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Transferring Lp eigenfunction bounds
from S2n+1 to hn

by

Valentina Casarino (Torino) and Paolo Ciatti (Padova)

Abstract. By using the notion of contraction of Lie groups, we transfer Lp-L2 es-
timates for joint spectral projectors from the unit complex sphere S2n+1 in Cn+1 to the
reduced Heisenberg group hn. In particular, we deduce some estimates recently obtained
by H. Koch and F. Ricci on hn. As a consequence, we prove, in the spirit of Sogge’s work,
a discrete restriction theorem for the sub-Laplacian L on hn.

1. Introduction. In the last twenty-five years the notion of contraction
(or continuous deformation) of Lie algebras and Lie groups, introduced in
1953 in a physical context by E. Inönu and E. P. Wigner, was developed
in a mathematical framework as well. The basic idea is that, given a Lie
algebra g1, from a family of non-degenerate transformations of its structure
constants it is possible to obtain, in a limit sense, a non-isomorphic Lie
algebra g2.

It turns out that the deformed algebra g2 inherits analytic and geometric
properties from g1 and that the same holds for the corresponding Lie groups.
As a consequence, transference results have attracted considerable attention,
in particular in the context of Fourier multipliers. In fact, contraction has
been successfully used to transfer Lp multiplier theorems from one Lie group
to another. There is an extensive literature on this topic, centered about
deLeeuw’s theorems; we only mention here the results by A. H. Dooley,
G. Gaudry, J. W. Rice and R. L. Rubin ([D], [DGa], [DRi1], [DRi2], [Ru]),
concerning, in particular, contraction of rotation groups and semisimple Lie
groups.

The primary purpose of this paper is to show that contraction is an
effective tool to transfer Lp eigenfunction bounds as well. In particular, we
shall focus on a contraction from the complex unit sphere S2n+1 in Cn+1 to
the reduced Heisenberg group hn.
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We recall that, if P is a second order self-adjoint elliptic differential
operator on a compact manifold M and if Pλ denotes the spectral projection
corresponding to the eigenvalue λ2, a classical problem is to estimate the
norm νp of Pλ as an operator from Lp(M), 1 ≤ p ≤ 2, to L2(M). Sharp
estimates for νp have been obtained by C. Sogge ([So2]), who proved that

(1.1) ‖Pλ‖(p,2) ≤ Cλγ(1/p,n), 1 ≤ p ≤ 2,

where γ is the piecewise affine function on [1/2, 1] defined by

γ

(
1
p
, n

)
:=


n

(
1
p
− 1

2

)
− 1

2
if 1 ≤ p ≤ p̃,

n− 1
2

(
1
p
− 1

2

)
if p̃ ≤ p ≤ 2,

with critical point p̃ given by p̃ := 2(n+ 1)/(n+ 3).
The starting point for our approach is a sharp two-parameter estimate for

joint spectral projections on complex spheres, recently obtained by the first
author ([Ca]). More precisely, we consider the Laplace–Beltrami operator
∆S2n+1 and the sub-Laplacian L on S2n+1 (they form a basis for the algebra
of U(n+ 1)-invariant differential operators on S2n+1). It is possible to work
out a joint spectral theory. In particular, we denote by Hl,l′ , l, l′ ≥ 0, the
joint eigenspace with eigenvalue µl,l′ for ∆S2n+1 , where µl,l′ := −(l+ l′)(l+ l′

+ 2n), and with eigenvalue λl,l′ for L, where λl,l′ := −2ll′ − n(l + l′) ([Kl]).
It is a classical fact ([VK, Ch. 11]) that

(1.2) L2(S2n+1) =
∞∑

l,l′=0

⊕Hl,l′ .

We denote by πl,l′ the joint spectral projector from L2(S2n+1) onto Hl,l′ . In
[Ca] the first author proved the following two-parameter Lp eigenfunction
bounds:

(1.3) ‖πl,l′‖(p,2) . C(2ql + n)α(1/p,n)(1 +Ql)β(1/p,n) for all l, l′ ≥ 0,

where Ql := max{l, l′}, ql := min{l, l′} and α and β are the piecewise affine
functions represented in Figure 1 at the end of Section 2. We remark that the
critical exponent in our case is 2(2n+ 1)/(2n+ 3) and cannot be directly
deduced from Sogge’s results. Observe moreover that 2ql + n and Ql are
related to the eigenvalues λl,l′ and µl,l′ , since they grow, respectively, as
|λl,l′ |/(l + l′) and |µl,l′ |1/2.

On the other hand, on the reduced Heisenberg group hn , defined as
hn := Cn × T, with product

(z, eit)(w, eit
′
) := (z + w, ei(t+t

′+Im z·w)),
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with z,w ∈ Cn, t, s ∈ R, we consider the sub-Laplacian L and the operator
i−1∂t. The pairs (2|m|(2k + 1),m) with m ∈ Z \ {0} and k ∈ N give the
discrete joint spectrum of these operators. Recently H. Koch and F. Ricci
proved the following Lp-L2 estimate for the orthogonal projector Pm,k onto
the joint eigenspace:

(1.4) ‖Pm,k‖(Lp(hn),L2(hn)) . C(2k + n)α(1/p,n)|m|β(1/p,n)

for 1 ≤ p ≤ 2, where α and β are given by (1.3) ([KoR]).
We start by showing in Section 2 that Pm,k may be obtained as the limit

in the L2-norm of a sequence of joint spectral projectors on S2n+1. Then we
give an alternative proof of (1.4) by a contraction argument.

A contraction from SU(2) to the one-dimensional Heisenberg group H1

was studied by F. Ricci and R. L. Rubin ([R], [RRu]). In [Ca] the first
author used some ideas from [R] to transfer Lp-L2 estimates for norms of
harmonic projection operators from the unit sphere S3 in C2 to the reduced
Heisenberg group h1. In this paper we discuss the higher-dimensional case.

