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The canonical test case for the
non-commutative Singer–Wermer conjecture

by

Marc P. Thomas (Bakersfield, CA)

Abstract. It is a famous conjecture that every derivation on each Banach algebra
leaves every primitive ideal of the algebra invariant. This conjecture is known to be true if,
in addition, the derivation is assumed to be continuous. It is also known to be true if the
algebra is commutative, in which case the derivation necessarily maps into the (Jacobson)
radical. Because I. M. Singer and J. Wermer originally raised the question in 1955 for
the case of commutative Banach algebras, the conjecture is now usually referred to as the
non-commutative Singer–Wermer conjecture (the non-commutative situation being the
unresolved case).

In a previous paper we demonstrated that if the conjecture fails for some non-commu-
tative Banach algebra with discontinuous derivation, then it fails for at most finitely many
primitive ideals, and each of these primitive ideals must be of finite codimension. In this
paper we first show that one can make an additional reduction of any counter-example to
the simplest case of a non-commutative radical Banach algebra with identity adjoined and
discontinuous derivation D such that D does not leave the (Jacobson) radical (which is of
codimension one) invariant. Second, we show that this radical Banach algebra with identity
adjoined has a formal power series quotient of the form A0[[t]] based at an element t in the
radical which is mapped to an invertible element by the discontinuous derivation. Finally,
we specialize to the case of a separable Banach algebra and show that the pre-image of
the algebra A0 is a unital subalgebra which is not an analytic set. In particular, this shows
that A0 cannot be countably generated.

1. Introduction and notation. In all of the following, A will denote
a (possibly non-commutative) Banach algebra over the complex field. It
is convenient to have an identity element 1. If A already has an identity
element we define A] = A; if not, we let A] denote the algebra with identity
adjoined, so that A] ∼= C · 1⊕A.

We will let D denote a derivation from A to itself, so that D is a (possibly
discontinuous) linear mapping satisfying

D(ab) = a(Db) + (Da)b
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for all a, b in A. If necessary, we can extend D to A] in the obvious way by
defining D(1) = 0.

We say that an ideal P is primitive if it is the kernel of some (strictly) irre-
ducible representation of the algebra A. In 1955 I. M. Singer and J. Wermer
[10] proved that a continuous derivation on a commutative Banach algebra
maps into the (Jacobson) radical; they conjectured that the assumption of
continuity was unnecessary. This became known as the Singer–Wermer con-
jecture. It is equivalent to stating that a (possibly discontinuous) derivation
on a commutative Banach algebra leaves every primitive ideal invariant.
This commutative case was settled in the affirmative by [12, Theorem 4.4].
Since one can ask the same question for non-commutative Banach algebras,
there remained the obvious extension of the question: are all primitive ide-
als invariant under a derivation in every Banach algebra? This has become
known as the non-commutative Singer–Wermer conjecture (the commuta-
tive case having been settled). As will become clear below, if the conjecture
fails for some derivation, that derivation must be discontinuous.

We will require some results from the theory of automatic continuity.
For each n ∈ N we can measure the discontinuity of each power Dn of a
derivation D : A → A by constructing the separating subspaces

S(Dn) = {y ∈ A | ∃xi → 0 with Dn(xi)→ y}.
These subspaces are closed. It is a standard application of the closed graph
theorem that S(Dn) = {0} if and only if Dn is continuous. Furthermore, if
T is any continuous linear operator, it is also true that S(TDn) = TS(Dn).

It follows from standard representation theory (see [7]) that primitive
ideals are necessarily closed. Thus, if P is a primitive ideal, we can always
define the canonical continuous quotient map QP from A to A/P . From our
remarks on automatic continuity above it follows that QP (Dn) is continuous
if and only if S(Dn) ⊆ P . It is also the case [15, Lemma 1.3] that D(P ) ⊆ P
if and only if QP (Dn) is continuous for all n ∈ N. If D(P ) 6⊆ P , we say that
P is an exceptional primitive ideal.

The following result appeared in the literature with an incorrect proof.
In [13, Proposition 1.10] we gave a corrected argument.

Theorem 1.1. Let D be a derivation on a Banach algebra A. It must
be the case that QPD

n is continuous for all n ∈ N and D(P ) ⊆ P for all
primitive ideals P of A except possibly finitely many exceptional primitive
ideals P1, . . . , Pk which must necessarily be of finite codimension.

If the non-commutative Singer–Wermer conjecture is true then there are
no exceptional primitive ideals (k = 0), and we are done. In this paper, we
will assume that the conjecture fails for some (necessarily non-commutative)
Banach algebra A , some (necessarily discontinuous) derivation D, and some
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set of exceptional primitive ideals P1, . . . , Pk. We will assume in all of the
following that the listing of the Pi’s above does not contain any duplications.

In Section 2 we will reduce the above counter-example to the simplest
type of counter-example, consisting of a non-commutative radical Banach
algebra R and a new derivation D which maps the radical algebra with
identity adjoined into itself,

D : R] → R],

such that D(R) 6⊆ R, so that R is the only exceptional primitive ideal of R],
and R has codimension 1. In Section 3 we will then show that this canonical
test case has a formal power series quotient based at an element t ∈ R such
that D(t) is invertible. In Section 4 we specialize to the case of separable
Banach algebras.

2. Reduction to the case of a radical algebra with an identity
adjoined. We now assume throughout that A is the counter-example to the
Singer–Wermer conjecture that we are hypothesizing exists. Thus, A has all
the properties specified in Theorem 1.1. For each of the exceptional primitive
ideals Pi where i = 1, . . . , k, choose any (strictly) irreducible representation
πi with kernel Pi. Let di denote the dimension (over the complex field) of
the vector space on which πi operates. If K is a closed ideal of A, we let QK

denote the canonical continuous quotient map from A onto A/K.

Definition 2.1. For each n ∈ N we denote by Mn the algebra of n by
n matrices over the complex field.

It follows from standard representation theory (see [7]) (and from the
fact that a finite-dimensional division ring which contains C in its center
must be identical with C) that for each of the exceptional primitive ideals
we have the isomorphism A/Pi

∼=Mdi
for i = 1, . . . , k.

