = v(Ky) > 0, also
M(CKO) >0. =

Proof of Theorem 1.2. Let the sets C}, j € {0}UN, be as in Theorem 2.1.
Put C' = U‘;‘;l Cj. Let T € Sp(x,y). Choose an increasing sequence of
indices (jn)pZ; C N so that u(U;2;, 41 Cj) < 1/n, n € N. For each n € N,
let A, C Sy+ be a finite 1/n-net for j-”zl Yc*'j where the sets Y are as

in Theorem 2.1. Choose an increasing sequence of indices (o), so that,
whenever n € N, for each a > «a,, one has || KXy*—y*|| < 1/n for all y* € A,,.
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Now let n € N be fixed and let a > «,,. Suppose that ¢ € ;”:1 Cj, and let
x** € Bx« and y* € chj (7 € {1,...,jn}) be such that gy = z** @ y*. For
some y; € Ay, one has |ly* —yi|| <1/n. Thus

196(T) = d(KaT)| = [9o(T) = go(KaT)| < T2 " = Koyl
3
< My = vl + llyg = Koyl + 1Kl Nl — vl <

It follows that ¢(K,,T) — g4(T) for each ¢ € C’; thus the function C' >
¢ — g¢(T)xcr(¢) € K is measurable.
Letting again n € N be fixed and « = «,, one has

1§ 96(T) du(9) — FKT)| < [ lgg(T) — 6(KuT) dp(6)

C’ C’
= | lg@ - o(ED)dule) + | gs(T) — $(KaT)| dp(¢)
pages UiZjn+1 Ci
3 2 5
<=+ -=-,

n n n

and it follows that Pf(T) = limy f(KoT) = {5 9¢(T) dp(6). m

REMARK 2.1. The assumption in Theorem 1.2 that (K,) is weak™ con-
vergent (in K(Y)*™) is, in fact, superfluous: A description of K(X,Y)* due
to Feder and Saphar (see [FS, Theorem 1] or Corollary 2.2 below) implies
that if Y* has the Radon—Nikodym property, then every shrinking MCAI
of Y is weak* convergent (in I(Y)**).

REMARK 2.2. Suppose that, in Theorem 1.2, Y is separable. Then Y
has a shrinking MCAT which is a sequence, label it (K;,)5 ;. By [F'S, The-
orem 1] (or Corollary 2.2 below), one has Pg (T) = lim, o Pg(K,T) =
lim;, o0 g(K,,T') for every g € L(X,Y)* and every T' € L(X,Y) (for details,
see [P, Lemma 1.2]). Thus, for any 7' € L£(X,Y), by Lebesgue’s bounded
convergence theorem,

Pf(T) = lim f(K,T)= lim | $(K,T)dp(¢) = lim | go(KnT)dpu()
C C

= | lim gy(KnT) du(9) = | 96(T) du(9) = | PO(T) du(9).
C C C
Notice that the Feder—Saphar description of (X, Y)* which was used
in Remarks 2.1 and 2.2 is, in fact, a consequence of Theorem 2.1.

COROLLARY 2.2 (see [FS, Theorem 1]). Suppose that X** or Y* has
the Radon—Nikodym property, and let g € K(X,Y)* and € > 0. Then there
kok kok * * N . o0 kok *
ar’ioxj *E*X ) and y; € Y* 7 € N, such that g = ijlxj ® y; and

> 5 lys I < llgll + e
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Proof. 1t suffices to show that there are n € N, z7*,...,z;* € X**, and

Y-y € Y7 such that [lg — 35 27" @ i < e and 320 (257 [ly] |l

< |lg|]- One may clearly assume that ||g|| = 1.
Let f € Sg(x,y)- be some extension of g. As explained in the Introduc-
tion, there is a regular Borel (with respect to the relative weak™ topology)

probability measure p on C:= Bx++ ® By~ " Br(x,y)- such that f(T) =
§oo(T)du(¢), T € L(X,Y). Now, in Theorem 2.1, one has u(Cp) = 0, and

one may also assume that C:= C'\ Cy € C.

We only consider the case when Y* has the Radon—Nikodym property.
(The proof is symmetric if X** has the Radon—Nikodym property.) Let
{yi,-- - yp} C Sy« (n € N) be an £/3-net for the set V7 from Theorem 2.1.

