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Strict u-ideals in Banach spaces
by

VEGARD LIMA (Alesund) and AsvaLD Lima (Kristiansand)

Abstract. We study strict u-ideals in Banach spaces. A Banach space X is a strict
u-ideal in its bidual when the canonical decomposition X*** = X* @ X * is unconditional.
We characterize Banach spaces which are strict u-ideals in their bidual and show that if
X is a strict u-ideal in a Banach space Y then X contains co. We also show that £ is
not a u-ideal.

1. Introduction. Strict u-ideals were introduced by Godefroy, Kalton
and Saphar in [9]. Let X be a subspace of a Banach space Y. We will say
that X is a summand of Y if it is the range of a contractive projection and
that X is an ideal in Y if X1 is the kernel of a contractive projection on Y*.

A norm one operator ¢ : X* — Y* such that ¢(z*)(x) = 2*(x) is said to
be a Hahn—-Banach extension operator. The set of all such ¢ is denoted by
B(X,Y). For every ¢ € lB(X,Y’) we have

Y= X1t @ o(X7).
Let ix be the natural embedding iy : X — Y. Then Py = ¢ 0i% is a norm
one projection on Y* with ker Py = X+, X is an ideal in Y if and only if
IB(X,Y) # 0 (see [8, Theorem 2.4]). If we have ||a +¢(z*)|| = [lzt —(a*)]|
for all z+ € X+ and 2* € X* we say that X is a u-ideal in Y and that ¢
is unconditional. Note that ¢ is unconditional if and only if || — 2P| = 1.
We get the well-known notion of an M-ideal ([3], [12]) if ||z + ¢(z*)|| =
llzt]| + ||¢(z*)|| for all 2+ € X+ and 2* € X*.

We get another useful viewpoint by defining a norm one operator Ty :
Y — X** by

(1.1) (ixy", Ty(y)) = (Y, Po(y"))

for all y € Y and y* € Y*. Then Ty(x) = = for all x € X. Note that
Ty = ™|y
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X is a strict ideal in Y if there is a ¢ € HBB(X,Y) such that ¢(X*) is
norming. In this case ¢ is called strict. That ¢ is strict is equivalent to the
existence for every y € Y and € > 0 of an z* € Bx» such that

lyll —e < {o("),y) = (27, T (v))-

Since [(z*,Ty(y))| < [|Toll [|lz*| ||yl we see that ¢ is strict if and only if
Ty : Y — X is isometric.

In this paper we study strict u-ideals, i.e. ideals for which the Hahn—
Banach extension operator is both strict and unconditional. Godefroy, Kalton
and Saphar note in the introduction to their paper [9] that the theory of
u-ideals is much less satisfactory and complete than in the complex case of
h-ideals (which we will not discuss). We aim to fill a few of the gaps in the
theory of u-ideals.

In Section 2 we use the local and geometric description of u-ideals the
authors obtained in [15] to develop similar tools needed to study strict u-
ideals. We obtain a characterization of when a space of codimension one
is a strict u-ideal (see Theorem 2.4), and when a Banach space is a strict
u-ideal in its bidual (see Theorems 2.8 and 2.9). Some of these results were
first shown by Godefroy, Kalton and Saphar under the assumption that X
was separable or did not contain ¢;. We also show that if X is a non-trivial
subspace of a Banach space Y, then X contains a copy of ¢y whenever X is
a strict u-ideal in Y. In Theorem 2.12 we show that if a dual space X* is
a u-ideal in its bidual, then it is in fact a u-summand. In particular, it can
never be a strict u-ideal. The proof relies on the fact that £ is not a u-ideal
in its bidual (see Theorem 2.11).

In Section 3 we look at denting points and strongly exposed points in the
unit ball of the dual of X when X is a strict u-ideal in its bidual.

We use standard Banach space notation. For a Banach space X, Bx is
the closed unit ball and Sx is the unit sphere. The canonical embedding
X — X** is denoted by kx. If A is a subset of X, span(A) is the linear span
of A and conv(A) is the convex hull of A.

We consider real Banach spaces only.

2. Strict u-ideals. First we show that to check whether a u-ideal is
strict or not it is enough to check one direction at a time.

