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On generalized derivations in Banach algebras
by

NADIA Boubpi and SAID OUCHRIF (Zitoune Meknes)

Abstract. We study generalized derivations G defined on a complex Banach algebra
A such that the spectrum o(Gz) is finite for all z € A. In particular, we show that if A is
unital and semisimple, then G is inner and implemented by elements of the socle of A.

1. Introduction. The notion of generalized derivation is due to Bre-
Sar [6]. Let A be an algebra. A linear mapping G : A — A is called a
generalized derivation if there exists a derivation d : A — A such that
G(zy) = (Gx)y + xdy for all x,y € A. A linear map 7' : A — A is called a
left centralizer in case T'(zy) = (T'z)y for all z,y € A. If G is a generalized
derivation determined by a derivation d, then G—d is a left centralizer. Hence
a generalized derivation is a sum of a derivation and a left centralizer. We
say G is inner if there exist a,b € A such that Gz = ax + xb for all z € A.
Obviously, if the algebra is unital then Gx = (G1)z 4 dz for all x € A;
in this case G is inner if and only if d is inner [6]. For results concerning
generalized derivations we refer the reader to [1, 6, 14, 16].

The purpose of this paper is to investigate generalized derivations G
on a complex Banach algebra A such that the spectrum of Gz is finite for
every x € A. In particular, we will show that if G is a generalized derivation
defined on a complex semisimple Banach algebra A such that o(Gx) is finite
for all z € A, then GA C soc A. Our results generalize those of [7, 8] which
deal with derivations d on a Banach algebra satisfying fo(dz) < oo for every
x € A. In [4, 5], one can find other conditions entailing that the range of a
bounded derivation lies in the socle modulo the radical of a Banach algebra.
It should be pointed out that inner generalized derivations G defined on
a Banach algebra A such that fo(Gz) = 1 for every x € A were studied
in [5].

Our study is closely connected with questions concerning derivations
mapping into the radical. For details, we refer the readers to [17, 18], and
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the references therein. We also mention the work of Curto and Mathieu [11],
where spectrally bounded generalized inner derivations were investigated.

2. The case of dense algebras. We first give some tools and notation.
Let X be a vector space. As usual, £(X) denotes the algebra of all linear
operators on X. If X is a Banach space, the Banach algebra of all bounded
linear operators on X is denoted by B(X). The dual of X will be denoted
by X* and we will denote by u ® f the linear operator on X defined for
any u € X and f € X* by (v ® f)(z) = f(x)u for x € X. Moreover, [
denotes the identity mapping on X and #F' denotes the cardinality of a
set F. Let T be an operator on X. The point spectrum of T is o, (1) =
{A € C: X[ —T is not injective}.

Let A be an arbitrary algebra. We denote by rad A the Jacobson radical
of A, and by Z(A) the centre modulo the radical, defined by

Z(A)={aec A:ax —za crad A for all x € A}.

For every a,b € A let d, denote the inner generalized derivation defined by
dap(x) = ax+ b for all x € A. Recall that §, = d,,—, is the inner derivation
determined by a.

Now let X be a Banach space and let A be a standard operator algebra
on X. It is well-known that every derivation d : A — A is of the form
dS =TS—ST for some T' € B(X) [10]. Similarly, we can prove the following
result.

2.1. LEMMA. Let X be a complex Banach space and A a dense algebra
of bounded linear operators on X. Suppose that A is closed and contains

finite rank operators. Then every generalized derivation G on A is of the
form GS =TS+ ST' for some T, T" € B(X).