Definition 2.2. Let R denote the Jacobson radical, rad(A), of A, and
let P denote the intersection of all primitive ideals P of A which are non-
exceptional (i.e. D(P ) ⊆ P ) so that

R = P ∩ P1 ∩ · · · ∩ Pk.

Note that P is a closed two-sided ideal of A and that P 6⊆ Pi for i =
1, . . . , k because S(Dn) ⊆ P for all n ∈ N.

We require a result which is due to Johnson and Sinclair [5, Lemma 3.1].

Lemma 2.3 (Johnson and Sinclair). The quotient Banach algebra

A/(P1 ∩ · · · ∩ Pk)

is finite-dimensional with the following decomposition:

A/(P1 ∩ · · · ∩ Pk) ∼=Md1 ⊕ · · · ⊕Mdk
.
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We then have the following lemma.

Lemma 2.4. The quotient Banach algebra P/R is finite-dimensional
with the following decomposition:

P/R ∼=Md1 ⊕ · · · ⊕Mdk
.

Furthermore, the Jacobson radical R is non-trivial.

Proof. Note that

P/R = P/(P ∩ P1 ∩ · · · ∩ Pk) ∼=
P + (P1 ∩ · · · ∩ Pk)

P1 ∩ · · · ∩ Pk
;

this is a two-sided ideal of A/(P1 ∩ · · · ∩ Pk), which, by Lemma 2.3, is iso-
morphic to Md1 ⊕ · · · ⊕ Mdk

. For each i = 1, . . . , k, let πi be a (strictly)
irreducible representation with kernel Pi, as above. Note that πi(P) is a
two-sided ideal of Mdi

, and πi(P) is non-trivial because P 6⊆ Pi. Since Mdi

is simple, this forces πi(P) = Mdi
and, hence, each πi|P is a (strictly) irre-

ducible representation of P with kernel P ∩ Pi. Therefore,
P + (P1 ∩ · · · ∩ Pk)

P1 ∩ · · · ∩ Pk

must be all of A/(P1 ∩ · · · ∩ Pk), proving the assertion.
We note in passing that the isomorphism between P/R and Md1 ⊕ · · ·

⊕Mdk
can be implemented via π1 ⊕ · · · ⊕ πk dropped to P/R.

Now assume towards a contradiction that R = {0}. This means that P
is a finite-dimensional semisimple algebra over the complex field and so it
must have an identity e. Since e2 = e and since D(P) ⊆ P it is easy to check
that De = 0. Let a ∈ A. Since P is a two-sided ideal we have ae = eae = ea
so that e is in the center of A. We can then decompose

Dn = eDn + (1− e)Dn

for all n ∈ N. Since S(Dn) ⊆ P it follows that (1 − e)S(Dn) = {0} and,
hence, that (1− e)Dn is continuous for all n ∈ N. The linear mapping eDn

is certainly continuous when restricted to the finite-dimensional space P for
all n ∈ N. Multiplication by e is a continuous projection onto the finite-
dimensional space P. Since De = 0 it is routine to check that eDn(a) =
Dn(ea) = eDn(ea) for all a ∈ A. Consequently, eDn is continuous on A
for all n ∈ N. This shows that Dn is continuous for all n ∈ N and that
there could not have been any exceptional primitive ideals to begin with.
Therefore, R cannot be trivial, ending the proof of the lemma.

We shall next show that the Jacobson radical is not invariant under the
derivation. This result also follows from [4, Corollary 5.2.29] but we give the
short proof here for the sake of completeness.

Lemma 2.5. There exists an element r ∈ R such that D(r) 6∈ R.
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Proof. Assume towards a contradiction that D(R) ⊆ R. Since R is a
closed two-sided ideal, the derivation D then drops to a new derivation D̂
on the semisimple quotient Banach algebra A/R in the usual way, namely
D̂(a + R) = Da + R for a ∈ A. Since A/R is semisimple, it follows from
[5, Theorem 4.1 and remarks after] or [4, Theorem 5.2.28(iii)] that D̂ is
continuous. Since we can factor QRDn through A/R with

QRD
n = D̂nQR,

this shows that QRDn is continuous for all n ∈ N. But this means that
S(Dn) ⊆ R ⊆ Pi for each n ∈ N and i = 1, . . . , k. Obviously, this contra-
dicts the fact that each Pi is an exceptional primitive ideal. Therefore
D(R) 6⊆ R.

We now choose a minimal idempotent which will allow us to reduce the
problem to consideration of a radical Banach algebra with identity adjoined.

Lemma 2.6. There exists a minimal (but not necessarily central) idem-
potent e ∈ P such that the following conditions hold :

(i) eAe is a closed subalgebra of A with identity element e whose radical
is equal to eRe = eAe ∩R.

(ii) eAe is a radical Banach algebra with identity adjoined and

eAe ∼= C · e⊕ eRe.

(iii) Let D1(x) = eD(x)e for all x ∈ eAe. Then D1 is a derivation from
eAe to itself satisfying D1(e) = 0.

(iv) There exist t ∈ eRe and b ∈ eAe such that D1(t) = e+ tb, e+ tb is
invertible in eAe, and e− (e+ tb)−1 ∈ teAe.

Proof. We need some preliminaries. Let x ∈ R and a ∈ A. Recall that
D(P) ⊆ P and note that aD(x) = D(ax) − D(a)x and D(x)a = D(xa) −
xD(a). This shows that (D(R)+R)/R is a two-sided ideal in P/R which, by
Lemma 2.4, is isomorphic toMd1⊕· · ·⊕Mdk

under the homomorphism π =
π1⊕· · ·⊕πk dropped to P/R. Since D(R) 6⊆ R it follows that (D(R)+R)/R
is isomorphic to a product of some non-empty subcollection of the Mdi

’s.
In any case we can find some minimal idempotent, for example e11 on the
diagonal in some Mdj

, but zero in all other factors Mdi
for i 6= j in the image

of (D(R) + R)/R under the isomorphism π. This means that there exists
r1 ∈ R with πj(D(r1)) = e11 ∈ Mdj

and πi(D(r1)) = 0 for i 6= j, so that
D(r1) +R is idempotent modulo the radical. Since R is both the radical of
A and the radical of P, applying [7, Theorem 2.3.9] or [4, Proposition 2.4.2]
shows that there is an idempotent e ∈ P such that e−D(r1) ∈ R.