PROPOSITION 2.1. Assume X is a u-ideal in Y. Then X is a strict u-ideal
in'Y if and only if X is a strict u-ideal in span(X,{y}) for all y € Y.

Proof. Let ¢ € BB(X,Y) be unconditional. As noted in the introduction,
¢ is strict if and only if T} is isometric (notation of (1.1)). But by Lemma, 2.2
and 3.1 in [15], Ty(y) is uniquely and locally determined. m
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Recall that an element ¢ in a convex set K is a center of symmetry if
2c—zx € K forall z € K.

PROPOSITION 2.2. If X is a strict u-ideal in Y then every element of
B(X,Y) is strict.

Proof. Assume ¢ € H3(X,Y) is unconditional and strict. Then ¢ is a
center of symmetry in BB(X,Y) (see e.g. [1, Proposition 2.2]) so that 2¢p—1 €
B(X,Y) for all y € B(X,Y). Let vy € BB(X,Y) and y € Y. Then

1yl = 12T = Ty) ()| = 20 Te @)l = ITw@)I = 2llyll = T4 ()]-
Hence || Ty (y)|| = |ly|| and ® is strict. =

Let us introduce some more notation. Assume X is a closed subspace of
a Banach space Y. For each y € Y\ X define
(2.1) Dy = X" (] Bxe(x, ||z = yl).

reX

It is a convex and weak*-compact subset of X**. Let Z = span(X,{y}).
There is a one-to-one correspondence between D, and H(X, Z) given by
¢ — Ty(y). (If dy € Dy define T : Z — X*™* by T(ay + x) = ady + x. See
also Lemma 2.2 in [14].) Note that Dyy = aD, for a € R.

In view of the previous two propositions the following corollary is obvious.

COROLLARY 2.3. Assume X is a u-ideal in' Y . Then it is a strict u-ideal
if and only if D, C Sx+ for all y € Sy.

In Proposition 2.1 we saw that it is enough to check strictness of a u-ideal
one direction at a time. Next we characterize strict u-ideals of codimension
one.

THEOREM 2.4. Let X be a closed subspace of a Banach space Y. Let
y € Y\ X and Z = span(X, {y}). Assume that X is a u-ideal in Z. The
following statements are equivalent.

(a) X is a strict u-ideal in Z.

(b) For every z € Sz we have infgzes, ||z — 22| = 1.

(c) For every z € Sz and £ > 0 there exists x € Sx such that
Bx (0,1 —¢)N Bx(2z, ||z — 2z||) = 0.

Proof. (a)=-(b). Let ¢ € BB(X,Z) be unconditional and strict and let
z € Sz. Then || T4(z)| = 1 and by Lemma 2.2 in [9] there exists a net (zq)
in X such that w*-limz, = T4(2) and limsup,, ||z — 2z4|| < 1. Then

2||T(2)|| < 2liminf |24 || < limsup [|224|| < limsup ||z — 2z | + ||2]] < 2
« «a «
so we may assume that x, € Sx for all a.

For all z € Sx we have ||z — 2z|| > 2||z|| — ||z]| = 1 but for € > 0 there
is an x4 such that ||z — 2z,] < 1 +e.
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(b)=(c). Let z € Sz and € > 0. Choosing x € Sy with ||z —2z|| < 1+4¢
we get Bx (0,1 —¢) N Bx(2z, |z — 2z||) =

(c)=(a). We use Corollary 2.3. For all z € Z we have D, C Bx««(0, ||z||)
by definition. Let z € Sz. By (c¢) and the principle of local reflexivity we must
have By« (0,1—e)NBx«~(2x, ||z—2z||) = 0 and hence D,NBx++(0,1—¢) =0
foralle > 0. =

PROPOSITION 2.5. If X is a (non-trivial) strict u-ideal in Y and P :
Y — X is a projection then ||P|| > 2.