Choose y; € Sy such that |y;(y;) — 1] < ¢/3, j € {1,...,n}. For each
j€{1,...,n}, the set
Bj={pcC: g, =y @y
for some 23" € Bx++ and yg € Y7, with |yg — yj|| </3}
is (weak®) compact; thus the set Ej:= B; \ Uf;ll B; is Borel, and we may
define 27" € X** by 27*(2") = [, ¢(z” @ y;) du(9) =\, g9o(2" @ y;) dp(9),
z* € X*. Now, whenever j € {1,...,n}, one has |[2}*[ [|yj[| < p(E;), and
since, for all ¢ € I},
196 — 5 (y5) j
<=y () vl + 195 (5) — v gl + |y (i) llyg — v5ll <,

one has, for every S € B (x,y)s

|§ o(8) dul@) = (@5 @ y)(S)| = | § 96(8) diu(9) - 27" (5";)

Ej E;

‘ 96(8) du(¢) — | 9¢(S*y§®yj)d/t(¢)‘
Ej
|

< Vs ag I s — v (wi)y; |l dn(e) < n(Ej)e.
Ej

I I

<.

75 (S75) din(o) — | (577w () dp(@)
Ej

It follows that > 7, 23" || ly;]l < llgll, and, for every S € By (x vy,
l9(8) = > (@ 2 u))S)] = | | 6(8) dué) = > (@) @ y)(S)|
= E, j=1

| 6(5) du(9) = (5" 0 y))(S)| < =,

as desired. m Jj=1 Ej
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3. Proofs of Theorems 1.3 and 1.1. The implication (i)=-(ii) of
Theorem 1.3 is contained in

PROPOSITION 3.1. Let both X and Y have property (M*). Then, for
any ¢ € Bx @ By-" , one has [|gg|| + [|¢ — gyl < 1.

Proof. Let ¢ € By ® By-" and let ¢o = 2* @ y% € By ® By~ be
such that w*-lim, ¢, = ¢ in L(X,Y)*. We may assume that w*-lim, z}*
=™ in X** and w*-lim, ¥} = y* in Y* for some 2** € Bx« and y* € By~.
Write g = gy = 2™ ®@ y* and h = ¢ — g. We must show that ||g|| + ||h|| < 1.
The case y* = 0 is trivial, so assume that y* # 0. Fix arbitrary S € Sk (x v
with S*y* # 0 and T' € Sp(xy). It suffices to show that [g(S) + h(T)| < 1.
To this end, pick y, € Sy, n € N, such that y*(y,) — ||y*|| and denote
Kn = (5°/15°) © 4 € Bigyy, n € N. Then K2y* = y*(yn)y*/ 7]l — 4°.
thus
Fix an arbitrary € > 0 and choose n € N such that | K}y* — y*|| < ¢ and
lg(K,T) — g(T)| < e. Find v* € By~ with |[v*|| < [|y*|| such that [|T*v*| >
IS*y*||/(1 4+ €) and = € Bx such that (T*v*)(x) = ||S*y*||/(1 + €), and put
U = (5"y*/|S"y"l)) © = € By(). Then

x5k
Sy 1 g
1S¥y*l  1+e
thus S*y* = (14+¢)U*T*v*. Now, since X* and Y* have property (M*), one
sees that

9(S) + M(T)| = [¢(S) + W(T) + g(T') — g(T) + g(KnT) — g(KnT)|
<[o(S+T = KnT)| + [g(KnT) — g(T)]

< lim |23 (S™y + Ty — T Kya)| +

U*T*v* = T*v*(x)

< limsup [[Sy" + Ty, — T" Koy +

< limsup [U°T"0" + Ty, = T + e|U"T"" | + |T°" — T"KG' | + ¢
< limsup [[7%07 + T (o — y) | + 1T ly" — Kayll + 22

< limasup [v* +ys =yl +3e < 1imasup ly* +yn —y*|| +3e <14 3e.

Letting ¢ — 0 yields |g(S) + h(T)| < 1, as desired. =

Observe that, if X is infinite-dimensional, then whenever S € K(X) and
A € K are such that ||S + AI|| < 1, one has |A\| < 1 (because otherwise
I(1/A)S + I|| <1 and thus (1/A)S would be invertible). Hence, for all h in
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K(X)+ c L(X)*, one has ||h||z = |h(I)| because

|l = sup{|h(S + AI)|: S € K(X), A€ K, ||S+ | < 1}
= sup{[A[[A(D)|: S € K(X), A € K, [S+ M| < 1} < [h(D)] < [P

Proof of Theorem 1.3. (i)=-(ii) is obvious from Proposition 3.1.