A contraction from the unit sphere S2n+1 to the Heisenberg group Hn

for n > 1 was analyzed by A. H. Dooley and S. K. Gupta; in a first paper
they adapted the notion of Lie groups contraction to the homogeneous space
U(n + 1)/U(n) and described the relationship between certain unitary ir-
reducible representations of U(n + 1) and Hn ([DG1]), in a second paper
they proved a deLeeuw type theorem on Hn by transferring results from
S2n+1 ([DG2]). The contraction we use here is essentially that introduced
by Dooley and Gupta; however, their approach is mainly algebraic, while
our interest is directed to the analytic features of the problem.

As an application of (1.3) we prove in Section 3 a discrete restriction
theorem for the sub-Laplacian L on hn in the spirit of Sogge’s work ([So1], see
also (1.1)). More precisely, let QN be the spectral projection corresponding
to the eigenvalue N associated to L on hn, that is,

QNf :=
∑

(2k+n)|m|=N

Pm,kf.

The study of Lp-L2 mapping properties of QN was suggested by D. Müller
in his paper about the restriction theorem on the Heisenberg group ([M]).
In [Th1] S. Thangavelu proved that

(1.5) ‖QN‖(Lp(hn),L2(hn)) ≤ C(Nnd(N))1/p−1/2, 1 ≤ p ≤ 2,

where d(N) is the divisor-type function defined by

(1.6) d(N) :=
∑

2k+n|N

1
2k + n

,

and the estimate is sharp for p = 1. By writing a | b we mean that a divides b.
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Other types of restriction theorems on the Heisenberg group were discussed
by Thangavelu in [Th2].

By using orthogonality, we add up the estimates in (1.3) and obtain
Lp-L2 bounds for the norm of QN , which in some cases improve (1.5). The
exponent appearing in (1.5) is an affine function of 1/p. In our estimate
the exponent of d(N) is, as in Sogge’s results, a piecewise affine function
of 1/p. In other words, there is a critical point p̃ where the slope of the
exponent changes. This critical point is the same as that found on complex
spheres ([Ca]).

Our bounds are in general not sharp. The reason is that with our proce-
dure we disregard the interferences between eigenfunctions. We show how-
ever that there are arithmetic progressions Nm in N for which our esti-
mates for ‖QNm‖(p,2) are sharp and better than (1.5). Moreover, since the
behaviour of d(N) is highly irregular, we inquire about the average size
of ‖QN‖(p,2). We prove in this case that Lp-L2 estimates do not involve
divisor-type functions and that the critical point disappears.

2. Preliminaries. In this section we introduce some notation and recall
a few results, that will be used in the following.

2.1. Some notation. For n ≥ 1 let Cn+1 denote the n-dimensional com-
plex space endowed with the scalar product 〈z,w〉 := z ·w := z1w1 + · · ·+
zn+1wn+1, z,w ∈ Cn+1, and let S2n+1 denote the unit sphere in Cn+1, that
is,

S2n+1 := {z = (z1, . . . , zn+1) ∈ Cn+1 : 〈z, z〉 = 1}.
The symbol 1 will denote the north pole of S2n+1, that is, 1 := (0, . . . , 0, 1).

For every l, l′ ∈ N the symbol Hl,l′ will denote the space of restrictions
to S2n+1 of harmonic polynomials p(z, z̄) = p(z1, . . . , zn+1, z1, . . . , zn+1),
of homogeneity degree l in z1, . . . , zn+1 and of homogeneity degree l′ in
(z1, . . . , zn+1), i.e. such that

p(az, bz̄) = albl
′
p(z, z̄), a, b ∈ R, z ∈ Cn.

For a detailed description of the spaces Hl,l′ see Chapter 11 in [VK]. We
only recall here that a polynomial p in z, z̄ is said to be harmonic if

(2.1) ∆S2n+1p :=
1
4

(
∂2

∂z1∂z1
+ · · ·+ ∂2

∂zn+1∂zn+1

)
p = 0,

where ∆S2n+1 denotes the Laplace–Beltrami operator.
A zonal function of bidegree (l, l′) on S2n+1 is a function in Hl,l′ which is

constant on the orbits of the stabilizer of 1 (which is isomorphic to U(n)).
Given a zonal function f , we may associate to f a map bf on the unit disk
by

f(z) = bf(〈z,1〉), z ∈ S2n+1
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(by using the notation in Section 11.1.5 of [VK] we have 〈z,1〉 = zn =
eiϕ cos θ, where ϕ ∈ [0, 2π] and θ ∈ [0, π/2]).

By means of bf we may define a convolution of a zonal function f and
an arbitrary function g on S2n+1. More precisely, we set

(f ∗ g)(z) :=
�

S2n+1

bf(〈z,w〉)g(w) dσ(w),

where dσ is the measure invariant under the action of the unitary group
U(n+ 1) (see (3.4) for an explicit formula). In the following we shall write
f(θ, ϕ) instead of bf(eiϕ cos θ).

Let L2(S2n+1) be the Hilbert space of functions on S2n+1 endowed with
the inner product (f, g) :=

	
S2n+1 f(z)g(z) dσ(z).

It is a classical fact ([VK, Ch. 11]) that L2(S2n+1) is the direct sum of
the pairwise orthogonal and U(n+ 1)-invariant subspaces Hl,l′ , l, l′ ≥ 0. In
other words, every f ∈ L2(S2n+1) admits a unique expansion

f =
∞∑

l,l′=0

Y l,l′ ,

where Y l,l′ ∈ Hl,l′ for every l, l′ ≥ 0 and the series on the right converges to
f in the L2(S2n+1)-norm.