Proof. Assume that P :Y — X is a projection with norm ||P|| = A. Let
y € Sy Nker P, let € > 0 and choose z € Sx such that

BX(Oa 1- 8) N BX(Qxa Hy - 21‘“) = @
using Theorem 2.4. We then get ||2z] = ||P(y — 2z)|| < M|y — 2z|| so that
(2—2/N)zx € Bx(2x, ||y — 2z||). Then (2 —2/A)x ¢ Bx (0,1 —¢) and since ¢
is arbitrary we get 2 —2/A>1or A >2. =

Since dual spaces are 1-complemented in their biduals they can never be
strict u-ideals in their biduals. In fact, they cannot be a strict u-ideal in any
superspace.

COROLLARY 2.6. Assume that X is a (non-trivial) u-ideal in Y. If X is
A-complemented in its bidual with A < 2 then X is not a strict u-tdeal in'Y .

Proof. Let P : X* — X be a projection with norm ||P|| = A. Let
y € Y\ X and Z = span(X, {y}). Let 2** € D,. Note that D, is non-empty
since BB(X,Y) is. Then for z € X,

[P(z™) — 2| < Mlz™ — zf| < Allz — yl].
Hence X is A-complemented in Z by the projection Q : Z — X defined by

Q(y) = P(z*™) and Q(x) = x. From Propositions 2.5 and 2.1 we conclude
that X cannot be a strict u-ideal in Y. =

Harmand and Lima [11, Theorem 3.5] showed that if X is an M-ideal
in its bidual then X contains almost isometric copies of ¢y (i.e. X has a
subspace isomorphic to ¢p). Next we generalize this to strict u-ideals. Note
that the discussion regarding isometric copies of ¢y in [12, p. 79| also applies
to strict u-ideals.

THEOREM 2.7. If X is a (non-trivial) strict u-ideal in Y, then X con-
tains a copy of co.

Proof. If X does not contain a copy of ¢y then X is a u-summand in Y
by Theorem 3.5 in [9]. Using Proposition 2.5 gives us a contradiction. m

The following is proved for separable Banach spaces and Banach spaces
not containing ¢; in Proposition 5.2 in [9]. For every X the natural embedding



Strict u-ideals in Banach spaces 279

kx+ : X* — X*™* is an element of BB(X, X**). We let 7 : X** — X**
denote the associated ideal projection with kerm = X+,

THEOREM 2.8. X is a strict u-ideal in X** if and only if ||I — 2x| = 1.

Proof. Assume that X is a strict u-ideal in its bidual. Let 2** € X**\ X
We have X N[, cx Bx+(z, ||z — ™) = 0 since any element in the inter-
section would define a norm one projection from span(X,{z**}) onto X,
contradicting Proposition 2.5 (and Proposition 2.1).

By Lemma 2.4 in [10] we get (,cx Bx*(z, ||z — 2*|]) = {#**} and so
the only element in HB(X, X**) is kx-.

The other direction is trivial as X™* is norming for X**. u

REMARK 2.1. The above proof shows that if X is a strict u-ideal in its
bidual then HB(X, X**) has only one element, i.e. the only extension operator
is the trivial one kx-. In particular, the set Dy« = {**} is a singleton for
every z** € X** (see (2.1), page 277).

The following theorem was inspired by Theorem 5.5 in [9]. The main
improvement is that we remove the assumption that the space does not
contain /7.

THEOREM 2.9. Let X be a Banach space. The following statements are
equivalent.

(a) X is a strict u-ideal in its bidual.
(b) Every subspace Y of X is a strict u-ideal in its bidual.
(¢) For every subspace Y of X and y** € Sy,

inf ||y — 2y = 1.
yggy\ly Y|

(d) Every separable subspace Y of X is a strict u-ideal in its bidual.
(e) For every separable subspace Y of X and y** € Sy =,

inf ||y — 2y = 1.
ylensy\ly Y|

Proof. (b)=(d) and (c)=-(e) are trivial. (b)=-(c) and (d)=-(e) follow from
Theorem 2.4.

(a)=-(b). We use Theorem 2.8. Let Y be a closed subspace of X with
natural embedding iy : Y — X. By assumption ||I — 27x| = 1 where
mx = kx+k%. We need to show that ||I — 27y | = 1 where my = ky«ky. It is
easy to check i3 ky = kxiy and iy"*kx+ = ky+1j, so that iy 7wy = my 5™,
We get

L2 iy (I = 2m)|| = |( = 27y )i

Since 4y* : Y — X** is isometric, 43" is onto Y*** and hence || —2my || = 1.
(e)@(d) is proved in Theorem 5.5 in [9].
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Finally, (d)<(a) follows from Proposition 2.3 in [9] which characterizes
strict u-ideals using sequences. Hence strict u-ideals are separably deter-
mined. =

A quick look at Theorem 2.7 gives the following corollary.