Regarding (i) and (ii), since e ∈ P it follows that eAe ⊆ P. Let λ, µ ∈ C
and a, b ∈ A. Note that
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λ(eae) + µ(ebe) = e(λae) + e(µbe) = e(λa+ µb)e

so that eAe is a subspace of A. Note that

(eae)(ebe) = e(ae2b)e = e(aeb)e

and
e(eae) = e2ae = eae = eae2 = (eae)e

so that eAe is a subalgebra of A with identity e. If {ai}∞i=1 is any sequence
in A and if eaie → b then eaie = e2aie

2 = e(eaie)e → ebe, so that b = ebe,
and hence eAe is closed. If eae ∈ eAe, apply the isomorphism π above to
obtain

π(eae) = π(e)π(a)π(e) = λaπ(e)

for some scalar λa ∈ C depending on a. Hence, eae − λae = xa ∈ R, both
λa and xa depending on a. This shows that eae = e2ae2 = λae+ exae. Since
a ∈ A was arbitrary we have shown that

eAe = C · e+ eRe.
If x ∈ R∩ eAe then x = exe. This shows that eRe = R∩ eAe and that eRe
is a topologically nil ideal of eAe. Since e is idempotent and cannot be in
the radical, this shows that the Jacobson radical of eAe is eRe and that

eAe ∼= C · e⊕ eRe,
and we have proved (i) and (ii).

Regarding (iii), define D1(x) = eD(x)e for all x ∈ eAe. Let x, y ∈ eAe
and note that since e is an identity in eAe we have

D1(xy) = eD(xy)e = exD(y)e+ eD(x)ye = xeD(y)e+ eD(x)ey
= xD1(y) +D1(x)y.

This shows that D1 is a derivation on eAe. Also,

D1(e) = eD(e)e = eD(e2)e = e2D(e)e+ eD(e)e2 = 2eD(e)e = 2D1(e),

which forces D1(e) = 0, and we have proved (iii).
Regarding (iv), let r1 be as above and set r = er1e ∈ eRe. We make the

computation

D1(r) = D1(er1e) = eD(er1e)e = eD(e)r1e2 + e2D(r1)e2 + e2r1D(e)e
= eD(e)r1e+ eD(r1)e+ er1D(e)e ∈ e+ eRe

since e − D(r1) ∈ R. Hence there is s ∈ eRe such that D1(r) = e − s.
Since eRe is the radical of eAe, the spectrum σ(s) equals {0}, and e− s is
invertible with inverse

(e− s)−1 = e+
∞∑

j=1

sj ,
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which is an element of eAe. We want to make one more modification. Let
t = r(e− s)−1 ∈ eRe. We make the computation

D1(t) = D1(r((e− s)−1)) = (e− s)(e− s)−1 + rD1((e− s)−1)

= e+ r(e− s)−1((e− s)D1((e− s)−1)).

If we define b = (e − s)D1((e − s)−1) we have shown that D1(t) = e + tb,
which is invertible in eAe since t ∈ eRe. Finally, consider e− (e+ tb)−1. The
resolvent series is

(e+ tb)−1 = e+
∞∑

j=1

(−1)j(tb)j

so that

e− (e+ tb)−1 = −t
∞∑

j=1

(−1)jb(tb)j−1 ∈ teAe.

The latter sum converges since tb ∈ eRe and σ(tb) = {0}.

From Lemma 2.6 we can immediately obtain a theorem.

Theorem 2.7. Assume that the non-commutative Singer–Wermer con-
jecture fails. Then it fails for the simplest case of a non-commutative radical
Banach algebra with identity adjoined. In this case the (Jacobson) radical is
the only primitive ideal and it is exceptional. The corresponding (strictly)
irreducible representation is the mapping of each element onto the scalar
component of the identity e.

In order to simplify notation in the following sections, we will henceforth
replace e by 1, replace D1 by D, replace the radical Banach algebra eRe
by R and replace the radical Banach algebra with identity adjoined eAe by
R] ∼= C · 1 ⊕ R. We will continue to let t denote the element in R with
properties ensured by Lemma 2.6(iv). This will be our simplified counter-
example for the remainder of the paper.

3. A formal power series quotient for the counter-example. We
assume the simplified counter-example of the previous section guaranteed by
Lemma 2.6. Our goal in this section is to obtain an algebraic decomposition
ofR] in the form of a formal power series quotient (see [14, Definition 2.1 and
remarks following]). We wish to stress that we will use the terms subalgebra,
ideal, and subspace in the algebraic sense, that is, we do not assume that
these substructures are closed.

For x, y ∈ R] let [x, y] = xy − yx be the usual bracket notation for a
commutator. Since R] ∼= C ·1⊕R it is routine to show that the components
of the identity will be eliminated and that [x, y] ∈ R.
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Definition 3.1. Let C0 denote the subspace generated by the commu-
tators in R, so that

C0 ≡
{ n∑

i=1

αi[xi, yi]
∣∣∣n ∈ N, {αi}ni=1 ⊆ C, {xi}ni=1, {yi}ni=1 ⊆ R

}
.

Definition 3.2. Let C denote the two-sided ideal generated by the com-
mutators.

Since [ax, y] = a[x, y] + [a, y]x it easily follows that one needs to form
either only the left or only the right products, for example

C =
{ n∑

i=1

ai[xi, yi]
∣∣∣n ∈ N, {ai}ni=1 ⊆ R], {xi}ni=1, {yi}ni=1 ⊆ R

}
.

It is also clear that C ⊆ R. In general, neither C0 nor C is closed.

Lemma 3.3. The two-sided ideal C generated by the commutators is in-
variant under the derivation D.

