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Transferring LP eigenfunction bounds
from S?"*1 to K"

by

VALENTINA CASARINO (Torino) and PAoLO CiATTI (Padova)

Abstract. By using the notion of contraction of Lie groups, we transfer LP-L? es-
timates for joint spectral projectors from the unit complex sphere $?"*! in C"*! to the
reduced Heisenberg group h". In particular, we deduce some estimates recently obtained
by H. Koch and F. Ricci on A™. As a consequence, we prove, in the spirit of Sogge’s work,
a discrete restriction theorem for the sub-Laplacian L on h".

1. Introduction. In the last twenty-five years the notion of contraction
(or continuous deformation) of Lie algebras and Lie groups, introduced in
1953 in a physical context by E. Inonu and E. P. Wigner, was developed
in a mathematical framework as well. The basic idea is that, given a Lie
algebra g1, from a family of non-degenerate transformations of its structure
constants it is possible to obtain, in a limit sense, a non-isomorphic Lie
algebra go.

It turns out that the deformed algebra go inherits analytic and geometric
properties from g; and that the same holds for the corresponding Lie groups.
As a consequence, transference results have attracted considerable attention,
in particular in the context of Fourier multipliers. In fact, contraction has
been successfully used to transfer LP multiplier theorems from one Lie group
to another. There is an extensive literature on this topic, centered about
deLeeuw’s theorems; we only mention here the results by A. H. Dooley,
G. Gaudry, J. W. Rice and R. L. Rubin ([D], [DGal, [DRil], [DRi2], [Ru]),
concerning, in particular, contraction of rotation groups and semisimple Lie
groups.

The primary purpose of this paper is to show that contraction is an
effective tool to transfer LP eigenfunction bounds as well. In particular, we
shall focus on a contraction from the complex unit sphere S2"*! in C"*! to
the reduced Heisenberg group h”.
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We recall that, if P is a second order self-adjoint elliptic differential
operator on a compact manifold M and if Py denotes the spectral projection
corresponding to the eigenvalue A2, a classical problem is to estimate the
norm v, of Py as an operator from LP(M), 1 < p < 2, to L*(M). Sharp
estimates for v, have been obtained by C. Sogge ([So2]), who proved that

(1.1) [Pl g2y < CXYE/Pm) 1 < p <2,

where « is the piecewise affine function on [1/2,1] defined by

1 1 1 ifl1<p<op
—— === i
v(l n) _J"\p2) 72 =P=h
’ ’ —1/1 1
p ”( - ) ifp<p<2,

2 \p 2

with critical point p given by p :=2(n+1)/(n + 3).

The starting point for our approach is a sharp two-parameter estimate for
joint spectral projections on complex spheres, recently obtained by the first
author ([Cal). More precisely, we consider the Laplace-Beltrami operator
Agont1 and the sub-Laplacian £ on S?"*1 (they form a basis for the algebra
of U(n + 1)-invariant differential operators on S?"*1). It is possible to work
out a joint spectral theory. In particular, we denote by Hl’l/, I,I!' > 0, the

joint eigenspace with eigenvalue i for Agent1, where g == —(1+1)(1+
+ 2n), and with eigenvalue X\, for £, where Ay := —2ll" — n(l +U") ([K]).
It is a classical fact ([VK, Ch. 11]) that
(1.2) LA(S2Hh) = 3 " eH!

1I'=0

We denote by 7 - the joint spectral projector from L2(S?*1) onto HY . In
[Ca] the first author proved the following two-parameter LP eigenfunction
bounds:

(1.3) 1700l 2y S C(2q1 + n) /P (14 Q)PP for all 1,1 > 0,

where Q; := max{l,l'}, ¢; := min{l,!'} and « and 3 are the piecewise affine
functions represented in Figure 1 at the end of Section 2. We remark that the
critical exponent in our case is 2(2n + 1)/(2n + 3) and cannot be directly
deduced from Sogge’s results. Observe moreover that 2¢; + n and Q) are
related to the eigenvalues )\;;» and gy, since they grow, respectively, as
Al /(L + 1) and ]2,

On the other hand, on the reduced Heisenberg group h", defined as
h™ := C™ x T, with product

(z,e")(w,e?) = (z + w, I+ HIm2 W),
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with z,w € C", t, s € R, we consider the sub-Laplacian L and the operator
i~10;. The pairs (2|m|(2k + 1),m) with m € Z\ {0} and k € N give the
discrete joint spectrum of these operators. Recently H. Koch and F. Ricci
proved the following LP-L? estimate for the orthogonal projector Py, . onto
the joint eigenspace:

(1.4) ||Pm7k||(Lp(hn)7L2(hn)) < C(2k + n)a(l/P,n)|m|5(1/P7n)

for 1 < p <2, where a and (3 are given by (1.3) ([KoR]).