Proof. Let G be a generalized derivation on A determined by a deriva-
tion d. Since the algebra A is semisimple, d and G are continuous [15]. On
the other hand, since A is a dense algebra containing finite rank operators,
we check easily that A contains a rank one operator. Let f be a nonzero
linear functional such that u ® f € A for some 0 # u € X. Applying again
the density of A, we see that z ® f € A for all x € X. Choose v € X such
that f(v) = 1 and define linear maps 7,7 : X — X by

Tr=(dz® f)v, Tr= (G f)v
for all x € X. We check at once that T, T are continuous and
(d(Szxf))v = (dS)x+S(d(zf)v), (G(Szaf))v=(GS)x+S(d(z® f)v)

for every x € A. As a result, dS = TS — ST and GS = T'S — ST for all
SeA n
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Our proofs involve techniques that have become standard in this area: the
Jacobson density theorem, its generalizations and results on locally linearly
dependent operators. Let U and V be vector spaces over a field F and
let Vo be a finite-dimensional subspace of V. Amitsur [2] proved that if
T1,...,T, : U — V are linear operators such that Tiu,...,T,u are linearly
dependent modulo Vj for every u € U, then there exist scalars aq, ..., oy,
not all zero, such that S = ayTy + - - - + a1, satisfies

1
dim SU < dim Vj + <";r > ~ 1L
Aupetit [3, p. 86] proved that if U and V are complex vector spaces and
Vo = {0}, then S can be chosen so that rank S < n — 1. Bresar and Semrl
[9, Theorem 2.2] extended Aupetit’s result to the case of arbitrary infinite
fields.

2.2. THEOREM. Let X be a complex vector space and A a dense algebra
of linear operators on X. Suppose that there are linear operators A, B on
X and an integer n € N* such that #0,(AS + SB) < n for all S € A.
Then there exist A € C and finite rank operators F,F' € L(X) such that
A=MN+F and B= -\ + F'.

Proof. If X is finite-dimensional, there is nothing to prove. So, assume
that X is infinite-dimensional. Suppose first that the set

{517 .. 7§n+17B§17 .. 7B€n+1}

is linearly independent for some £1,...,&,11 in X. Then there is S € A such
that S¢ = 0 and SB¢; = i&;. This entails that (AS 4+ SB)¢; = i; for each
1 <i<n+1. Consequently, {1,...,n+1} C 0,(AS+ SB), a contradiction.
Thus for any &i1,...,&p4+1 in X, the set {&1,..., &1, B&1, ..., Béy1} is
linearly dependent. According to [8, Lemma 3.1], there exists a finite rank
operator F’ such that B = A\ + F’. Let J be a basis of the subspace F'X
and write A = —AI + F for some linear operator F.

We claim that F' has finite rank. Suppose this is not true and let
&1y -+, &n+1 € X be such that the set {F¢&q, ..., F&,+1}UJ is linearly inde-
pendent. Then there exists S € A such that SJ = {0} and SF¢; = i&; for
each 1 <14 < n-+1. This implies that (AS+SB)F¢; = (FS+SF')F¢ = iF¢;
and hence #o,(AS + SB) > n+ 1, a contradiction. Now the result follows
from [2]. m

For a semisimple algebra A the socle soc A of A is the sum of all minimal
left ideals of A. If there are no minimal left ideals in A, then soc A = {0} by
definition. The socle of A is a direct sum of simple ideals. Now suppose that
A is a complex semisimple Banach algebra. Then every element of soc A has
finite spectrum. Moreover, soc A is the largest algebraic ideal of A.
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2.3. PROPOSITION. Let X be a complex vector space and let A be a
subalgebra of L(X) acting densely on X. Suppose that there are finite rank
operators F,F" in L(X) satisfying FS + SF' € A for all S € A. Then
F' €socA and FAC A.

Proof. If X is finite-dimensional, we have £(X) = A = soc . A. So suppose
that X is infinite-dimensional. Write F = %, u; ® ¢; and F’ = > =10 ®
¢’; for linearly independent sets {u1, ..., up}, {v1,..., v, } of vectors in X and
linear functionals ¢1,. .., @p, ¢}, ..., .. Choose wi,...,w, in X such that
the set {w1,...,wy,u1,...,up} is linearly independent. There are S, 5" € A
such that

Svj=w;, Swj=wv;, and Su;=0 (1<i<p, 1<j<r).
Then
S'(FS+ SF')¢ = F'¢
for all £ € X. Hence F' = S"(F'S+ SF’) € A. Finally, FAC A. =
The above result is sharp in the following sense.