The orthogonal projector onto Hl,l′ ,

(2.2) πl,l′ : L2(S2n+1) 3 f 7→ Y l,l′ ∈ Hl,l′ ,

may be written as
πl,l′f := bZl,l′ ∗ f,

where Zl,l′ is the zonal function from Hl,l′ , given by

(2.3) Zl,l′(θ, ϕ) :=
dl,l′

ω2n+1

ql!(n− 1)!
(ql + n− 1)!

ei(l
′−l)ϕ(cos θ)|l−l

′|P (n−1,|l−l′|)
ql

(cos 2θ)

l, l′ ≥ 1, ϕ ∈ [0, 2π], θ ∈ [0, π/2],

where ql = min(l, l′), ω2n+1 denotes the surface area of S2n+1, P (n−1,|l−l′|)
ql

is the Jacobi polynomial and

dl,l′ := dimHl,l′ = n
l + l′ + n

ll′

(
l + n− 1
l − 1

)(
l′ + n− 1
l′ − 1

)
for all l, l′ ≥ 1.

Recall finally that Hl,0 consists of holomorphic polynomials and H0,l

consists of polynomials whose complex conjugates are holomorphic. In both
cases, the dimension of the space is given by

dimHl,0 = dimH0,l =
(
l + n− 1

l

)
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and the zonal function is

Zl,0(θ, ϕ) :=
1

ω2n−1

(
l + n− 1

l

)
e−ilϕ(cos θ)l, ϕ ∈ [0, 2π], θ ∈ [0, π/2].

In this paper we shall adopt the convention that C denotes a constant
which is not necessarily the same at each occurrence.

2.2. Some useful results. In order to transfer Lp bounds from S2n+1

to hn we shall need both a pointwise estimate for the Jacobi polynomials,
due to Darboux and Szegö ([Sz, pp. 169, 198]), and a Mehler–Heine type
formula, relating Jacobi and Laguerre polynomials ([Sz], [R]).

Lemma 2.1. Let α, β > −1. Fix 0 < c < π. Then

P
(α,β)
l (cos θ)

=


O(lα) if 0 ≤ θ ≤ c/l,
l−1/2k(θ)(cos(Nlθ + γ) + (l sin θ)−1O(1)) if c/l ≤ θ ≤ π − c/l,
O(lβ) if π − c/l ≤ θ ≤ π,

where

k(θ) := π1/2
(
sin θ

2

)−α−1/2(cos θ2
)−β−1/2

, Nl := l+ α+β+1
2 , γ := −

(
α+ 1

2

)
π
2 .

Proposition 2.2 ([R, p. 224]). Let n ≥ 1 and let x be a real number.
Fix k and j in N, j ≥ k. Then

(2.4) lim
N→∞

cosN−j−k
(

x√
N − j − k

)
P

(j−k,N−j−k)
k

(
cos

2x√
N − j − k

)
= Lj−kk (x2)e−x

2/2.

Our proof is based on the following two-parameter estimate for the Lp-L2

norm of the complex harmonic projectors πl,l′ defined by (2.2).

Theorem 2.3 ([Ca]). Let n ≥ 2 and let l, l′ be non-negative integers.
Then

(2.5) ‖πl,l′‖(p,2) . C

(
2ll′ + n(l + l′)

l + l′

)α(1/p,n)

(l+l′)β(1/p,n) if 1 ≤ p ≤ 2,

where

(2.6) α

(
1
p
, n

)
:=


n

(
1
p
− 1

2

)
− 1

2
if 1 ≤ p < p̃,

1
4
− 1

2p
if p̃ ≤ p ≤ 2,

with p̃ = 2(2n+ 1)/(2n+ 3), and

(2.7) β

(
1
p
, n

)
= n

(
1
p
− 1

2

)
for all 1 ≤ p ≤ 2,

The above estimates are sharp.
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Fig. 1. The exponents α and β as functions of 1/p

3. Lp eigenfunction bounds on Hn. The Heisenberg group Hn is a
Lie group with underlying manifold Cn × R, endowed with the product

(z, t)(w, s) := (z + w, t+ s+ Im z ·w)

for z,w ∈ Cn, t, s ∈ R.

We denote an element in H1 by (ρeiϕ, t), where ρ ∈ [0,∞), ϕ ∈ [0, 2π],
t ∈ R, and an element in Hn by (ρη, t), where ρ ∈ [0,∞), t ∈ R and
η ∈ S2n−1 is given by

(3.1) η =


eiϕ1 sin θn−1 sin θn−2 . . . sin θ1,
eiϕ2 sin θn−1 sin θn−2 . . . cos θ1,
...
eiϕn cos θn−1,

with ϕk ∈ [0, 2π], k = 1, . . . , n, and θj ∈ [0, π/2], j = 1, . . . , n− 1.

Observe that η = η(Θn−1, Φn), where Θn−1 := (θ1, . . . , θn−1) and Φn :=
(ϕ1, . . . , ϕn).

Define now a map Ψ : Hn → S2n+1 by

(3.2) Ψ : (ρη, t) 7→ (Θn−1, ρ, Φn, t),
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where (Θn−1, ρ, Φn, t) ∈ S2n+1 is given by

(3.3) (Θn−1, ρ, Φn, t) :=



eiϕ1 sin ρ sin θn−1 sin θn−2 . . . sin θ1,
eiϕ2 sin ρ sin θn−1 sin θn−2 . . . cos θ1,
...
eiϕn sin ρ cos θn−1,

eit cos ρ.

We introduce in this way a coordinate system (Θn−1, ρ, Φn, t) on S2n+1, if ρ
and t are restricted, respectively, to [0, π/2] and [−π, π].

