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Hessian determinants as elements of dual Sobolev spaces

by

Teresa Radice (Napoli)

Abstract. In this short note we present new integral formulas for the Hessian deter-
minant. We use them for new definitions of Hessian under minimal regularity assumptions.
The Hessian becomes a continuous linear functional on a Sobolev space.

1. Introduction. To every differential operator, linear or nonlinear,
there corresponds a natural domain of definition; usually a very specific
Sobolev space of functions in question.

In recent years there has been increasing interest in Jacobian determi-
nants of Sobolev mappings, Hessians of scalar functions, and more general
null Lagrangians [BFS], [CLMS], [GI], [GIM], [I1], [I2], [IL], [IO], [IV], [IS],
[Mo], [Mu1], [Mu2], [Mu3]. A common feature of such nonlinear differential
expressions is that they possess an important cancellation property. These
properties lead, through integration by parts, to a study of null Lagrangians
beyond their natural domain of definition. In particular, the very useful con-
cepts of weak Jacobians and distributional Hessian have been introduced and
developed in [I1], [CLMS], [Mu2], [Mu3]. They are understood as Schwartz
distributions. In this short note we define new classes of weak Hessians which
are elements of dual Sobolev spaces.

For a smooth function u ∈ C∞0 (Ω) in a domain Ω ⊂ Rn we have the
pointwise Hessian

Hu = det

[
∂2u

∂xi∂xj

]
i,j=1,...,n

.

There are many more equivalent formulas for Hu. The reader is referred
to [I1] for a complete list of such formulas and the associated definitions of
the distributional Hessian. The novelty of our approach lies in letting the
test functions be part of Sobolev mappings, whose Jacobian determinants
lie in the Hardy space H1(Ω). The integrals, which diverge under the usual
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regularity conditions, become well defined via H1-BMO pairing. In this way
the very weak Hessian H[u] becomes an element of the space [W 1,p

0 (Ω)]∗

dual to W 1,p
0 (Ω). Furthermore, we gain new estimates. Let us take a quick

look at particular situations of this kind.

2. Preliminaries. We shall work with the Hardy space of functions
defined on a Lipschitz domain Ω ⊂ Rn (see, for example [BIJZ], [M]). Fol-
lowing [BIJZ] we fix a nonnegative Φ ∈ C∞0 (B) supported in the unit ball
B = {x ∈ Rn; |x| < 1} and having integral equal to 1. The one-parameter
family of mollifiers (called an approximation of unity)

Φε(x) = ε−nΦ

(
x

ε

)
, ε > 0,

gives rise to a maximal operator for Schwartz distributions D′(Ω). Let
f ∈ D′(Ω). We consider smooth functions defined on the level sets Ωε =
{x ∈ Ω; dist(x, ∂Ω) > ε} by

fε(x) = (f ∗ Φε)(x) = f [Φε(x− ·)].
This latter notation stands for the action of f on the test function y 7→
Φε(x− y) ∈ C∞0 (B(x, ε)) in the y-variable. Thus fε → f in D′(Ω) as ε→ 0.

For f ∈ L1
loc(Ω) the above convolution formula takes the usual integral

form,

fε(x) =
�

Ω

f(y)Φε(x− y) dy → f(x) as ε→ 0

whenever x ∈ Ω is a Lebesgue point of f . Now the maximal operatorM on
D′(Ω) is defined by

Mf(x) = sup{|fε(x)|; 0 < ε < dist(x, ∂Ω)}.
Definition 2.1. A distribution f ∈ D′(Ω) is said to belong to the Hardy

space H1(Ω) if Mf ∈ L1(Ω).

H1(Ω) is a Banach space with respect to the norm

‖f‖H1(Ω) =
�

Ω

Mf(x) dx.

Actually, distributions in H1(Ω) are represented by integrable functions,
so we have the inclusion H1(Ω) ⊂ L1(Ω). Similarly, the BMO-norm in a
domain Ω ⊂ Rn (see [BIJZ], [J]) is given by

‖b‖BMO(Ω) = sup
{ �
|b− bQ|; Q is a cube in Ω

}
, where bQ =

1

|Q|

�

Q

b =
�

Q

b.

The following result of [CLMS], adapted to domains in Rn as Theorem 8.3
in [IV], will be useful:
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Theorem 2.2. Let Ω ⊂ Rn and f i ∈W 1,pi(Ω), 1 < pi <∞, 1/p1+· · ·+
1/pn = 1. Then the Jacobian determinant of the mapping f = (f1, . . . , fn) :
Ω → Rn lies in the Hardy space H1(Ω). Moreover, we have the estimate

(2.1) ‖Jf = J(f1, . . . , fn)‖H1(Ω) ≤ C‖∇f1‖Lp1 (Ω) × · · · × ‖∇fn‖Lpn (Ω).

We shall view functions b ∈ BMO(Ω) as continuous linear functionals
on H1(Ω) (see [FS] and [BIJZ]). The action of b on h ∈ H1(Ω) will be
designated by the symbol

	∗
Ω bh.