2.4. EXAMPLE. Let X be a complex Banach space with a Schauder basis
{en}5°; and suppose that the topological dual of X is not separable (for
instance, X = [!). For every integer n, denote by e’ the bounded linear
functional on X defined by e (e,,) = 0" for every m € N*. Let A be the
closed subalgebra of B(X) generated by u ® e}, for every integer n and all
u € X. Observe that A is a dense algebra of linear operators on X. Let f
be a bounded linear functional on X such that f does not lie in the closed
linear span of {e};}. Pick 0 # v € X and set F' = v ® f. Then it is easy to
check that FAC A, but F' ¢ A.

2.5. COROLLARY. Let X be a complex vector space and let A be a sub-
algebra of L(X) acting densely on X . Suppose that there are A, B in L(X)
satisfying AS + SB € A for oll S € A and there exists n € N* such that
#0p,(AS + SB) < n for all S € A. Then there exist finite rank operators
F,F"in L(X) and a scalar X\ € C such that F' € soc A, FAC A, A= \+F
and B = -\ + F".

Proof. According to Theorem 2.2, there exist finite rank operators F, F’
€ L(X) satisfying A = X\ + F and B = —\I + F’ for some scalar \ € C.
Obviously, F'S + SF’ € A for all S € A. Now the above proposition yields
the desired result. =

3. The case of Banach algebras. We will denote the set of all prim-
itive ideals in A by Prim(A). Recall that primitive ideals are the kernels
of irreducible representations of A. For every primitive ideal P we denote
by mp an irreducible representation of A on a Banach space Xp such that
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Kermp = P. In particular, recall that the algebra A/P can be seen as a
subalgebra of B(Xp) acting densely on Xp. If Prim(A) is nonempty, we will
often use the following result [19, Theorem 2.2.9]:

o@)u{o}= |J o(z+P)u{o}
PePrim(A)
Recall that for a given linear operator 1" from a Banach space X into a
Banach space Y, the separating space of T is the set

S(T)={y €Y :there is a sequence (), in X with x,, — 0 and Tz,, — y}.

Clearly, S(T') is a closed subspace of Y. By the closed graph theorem, T is
continuous if and only if S(T") = {0}. Moreover, the map T': X — Y/S(T)
defined by T'(z) = Tz + S(T') is continuous. More details can be found
in [20].

3.1. LEMMA. Let A be a complex Banach algebra and let G be a con-

tinuous generalized derivation on A determined by a derivation d of A. If
P is a primitive ideal of A, then dP C P.

Proof. Let {xj} be a sequence in A such that z; — 0 and dzy — y € A.
Since G is continuous, we infer that 0 = lim G(zxy) = zy for each z € A.
Consequently, Ay = {0}. Let us denote by I the closed ideal

I={ueA: Au={0}}.

Then S(d) € I C rad A. Consequently, the map d: A — A/I defined by
da = da + I is continuous. Next let w € I. For all x € A, we have

0 = d(zu) = z(du).
It follows that A(du) = {0}, which shows that dI C I. Now we can define the
map d : A/I — A/I such that d(a+ I) = da+I. Note that d is continuous.
According to [12, Proposition 2.7.22], d leaves invariant every primitive ideal

of A/I. Let P be a primitive ideal of A. Then P/I is a primitive ideal of A/I.
Thus, dP C P+ 1=P. =

An algebra is said to be semiprime if {0} is the only two-sided ideal I
for which I? = {0}. Recall that every semisimple algebra is semiprime. Note
the following consequence of the above proof.

3.2. LEMMA. Let A be a complex semiprime Banach algebra and let G
be a continuous gemeralized derivation on A determined by a derivation d
of A. Then d is continuous.

3.3. REMARK. One is tempted to expect that the derivation d in Lem-
ma 3.1 is also continuous. But this is not true in general. Indeed, it follows
from [18, Example 1.1] that there exists a Banach algebra A and a discon-
tinuous derivation d on A such that A? # {0} and A(dA) = (dA)A = {0}.
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Pick a € A such that aA # {0}. Let G : A — A be the left centralizer
defined by Gz = az. Then G is continuous. Moreover, G can be seen as a
generalized derivation determined by the derivation d.