COROLLARY 2.10. Assume that X is non-reflexive. If X is a strict u-ideal
i its bidual then every non-reflexive subspace of X contains a copy of cg.

REMARK 2.2. From Theorem 5.1 in [9] we know that a Banach space is
not a strict u-ideal in its bidual if it contains 1. The above corollary gives
an alternative proof of this fact.

From Proposition 2.5 we know that £, is not a strict u-ideal in its bidual.
The next theorem shows that it is not even a u-ideal. We will also look at
some consequences below.

THEOREM 2.11. l is not a u-ideal in its bidual.

Before giving the proof of this theorem we need to introduce some more
notation.

It is well-known that ¢ is isometrically isomorphic to C'(8N) where SN
is the Stone-Cech compactification of the natural numbers (see e.g. Corol-
lary 15.2 in [6]). The Riesz representation theorem identifies the dual with
the measures on GN. The state space of C'(ON) is the set

S={z" el : |27 =2"(1) =1},

which is a weak*-closed subset of the dual unit ball. S can be identified with
the probability measures on GN; the set of extreme points of S, ext S, is
homeomorphic to SN; and S is a Bauer simplex (see e.g. |2, Corollary 11.4.2]).
C(PN) is isometrically isomorphic to A(S), the continuous affine functions
on S (see e.g. 2, Theorem II.1.8|). Thus for f € A(S) and s € S there is
a unique probability measure p on ext.S such that f(s) = SeXt g fdu. We
will write s = r(u) where r is the resultant (or barycenter) function. It is
well-known that S is a simplex (see e.g. [18, p. 53|) so p is unique, i.e. r is
1-1 ([18, Proposition 11.1]).

We say that a measure p on BN is discrete if there is a countable set
{2j}32; C BN and numbers {a;}72, such that u = 3°7%, a;d.,. On the other
hand, p is continuous if p({z}) = 0 for all z € SN. Any measure p can be
written uniquely as pu = pg + pe where pg is discrete and p, is continuous
by letting £ = {z : pu({z}) # 0} and defining pu4(4) = p(A N E) and
pe(A) = p(A\ E). Since N is countable we can write pg = ping + tpg where
pind(A) = pa(ANN) and ppa(A) = pa(A\N).
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We will define the following faces of S:

S1={s€S:s=r(un), a discrete measure on N},
Sy ={s€S:s=r(uq), adiscrete measure on SN},

Sz ={s€S:s=r(u), acontinuous measure on SN}.

We have S = conv(U?z1 Si) and S;NS; = () for ¢ # j. We will also need the
complementary face of S;, namely S, = conv(|J; 2 Si). (Here we have used
that closed faces in a simplex are split; see [2, pp. 132-133, Proposition 11.6.7
and Corollary I1.6.8] and [4, p. 140, Theorem 8.3].) Also note that S3 # ()
since we can pull back Lebesgue measure from C]0, 1]*.

Proof of Theorem 2.11. We identify ¢o, with A(S) and A(S)** with the
bounded affine functions on S, Ap(S). (This is “easy to check” [4, p. 43].)
Each s € S can be written uniquely as s = a;s; + (1 — ;) s, where o € [0, 1],
s; € S; and s, € S!. Thus the functions f;(s) = 2a; — 1 are well-defined and
fi € Ap(S). We will use that f; =1 on S; and f; = —1 on S..

Assume for contradiction that ¢, is a u-ideal in its bidual. Define H =
span (fz‘)?:p a subspace of £%F, and let £ > 0.

By the local characterization of u-ideals (Proposition 3.6 in [9]), there is
an operator L : H — ly such that ||L|| < 1+¢, ||h—2L(h)|| < (1 +¢)|A]]
for all h € H and L(z) = x for all x € H N {y. Since L(1) = 1 we get
S Lifi) = -1

Using ||fi —2L(fi)|| < (1 +¢)||fil] <1+ € we see that on S, —(1 +¢) <
—fi+2L(fi) <l+4+ecor fi—1—e<2L(f;) < fi+1+e¢. Soon S; we have
—e/2 < L(fi) <1+¢/2.