Lemma 2.3. The BMO-H1 pairing is represented by the inequality

(2.2)
∣∣∣ �∗
Ω

bh
∣∣∣ ≤ C‖b‖BMO(Ω)‖h‖H1(Ω).

3. Weak extensions of the Hessian. To simplify the writing, we use

subscripts for partial derivatives; for instance, ux = ∂u
∂x , uxy = ∂2u

∂x∂y . The
two-dimensional Hessian

(Hu)(x, y) =

∣∣∣∣uxx uxy

uxy uyy

∣∣∣∣ = uxxuyy − u2xy,

for smooth functions u ∈ C∞(Ω), can be written in three different ways
(see [I1]):

(Hu)(x, y) = (uxuyy)x − (uxuxy)y = (uyuxx)y − (uyuxy)x(3.1)

=
1

2
(uuxx)yy +

1

2
(uuyy)xx − (uuxy)xy(3.2)

= (uxuy)xy −
1

2
(uxux)yy −

1

2
(uyuy)xx.(3.3)

One advantage of having partial derivatives outside the round parentheses
is that they can be understood in the sense of distributions. Indeed, if we
multiply by a test function ϕ ∈ C∞0 (Ω) and integrate by parts, formulas
(3.1)–(3.3) lead us to three different concepts of distributional Hessian:

H[u](ϕ) =
�

Ω

(uxuyyϕx − uxuxyϕy),(3.4)

H[u](ϕ) =
1

2

�

Ω

(uxxϕyy − uxyϕxy)u+
1

2

�

Ω

(uyyϕxx − uxyϕxy)u,(3.5)

H[u](ϕ) =
1

2

�

Ω

(2uxuyϕxy − uxuxϕyy − uyuyϕxx).(3.6)
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Thus we have three well defined nonlinear differential operators:

H1 : W
2,4/3
loc (Ω)→ D′1(Ω),(3.7)

H2 : W 2,1
loc (Ω)→ D′2(Ω),(3.8)

H∗2 : W 1,2
loc (Ω)→ D′2(Ω).(3.9)

The purpose of the present note is to extend the above domains of definition
of H[u] to other classes of Sobolev functions. We shall take advantage of the
H1-regularity of the Jacobians. Hu will be considered as a continuous linear
functional on W 1,p

0 (Ω) rather than on C∞0 (Ω). We also provide improved
estimates.

First consider expression (3.4) to observe that:

Proposition 3.1. Suppose ux∈ BMO(Ω) and uy∈W 1,q(Ω), 1<q <∞.

For ϕ ∈W 1,p
0 (Ω), where 1/p+ 1/q = 1, define

(3.10) H[u](ϕ) =
�∗
Ω

uxJf ,

where f = (ϕ, uy) : Ω → R2 and Jf = J(ϕ, uy). This is consistent with (3.4)

in the smooth case. In other words, H[u] ∈ [W 1,p
0 (Ω)]∗. The last integral

is understood as H1-BMO pairing in which the Jacobian determinant Jf
belongs to the Hardy space H1(Ω). By (2.2) and (2.1) we gain the estimate

|H[u](ϕ)| ≤ C‖ux‖BMO(Ω)‖∇ϕ‖Lp(Ω)‖∇uy‖Lq(Ω).

In this context it is worth recalling the classical definition of the space
dual to W 1,p

0 (Ω):

[W 1,p
0 (Ω)]∗ = W−1,q(Ω) = {divF ; F ∈ Lq(Ω,R2)}

where the divergence of a vector field F : Ω → R2 acts on a test function
ϕ ∈ C∞0 (Ω) by

(divF )[ϕ] = −
�

Ω

〈F,∇ϕ〉.

In (3.4), however, the corresponding vector field F = (−uxuyy, uxuxy) can-
not be used to give a meaning to H[u] as an element of W−1,q(Ω), be-
cause F /∈ Lq(Ω,R2), unless one assumes that ux ∈ L∞(Ω). Proposition
3.1 gains in interest because we only need to assume ux ∈ BMO(Ω), due to
H1-regularity of the Jacobian of f .

Example 3.2. The observant reader may also notice that in Proposition
3.1, H[u] is well defined under less restrictive conditions on u than in (3.7).

Indeed, for (3.7) it is required that u ∈ W
2,4/3
loc (Ω), whereas in (3.10) one

may consider u(x, y) = x log x+ yα in Ω = (0, 1)× (0, 1) where α > 1 + 1/p.
We have ux = 1 + log x ∈ BMO(Ω), uxx = 1/x /∈ L4/3(Ω) and uyy =



Hessian determinants 187

α(α−1)yα−2 ∈ Lq(Ω). Thus this function satisfies hypotheses of Proposition

3.1 but u /∈W 2,4/3
loc (Ω).

Next we reexamine expression (3.5).

Proposition 3.3. For u ∈ W 2,q(Ω), 1 < q < 2, and ϕ ∈ W 2,p
0 (Ω),

where 1/p+ 1/q = 1, define

H[u](ϕ) =
1

2

�∗
Ω

[J(ux, ϕy) + J(ϕx, uy)] · u.