Proof. It is a routine computation using the properties of a derivation
to show that D([x, y]) = [D(x), y] + [x,D(y)]. From this, it easily follows
that D(C) ⊆ C.

Our goal is to produce a formal power series quotient based at the ele-
ment t from Lemma 2.6(iv) of the previous section. To do this we will need to
factor the non-commutative Banach algebraR] by some ideal which will nec-
essarily have to contain all commutators and all elements of infinite height
in t.

Definition 3.4. Using our element t ∈ R from the previous section, let
Ct denote the set constructed as follows:

Ct ≡
∞⋂

n=1

(tnR] + C) .

Lemma 3.5. The set Ct is a two-sided ideal of R] contained in R and is
invariant under the derivation D.

Proof. It is obvious that Ct is a right ideal and that it is invariant under
left multiplication by t. Let a, b ∈ R] and n ∈ N. Since

atnb = tnab+ [a, tn]b ∈ tnab+ C
it is clear that Ct is also a left ideal. Since t ∈ R and C ⊆ R it is clear that
Ct ⊆ R. Finally, we claim that for all n ∈ N we have

D(tn) ∈ tn−1R] + C.
This is obvious for n = 1 since t0 = 1. Suppose that we have shown that

D(tn) = tn−1an + cn
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for some an ∈ R] and cn ∈ C. Then

D(tn+1) = tD(tn) +D(t)tn = tnan + tcn + tnD(t) + [D(t), tn] ∈ tnR] + C.
By induction the assertion holds for all n ∈ N and from this and Lemma 3.3
it easily follows that

D(tnR] + C) ⊆ tn−1R] + C
for all n ∈ N. Therefore D(Ct) ⊆ Ct.

We now have a commutative unital quotient algebra R]/Ct. Since Ct is
not in general closed, this quotient is not in general a Banach algebra.

Definition 3.6. If A0 is a commutative unital algebra, let A0[[x]] de-
note the algebra of formal power series in the indeterminate x with coeffi-
cients in A0, thus

A0[[x]] ≡
{ ∞∑

n=0

anx
n
∣∣∣ {an}∞n=0 ⊆ A0

}
.

Our next goal is to find a unital subalgebra A0 of R]/Ct such that
R]/Ct ∼= A0[[t]]. Before we can do this we need to develop a natural p-adic
topology on R]/Ct, and this will require several preliminary results.

Definition 3.7. Let Lt denote the continuous linear operator of left
multiplication by t on R]. Let Lt denote the largest Lt-divisible subspace
of R], that is,

(λ− Lt)Lt = Lt

for all λ ∈ C and Lt is the largest subspace of R] with this property.

Remarks. Since t ∈ R and tLt = Lt, it follows that Lt ⊆ R. Since
λ 6= 0 forces λ−Lt to be bijective, one only needs to check that LtLt = Lt.

Divisible subspaces play a prominent role in the theory of automatic
continuity (see [9] or [4]). We next need a condition first introduced by
G. R. Allan in [1].

Definition 3.8. We say that t has finite closed descent if there exists
m0 ∈ N such that

tm0 ∈ Lt.

Remarks. This is equivalent to requiring that tm0 ∈ tm0+1R] since then

tm0R] = ttm0R] = Lttm0R].

Hence, Lt acts densely on tm0R] and, by the Mittag-Leffler theorem ([2,
Section 3, Théorème 1] or [4, A.1.24, A.1.25]), it follows that tm0R] must
contain a dense Lt-divisible subspace X which must be contained in the
largest Lt-divisible subspace Lt. Hence tm0 ∈ Lt.

Recall the definition of separating subspaces from Section 1.
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Definition 3.9. Define I1 = S(D) and for k ≥ 2 define

Ik = S(D) + S(D2) + · · ·+ S(Dk).

We note that S(Dk) by itself may not be an ideal if k ≥ 2. However, the
following holds.

Lemma 3.10. The sequence {Ik}∞k=1 is a non-decreasing family of closed
two-sided ideals in R].

Proof. It is certainly clear that all Ik are closed subspaces of R]. Hence
we may form the continuous linear canonical quotient map QIk

from R] to
the Banach space R]/Ik for each k ∈ N. We need to show that these closed
subspaces are ideals.

It is routine to show that I1 is a closed two-sided ideal since the linear
mappings D(a ·) − aD(·) and D(· a) −D(·)a are continuous for all a ∈ R].
Suppose we have shown that I1, . . . , Ik−1 are all closed two-sided ideals, and
consider Ik. Let b ∈ S(Dk). Hence, there exist an → 0 with Dk(an) → b.
We will observe the convention that D0 = I in the following. Let a ∈ R] be
fixed and note that

aDk(an) = Dk(aan)−
k−1∑
l=0

(
k

l

)
Dk−l(a)Dl(an).

Since Ik−1 is a closed two-sided ideal containing S(Dl) for l = 1, . . . , k − 1,
it follows that

QIk−1
(Dk−l(a)S(Dl)) = QIk−1

(Dk−l(a))QIk−1
(S(Dl)) = {0}

for l = 1, . . . , k − 1. Since Ik ⊇ Ik−1 it also follows that

QIk
(Dk−l(a)S(Dl)) = {0}

for l = 1, . . . , k− 1, although we do not yet know that Ik is an ideal or that
QIk

is multiplicative. In any case we have shown that QIk
Dk−l(a)Dl(·) is a

continuous linear mapping for l = 1, . . . , k − 1. It is also clearly continuous
if l = 0. Since an → 0 and Dk(an)→ b, applying QIk

to the equation above
yields

QIk
(ab) = lim

n→∞
QIk

(aDk(an)) = lim
n→∞

QIk
(Dk(aan)) + 0.

Since aan → 0 and Ik ⊃ S(Dk) it follows that QIk
Dk is continuous and that

QIk
(ab) = lim

n→∞
QIk

(Dk(aan)) = 0.

This shows that ab ∈ Ik. Since a was arbitrary in R] we have shown that

R]S(Dk) ⊆ Ik = Ik−1 + S(Dk).