The invariant measure dσS2n+1 on S2n+1 in the spherical coordinates
(3.3) is

(3.4)
n!

2πn+1

n∏
k=1

dϕk dt sin2n−1 ρ cos ρ dρ
n−1∏
j=1

sin2j−1 θj cos θj dθj .

The factor n!/(2πn+1) is introduced in order to make the measure of the
whole sphere equal to 1.

The Haar measure on Hn in these coordinates is

n!
2πn+1√ω2n+1

ρ2n−1 dρ dϕ1 . . . dϕn

n−1∏
j=1

sin2j−1 θj cos θj dθj .

The reduced Heisenberg group hn is defined as hn := Cn×T, with product

(z, eit)(w, eit
′
) := (z + w, ei(t+t

′+Im z·w))

for z,w ∈ Cn, t, s ∈ R.
Let now f be a function on hn with compact support. Let f̃ be the

function f extended by periodicity on R with respect to the variable t.
Define the function fν on S2n+1 by

(3.5) fν(Θn−1, ρ, Φn, t) := νnf̃(ρ
√
ν η, tν), ν ∈ N.

Lemma 3.1. Let f be an integrable function on hn with compact support.
If 1 ≤ p ≤ ∞, then

ν−n/p
′‖fν‖Lp(S2n+1) < ‖f‖Lp(hn )

and
lim
ν→∞

ν−n/p
′‖fν‖Lp(S2n+1) = ‖f‖Lp(hn ).

Proof. The proof is similar to that of Lemma 2 in [RRu] and is omitted.
Compare also with Lemma 4.3 in [DG2].
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Throughout the paper we shall consider a pair of strongly commuting
operators on hn. The first is the left-invariant sub-Laplacian L, defined by

L := −
n∑

j:=1

(X2
j + Y 2

j ),

where Xj := ∂xj − yj∂t and Yj := ∂yj + xj∂t. The second is the operator
T := i−1∂t. These operators generate the algebra of differential operators
on hn invariant under left translation and under the action of the unitary
group. One can work out a joint spectral theory; the pairs (2|m|(2k+n),m)
with m ∈ Z \ {0} and k ∈ N give the discrete joint spectrum of L and i−1∂t.
We shall denote by Pm,k the orthogonal projector onto the joint eigenspace.

By considering the Fourier decomposition of functions in L2(hn) with
respect to the central variable, we obtain an orthogonal decomposition of
L2(hn) as

L2(hn) = H0 ⊕H,

where
H0 :=

{
f ∈ L2(hn) :

�

T
f(z, t) dt = 0

}
.

The projectors Pm,k map L2(hn) onto H and provide a spectral decompo-
sition for H. The importance of this decomposition is due to the fact that
the spectral analysis of L on H0 essentially reduces to the analysis of the
Laplacian on Cn.

On the complex sphere S2n+1 the algebra of U(n + 1)-invariant differ-
ential operators is commutative and generated by two elements; a basis is
given by the Laplace–Beltrami operator ∆S2n+1 , defined by (2.1), and the
Kohn Laplacian L on S2n+1, defined by

L :=
∑
j<k

(MjkM jk +M jkMjk)

with
Mjk := zj∂zk − zk∂zj and M jk := zj∂zk − zk∂zj .

We shall denote by Hl,l′ the joint eigenspace of ∆S2n+1 and L with eigen-
values respectively µl,l′ := −(l + l′)(l + l′ + 2n) and λl,l′ = −2ll′ − n(l + l′)
([Kl]).

The next task is to prove that the joint spectral projection Pm,k on hn

may be obtained as limit in the L2-norm of an appropriate sequence of joint
spectral projectors on S2n+1.

Proposition 3.2. Let f be a continuous function on hn with compact
support. Take m ∈ N\{0} and k ∈ N. For every ν ∈ N let N(ν) ∈ N be such
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that

(3.6) lim
ν→∞

N(ν)
ν

= m.

Then

‖Pm,kf‖L2(hn ) = lim
ν→∞

1
νn/2

‖πk,N(ν)−kfν‖L2(S2n+1),(3.7)

‖P−m,kf‖L2(hn ) = lim
ν→∞

1
νn/2

‖πN(ν)−k,kfν‖L2(S2n+1).(3.8)

Proof. The scheme of the proof is similar to that of Proposition 4.4 in
[Ca]. Since the higher dimensional case is more involved, we present the
proof for more transparency.

Fix two integers m > 0 and k ∈ N.
First of all, if z,w ∈ Cn, by writing z := ρη and w := ρ′η′ with ρ, ρ′ ∈

[0,∞) and η,η′ ∈ S2n−1, a simple computation yields

Im z ·w = ρρ′(sin(ϕ1 − ϕ′1) sin θn−1 sin θ′n−1 . . . . . . sin θ1 sin θ′1(3.9)
+ sin(ϕ2 − ϕ′2) sin θn−1 sin θ′n−1 . . . . . . cos θ1 cos θ′1
+ · · ·+ sin(ϕn − ϕ′n) cos θn−1 cos θ′n−1)

and

(3.10) |z−w|2 = ρ2 + ρ′2

− 2ρρ′(cos(ϕ1 − ϕ′1) sin θn−1 sin θ′n−1 . . . sin θ1 sin θ′1
+ cos(ϕ2 − ϕ′2) sin θn−1 sin θ′n−1 . . . cos θ1 cos θ′1 + · · ·
· · ·+ cos(ϕn − ϕ′n) cos θn−1 cos θ′n−1).