We start by showing in Section 2 that P, ; may be obtained as the limit
in the L2-norm of a sequence of joint spectral projectors on S2"*1. Then we
give an alternative proof of (1.4) by a contraction argument.

A contraction from SU(2) to the one-dimensional Heisenberg group H'!
was studied by F. Ricci and R. L. Rubin ([R], [RRu]). In [Ca] the first
author used some ideas from [R] to transfer LP-L? estimates for norms of
harmonic projection operators from the unit sphere S2 in C? to the reduced
Heisenberg group h'. In this paper we discuss the higher-dimensional case.

A contraction from the unit sphere S?"*! to the Heisenberg group H"
for n > 1 was analyzed by A. H. Dooley and S. K. Gupta; in a first paper
they adapted the notion of Lie groups contraction to the homogeneous space
U(n+ 1)/U(n) and described the relationship between certain unitary ir-
reducible representations of U(n + 1) and H™ ([DG1]), in a second paper
they proved a deLeeuw type theorem on H™ by transferring results from
S2n+l (IDG2]). The contraction we use here is essentially that introduced
by Dooley and Gupta; however, their approach is mainly algebraic, while
our interest is directed to the analytic features of the problem.

As an application of (1.3) we prove in Section 3 a discrete restriction
theorem for the sub-Laplacian L on ™ in the spirit of Sogge’s work ([Sol], see
also (1.1)). More precisely, let Qn be the spectral projection corresponding
to the eigenvalue N associated to L on A", that is,

Qnfi= > Purl
(2k-+n)|m|=N
The study of LP-L? mapping properties of Qx was suggested by D. Miiller
in his paper about the restriction theorem on the Heisenberg group ([M]).
In [Th1] S. Thangavelu proved that
(1.5) QN Nl (1o () L2 (any) < CNTA(N)VPH2 . 1<p<2,
where d(N) is the divisor-type function defined by
1

(1.6) d(N):= >

2k+n|N 2k+n

and the estimate is sharp for p = 1. By writing a | b we mean that a divides b.
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Other types of restriction theorems on the Heisenberg group were discussed
by Thangavelu in [Th2].

By using orthogonality, we add up the estimates in (1.3) and obtain
LP-L? bounds for the norm of Qy, which in some cases improve (1.5). The
exponent appearing in (1.5) is an affine function of 1/p. In our estimate
the exponent of d(N) is, as in Sogge’s results, a piecewise affine function
of 1/p. In other words, there is a critical point p where the slope of the
exponent changes. This critical point is the same as that found on complex
spheres ([Cal).

Our bounds are in general not sharp. The reason is that with our proce-
dure we disregard the interferences between eigenfunctions. We show how-
ever that there are arithmetic progressions NN, in N for which our esti-
mates for [|@Qn,,|(p2) are sharp and better than (1.5). Moreover, since the
behaviour of d(N) is highly irregular, we inquire about the average size
of [|Qn/(p2)- We prove in this case that LP-L? estimates do not involve
divisor-type functions and that the critical point disappears.

2. Preliminaries. In this section we introduce some notation and recall
a few results, that will be used in the following.

2.1. Some notation. For n > 1 let C*t! denote the n-dimensional com-
plex space endowed with the scalar product (z,w) :=z-W := z;w1 +--- +
Zn41Wnt1, 2, W € C* and let $?"*! denote the unit sphere in C"*!, that
is,

Sl =z = (21, .., 2na1) €C"TL 2 (z,2) = 1},

The symbol 1 will denote the north pole of S?**1 that is, 1 := (0,...,0,1).
For every [,I' € N the symbol H"" will denote the space of restrictions

to S?"*1 of harmonic polynomials p(z,2z) = p(21,..., 211,21, -+ Znil)s
of homogeneity degree [ in z1,...,2,+1 and of homogeneity degree I’ in
(Z1, -+, Zn+1), i.e. such that

p(az, bz) = albl/p(z,i)7 a,beR, zecC"

For a detailed description of the spaces HY' see Chapter 11 in [VK]. We
only recall here that a polynomial p in z,Z is said to be harmonic if

o) A 1 872+ +‘972 =0
. S2n+1p 1= 4 6218§1 82;71_;'_18277,—{-1 p="5

where Ag2n+1 denotes the Laplace—Beltrami operator.