By density of N in its compactification SN we must have L(f;) > —¢/2
on (N since L(f1) > —e/2 on N. Also, we have L(f2) > —¢/2 on SN\ N.
Since N is countable the continuous measure p corresponding to s € S3 has
support on BN\ N so

Lfis)= \ Lfidu= | Lfidp>—e/2
ext S ON\N
for i = 1,2. Thus on S5 we have
—e/2< L(f3) = =1 = L(f1) = L(f2) < -1 +¢,

or 0 < —1+ 3¢/2. Since € > 0 is arbitrary this is a contradiction. m

REMARK 2.3. Since /, is injective, £y, is never a strict u-ideal in Z =
span{lo, f} for f € £%%. In some cases it is a u-ideal, however.

In the notation above, set f = 1on Sj and f = —1 on S} = conv(S2US3).

Let e > 0, z; € log and 1 = || f —x;]| for i = 1,2, 3. Without loss of generality
we may assume that z; = > " | a; xx 4, where Ay, is a partition of N (use an
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e-net on the set (z;(n))s; if necessary). We may assume that Aj,..., A,
are finite sets and that A,11,..., A, are infinite.

Define an element = € £, by setting xz,, = 2 for n € Ui:l Apand z, =0
forn € Uy, 1 Ak- Thenz € ﬁooﬂﬂle Bz (f+x;,ri+¢) and by Theorem 1.3
in [15], ¢ is a u-ideal in Z.

As noted in Proposition 2.5, a non-reflexive dual space can never be a
strict u-ideal. Using that £, is not a u-ideal in its bidual we can say even
more.

THEOREM 2.12. Let X be a Banach space such that X* is a u-ideal in
its bidual. Then X™* is a u-summand.

Proof. If X* contains a copy of ¢y then it contains a copy of £, by
Bessaga and Pelczyniski [5]. By Partington [16] and Talagrand [19, Theo-
rem 6| (and injectivity) it has (1 + ¢)-complemented copies of {o, for every
e > 0. The local characterization of u-ideals (Proposition 4.1 in [9]) would
then imply that £, is a u-ideal in its bidual, which is impossible by Theo-
rem 2.11. Hence X™ is a u-ideal not containing cg, so it is a u-summand by
Theorem 3.5 in [9]. =

REMARK 2.4. Assume X is a strict u-ideal in its bidual. Then ||I — 27|
= 1 and considering the adjoint projection P = 7* on X4 we have ker P =
(im )+ = (X*)*t. Since ||I — 2P| = ||[I — 27|| = 1 we conclude that X* is a
u-ideal in its bidual and by the above theorem even a u-summand.

We do not know whether X a u-ideal in its bidual and X* a u-summand
in its bidual implies that X is a strict u-ideal.

3. Geometric properties. A slice of a bounded, closed, convex subset
C of X is a subset S(C,z*, a) of C defined by

S(C,z*,a) ={x € C:2"(z) >supx™(y) — a},

yel
where z* € X*\{0} and o > 0. If X is a dual space we can speak of a weak*-
slice when the defining functional is weak*-continuous. A bounded, closed,
convex set C is dentable if it has slices of arbitrarily small diameter. Recall
that the diameter of a non-empty set A is given by diam(A) = sup{||z —y|| :
x,y € A}. A point = € C' is called a denting point in C' if there is a sequence
of slices S,, of C' with x € S, for all n, such that diam(S,) — 0. If C is
a subset of a dual space X* then z* € C is a weak*-denting point in C
if there is a sequence of weak*-slices S,, of C with z* € S, for all n such
that diam(S,) — 0. A point x € C is called a strongly exposed point in
C' if there is an x* € X* such that z*(z) > 2*(y) for all x # y € C and
diam(S(C,z*,a)) — 0 as a« — 0. Weak™ strongly exposed points are defined
in the obvious way.
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By definition w*-str.exp. Bx+ C w*-dent. Bx+. When X is a strict u-ideal
in its bidual we can say much more. The next proposition highlights that
this is a really strong geometric property.