Now, we denote by Φmk,k the joint eigenfunction for L and i−1∂t (for
more details and an explicit expression see, for example, [FH, Chapitre V]).
Orthogonality of joint spectral projectors yields

‖Pm,kf‖2L2(hn ) = 〈Pm,kf, f〉L2(hn ) =
�

hn

f ∗ Φmk,k(z, t) f(z, t) dz dt

=
�

hn

( �

hn

Φmk,k(z−w, t− t′ + Im z ·w)f(w, t′) dw dt′
)
f(z, t) dz dt

= mn
�

hn

( �

hn

eim(t−t′+Im z·w)Ln−1
k (m|z−w|2)e−

1
2
m|z−w|2f(w, t′) dw dt′

)
· f(z, t) dz dt.

Now we shall deal with the right-hand side in (3.7). For brevity we set

dΦ(n) := dϕ1 . . . dϕn and dΘ(n−1) :=
n−1∏
j=1

sin2j−1 θj cos θj dθj .
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From the orthogonality of the joint spectral projectors πl,l′ in L2(S2n+1) and
from (3.5) we deduce

‖πk,N(ν)−kfν‖2L2(S2n+1) = 〈πk,N(ν)−kfν , fν〉L2(S2n+1)

=
�

S2n+1

(πk,N(ν)−kfν)(Θn−1, ρ, Φn, t) fν(Θn−1, ρ, Φn, t) dσS2n+1

=
n!

2πn+1ν

�

Aν

(πk,N(ν)−kfν)
(
Θn−1,

ρ√
ν
, Φn,

t

ν

)
f̃(Θn−1, ρ, Φn, t)

(sin ρ√
ν

ρ√
ν

)2n−1

· cos
(
ρ√
ν

)
ρ2n−1 dρ dΘ(n−1) dΦ(n) dt

=
n!2

4π2n+2ν2

�

Aν

( �

Aν

bZk,N(ν)−k

(〈(
Θn−1,

ρ√
ν
, Φn,

t

ν

)
,

(
Θ′n−1,

ρ′√
ν
, Φ′n,

t′

ν

)〉)

· f̃(Θ′n−1, ρ
′, Φ′n, t

′)
(sin ρ′√

ν

ρ′√
ν

)2n−1

cos
(
ρ′√
ν

)
ρ′2n−1 dρ′ dΘ′(n−1) dΦ

′
(n) dt

′
)

· f̃(Θn−1, ρ, Φn, t)
(sin ρ√

ν
ρ√
ν

)2n−1

cos
(
ρ√
ν

)
ρ2n−1 dρ dΘ′(n−1) dΦ(n) dt

where the integration set Aν is given by

(3.11) Aν := {(Θn−1, ρ, Φn, t) : 0 ≤ ρ ≤ π
√
ν/2, 0 ≤ ϕk ≤ 2π, k = 1, . . . , n,

0 ≤ θj ≤ π/2, j = 1, . . . , n− 1, −πν ≤ t ≤ πν}.

Now by using (3.3) we compute the inner product in Cn+1:〈(
Θn−1,

ρ√
ν
, Φn−1,

t

ν

)
,

(
Θ′n−1,

ρ′√
ν
, Φ′n−1,

t′

ν

)〉
= ei(ϕ1−ϕ′1) sin

(
ρ√
ν

)
sin
(
ρ′√
ν

)
sin θn−2 sin θ′n−2 . . . sin θ1 sin θ′1

+ ei(ϕ2−ϕ′2) sin
(
ρ√
ν

)
sin
(
ρ′√
ν

)
sin θn−2 sin θ′n−2 . . . cos θ1 cos θ′1

+ · · ·+ ei(ϕn−1−ϕ′n−1) sin
(
ρ√
ν

)
sin
(
ρ′√
ν

)
cos θn−2 cos θ′n−2

+ ei(t−t
′) 1
ν cos

(
ρ√
ν

)
cos
(
ρ′√
ν

)
= Rνe

iψν ,
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where

Rν = 1− 1
2ν
(
ρ2 + ρ′2 − 2ρρ′(cos(ϕ1 − ϕ′1) sin θn−1 sin θ′n−1 . . . sin θ1 sin θ′1

+ cos(ϕ2 − ϕ′2) sin θn−1 sin θ′n−1 . . . cos θ1 cos θ′1

+ · · ·+ cos(ϕn − ϕ′n) cos θn−1 cos θ′n−1)
)

+ o

(
1
ν

)
,

ψν = arctan
(

1
ν
ρρ′(sin(ϕ1 − ϕ′1) sin θn−1 sin θ′n−1 . . . sin θ1 sin θ′1

+ sin(ϕ2 − ϕ′2) sin θn−1 sin θ′n−1 . . . cos θ1 cos θ′1

+ · · ·+ sin(ϕn − ϕ′n) cos θn−1 cos θ′n−1) +
t− t′

ν
+ o

(
1
ν

))
as ν →∞. Thus as a consequence of (3.9) and (3.10) we have

Rν = cos
(

1√
ν
|z−w|

)
+o
(

1
ν

)
and ψν =

1
ν

(t−t′)+
1
ν

Im z ·w+o
(

1
ν

)
,

so that formula (2.3) for the zonal function yields

bZk,N(ν)−k

(〈(
Θn−1,

ρ√
ν
, Φn,

t

ν

)
,

(
Θ′n−1,

ρ′√
ν
, Φ′n,

t′

ν

)〉)
=
N(ν)n

ω2n+1
ei(N(ν)−2k) 1

ν
(t−t′+Im z·w+o(1))

(
cos
(

1√
ν
|z−w|

))|N(ν)−2k|

· P (n−1,|N(ν)−2k|)
k

(
cos
(

2√
ν
|z−w|

))
+ o

(
1
ν

)
, ν →∞.