(ii)=-(iii) is more than obvious.

(iii)=(i). Let (iii) hold, let z*,u* € X* be such that ||u*| < ||z*|], and
let (x}) C X* be a bounded weak* null net. We must show that

limsup ||u* + 2 || < limsup ||z* + 2 ||.
(03 (03

We may assume that ||u*|| < ||z*| and limsup,, ||u* + x| = lim, ||u* + 23|
In this case M := limsup,, ||z* + || > 0 (because otherwise we would have
x;, — —a* in norm, hence also z}, — —x* weak™ and thus z* = 0 implying
that [|u*|| < 0); thus we may assume that M, := ||z*+ || > 0 for all @ and
also that M, — M. Pick S € By (x) such that S*z* = u* (note that such a
rank one S exists). By passing to product index, we may assume that there
is a net (zo) C Sx such that

lién |S*x* + || = lign |S* 2™ (xa) + x5 (x4)]-

Considering ¢, = 24 ® M7 (2* + 27) € Bx«~ ® Bx~, we may assume
that w*-limy, ¢q = ¢ in L(X)* for some ¢ € Bxw @ Bx~ and that
w*-limg, o = 2™ in X** for some z** € Bxs. Then g4 = M=z @ x*
and ¢ — g, = M~ w*-lim, z, @ 2. By (iii), one has

lim sup [|u” + 3 [| = lim |S*2"(2q) + 25 (2a)| = [Mgy(S) + M(¢ — go)(1)]

< M(llgpll + 1l = gollc) < M = limsup [|z* + 2| =
[0

REMARK 3.1. In [L, Theorem 2.2] A. Lima proved, combining know-
ledge on weak* strongly exposed points of Bx+ with a clever slice-cutting
technique, that if (X)) is a semi-M-ideal in span(}C(X) U {I}), then X
has property (M*). This result is an immediate consequence of our Theo-
rem 1.3(iii)=(i), whose proof was more or less elementary.

The following corollary is well known. Our Theorem 1.3 yields a very
simple proof for it.

COROLLARY 3.2 (see [ HWW, p. 297]). Let X have property (M*). Then
X is an M-ideal in X**.

Proof. Let *** = x* + 21 € Sy (with 2* € X*, 2t € X%1), and
let £ > 0. It suffices to show that ||z*| + ||[z*| < 1 4 e. To this end, pick
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x** € Sy satisfying |z+(2**)| > ||zt|| — ¢, and observe that the functional

is in By« ® By~ (because whenever a net (z) C Bx- is such that
z} — ™ weak® in X*™*, then 2** ® ), — ¢ weak™ in L£(X)*). Clearly,

g = v** @ x* and thus, since

16 = goll = 1(¢ = go) (D] = |z (™) > 2| — e,
by Theorem 1.3,
(1 + llat [ = Nlgsll + a1 < llgall + 16 — ggll +e < 1+e. m

Now we are in a position to prove Theorem 1.1. The implication (ii)=-(i)
is the particular case with Y = X of the known

PrOPOSITION 3.3 (cf. Theorem 1.1 combined with [O1, Theorem 8§]).
Let both X and Y have property (M*), and let Y have the MCAP. Then
K(X,Y) is an M-ideal in L(X,Y).

Proof. Let (Ka) C Bi(y) be an MCAL By Corollary 3.2, Y is an M-ideal
in its bidual; hence By+ is the norm closed convex hull of its weak* strongly
exposed points (see [HWW, p. 127, Corollary 3.2]). It easily follows that
(K4) is shrinking; thus (1.1) defines an ideal projection P on £(X,Y)* by
Remark 2.1.

Let f € Sp(x,y), and let T1,T5 € By (x,y) be arbitrary. It suffices to show
that |Pf(Th)| + |(I — P)f(T»)| < 1. As explained in the Introduction, there
is a regular Borel probability measure p on C':= Bxx ® By*w* C Brixyy
such that f(T) = {,¢(T)du(¢), T € L(X,Y). By Theorem 1.3, one has
196(T0)| + 16 = 95 (T3)] < llgoll + 116 — gl < 1 for all ¢ € C. Thus, letting
the set C’ be as in Theorem 1.2 (notice that, since Y is an M-ideal in
its bidual, the dual Y* enjoys the Radon—Nikodym property—see [HWW,
p. 126, Theorem 3.1]), one has

[Pf(T)| + (I = P)f(T2)]
= | § 9o(m) dpu(@)| + | [ (6 = 90)(T2) du(o) + | 9(T2) dpu(@)
o c c\c’
< V(9o (T0)] + (6 = 90)(T2)]) dpa(¢) + p(C\ C)
o
<u(C)+uC\C) =1 u
Proof of Theorem 1.1. (ii)=-(i) is immediate from Proposition 3.3.