PROPOSITION 3.1. Assume that X s a strict u-ideal in its bidual. Then
str.exp.Bx+ C w*-dent. Bx=.

Proof. Let x* € str.exp.Bx» and let ™ € Sx-+ be a strongly exposing
functional for z*. Let ¢ > 0 and choose dy > 0 such that {u* € By~ :
o**(u*) > 1—1+/dp} C Bx«(z*,€) and 1 + &y > 21/0(1 + ).

Let 6 € (0,00). Then 1 + &5 > 2v/6(1 + ¢), which is equivalent to
2(1 —6)/(14+e6)—2++/3 > 0. Choose n > 0 with 0 < 1 < 2(1 — §)/(1 + &6)
— 240 and {u* € Bx~ : ¥ (u*) > 1 —n} C Bx«(z*,5/(1 + £)).

Since X is a strict u-ideal we have 1 = inf cg, [|[2** —2z||. Choose x € Sx
such that ||z** — 2z|| < 1+ 7. Choose u* € Bx+ such that u*(z) = 1. Then

L4+n>|z* = 22| > u* (2 — 2™) =2 — 2™ (u").
Thus z**(u*) > 1 —n. It follows that ||[u* — z*|| < &d/(1 4 &9).

Let u = x/x*(x). Then z*(x) > u*(x) — ||z* — u*|| > 1/(1 + &d) so
lul| = 1/x*(x) < 1+ &d. If 2* € Bx+ and z*(u) > 1 — 4, then z*(z) =
z*(u)x*(x) > (1 — §)z*(z). Hence

140> || = 22| > 2*(2x — 2™) > 2(1 — §)a™(x) — 2™ ("),

and 2**(2*) > 2(1 —0)z*(z) — 1 —n >2(1 —0)/(1 + &) — 1 —n. But then
£ (2*) > 1 — /3, from which it follows that ||2* — z*|| < e. Thus z* is con-
tained in weak*-slices of arbitrarily small diameter, i.e. x* is weak*-denting. =

Next we use the weak*-denting points in the unit ball to characterize
when a u-ideal is a strict u-ideal. For Banach spaces not containing ¢; the
equivalence of (a) and (d) was proved in Theorem 7.4 in [9].

PROPOSITION 3.2. Let X be a Banach space. Assume that X is a u-ideal
in its bidual. Then the following are equivalent.

(a) X is a strict u-ideal in its bidual.

b) Bx» = conv(w*-str.exp. Bx+).

C) Bx~ = W(w*—dent. Bx*).

d) X* contains no proper norming subspaces.

e) Ty = Ix+ where ¢ € B(X, X*) is the unconditional extension op-
erator.

(
(
(
(

Proof. (a)=-(b) follows from Theorem 2.8 and Proposition 4.1 in [13].

(b)=(c) is trivial.

(¢c)=(a). The weak*-denting points have unique norm-preserving exten-
sion so BB(X, X**) = {kx~}. X is a strict u-ideal by Theorem 2.8.

(a)=-(d). Follows from Theorem 2.8 and Proposition 2.7 in [9].
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(d)=-(e). By Proposition 2.5 in [10], X has the unique extension property
and by definition the only contractive operator T : X** — X** with T'|x =
IX isT = Ix**.

(e)=(a). X is a strict u-ideal by Theorem 2.8. =

REMARK 3.1. The dual of a Banach space X has the Radon—Nikodym
property if and only if every separable subspace of X has separable dual
(see e.g. |7, Corollary VII.2.8|). This is the case if X is a strict u-ideal in its
bidual (see e.g. Proposition 4.1 in [13| or Proposition 2.8 in [9]).

On the other hand, if X* has the Radon—Nikodym property then Bx« =
comv™ (w*-str.exp. Bx+) [17, Theorem 5.12]. We do not know if this is enough
to ensure that a u-ideal is strict.

It is also an open problem whether a u-ideal is strict if the space does
not contain ¢; (see Question 5 in [9]).

Acknowledgements. We would like to thank the referee for helpful
comments that helped improve the manuscript.
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