A zonal function of bidegree (1,1') on $2"*1 is a function in H4Y which is
constant on the orbits of the stabilizer of 1 (which is isomorphic to U(n)).
Given a zonal function f, we may associate to f a map °f on the unit disk
by

f(z) ="f((, 1)), =zes™H
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(by using the notation in Section 11.1.5 of [VK] we have (z,1) = z, =
€' cos ), where o € [0,27] and 0 € [0, 7/2]).

By means of °f we may define a convolution of a zonal function f and
an arbitrary function g on S?"*!. More precisely, we set

(fx9)@) = | ’f(z,w))g(w)do(w),
§2n+1
where do is the measure invariant under the action of the unitary group
U(n+1) (see (3.4) for an explicit formula). In the following we shall write
f(0, ) instead of °f (™ cos 0).
Let L?(S?"*1) be the Hilbert space of functions on S?"*! endowed with

the inner product (f,g) 1= {g2ni1 f(2)g(2) do(z).

It is a classical fact ([VK, Ch. 11]) that L?(S?"*1) is the direct sum of
the pairwise orthogonal and U (n 4 1)-invariant subspaces H""', 1,1’ > 0. In
other words, every f € L?(5?"*1) admits a unique expansion

o0

L

[= E Y,
1,I'=0

where Y4 € HLY for every 1,1’ > 0 and the series on the right converges to
f in the L?(S*"*1)-norm.
The orthogonal projector onto Hl’l/,

(2.2) mp s L8P 5 o YR e MW,
may be written as

muf =Ly f,
where 7Z; s is the zonal function from HY | given by

dll’ ql!(n—l)!
2.3) Zyy (0, = ’
(2:3) 21 (6,) wont1 (@ +n—1)!

ei(llfl)“’(cos g) = Pq(lnil’ufl/') (cos 20)

LI>1,p€0,2n], 0 € [0,7/2],

where ¢ = min(l,1'), wa,+1 denotes the surface area of S?"+1 Pq(lnfl’“*l D

is the Jacobi polynomial and

, I+ 4+n(l+n—1\[/I'4+n—-1
;) = 1 l7l fd B — ,>
dyy = dimH n— < 11 )( r_1 ) for all [,1" > 1.

Recall finally that H"° consists of holomorphic polynomials and H%*
consists of polynomials whose complex conjugates are holomorphic. In both
cases, the dimension of the space is given by

dim M0 = dim HO = <l + 7; - 1)
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and the zonal function is
1 l+n—-1
Zl 0 07 p) = (
00, ) = ;
In this paper we shall adopt the convention that C' denotes a constant
which is not necessarily the same at each occurrence.

>e‘il‘p(cos 0)}, @el0,2n],0¢c0,7/2.

2.2. Some useful results. In order to transfer LP bounds from S$2"+!
to A" we shall need both a pointwise estimate for the Jacobi polynomials,
due to Darboux and Szegd ([Sz, pp. 169, 198]), and a Mehler-Heine type
formula, relating Jacobi and Laguerre polynomials ([Sz], [R]).

LEMMA 2.1. Let o, 3> —1. Fix 0 < c < w. Then

Pl(a’ﬁ) (cos @)
O(1%) if 0<6<c¢/l,
1712k(0) (cos(Nif +7) + (Isin0) LO(1)) if ¢/l <O <7 —¢/l,
o(1%) if m—c/l <0 <m,
where

k(0) := 7r1/2(sing)7a71/2(cos g)fﬁflm, Ny =1+ %ﬁﬂ, vi=—(a+3)E.

PROPOSITION 2.2 ([R, p. 224]). Let n > 1 and let x be a real number.
Fiz k and j in N, j > k. Then

: N—j—k i j—k,N—j—k) 2z
(24) ng)noo COS J <]\7—]—]{> P]SJ J <COS m)

= Li_k(a;Q)e*ﬁ/Q.
Our proof is based on the following two-parameter estimate for the LP-L?

norm of the complex harmonic projectors 7 defined by (2.2).