(i)=(ii). Let L(X) be an M-ideal in £(X) with P € L£(X)* being the
ideal projection. Property (M*) for X follows immediately from the impli-
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cation (ii)=(i) of Theorem 1.3. The argument to obtain the MCAP for X
is well known: By Goldstine’s theorem (or by the bipolar theorem), By (x)
is dense in By x) in the weak topology o(L(X),ran P). Thus there is a
net (Ko) C Bg(x) such that Pf(K,) — Pf(Ix) for all f € £L(X)*. In
particular, *(Kyz) — 2*(Ixz) for all x € X and all 2* € X* (because
P(r®ax*) = x®x%), ie, K, — Ix in the weak operator topology of
L(X). Since the weak and strong operator topologies yield the same dual
space (see, e.g., [DSch, Theorem VI.1.4]), after passing to convex combina-
tions, we may assume that K,x — x for all z € X, and thus X has the
MCAP. u

We conclude by showing how Theorem 1.2 yields a result which produces
multiple examples of pairs of Banach spaces X and Y for which K£(X,Y)
has Phelps’ property U in £(X,Y). Recall that a closed subspace Z of X
is said to have (Phelps’) property U in X if every z* € Z* admits a unique
norm-preserving extension z* € X*.

THEOREM 3.4. Let Y* have the Radon—Nikodym property, let Y have
the shrinking MCAP, and suppose that, for every x** € Sx+ and every
y* € Sy~, the functional x** @ y* € L(X,Y)* itself is the only norm-pre-
serving extension of its restriction to K(X,Y'). Then K(X,Y') has property U
in L(X,Y).

REMARK 3.2. By a result of A. Lima (see [L, Lemma 3.4]; see also [OP]
for a recent easier proof), ™ ® y* € L(X,Y)* itself is the only norm-
preserving extension of its restriction to K(X,Y') whenever 2** € By C Bx+«
is a denting point of Bx or y* € By is a weak™ denting point of Byx. It
is known (see [LLT1] and [LLT2]) that a point x € Bx is a denting point
of Bx if and only if it is both an extreme point and a point of weak-to-norm
continuity of Bx; moreover, a point y* € By~ is a weak® denting point
of By+ if and only if it is both an extreme point and a point of weak*-to-
norm continuity of By~.

Proof of Theorem 3.4. Let (K,) C By be a shrinking MCAI of Y, and
let P be the Johnson projection on £(X,Y)* defined by (1.1) (notice that
(Kq) is weak™ convergent (in I(Y)**) by Remark 2.1). Then P¢ = gg4 for
all ¢ € By @ By~ =: C.

Let f € Sr(x,y)- be such that ||Pf|| = ||f|| = 1. It suffices to show that
Pf = f. As explained in the Introduction, there is a regular Borel (with
respect to the relative weak™ topology) probability measure p on C' repre-
senting f, i.e., f(T) = {, ¢(T)du(¢) for all T € L(X,Y). Since ||Pf| =
I flkc(x,v)ll, one has, in Theorem 1.2, u(C'\ C') = 0. Set C1:= {¢ € C":
llgsll = 1}. Then p(C’\ C1) = 0 (the function C' > ¢ — ||ge| is measur-
able since it is lower semicontinuous) because otherwise SC'\Cl llggll dpe(o) <
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pu(C"\ Cy) and thus
IPfl = suw [PAT)= s || go(T)du(o)

TeBr(x,v) TeBr(x,v)'

< sup {1ga(D)dp(o) < | llgsll du(s)
TeBﬁ(X,Y) [l c’

= {llgslldu(®) + | llgoll du(e) < u(Cy) + u(C"\ C1) = 1.
Ch CN\Cy

By our assumption, for any ¢ € (1, one has g4 = ¢. From Theorem 1.2 it
now follows that, for any 7' € L(X,Y),

PHT) =\ go(T) dp(¢) = | (T)dp(¢) = f(T). m
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