Since Ik−1 is a two-sided ideal, this shows that Ik must be a left ideal.
An analogous argument shows that Ik must be a right ideal, and induction
completes the proof of the lemma.
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Remark. We have actually shown a bit more, namely that

QIk−1
Dk(a·)−QIk−1

aDk(·) is continuous for k = 2, 3, . . . .

For our next result we require a standard theorem (adjusted to our sit-
uation) from the theory of automatic continuity ([13, Proposition 1.3] or [4,
Theorem 5.2.5]) which we state here for reference.

Theorem 3.11. Let {Ti}∞i=1 be a sequence of continuous linear operators
defined from R] to itself and let {Ri}∞i=1 be a sequence of continuous linear
operators with domain R] (but which may map onto other Banach spaces).
Let S be a (possibly discontinuous) linear map from R] to itself. If

RnST1T2 · · ·Tm is continuous for m > n,

then
RnST1T2 · · ·Tn is continuous for all sufficiently large n.

In the theory of automatic continuity the following result would be re-
ferred to as a stability lemma. Let Z+ denote the non-negative integers.

Lemma 3.12. For each k ∈ N there exists nk ∈ Z+ such that

tnkIk ⊆ Lt and tnIk = tnkIk for all n ≥ nk.

Proof. If k = 1, this is the classical stability lemma of automatic conti-
nuity (see [9] or [4, Theorem 5.2.5(iii)]) since I1 = S(D) and DLt − LtD is
continuous. Hence there exists n1 ∈ Z+ such that

tnS(D) = tn1S(D)

for n ≥ n1 and therefore

ttn1S(D) = tn1S(D).

The Mittag-Leffler theorem ([2, Section 3, Théorème 1] or [4]) and consid-
eration of the projective limit

lim←−(tn1S(D), Lt)

show that tn1S(D) contains a dense Lt-divisible subspace which must, of
course, be contained in the largest Lt-divisible subspace Lt, hence

tn1S(D) ⊆ Lt.

Let k≥2. Assume towards a contradiction that we have found n1, . . . , nk−1

such that

tnlIl ⊆ Lt and tnIl = tnlIl whenever n ≥ nl

for l = 1, . . . , k − 1. Suppose that the result fails for k. It then follows that

tnIk ⊃ tn+1Ik ⊇ tn+1Ik−1 = tnk−1Ik−1
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for n ≥ nk−1, where ⊃ indicates “proper” containment. Let n ≥ nk−1, let
m ≥ n, and consider the map

(Q
tn+1Ik

tnk−1) ◦Dk ◦ Lm−nk−1

t .

Let a ∈ R] and note that

Q
tn+1Ik

(tnk−1Dk(tm−nk−1a))

= Q
tn+1Ik

(tmDk(a)) +Q
tn+1Ik

(
tnk−1

k−1∑
l=0

(
k

l

)
Dk−l(tm−nk−1)Dl(a)

)
.

Since m ≥ n ≥ nk−1 we have

tnk−1Dk−l(tm−nk−1)S(Dl) ⊆ tnk−1Ik−1 ⊆ tn+1Ik,

which shows that the terms in the sum for l = 0, 1, . . . , k− 1 are continuous
in a. Therefore

Q
tn+1Ik

(tnk−1Dk(tm−nk−1a))−Q
tn+1Ik

(tmDk(a))

is continuous in a. Suppose that Q
tn+1Ik

(tnS(Dk)) = {0}. Then tnS(Dk) ⊆
tn+1Ik and since Ik = Ik−1 + S(Dk) it follows that

tnIk ⊆ tnIk−1 + tn+1Ik ⊆ tnk−1Ik−1 + tn+1Ik ⊆ tn+1Ik,

a contradiction. Therefore Q
tn+1Ik

(tnS(Dk)) 6= {0}, whence Q
tn+1Ik

tnDk is
discontinuous. Since Q

tn+1Ik
tmDk is clearly continuous if m ≥ n+1, we have

shown that
Q

tn+1Ik
tmDk is discontinuous if m = n and continuous if m > n.

Using the continuity of the difference above, we see that

(Q
tn+1Ik

tnk−1) ◦Dk ◦ Lm−nk−1

t is
{

discontinuous if m = n,

continuous if m > n.

This contradicts the standard theorem from the theory of automatic
continuity as stated in Theorem 3.11 with S = Dk, Ti = Lt or I, and
Rn = (Q

tn+1Ik
tnk−1). Hence, the result holds for all k ∈ N and there does

exist nk ∈ Z+ such that
tnIk = tnkIk for all n ≥ nk.

In addition, it is clear that

ttnkIk = tnkIk,

and another application of the Mittag-Leffler theorem shows that tnkIk con-
tains a dense Lt-divisible subspace which must, of course, be contained in
the largest Lt-divisible subspace Lt. Therefore

tnkIk ⊆ Lt,

and induction finishes the proof of the lemma.
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We are now able to prove that t has finite closed descent even in this
non-commutative setting.

Proposition 3.13. The element t has finite closed descent , that is,
there exists m0 ∈ N such that

tm0 ∈ Lt.

Proof. For each n ∈ N define

En = {a ∈ R] | tna ∈ Lt}

Since Lt is invariant under left multiplication by t and is a right ideal it
follows that its closure has these same properties. It is then routine to check
that each En is invariant under left multiplication by t and is a closed right
ideal. Define

E =
∞⋃

n=1

En.

Again, it is routine to check that E is invariant under left multiplication by t
and is a right ideal (not necessarily closed). By Lemma 3.12, Ik ⊆ Enk

for
each k ∈ N, and therefore

E ⊇
∞⋃

k=1

Ik.

Suppose that E ⊆ R. Since the radical R is closed, for every k ∈ N we have
Ik ⊆ E ⊆ E ⊆ R. Since S(Dk) ⊆ Ik it follows that QRDk is continuous
for every k ∈ N. But R is a primitive ideal, so by [15, Lemma 1.3] this
would force D(R) ⊆ R, a contradiction. We therefore conclude that E 6⊆ R.
Consequently, there is an invertible element of the form 1 + x in E with
x ∈ R. Since E is a union, there must exist m0 ∈ N such that 1 + x ∈ Em0 .
Since Em0 is a right ideal this means that 1 = (1 + x)(1 + x)−1 ∈ Em0 .
Therefore, tm0 = tm0 · 1 ∈ Lt, ending the proof of the proposition.