This agrees with (3.5) in the smooth case. In the more general setting, H[u]

becomes an element of the dual to W 2,p
0 (Ω),

(3.11) H : W 2,q(Ω)→ [W 2,p
0 (Ω)]∗.

Let us put in evidence the differences between the two notions of Hessian;
in (3.8) and in (3.11). By the definition in (3.8), it follows from (3.5) that

(3.12) |H[u](ϕ)| ≤ C‖∇2ϕ‖L∞(Ω)‖u‖L∞(Ω)‖∇2u‖L1(Ω).

In the definition (3.11), on the other hand, Lemma 2.3 and Theorem 2.2
yield

H[u](ϕ) ≤ C‖u‖BMO(Ω)‖J(ux, ϕy)− J(uy, ϕx)‖H1(Ω)

≤ C‖u‖BMO(Ω)‖∇2u‖Lq(Ω)‖∇2ϕ‖Lp(Ω),

which is slightly better than (3.12).

Concerning expression (3.6) (see also Example VII.2 in [CLMS]), we
regard ϕxx, ϕxy and ϕyy as entries of Jacobian determinants to gain a new
estimate:

Proposition 3.4. Suppose u ∈ W 1,q(Ω) and ϕ ∈ W 2,p
0 (Ω), where 1 <

p, q <∞, 1/p+ 1/q = 1. Define

H[u](ϕ) =
1

2

�∗
Ω

[uxJ(ϕy, u) + uyJ(u, ϕx)],(3.13)

which is the same as (3.6) in the smooth case.

Again, H[u] becomes an element of the dual of W 2,p
0 (Ω), so we obtain a

nonlinear operator

(3.14) H : W 1,q(Ω)→ [W 2,p
0 (Ω)]∗.

Using (3.9) it follows from (3.6) that

|H[u](ϕ)| ≤ C‖∇2ϕ‖L∞(Ω)‖∇u‖2L2(Ω).

On the other hand, using (3.13) we can apply Lemma 2.3 and Theorem 2.2
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to obtain

|H[u](ϕ)| ≤ C‖∇u‖BMO(Ω)‖J(ϕy, u)− J(ϕx, u)‖H1(Ω)

≤ C‖∇u‖BMO(Ω)‖∇2ϕ‖Lp(Ω)‖∇u‖Lq(Ω).

4. Three-dimensional Hessian. There are many more weak formu-
lations of null Lagrangians in higher dimensions [I1]. Their domain of def-
inition can be improved in the spirit demonstrated above. Let us conclude
this note with one such example.

Recall from [I1] the formula

(4.1) 3H[u](ϕ)

=
�

Ω

(
ϕxx

[∣∣∣∣uyy uyz

uzy uzz

∣∣∣∣u]+ ϕyy

[∣∣∣∣uxx uxz

uzx uzz

∣∣∣∣u]+ ϕzz

[∣∣∣∣uxx uxy

uyx uyy

∣∣∣∣u])

− 2
�

Ω

(
ϕxy

[∣∣∣∣uxy uxz

uzy uzz

∣∣∣∣u]+ ϕyz

[∣∣∣∣uyz uyx

uxz uxx

∣∣∣∣u]+ ϕzx

[∣∣∣∣uzx uzy

uyx uyy

∣∣∣∣u]).
Naturally, it defines the distributional Hessian

H : W 2,2
loc (Ω)→ D′2(Ω).

As in Proposition 3.4, we will gain slightly by placing ϕx, ϕy and ϕz into
Jacobian determinants.

Proposition 4.1. Suppose u ∈W 2,s(Ω) ⊂ BMO(Ω) and ϕ ∈W 2,p
0 (Ω),

where 1/p+ 2/s = 1, p > 1, s > 2. Write (4.1) in the form

H[u](ϕ) =
1

3

�∗
Ω

[J(ϕx, uy, uz) + J(ux, ϕy, uz) + J(ux, uy, ϕz)] · u.

This integral defines a nonlinear differential operator

H : W 2,s(Ω)→ [W 2,p
0 (Ω)]∗.

We obtain new estimates which are not direct consequences of (4.1):

|H[u](ϕ)| ≤ C‖u‖BMO(Ω)‖J(ϕx, uy, uz) + J(ux, ϕy, uz) + J(ux, uy, ϕz)‖H1(Ω)

≤ C‖u‖BMO(Ω)‖∇2ϕ‖Lp(Ω)‖∇2u‖2Ls(Ω).

Historically, any improvement, no matter how little, in the definitions and
regularity properties of the weak Jacobians [Mu1], [Mu2], [Mu3], Hessians
[I1], [CLMS] and null Lagrangians [I2] turned out to be extremely useful in
the study of minima of variational integrals. Indeed, having such improve-
ments in hand we gain compactness, which in turn yields the existence of the
solutions. It is in this context that our quick look at the Hessians is certainly
worth noting.
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