By using condition (3.6) and the Mean Value Theorem, we easily check
that

1
νn
‖πk,N(ν)−kfν‖2L2(S2n+1) = IMν + IRν ,

where the remainder term IRν satisfies limν→∞ IRν = 0, while the main term
IMν is given by

IMν =
n!2

4ω2n+1π2n+2ν2

·
�

Aν

( �

Aν

(
N(ν)
ν

)n
eim(t−t′+Im z·w)

(
cos
(

1√
ν
|z−w|

))|N(ν)−2k|

· P (n−1,|N(ν)−2k|)
k

(
cos
(

2√
ν
|z−w|

))
f̃(Θ′n−1, ρ

′, Φ′n, t
′)
(sin ρ′√

ν

ρ′√
ν

)2n−1
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· cos
(
ρ′√
ν

)
ρ′

2n−1
dρ′ dΘ′(n−1) dΦ

′
(n) dt

′
)
f̃(Θn−1, ρ, Φn, t)

(
sin ρ√

ν
ρ√
ν

)2n−1

· cos
(
ρ√
ν

)
ρ2n−1 dρ dΘ(n−1) dΦ(n) dt, ν →∞.

We shall now treat IMν by means of the Lebesgue dominated convergence
theorem. First of all, we extend the integration set in IMν (this may be done,
since f has compact support and the integrand is periodic with respect to t),
and we obtain

(3.12) IMν =
n!2

4π2n+2ω2n+1

∞�

0

π/2�

0

. . .

π/2�

0

2π�

0

. . .

2π�

0

π�

−π(∞�
0

π/2�

0

. . .

π/2�

0

2π�

0

. . .

2π�

0

π�

−π

(
N(ν)
ν

)n
eim(t−t′−Imw·z)

·
(

cos
(

1√
ν
|z−w|

))|N(ν)−2k|
P

(n−1,|N(ν)−2k|)
k

(
cos
(

2√
ν
|z−w|

))

· f(Θ′n−1, ρ
′, Φ′n, t

′)
(sin ρ′√

ν

ρ′√
ν

)2n−1

cos
(
ρ′√
ν

)
ρ′2n−1 dρ′ dΘ′(n−1) dΦ

′
(n) dt

′
)

· f(Θn−1, ρ, Φn, t)
(sin ρ√

ν
ρ√
ν

)2n−1

cos
(
ρ√
ν

)
ρ2n−1 dρ dΘ(n−1) dΦ(n) dt.

By using Lemma 2.1 and the Mehler–Heine formula as stated in Lemma

2.2 (with N = N(ν) + j − k, j − k = n− 1 and x =
√

N(ν)−2k
ν |z−w|), we

may conclude as in Proposition 4.4 of [Ca].
The proof for (3.8) is completely analogous.

Theorem 3.3. Let n > 2. Take m ∈ Z \ {0} and k ∈ N. Then

(3.13) ‖Pm,k‖(Lp(hn),L2(hn))

.

{
C(2k + n)n( 1

p
− 1

2
)− 1

2 |m|n( 1
p
− 1

2
) if 1 ≤ p < p̃,

C(2k + n)
1
4
− 1

2p |m|n( 1
p
− 1

2
) if p̃ ≤ p ≤ 2,

where p̃ = 2(2n+ 1)/(2n+ 3). Moreover , the estimates are sharp.

Proof. Take m > 0 (the other case being analogous). For every ν ∈ N
let N(ν) ∈ N be such that

lim
ν→∞

1
ν
N(ν) = m.
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Thus

‖Pm,kf‖L2(hn ) = lim
ν→∞

1
νn/2

‖πk,N(ν)−kfν‖L2(S2n+1)

≤ lim
ν→∞

(
N(ν)
ν

)n/2(2k(N(ν)− k)
N(ν)

+ n

)n/2
‖fν‖L1(S2n+1)

= mn/2(2k + n)(n−1)/2 lim
ν→∞

‖fν‖L1(S2n+1)

= mn/2(2k + n)(n−1)/2‖f‖L1(hn ),

where we have used first (3.7) and then Theorem 2.3 and Lemma 3.1.
In the same way, we see that

‖Pm,kf‖L2(hn ) = lim
ν→∞

1
νn/2

‖πk,N(ν)−kfν‖L2(S2n+1)

≤ lim
ν→∞

1
νn/2

(
2k · (N(ν)− k)

N(ν)
+ n

)− 1
2(2n+1)

·N(ν)
n

2n+1 ‖fν‖
L

2 2n+1
2n+3 (S2n+1)

≤ (2k + n)−
1

2(2n+1) lim
ν→∞

1
νn/2

N(ν)
n

2n+1 ν
n(2n−1)
2(2n+1) ‖f‖

L
2 2n+1
2n+3 (hn )

= (2k + n)−
1

2(2n+1)m
n

2n+1 ‖f‖
L

2 2n+1
2n+3 (hn )

.

An interpolation argument yields the conclusion. Finally, sharpness follows
from arguments in [KoR].

4. A restriction theorem on hn. By applying the bounds proved in
Section 2 we obtain a restriction theorem for the spectral projectors asso-
ciated to the sub-Laplacian L on hn. Our theorem improves in some cases
a previous result due to Thangavelu ([Th1]). More precisely, let QN be the
spectral projection corresponding to the eigenvalue N associated to L on hn,
that is,

QNf :=
∑

(2k+n)|m|=N

Pm,kf,

where Pm,k is the joint spectral projection operator introduced in the pre-
vious section. We look for estimates of the type

(4.1) ‖QN‖(Lp(hn),L2(hn)) ≤ CNσ(p,n)

for all 1 ≤ p ≤ 2, where the exponent σ is in general a convex function
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of 1/p. In [Th1] Thangavelu proved that

(4.2) ‖QN‖(Lp(hn),L2(hn)) ≤ CNn(1/p−1/2)d(N)1/p−1/2, 1 ≤ p ≤ 2,

where d(N) is the divisor-type function defined by

(4.3) d(N) :=
∑

2k+n|N

1
2k + n

,

and the estimate is sharp for p = 1. Here a | b means that a divides b.
Thangavelu also proved that when N = nR with R ∈ N, then

CNn(1/p−1/2) ≤ ‖QN‖(Lp(hn),L2(hn)), 1 ≤ p ≤ 2.