We now come to our first general result.

3.4. THEOREM. Let A be a complex Banach algebra and let G be a
continuous generalized derivation on A determined by a derivation d of A.
Suppose that o(Gx) < oo for all © € A. Then there exists a € A such that
a+rad A € soc(A/rad A) and dx — 6,(z) € rad A for all x € A.

Proof. By [8, Lemma 2.1], there exists n € N* such that fo(Gz) < n for
all z € A. If Prim(A) is empty, there is nothing to prove. So suppose that
Prim(A) is nonempty and let P be a primitive ideal of A. By Lemma 3.1,
dP C P, so denote by dp the induced derivation on A/P.

Our next step will be to prove that dp is of the form dp(S) = T'S —
ST for some linear operator T" on Xp. Suppose that this is not true; then
Xp is infinite-dimensional. Let (1, ..., (,+1 be linearly independent vectors
from Xp. Applying the Jacobson density theorem and [9, Theorem 3.6] we
see that there exist x,y € A such that

(mpd(y))Gi =G, (mpy)Gi =0, (Tpz)G = G-
This implies that (7pG(zy))¢ = i¢;. As aresult, {1,...,n+1} C o(G(zy)),
a contradiction.

Now let T" be a linear operator on Xp such that dp(S) = TS — ST
for every S € A/P. Suppose that there are linearly independent vectors
(1, -+, Cnt1 in Xp such that the set {(1,...,Cpt1, TC,y - -, Ty} is linearly
independent. Then we can choose x,y € A such that

(mp(¥))Gi =0, (mpW)(TG) =1iG,  (mp())G = G-
Thus (rpG(zy))¢; = —i¢; and {—1,...,—(n + 1)} C o(G(xy)), a contra-
diction. It follows from [8, Lemma 3.1] that there exists A € C such that
T — AI has finite rank. Clearly, dp(S) = d7_x1(S) for every S € A/P. Thus,
o(dz + P) is finite for all x € A.

Now assume towards a contradiction that there exist distinct primitive
ideals Pi,...,P,41 of A such that dA ¢ P; for 1 < i < n+ 1. For each
i€{l,...,n+ 1}, let the inner derivation dp, be implemented by the oper-
ator T;. Then we can find (; € Xp, such that the vectors (;, T;(; are linearly
independent. Applying the extended Jacobson density theorem [13], we get
elements x,y € A such that

()G =0, my)ThiG=1, m(x)G=G¢ 1<i<n+1

This entails that (m;G(zy))(; = —i(; for each i. Hence {—1,...,—(n+ 1)}
C 0(G(xy)), a contradiction.
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We have thereby shown that o(dz) is finite for all x € A. Using [5,
Theorem 2.4], we get the desired conclusion. m

3.5. PROPOSITION. Let A be a complex Banach algebra and let G be a
continuous generalized derivation on A. Suppose that fo(Gx) < oo for all

x € A. Then there exist at most a finite number of primitive ideals P; of A
such that G(A) € P;.

Proof. Fix n € N* such that fo(Gz) < n for all x € A. Suppose that
G is determined by a derivation d. It follows from Theorem 3.4 that there
exists a € A such that a +rad A € soc(A/rad A) and dx — d,(z) € rad A for
all z € A. Further, there exist at most a finite number of primitive ideals P,
of A such that dA ¢ P;.