We can now put a natural p-adic topology τt on the quotient space R]/Ct
with a local base at zero consisting of the sets of cosets

{tnR] + Ct}∞n=1.

We will call this the Zariski topology (see [16] or [14, Section 3, discussion]).
We stress that (R]/Ct, τt) is not a locally convex topological vector space;
a priori, Ct might even be dense in R. However, we will show that (R]/Ct, τt)
is a complete metric space if we pick any translation invariant metric d(·, ·)
which generates the topology τt. For our purposes the following will suffice:

d(x+ Ct, y + Ct) = 2−n if x− y ∈ tnR] + C and x− y 6∈ tn+1R] + C.

Note that we are tacitly using the fact that tnR] + C = tnR] + Ct.
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We have the following proposition which essentially shows absolute sum-
mability.

Proposition 3.14. Let m0 be the natural number guaranteed in Propo-
sition 3.13. Given any sequence {an}∞n=m0

⊆ R] there exists a ∈ Lt such
that

a−
M∑

m=m0

tmam ∈ tM−m0+1R] for all M ≥ m0.

Proof. This argument, which appeals to the finite closed descent of t,
was first used by Allan in [1]. First note that if m ∈ N with m ≥ m0 and
x ∈ R] then tmx ∈ Lt since Lt is a right ideal. Consider the projective
system

lim←−(Lt, An) with An(x) = tx+ tm0am0+n for x ∈ Lt and n ∈ Z+.

It is routine to check that each map An is affine, continuous on Lt, and,
since tLt = Lt, has dense range in Lt for n = 0, 1, 2, . . . . The Mittag-Leffler
theorem ([2, Section 3, Théorème 1] or [4]) and consideration of the above
projective limit show that there exists an element a ∈ Lt and elements
{xj}∞j=1 ⊆ Lt such that

a = A0(x1), x1 = A1(x2), x2 = A2(x3), . . . .

From the above equations we compute

a = A0(x1) = tx1 + tm0am0 = t(A1(x2)) + tm0am0

= t(tx2 + tm0am0+1) + tm0am0 = t2x2 + tm0+1am0+1 + tm0am0 = · · ·

= tM−m0+1xM−m0+1 +
M∑

m=m0

tmam for all M ≥ m0,

establishing the assertion of the proposition.

Corollary 3.15. The commutative unital algebra and topological space
(R]/Ct, τt) endowed with the translation invariant metric d(·, ·) is a complete
metric space.

Proof. Going back to the definitions early in this section we note that
Ct is an ideal containing the ideal C generated by the commutators. Hence
R]/Ct is a commutative algebra. Let a “dot” denote the coset in R]/Ct. It
is clear that 1̇ is an identity for R]/Ct. To show the completeness of τt as
determined by the metric d(·, ·) it will suffice to show that every series of
the form

∑∞
m=0 ṫ

mȧm in R]/Ct converges. Note that
∞∑

m=0

ṫmȧm =
m0−1∑
m=0

ṫmȧm +
∞∑

m=m0

ṫmȧm.
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Since the finite sum on the left is convergent and since Proposition 3.14
guarantees the convergence of the sum on the right, completeness of τt fol-
lows.

We will continue to use a “dot” to denote the coset in R]/Ct. Since
D(Ct) ⊆ Ct we can drop D to a derivation D̂ on R]/Ct as follows:

D̂(ȧ) ≡ ˙(D(a)) for a ∈ R].

It is mildly annoying that D̂(ṫ) = 1̇ + ṫḃ. We would prefer that D̂(ṫ) = 1̇,
and we will be able to show later (see Theorem 3.18) that this is possible
by “modifying” t (multiplying it by a suitable unit) once we have proved
that R]/Ct has a formal power series decomposition. For now, we can only
modify D̂ by defining

Ḋ(ȧ) = ˙(1 + tb)−1D̂(ȧ) for ȧ ∈ R]/Ct.
Hence Ḋ(ṫ) = 1̇, but we warn the reader that Ḋ is only a derivation on
the commutative algebra R]/Ct and not in general on R] (due to its non-
commutativity).

We are now able to show that R] has a formal power series quotient
based at t (see [14, Definition 2.1 and remarks following]). The proof of
this proceeds in exactly the same manner as that of [12, Proposition 2.18
to Proposition 2.24], using the properties of the derivation Ḋ and the com-
pleteness of τt. This result is also essentially [16, Theorem 4] moved to a
Banach algebra setting.

Theorem 3.16. The commutative unital algebra and topological space
(R]/Ct, τt) endowed with the translation invariant metric d(·, ·) is a complete
metric space with derivation Ḋ, which is continuous with respect to τt. There
exists an element ṫ satisfying Ḋ(ṫ) = 1̇, the identity of R]/Ct. In addition:

(i) Define the map

Θ(ȧ) = e−ṫḊ(ȧ) = ȧ− ṫḊ(ȧ) +
ṫ2

2!
Ḋ2(ȧ)− ṫ3

3!
Ḋ3(ȧ) + · · · .

It follows that Θ is a τt-continuous homomorphism and projection
onto a unital subalgebra A0 of R]/Ct and A0 is identical to the null
space of Ḋ. For all ȧ ∈ R]/Ct we have (I −Θ)(ȧ) ∈ ṫ(R]/Ct).

(ii) (Formal power series quotient based at t) There is an algebraic
isomorphism R]/Ct ∼= A0[[t]] which takes ṫ to the indeterminate t
of A0[[t]]. The map Θ is the projection onto the first term of the
series.