THEOREM 2.3 ([Cal]). Let n > 2 and let I,I' be non-negative integers.
Then

2l L+
(25) Il < C (*”(*

1\ e/p)
> (141)PA/pm) - if 1 <p<2,

I+7
where
1 1 1 .
1 "oT5) s if 1<p<p,
(2.6) a<p,n) =141 pl
S < p<2
173 ifp<p<2
with p=22n+1)/(2n + 3), and
1 1 1
(2.7) ﬁ(,n) = n< — > forall 1 <p<2,
P P 2

The above estimates are sharp.
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Fig. 1. The exponents « and 3 as functions of 1/p

3. L? eigenfunction bounds on H"™. The Heisenberg group H" is a
Lie group with underlying manifold C" x R, endowed with the product

(z,t)(w,s) = (z+w,t+s+Imz-W)

forz,w e C", t,s € R.

We denote an element in H! by (pe’?,t), where p € [0,00), ¢ € [0,27],
t €

t € R, and an element in H" by (pn,t), where p € [0,
n € 2"~ is given by

€1 s8in6,,_1sinb,_o...sinby,
€2 sinf,_1sinb,_o...cosb,
(3.1) n=

"’ cos Oy _1,

00), R and

with ¢, € [0,27], k=1,...,n,and 6; € [0,7/2], j=1,...,n — 1.

Observe that n = n(©,—1,P,), where 6,,_1 := (01, ...
<9017 cevy ‘Pn)
Define now a map ¥ : H" — §?7*1 by

,0n—1) and @, :=
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where (0,,_1, p, ®n,t) € S?"+1 is given by

(€11 sin psin€,_1sinf, o...sinf,

€2 sin psin@,,_1 sinf,_s .. .cos 01,
(33) (@n*bpa ¢nat) =
ei®n sin pcosBpy_1,

e’ cos p.

We introduce in this way a coordinate system (©,,_1, p, ®,,t) on S?**1 if p
and t are restricted, respectively, to [0,7/2] and [—7, 7.

The invariant measure dogent1 on S?"! in the spherical coordinates
(3.3) is

I n n—1 .
(3.4) % H dey, dtsin?* L pcos pdp H sin%~! 6 cos0; db;.
™
k=1 j=1

The factor n!/(27"1!) is introduced in order to make the measure of the
whole sphere equal to 1.

The Haar measure on H" in these coordinates is
n—1

n' 2n—1 c27—1
—p dpdypr ...dp ||sm3 0;cos0;db;.
27Tn+1\/w2n+1 nj 1 ’ I

The reduced Heisenberg group h™ is defined as A" := C" x T, with product
(Z, eit)(w’ eit’) — (Z +w, ei(t+t’+ImZ-W))

for z,w e C", t,s € R.
Let now f be a function on A" with compact support. Let f be the

function f extended by periodicity on R with respect to the variable t.
Define the function f, on S?"*! by

(3.5) fo(@n1,p, P t) =" f(pv/vm,tv), veEN,

LEMMA 3.1. Let f be an integrable function on h™ with compact support.
If 1 <p < oo, then
v ol ogszainy < |LF o umy
and
lim v="|| f, || po(sensry = 1 F |l Loy
V—00

Proof. The proof is similar to that of Lemma 2 in [RRu] and is omitted.
Compare also with Lemma 4.3 in [DG2]. =



Transferring LP eigenfunction bounds 31

Throughout the paper we shall consider a pair of strongly commuting

operators on h™. The first is the left-invariant sub-Laplacian L, defined by
n
L==) (X7+7}),
7:=1

where X; 1= 0p; — y;0; and Y; := 9, + z;0;. The second is the operator
T := i~'0;. These operators generate the algebra of differential operators
on h"™ invariant under left translation and under the action of the unitary
group. One can work out a joint spectral theory; the pairs (2|m|(2k+n), m)
with m € Z\ {0} and k € N give the discrete joint spectrum of L and i~19.
We shall denote by P, ;. the orthogonal projector onto the joint eigenspace.

By considering the Fourier decomposition of functions in L?(h™) with
respect to the central variable, we obtain an orthogonal decomposition of
L?(h™) as

L*(h") = Ho ® H,

where

Ho = {f e L") : | f(z.t)dt = o}.

T

The projectors P, , map L?(h™) onto H and provide a spectral decompo-
sition for H. The importance of this decomposition is due to the fact that
the spectral analysis of L on Hy essentially reduces to the analysis of the
Laplacian on C".

On the complex sphere S?"*! the algebra of U(n + 1)-invariant differ-
ential operators is commutative and generated by two elements; a basis is
given by the Laplace—Beltrami operator Agzn+1, defined by (2.1), and the
Kohn Laplacian £ on S?"*!, defined by

L= (MM + M Mjy)
i<k
with
My, := 2;0,, — 21.0,;, and Mjk = 205, — 205, -
We shall denote by H' the joint eigenspace of Ag2n+1 and L with eigen-

values respectively pyp = —(l+1")({ + 1+ 2n) and Ny = =21' —n(l +1')
([K1).