Here we show that there exist arithmetic progressions aN in N such that the
estimate for ‖QaN ‖(p,2) is sharp and better than (4.2) for 1 < p < 2.

Proposition 4.1. Let n ≥ 1. Let N be any positive integer. Then for
every 1 ≤ p ≤ 2,

(4.4) ‖QN‖(Lp(hn),L2(hn)) ≤ CNn(1/p−1/2)d(N)ρ(1/p,n),

where ρ is defined by

(4.5) ρ

(
1
p
, n

)
:=


1
2

if 1 ≤ p < p̃,(
n+

1
2

)(
1
p
− 1

2

)
if p̃ ≤ p ≤ 2,

with p̃ = 2(2n+ 1)/(2n+ 3), and d(N) is given by (4.3).

Proof. For p = 1 our estimate coincides with (4.2); nonetheless we give
a different, simpler proof:

‖QNf‖2L2(hn ) =
∥∥∥ ∑

(2k+n)|m|=N

Pm,kf
∥∥∥2

L2(hn )
=

∑
(2k+n)|m|=N

‖Pm,kf‖2L2(hn )

≤ C
∑

(2k+n)|m|=N

mn(2k + n)n−1‖f‖2L1(hn ),

≤ CNn
∑

2k+n|N

1
2k + n

‖f‖2L1(hn ),

whence

(4.6) ‖QN‖(L1,L2) ≤ CNn/2d(N)1/2.
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For p = 2 the bound is obvious, since QN is an orthogonal projector. Finally,
for p = p̃ one has

‖QNf‖2L2(hn ) =
∑

(2k+n)|m|=N

‖Pm,kf‖2L2(hn )

≤ C
∑

(2k+n)|m|=N

(2k + n)−1/(2n+1)|m|2n/(2n+1)‖f‖2Lp̃(hn )

= CN2n/(2n+1)
∑

2k+n|N

(2k + n)−1‖f‖2Lp̃(hn ),

whence

(4.7) ‖QN‖(Lp̃,L2) ≤ CNn/(2n+1)d(N)1/2.

Then by applying the Riesz–Thorin interpolation theorem to (4.6) and to
(4.7) we get (4.4).

Remark 4.2. Observe that estimate (4.4) is better than (4.2) only when
d(N) < 1.

Thus, on the one hand, we are led to seek arithmetic progressions {Nm}
on which the divisor function d(Nm), whose behaviour is in general highly
irregular, is strictly smaller than one. On the other hand, we are led to
inquire about the average size of the norm of QN .

We remark that if n = 1 then d(N) is necessarily greater than one.

Remark 4.3. Proposition 4.1 reveals the existence of a critical point
p̃ ∈ (1, 2) where the form of the exponent of the eigenvalue N in (4.1)
changes.

In the following we list some cases in which estimate (4.4) really improves
the result in [Th1]. First of all, when n ≥ 2 and N is a prime number,
Proposition 4.1 yields the following sharp result.

Proposition 4.4. Let n > 2 be odd. Let N be a prime number. Then
for every 1 ≤ p ≤ 2,

(4.8) ‖QN‖(Lp(hn),L2(hn)) ≤

{
C N

n( 1
p
− 1

2
)− 1

2 if 1 ≤ p < p̃,
C N

− 1
2
( 1
p
− 1

2
) if p̃ ≤ p ≤ 2,

with p̃ = 2(2n+ 1)/(2n+ 3). Moreover , the above estimate is sharp.

Proof. (4.8) follows directly from (4.4). Furthermore, since in this case

‖QN‖(Lp(hn),L2(hn)) ∼ ‖P1,(N−n)/2‖(Lp(hn),L2(hn)), 1 ≤ p ≤ 2,

sharpness follows from Theorem 3.3.

Proposition 4.4 may be generalized to the case N = rk0 , where k0 ∈ N
and r varies in the set of all prime numbers.
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Proposition 4.5. Let n ≥ 2 be odd. Fix a positive integer k0. Set Nr =
rk0 , where r varies in the set of all prime numbers. Then for every 1 ≤ p ≤ 2,

(4.9) ‖QNr‖(Lp(hn),L2(hn)) ≤

CN
n( 1
p
− 1

2
)− 1

2k0
r if 1 ≤ p < p̃,

CN
(n− 1

2k0
(2n+1))( 1

p
− 1

2
)

r if p̃ ≤ p ≤ 2,

with p̃ = 2(2n+ 1)/(2n+ 3). Moreover , (4.9) is sharp.

Proof. (4.9) follows directly from (4.4), since

d(Nr) =
1
r

+
1
r2

+ · · ·+ 1
rk0
≤ 2
r
.

To prove that (4.9) is sharp, take the joint eigenfunction f0 for L and
i−1∂t with eigenvalues, respectively, (2k+n)m = Nr and m = rk0−1, yielding
the sharpness for the joint spectral projection Prk0−1,(r−n)/2, that is, such
that

‖Prk0−1,(r−n)/2‖(p,2) ∼
‖f0‖p′
‖f0‖2

.