(iii) The action of Ḋ on R]/Ct is essentially formal differentiation. Let
ȧn ∈ A0 for n ∈ Z+. Then

Ḋ
( ∞∑

n=0

ṫnȧn

)
=
∞∑

n=1

nṫn−1ȧn.
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Proof. The derivation Ḋ is continuous with respect to the Zariski topol-
ogy τt because Ḋ(ṫn(R]/Ct)) ⊆ ṫn−1(R]/Ct). It is routine to check that
Θ is a homomorphism satisfying Ḋ(Θ(R]/Ct)) = {0}. The homomorphism
Θ is τt-continuous because the identity map I and the derivation Ḋ are
τt-continuous. Let A0 be the image of Θ. Again, it is routine to check that
A0 is a unital subalgebra of R]/Ct which is contained in the null space of Ḋ.
But if ȧ ∈ R]/Ct and Ḋ(ȧ) = 0, it is also clear that Θ(ȧ) = ȧ. Therefore,
A0 is identical to the null space of Ḋ. Since Θ is τt-continuous and since
Θ(ṫ) = 0 it follows that Θ2 = Θ, so that Θ is both a homomorphism and
projection onto A0. Let ȧ ∈ R]/Ct and compute

(I −Θ)(ȧ) = ṫḊ(ȧ)− ṫ2

2!
Ḋ2(ȧ) +

ṫ3

3!
Ḋ3(ȧ) + · · · ∈ ṫ(R]/Ct).

This proves (i).
It is routine to show that every ȧ ∈ R]/Ct has a series expansion of the

form
∑∞

n=0 ṫ
nȧn where ȧn ∈ A0, as follows. Note that

ȧ = Θ(ȧ) + (I −Θ)(ȧ) = ȧ0 + ṫḃ1

for some ȧ0 ∈ A0 and ḃ1 ∈ R]/Ct. Then

ḃ1 = Θ(ḃ1) + (I −Θ)(ḃ1) = ȧ1 + ṫḃ2

for some ȧ1 ∈ A0 and ḃ2 ∈ R]/Ct. Then

ḃ2 = Θ(ḃ2) + (I −Θ)(ḃ2) = ȧ2 + ṫḃ3

for some ȧ2 ∈ A0 and ḃ3 ∈ R]/Ct. Continue this process to obtain sequences
{ȧn}∞n=0 ⊆ A0 and {ḃn}∞n=1 ⊆ R]/Ct. Substituting for the bi’s one obtains
the equation ȧ =

∑∞
n=0 ṫ

nȧn.
Conversely, every such series in R]/Ct must converge in τt. Since A0 is

an algebra, the product of two series is the formal product.
It remains to show uniqueness. Suppose that {ȧn}∞n=0 ⊆ A0 and 0 =∑∞

n=0 ṫ
nȧn. Assume that the terms of the series are not all zero and let ȧn0

be the first non-zero term. Then we have

0 = ṫn0

(
ȧn0 +

∞∑
n=n0+1

ṫn−n0 ȧn

)
.

Apply Θ ◦ Ḋn0 to the above equation, noting that Θ(ṫ) = 0 to obtain

0 = n0!(Θ(ȧn0)).

But Θ(ȧn0) = ȧn0 since Θ is a projection onto A0 and ȧn0 ∈ A0. This
contradication shows that all terms of the series must have been zero, and
establishes (ii).

Finally, the proof of (iii) is a straightforward computation using the
τt-continuity of the derivation Ḋ and the fact that A0 is the null space of Ḋ.
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Let ȧn ∈ A0 for n ∈ Z+. Then

Ḋ
( ∞∑

n=0

ṫnȧn

)
=
∞∑

n=0

Ḋ(ṫnȧn) =
∞∑

n=0

(nṫn−1ȧn + ṫnḊ(ȧn)) =
∞∑

n=1

nṫn−1ȧn.

Now that we have the formal power series decomposition we can go back
to Lemma 2.6 and show that we could have chosen t so that b ∈ Ct. We first
require a lemma.

Lemma 3.17. If s ∈ R and u is invertible in R] with s = tu then

Cs ≡
∞⋂

n=1

(snR] + C) =
∞⋂

n=1

(tnR] + C) = Ct.

Proof. Note that the ideal C generated by the commutators is contained
in both Cs and Ct. Let n ∈ N and note that

snR] = (tu)nR] ⊆ tnunR] + C ⊆ tnR] + C.
Exchanging the roles of s and t and noting that t = su−1 we also obtain

tnR] ⊆ snR] + C,
from which it follows that snR] + C = tnR] + C. Since this holds for all
n ∈ N, we have Cs = Ct, ending the proof of the lemma.

Theorem 3.18. There exists an invertible element u ∈ R] such that if
s = tu then Cs = Ct and

D(s) = 1 + sb with b ∈ Ct = Cs
so that D̂(ṡ) = 1̇. In addition, 1− (1 + sb)−1 ∈ sR]. Finally , the conclusion
of Theorem 3.16 holds with Ḋ replaced by D̂ and t replaced by s.

Proof. From Theorem 3.16 we have R]/Ct ∼= A0[[t]] and the action of
Ḋ = ˙(1 + tb)−1D̂ is simply formal differentiation on R]/Ct. Expand

˙(1 + tb)−1 = 1̇ +
∞∑

n=1

ṫnḃn

for some {bn}∞n=1 ⊆ A0. Note that the leading term will be 1̇ because of
Lemma 2.6(iv), which shows that 1 − (1 + tb)−1 ∈ tR]. Pick any element
u1 ∈ R] satisfying

u̇1 = 1̇ +
∞∑

n=1

ṫn

n+ 1
ḃn.

It is clear that u1 is invertible since t is in the radical R of R]. Let s1 = tu1

and compute

ṡ1 = ṫ+
∞∑

n=1

ṫn+1

n+ 1
ḃn.
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Hence,
˙(1 + tb)−1D̂(ṡ1) = ˙(1 + tb)−1.

This shows that D̂(ṡ1) = 1̇ and, hence, that D(s1) = 1 + c for some c ∈ Ct.
We want to make one additional change in s1. Note that (1 + c)−1 = 1 + d
for some d ∈ R satisfying c+ d+ cd = 0. Since Ct is a two-sided ideal of R]

this shows that d ∈ Ct also. Now let s = s1(1 + d) = tu1(1 + d). Then

D(s) = D(s1(1 + d)) = (1 + c)(1 + d) + s1D(1 + d) = 1 + s(1 + c)D(d).