The next task is to prove that the joint spectral projection P, ; on h"
may be obtained as limit in the L?-norm of an appropriate sequence of joint
spectral projectors on S2"t1,

PROPOSITION 3.2. Let f be a continuous function on h™ with compact
support. Take m € N\ {0} and k € N. For every v € N let N(v) € N be such
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that
N
(3.6) im YW
V—00 vV

Then

) 1
(3.7) ||Pm,kaL2(hn) = VILH;O Y] Hﬂk,N(u)fkaHLQ(SQ”H)?

. 1
(38) HP,m’ka[g(hn) = VlLI{.lo W Hﬂ-N(V)—kJ,kaHL2(52'"+1)'

Proof. The scheme of the proof is similar to that of Proposition 4.4 in
[Cal. Since the higher dimensional case is more involved, we present the
proof for more transparency.

Fix two integers m > 0 and k € N.

First of all, if z,w € C", by writing z := pn and w := p'n’ with p,p’ €
[0,00) and 1,7’ € §?"~!, a simple computation yields
(3.9) Imz-w=pp(sin(py — ¢})sin€,_1sinb,_,...... sin 01 sin 0]

+ sin(p2 — @h) sinf,_1sin@,_,...... cos 0 cos 6]
+ -+ sin(p, — ¢,) cosO,_1 cos b, ;)

and
(3.10) |z —w|* = p* 4 p?
—2pp'(cos(p1 — ¢)) sinf,_1sinf),_; ...sin0; sin b
+ cos(p2 — @h) sinf,_1sinf, | ...cosfcosf] + -
-+ cos(py — ¢l) cosb,_1cos, ).
Now, we denote by &;", the joint eigenfunction for £ and i~ (for

more details and an explicit expression see, for example, [FH, Chapitre V]).
Orthogonality of joint spectral projectors yields

||Pm,kf‘|%2(h") :< mkfa f>L2 hn) — S f*¢z,lk(zat) (Zat) dzdt

hn
= § (] O wat — ¢ Iz f(w,#) dw it ) ) ddt
h™ h"
—m" S ( S 6im(t—t'+1mz~W)L2*1(m|Z o W|2)e—%m\z—w|2f(w’t/) dw dt’)
h"L hn

- F(z,1) dz dt.
Now we shall deal with the right-hand side in (3.7). For brevity we set

AP,y = depy...dp, and dO, ) Hsm 19, cos b, db;.
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From the orthogonality of the joint spectral projectors m ;- in L?(S?"+1) and
from (3.5) we deduce
1785 )k Full T2 s20 1) = (T N @) kS fi) 1252041

= S (Wk,N(u)fkfu)( n—1>pa¢mt)fl/( n—1; Py Pnyt) dogant

52n+1

n' p t _ SIn \/17 2n—1
= 27Tn+1VAS (Trk,N(ll)fka) (971—17 W) @n, V) f(en—h P; @na t) <\%>

v

( \‘}) 21 dpdO ) Ay di

n!? p , [
it (o o) o )
et P 12n—1 3 1 30/ ! '
) <\f> p dp dQ(nfl) dd n) dt)
2n—1
) (2
where the integration set A, is given by

(3.11) A, i ={(Op_1,p,Pp,t) : 0< p <7V /2,0< o <2m, k=1,...,n
0<6;<7m/2,j=1,...,n—1, —nv <t < 7v}.

&

'.]E(nlvpSZS (

a\v %\b

- f(Bn-1,p, D\t 2L dpdQ) . dd,, dt
(n—1) (n)

%\“

Now by using (3.3) we compute the inner product in C**!:

t t/
<<8n1,\%7¢nlay>a < 7,1—17 \pf Qn 1 V>>

/
= ¢'P17%1) gin (\%) sin (\%) sinf,_osin@,_,...sin6 sin 6]

4 eilpz—wn) sin( p ) sin<
Vv

+ . —1—61(@" 1— <Pn 1 sm(

+ eilt= ”vcos( )

= R, e

> sin@,_ssinf,_,...cosf cos 0]

) sm< > cos 0,,_9 cos 9;_2

3

24
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where

1
R,=1-— 2—(p2 + p'* = 2pp(cos(p1 — @) sin b,y sin@,_;...sin6;sin6);
v

+ cos(pa — ph) sinf,_1sinf,_; ...cosb; cosb]