Next assume that there exist distinct primitive ideals Pi,..., Py11 of
A such that dA C ﬂ?;rllPi and GA € P; for 1 < i < n+ 1. In order to
simplify the notation we write m;, X; instead of mp,, Xp, respectively. For
1 <i<n+1, pick z; € A such that Gz; € P; and choose (; € X; such that
(mi(Gx;))¢ # 0. Applying the extended Jacobson density theorem [13], we
can find y; € A such that

m(yz)((mel)Q) = ’ici, Wj(yi)((ﬂ'ijj)Cj) =0 for ] 7& ’i, 1< ] <n+1.
Set x = x1y1 + -+ + Tpr1Ynt1- Then WZ(G$)((WZG$1)CZ) = l(ﬂ'ZGl‘z)Q We

have proved that {1,...,n + 1} C o(Gz). This contradiction completes the
proof. =

We are now in a position to prove our main result.

3.6. THEOREM. Let A be a complexr Banach algebra and let G be a
continuous generalized derivation on A. Suppose that fo(Gx) < oo for all
x € A. Then Ga + rad A € soc(A/rad A) for all a € A. Moreover, if A is
unital then there are u,v € A such that u+rad A,v+rad A € soc(A/rad A)
and (G — 0y,p)A C rad A.

Proof. Fix n € N* such that fo(Gz) < n for every x € A. Let G be de-
termined by the derivation d. It follows from Theorem 3.4 that there exists
a € A such that a +rad A € soc(A/rad A) and dx — 0,(x) € rad A for all
x € A. Let P be a primitive ideal of A. Since wp(a) has finite rank, there ex-
ists a finite-dimensional subspace H of X p such that Xp = Ker(mwp(a)) ® H.

Now assume towards a contradiction that there exists z € A such
that 7p(Gz) has infinite rank. Then we check easily that there exist linearly
independent vectors (1,...,(p+1 in Ker(mp(a)) such that the set
{C1y.- oy Gug1,mp(Gz)(ay ..., mp(Gx)(pt1} is linearly independent and
contained in Ker7p(a). Now we can choose y € A such that

mp(y)mp(Gr)( =i¢, 1<i<n+1.



88 N. Boudi and S. Ouchrif

This entails that

mp(G(zy))(mp(Gr))G = i(mp(Gr))¢;
for each i. Consequently, {1,...,n+ 1} C 0(G(zy)), a contradiction.

As a result, Gx + P € soc(A/P) for all z € A. Now using the above
proposition and [8, Proposition 2.2], we find that Gx+rad A € soc(A/rad A)
for all z € A.

Finally, suppose that A is unital. Then

Gz = (Gl)x — §4(z) erad A, Vre A =

3.7. COROLLARY. Let A be a complex semisimple Banach algebra and let
G be a generalized derivation on A. Suppose that fo(Gx) < oo for all x € A.
Then G(A) C soc A. Moreover, if A is unital then there exist u,v € soc A
such that G = 0y -

In the case of generalized inner derivations, we have the following char-
acterization.

3.8. THEOREM. Let A be a complex Banach algebra and let a,b € A.
Then the following conditions are equivalent:

(1) #o(azx + xb) < co for every x in A,

(2) axr + xzb+rad A € soc(A/rad A) for every x in A,

(3) there exist u € Z(A) and o’ ,b' € A such that o’ +rad A, +rad A €
soc(A/rad A) and a =u+d',b=—u—"V".

Proof. The implication (3)=-(1) is clear, and (1)=-(2) is a direct con-
sequence of Theorem 3.6. So suppose that (2) is true. Then fo(ax + zb +
rad A) < oo for all x € A. It follows from [3, Theorem 3.1.5] that o(ax + xb)
is finite for all z € A. Next we use the temporary notation A = A/rad A
and z +rad A = 7z for every x € A. Since the generalized derivation d,p
is determined by the inner derivation d_j, Theorem 3.4 tells us that there
exists b € A such that b € socA and &y, A C rad A. Set —u = b+ b'.
Then v € Z(A) and (dqp — 0g—u,—t)A C rad A. Applying again [3, Theo-
rem 3.1.5], we infer that §0(0,—y, —px) < oo for all x € A. By Theorem 3.6,
Sa—u,—t(A) C soc A. Since V € soc 4, it follows that (a —u)A C soc A.
Now it is easy to see that the ideal of A generated by a — u is algebraic.
Consequently, @ — u € soc A and (3) is proved. =
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