Since D(Ct) ⊆ Ct it is clear that (1 + c)D(d) ∈ Ct. Let u = u1(1 + d), which
is invertible in R] so that s = tu and Cs = Ct. Let b = (1 + c)D(d) ∈ Cs and
note that we have

D(s) = 1 + sb so that D̂(ṡ) = 1̇.

Finally, since sb ∈ R note that

1− (1 + sb)−1 = 1−
∞∑

n=0

(−1)n(sb)n = s
∞∑

n=1

(−1)nb(bs)n−1 ∈ sR].

The rest is immediate, and this ends the proof of the theorem.

4. Separable Banach algebras and analytic subsets. Here we spe-
cialize to the case of separable Banach algebras and we require some stan-
dard topological results from the theory of Polish and analytic spaces. A very
thorough reference is [3], which contains much more than the small num-
ber of results we use below. All of the results we require can also be found
in [4]. We will assume throughout this section that R is a separable Banach
algebra.

First, some definitions:

(4.1a) A topological space E is called Polish if it has a metric µ under
which it is a complete separable metric space.

(4.1b) A topological space F is called analytic if it is the continuous
image of some Polish space.

The following are standard, well-known results about analytic sets:

(4.1c) Open and closed subsets of an analytic space are also analytic.
(4.1d) Countable unions and countable intersections of analytic spaces

are analytic.
(4.1e) The continuous image of an analytic space is analytic.
(4.1f) Provided the mapping is continuous, the preimage of an analytic

set is analytic.

The following are standard, well-known results about analytic sets in a lo-
cally convex topological vector space (LCTVS):
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(4.1g) In a LCTVS the span and convex hull of an analytic set are
analytic; hence the sum of two analytic subspaces is analytic.

(4.1h) If X is a non-meager LCTVS, and Y and Z are two analytic
subspaces such that X ∼= Y ⊕ Z as algebraic vector spaces, then
Y and Z are closed and the direct sum is topological.

(4.1i) (Pettis Lemma) If F is any analytic non-meager subset of a
LCTVS then F − F is a neighborhood of the zero vector.

Recall Theorems 3.16/3.18, which ensure the existence of a power series
decomposition of the quotient algebra

R]/Ct ∼= A0[[t]].

Let A = {x ∈ R] | D(x) ∈ Ct}. We also showed that A0
∼= A/Ct, so that A

is the preimage of A0 under the canonical quotient map Q : R] → R]/Ct.
If R is separable, it is easy to use the (4.1) results above and show that

C0, C, and Ct are all analytic subsets of R. However, the quotient algebra
R]/Ct is not a Banach algebra because the ideal Ct, although an analytic
set, is not in general closed.

Proposition 4.1. Let A be the preimage of A0 under the quotient map
Q : R] → R]/Ct ∼= A0[[t]]. Then A is not an analytic subset of R].

Proof. Assume towards a contradiction that A is analytic. Let π denote
the continuous projection of R] onto R. Let B = π(A). Since A is analytic,
so is B. It is clear that A ∼= C· 1⊕ B and that 1 6∈ B. Now, for every n ∈ N,

B + tB + t2B + · · ·+ tnB is analytic.

Hence
B + tB + t2B + · · ·+ tnB + tn+1R] + Ct is analytic.

But R] has the following direct sum decomposition:

R] ∼= span{1, t, t2, . . . , tn} ⊕ (B + tB + t2B + · · ·+ tnB + tn+1R] + Ct)

and the first subspace, being finite-dimensional, is closed and, hence, ana-
lytic. By (4.1h) this forces the decomposition to be topological, and

B + tB + t2B + · · ·+ tnB + tn+1R] + Ct is also closed.

Hence, for each n ∈ N the projection πn onto span{1, t, t2, . . . , tn} is bounded
by some constant Kn. This is incompatible with a power series decomposi-
tion as follows. Choose an element a ∈ R whose power series representation
in R]/Ct ∼= A0[[t]] is

∑∞
n=1 λnt

n where each λn is chosen to satisfy

|λn| > n(Kn +Kn−1)/‖tn‖.
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We then compute

Kn‖a‖ ≥ ‖πn(a)‖ =
∥∥∥λnt

n +
n−1∑
i=0

λit
i
∥∥∥ ≥ |λn| ‖tn‖ −

∥∥∥ n−1∑
i=0

λit
i
∥∥∥

≥ |λn| ‖tn‖ −Kn−1‖a‖.
Solving for ‖a‖, we see that

‖a‖ ≥ |λn| ‖tn‖/(Kn +Kn−1) ≥ n
for each n ∈ N. This shows that a has infinite norm, a contradiction, and
proves that A could not have been analytic.

Proposition 4.2. The algebra A0 is not countably generated.

Proof. We leave the finitely generated case to the reader. Assume A0 is
countably generated by {ȧi}∞i=1. Start with A1 being the algebra generated
by Ct and a1. Since Ct is an analytic set, so is A1. If An has been gen-
erated and is analytic, let An+1 be the algebra generated by An and the
element an+1. It will also be an analytic set. Induction shows that each Ak

for k = 1, 2, . . . is an analytic set. Therefore, the subalgebra

A =
∞⋃

k=1

Ak

is also analytic by (4.1d). This contradicts Proposition 4.1 and shows that
A0 could not have been countably generated.

If one believes that the non-commutative Singer–Wermer conjecture is
true, an immediate question is: what additional conditions would force A
to be an analytic set? If one believes that there is a counter-example, one
might try to find a non-commutative Banach algebra which has a formal
power series quotient in which A0

∼= C[[t1, t2, . . .]], the algebra of formal
power series in infinitely many commuting variables so that

R]/Ct ∼= C[[t, t1, t2, . . .]].

Charles Read in [6] has constructed both commutative and non-commu-
tative Fréchet algebras of this type which have discontinuous derivations
mapping out of the radical. It is not clear, however, if his construction can
be extended to build a counter-example which is a Banach algebra, since t
would have to have finite closed descent.
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