1
+ -+ 4 cos(pn — @),) cos b1 cos B, 1)) + 0(,,)’
1 1/ - / . . / . . /
1, = arctan PP (sin(p1 — ¢])sinb,_1sin6,_;...sin6; sin b

+ sin(p2 — @) sinf,_1 sin6,,_; ...cos 0 cos 6]

. t—t 1
+ -+ +sin(p, — ¢),) cos b1 cos b, 1) + » + O())

v

as v — oo. Thus as a consequence of (3.9) and (3.10) we have

1 1 1 1 1
Rl,:cos(ﬁ\z—w\>+o<y> and wl,:y(t—t’)—l—ylmz-w—i—o(V),

so that formula (2.3) for the zonal function yields

) p t p/ t/
L, N (v)—k << <@n—17 \ﬁ>@n> V>> ( 15 ﬁa@m ”

n |V (v)—2k|
_N) SN () =2k) L (t=t'+1m 2 5-+0(1) <COS<\1f 1z — W|>>
12

Won+1

n—1,|N(v)—2k 2 1
-P,E IN@) D(cos(ﬁ\z—w\))—i—o(V), v — 00.

By using condition (3.6) and the Mean Value Theorem, we easily check
that

1
n HTrk‘,N(l/)fk‘fVH%Q(SQ'nﬁ—l) = IIJ,\/[ —i—If,

where the remainder term IVR satisfies lim, _ o 1'5 = 0, while the main term
IM is given by

n!?

M _ "
v Awop 1 m2nt2y2

: jﬂ (AS <N£V)> neim(t*turlmz-w) (COS (\}D 7 W‘>> [N (v)—2k|

L pr=LIN@)=2k]) [ i’Z_W’ fo ) sin £\ 201
k \/D n—1P»Pn, el
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. _ sin £\ 21
- COS <\%> P/Qn_l dP/ deé’ﬂ*l) dé/(n) dt,) f(Qn—b P dsnv t) ( P\/;>

p _
: cos(\ﬁ) o2 Ldp dO (1) AP, dt, v — oo.

We shall now treat Z! by means of the Lebesgue dominated convergence
theorem. First of all, we extend the integration set in ZM (this may be done,

since f has compact support and the integrand is periodic with respect to t),
and we obtain

n'2 0o /2 /227 2 ™
312 ZV=——0o— .. 1.0}
AT 2wy 0 0 00 0-n
oo /2 /221 27 n
<g P S<N<v>> (et —mw)
0 0 0 0 0 —m v
1 V() =2k n—1,|N(v)—2k 2
: <cos(ﬁ |z — w|>> P,E IV () =2K]) (cos<ﬁ|z — w|>>
sin £-\ 2n—1 /
v P n—
’ f( ;1—17 pla ¢;1, t,)< p/f) COS<\/§>pl2 ! dp, d@ETL—l) d@?n) dt,>
NG
sin 4=\ 2n—1 o
. v 2n—1
f(@n1>p7@nat)< \% > COS<ﬁ>p dpd@(n_l) d@(n) dt.

By using Lemma 2.1 and the Mehler—Heine formula as stated in Lemma
22 (with N=Nw)+j—k,j—k=n—1and x = MV*W’% we
may conclude as in Proposition 4.4 of [Cal.

The proof for (3.8) is completely analogous. =

THEOREM 3.3. Let n > 2. Take m € Z\ {0} and k € N. Then

(3.13) [Pkl (Lo (hm),22(hny)
< { Ck+n)"G D2 m"G72) i 1<p<p,
Tle@k e m G i p<p<o,
where p = 2(2n + 1)/(2n + 3). Moreover, the estimates are sharp.

Proof. Take m > 0 (the other case being analogous). For every v € N
let N(v) € N be such that
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Thus

1
||Pm,kf”L2(hn) = Vlglgo /2 HMN (v)— kfvllre (§2n+1)

. <N(u)>”/2<2k(zv(u))— k) +n>”/2”fy|m(sgn“)

V—00 v N(V
m"/2(2k + n)("fl)/Z lim HfVHLl(S%“Ll)

IA

=m™2(2k +n) "2 £ 1 gy,
where we have used first (3.7) and then Theorem 2.3 and Lemma 3.1.