Now we have

‖QN‖(L2(hn),Lp′ (hn)) ≥
‖QNf0‖Lp′
‖f0‖L2

=
‖f0‖Lp′
‖f0‖L2

∼ ‖Prk0−1,(r−n)/2‖(p,2)

∼ Crn( 1
p
− 1

2
)− 1

2 (rk0−1)n( 1
p
− 1

2
) ∼ Cr−

1
2 r
k0n( 1

p
− 1

2
)

∼ CN
n( 1
p
− 1

2
)− 1

2k0
r

for all 1 ≤ p ≤ p̃. For p̃ ≤ p ≤ 2 an analogous estimate holds, so that (4.9)
is sharp.

We shall now consider integers of the form Nl := ql0, where q0 is a fixed
prime number and l ∈ N. The argument of the previous proposition also
proves the following.

Proposition 4.6. Let n = 2 or n > 2 odd. For n = 2 let q0 = 2, for
n > 2 let q0 be a prime number strictly greater than 2. Set Nl := ql0, l ∈ N.
Then

(4.10) ‖QNl‖(Lp(hn),L2(hn)) ≤ CN
n(1/p−1/2)
l if 1 ≤ p ≤ 2.

Moreover , (4.10) is sharp.

The above examples show the highly irregular behaviour of d(N), and
therefore of ‖QN‖p,2. In order to smooth out fluctuations we introduce ap-
propriate averages of joint spectral projectors. More precisely, for N ∈ N we
define

(4.11) ΠNf :=
N∑
L=n

∑
(2k+n)|m|=L

Pm,kf



40 V. Casarino and P. Ciatti

and ask what is the behaviour of ‖MN‖(p,2), where

(4.12) MNf :=
1
N
ΠNf.

For p = 1 Theorem 3.3 and orthogonality yield

‖ΠNf‖2L2(hn ) =
∥∥∥ N∑
L=n

∑
(2k+n)|m|=L

Pm,kf
∥∥∥2

L2(hn )

=
∑

(k,m): (2k+n)|m|≤N

‖Pm,kf‖2L2(hn )

≤ C
∑

(k,m): (2k+n)|m|≤N

(2k + n)n−1|m|n‖f‖2L1(hn )

≤ C
N∑
m=1

mn

[N/m]∑
2k+n=n

(2k + n)n−1‖f‖2L1(hn ) ≤ CN
n ·N‖f‖2L1(hn ),

whence

(4.13) ‖ΠN‖(1,2) ≤ N (n+1)/2.

The trivial L2-L2 estimate and Riesz–Thorin interpolation yield

(4.14) ‖ΠN‖(p,2) ≤ CN (n+1)(1/p−1/2), 1 ≤ p ≤ 2.

Observe that by using Theorem 3.3 we may obtain the following estimate
at the critical point p̃:

‖ΠNf‖2L2(hn ) =
∑

(k,m): (2k+n)|m|≤N

‖Pm,kf‖2L2(hn )

≤ C
∑

(k,m): (2k+n)|m|≤N

(2k + n)2αm2β‖f‖2Lp̃(hn )

= C
N∑
m=1

m2β

[N/m]∑
2k+n=n

(2k + n)2α‖f‖2Lp̃(hn )

= N2α+1
N∑
m=1

m2β−2α−1‖f‖2Lp̃(hn )

≤ CN2α+2‖f‖2Lp̃(hn ),

where we have used the fact that 2β − 2α = 1 for all 1 ≤ p ≤ p̃, with
α = α(1/p, n) and β = β(1/p, n) given by (2.6) and (2.7).

Thus

(4.15) ‖ΠN‖(p̃,2) ≤ CNα+1 = CN (2n+1/2)/(2n+1).

A comparison between (4.14) and (4.15) shows that at the critical point
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the estimate given by Riesz–Thorin interpolation is better than the bound
obtained by summing up the estimates for joint spectral projections.

Thus we obtain the following result.

Proposition 4.7. Let n ≥ 1. The following Lp-L2 bounds hold for ΠN

and for the average projection operators MN :

‖ΠN‖(Lp(hn),L2(hn)) ≤ CN (n+1)(1/p−1/2) if 1 ≤ p ≤ 2.

and
‖MN‖(Lp(hn),L2(hn)) ≤ CN (n+1)(1/p−1/2)−1 if 1 ≤ p ≤ 2.

A similar proof also yields the following result about the operators
EN1,N2 , where

EN1,N2 := ΠN2 −ΠN1 , N1, N2 ∈ N, N2 > N1.

Proposition 4.8. Let n ≥ 1. Then

‖EN1,N2‖(Lp(hn),L2(hn)) ≤ C(Nn
2 (N2 −N1))1/p−1/2 for all 1 ≤ p ≤ 2.

Remark 4.9. This should be compared with Proposition 3.8 in [M],
which shows that this estimate is sharp.
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[Sz] G. Szegö, Orthogonal Polynomials, 4th ed., Amer. Math. Soc. Colloq. Publ. 23,
Amer. Math. Soc., Providence, RI, 1974.

[Th1] S. Thangavelu, Restriction theorems for the Heisenberg group, J. Reine Angew.
Math. 414 (1991), 51–65.

[Th2] —, Some restriction theorems for the Heisenberg group, Studia Math. 99 (1991),
11–21.

[VK] N. Ja. Vilenkin and A. U. Klimyk, Representation of Lie Groups and Special
Functions. Vol. 2. Class I Representations, Special Functions and Integral Trans-
forms, Kluwer, 1993.

Dipartimento di Matematica
Politecnico di Torino
Corso Duca degli Abruzzi 24
10129 Torino, Italy
E-mail: casarino@calvino.polito.it

Dipartimento di Metodi e Modelli Matematici
per le Scienze Applicate

Via Trieste 63
35121 Padova, Italy

E-mail: ciatti@dmsa.unipd.it

Received May 23, 2008
Revised version January 19, 2009 (6359)