In the same way, we see that

1
[Pt f1 L2 (1) = 7 1T N ) - ull 2 s2ne)

<t g (B )

|
85

N@) = | 1 L2

L?27F3 (§2n+1)

1 n(2n-1)
< (2k+n)” PerEsy; V]Lngo 7 N(v)zn+1 pr] V2(2n+1) (Kl JrE i 2 (i)

1
_ T 3@ T n .
(2k +n) m HfHngTi};(hn)
An interpolation argument yields the conclusion. Finally, sharpness follows
from arguments in [KoR]. =

4. A restriction theorem on A"™. By applying the bounds proved in
Section 2 we obtain a restriction theorem for the spectral projectors asso-
ciated to the sub-Laplacian L on A™. Our theorem improves in some cases
a previous result due to Thangavelu ([Th1]). More precisely, let Qn be the
spectral projection corresponding to the eigenvalue NV associated to L on h"”,
that is,

Qnf= > Puxl,

(2k+n)|m|=N

where P, ;. is the joint spectral projection operator introduced in the pre-
vious section. We look for estimates of the type

(41) HQNH(LP(}'LTL)’LZ(],LTL)) S CNU(I?J’L)

for all 1 < p < 2, where the exponent ¢ is in general a convex function
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of 1/p. In [Thl] Thangavelu proved that
(4.2)  NQnll(Lony,r2(myy < CNMPTU2 NP2 < p <2,

where d(N) is the divisor-type function defined by

1
(4.3) d(N):= ) T
2k+n|N

and the estimate is sharp for p = 1. Here a|b means that a divides b.
Thangavelu also proved that when N = nR with R € N, then

NP2 < QN oy r2ny), L <P < 2.

Here we show that there exist arithmetic progressions ay in N such that the
estimate for ||Qay [|(p2) is sharp and better than (4.2) for 1 <p < 2.

PROPOSITION 4.1. Let n > 1. Let N be any positive integer. Then for
every 1 < p <2,

(4.4) QN | (Lo (rny 2 (any) < CN™/P=L2 (N )p/pn),

where p is defined by
1 ‘ .
5 if 1<p<p,
1 2
(45) p( ) )
(+)(3-1) wreres

with p=2(2n+1)/(2n + 3), and d(N) is given by (4.3).

N |

Proof. For p = 1 our estimate coincides with (4.2); nonetheless we give
a different, simpler proof:

@t = 2 sty = X 1P B
(2k+n)|m|=N (2k+n)|m|=N
<C Y mk+n)" 1 ey
(2k+n)|m|=N
<CN™ Y 2k+ LI oy
2k+n|N
whence

(4.6) 1QNIl(z1 r2y) < CN™2d(N)Y2,
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For p = 2 the bound is obvious, since Q) is an orthogonal projector. Finally,
for p = p one has

HQNfH%%h") - Z HPmyka%%h”)

(2k+n)|m|=N
<C Z (2k + n)_l/(2”+1)|m’2n/(2n+1)||f||%ﬁ(hﬂ)
(2k+n)|m|=N
= CN*MC DN 2k 4 0) Y| fI s gn,
2k+n|N
whence
(4.7) 1Qu s z2y < CN™CHED (N2,

Then by applying the Riesz—Thorin interpolation theorem to (4.6) and to
(4.7) we get (4.4). m

REMARK 4.2. Observe that estimate (4.4) is better than (4.2) only when
d(N) < 1.

Thus, on the one hand, we are led to seek arithmetic progressions {V,,}
on which the divisor function d(N,,), whose behaviour is in general highly
irregular, is strictly smaller than one. On the other hand, we are led to
inquire about the average size of the norm of Q.

We remark that if n = 1 then d(/V) is necessarily greater than one.

REMARK 4.3. Proposition 4.1 reveals the existence of a critical point
p € (1,2) where the form of the exponent of the eigenvalue N in (4.1)
changes.

In the following we list some cases in which estimate (4.4) really improves
the result in [Thl]. First of all, when n > 2 and N is a prime number,
Proposition 4.1 yields the following sharp result.

PROPOSITION 4.4. Let n > 2 be odd. Let N be a prime number. Then
for every 1 < p < 2,

(4.8) 1@~ [z, L2(my) < {

with p=2(2n+1)/(2n + 3). Moreover, the above estimate is sharp.
Proof. (4.8) follows directly from (4.4). Furthermore, since in this case
1QN (L), L2(hm)) ~ 1P (N=n)s2ll Lo (hm),L2m)), 1 <P <2,
sharpness follows from Theorem 3.3. =

Proposition 4.4 may be generalized to the case N = r*0, where kg € N
and r varies in the set of all prime numbers.
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PROPOSITION 4.5. Let n > 2 be odd. Fizx a positive integer ky. Set N, =
ko where v varies in the set of all prime numbers. Then for every 1 < p < 2,

n(l_l)_i

N, 7 % % f1<p<p
(4'9) HQNTH(LP(h”),LQ(h")) < ¢ (n—=(2n+1))(1—1) Zf =pP<p
Ny T ifp<p<2,

with p=22n+1)/(2n + 3). Moreover, (4.9) is sharp.

Proof. (4.9) follows directly from (4.4), since

11 12
d(NT):;+r—2+~-+—<f.

rko =~ p
To prove that (4.9) is sharp, take the joint eigenfunction fy for L and
i~10; with eigenvalues, respectively, (2k+n)m = N, and m = ¥~ yielding
the sharpness for the joint spectral projection Prko—IV(,r_n) /25 that is, such

0 p'
2 ~Y .
Hl ,r,kofl,(rfn)/2||(p7 ) HfoH‘g

Now we have

QN follr Il foll e

l@x .oy 2 g™ = gl ~ Hrteme-mrelo)

1 1 1 1 1 1 1
~ Crn(E_i)_§(rk0_1)n(5_§) ~ CT'_%rkon(E_i

for all 1 < p < p. For p < p < 2 an analogous estimate holds, so that (4.9)
is sharp. =

We shall now consider integers of the form N; := q[l), where qg is a fixed
prime number and [ € N. The argument of the previous proposition also
proves the following.

PROPOSITION 4.6. Let n =2 orn > 2 odd. For n = 2 let qy = 2, for

n > 2 let qo be a prime number strictly greater than 2. Set N; := qé, [l eN.
Then

(4.10) Q2o 2y < CNJ P2 f 1< p <2,
Moreover, (4.10) is sharp.

The above examples show the highly irregular behaviour of d(N), and
therefore of ||Qn|p,2. In order to smooth out fluctuations we introduce ap-
propriate averages of joint spectral projectors. More precisely, for N € N we
define

N
(4.11) Onf=Y_ >,  Puxl

L=n (2k+n)|m|=L
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and ask what is the behaviour of | Myl||(,2), where

(4.12) My f = %an.

For p =1 Theorem 3.3 and orthogonality yield

HHNfH%Q(hanZ > P

L=n (2k+n)|m|=L

= > 1P i f 1172

(kym): (2k+n)|m|<N
<c Y @k P B e
(k, m): (2k+n)|m|<N
[N/m]

<CZm D k4 n)" M fl1ny < CON™ - NI FIF1 (s

m=1 2k+n=n

L2(h™)

whence

(4.13) [In]l(1,9) < NOFD/2,

The trivial L?-L? estimate and Riesz-Thorin interpolation yield
(4.14) Ty || (p2) < CNTHDARZLR) g <p <2,

Observe that by using Theorem 3.3 we may obtain the following estimate
at the critical point p:

TN f(172 oy = > 1P 1o 12y
(k,m): (2k+n)|m|<N
< @k
(k m): (2k+n)|m|<N
[N/m]
=C Z m?28 Z (2k + n)2a||f||%ﬁ(hn)
2k+n=n
= N2t 221 mQﬁ_za_leH%ﬁ(hn)

< CN2a+2||f”%ﬁ(hn)a

where we have used the fact that 20 —2a = 1 for all 1 < p < p, with
a=a(l/p,n) and 5 = B(1/p,n) given by (2.6) and (2.7).
Thus

(4.15) [1In|(52) < CNOTH = CNEH1/2)/@nt),
A comparison between (4.14) and (4.15) shows that at the critical point
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the estimate given by Riesz—Thorin interpolation is better than the bound
obtained by summing up the estimates for joint spectral projections.
Thus we obtain the following result.

PROPOSITION 4.7. Let n > 1. The following LP-L? bounds hold for ITx
and for the average projection operators My:

HHNH(Lp(hn)’Lg(hn)) < CN+)A/p=1/2) ifl1<p<2.

and
IMN Il (Lrany,L2(0m)) < CNMHDA/P=1/2)=1 ir 1 < p <2

A similar proof also yields the following result about the operators
EnN, N,, where

ENl,Ng = HN2—HN1, Ny, No € N, N > Nj.
PROPOSITION 4.8. Let n > 1. Then
IEN, Noll (2o, 220my) < C(NE (N2 — Np))YP=12 0 for all 1 < p < 2.

REMARK 4.9. This should be compared with Proposition 3.8 in [M],
which shows that this estimate is sharp.
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