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Lineability of the set of holomorphic mappings
with dense range

by

Jerónimo López-Salazar (Madrid)

Abstract. Let U be an open subset of a separable Banach space. Let F be the
collection of all holomorphic mappings f from the open unit disc D ⊂ C into U such that
f(D) is dense in U . We prove the lineability and density of F in appropriate spaces for
different choices of U .

1. Introduction. Suppose that U is an open subset of a complex Ba-
nach space E and f is a holomorphic mapping from the disc D = {z ∈ C :
|z| < 1} into U . Then

∞⋃
n=1

f

(
n

n+ 1
D
)

= f(D) ⊂ U

and each subset f
(

n
n+1D

)
is compact in U . By Baire’s theorem, if E is an

infinite-dimensional Banach space, then f(D) cannot be equal to U . There-
fore, it seems natural to study “how big” the range of f can be. In this
connection, in 1973, D. Patil posed the following question at the Conference
on Infinite-Dimensional Holomorphy held at University of Kentucky: if E
is separable, does there exist any holomorphic mapping f from D into the
open unit ball BE of E such that f(D) is dense in BE? In 1976, R. Aron ob-
tained a positive answer to this problem for every separable Banach space E,
both finite- and infinite-dimensional [1]. At the same time, J. Globevnik and
W. Rudin independently obtained more general solutions:

Theorem 1.1. Let E be a separable complex Banach space.

(a) (Globevnik [5]) If U is a balanced open subset of E, then there is a
holomorphic mapping f : D→ U such that f(D) is dense in U .

(b) (Rudin [9]) If U is a connected open subset of E, then there is a
holomorphic mapping f : D→ U such that f(D) is dense in U .
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Using some of the ideas from those papers, we will prove the lineability
and density of the set of holomorphic mappings from D into a Banach space
with dense range. Let us recall that a collection F of mappings is lineable
if there exists an infinite-dimensional vector space contained in F ∪ {0}. As
is known, the aim of results on lineability is to show that some collections
of special or pathological mappings are not only non-empty, but even “very
large”, since they contain infinitely many linearly independent elements. The
first theorem on lineability is probably due to Gurariy, who proved in 1966
that there is an infinite-dimensional vector space V of continuous functions
on [0, 1] such that every f ∈ V \ {0} is nowhere differentiable (see [6]). Let
us see some other examples.

Example 1.2.

1. The set of differentiable nowhere monotone functions from R into R
is lineable [2].

2. Let X be a subset of [−π, π] of measure zero. The set of continuous
functions on [−π, π] whose Fourier series expansion is divergent at
any point t ∈ X is lineable [3].

3. The set of functions f : C → C such that f(U) = C for every open
subset U ⊂ C is lineable [4].

4. If 1 ≤ p < q, then Lp[0, 1] \ Lq[0, 1] is lineable [8].
5. If p > q ≥ 1, then the sets Lp(R) \ Lq(R) and `p \ `q are lineable [8].

2. The results. Throughout this paper, the letter E will always denote
a separable complex Banach space and BE will be the open unit ball of E.
If R > 0, let D(0, R) = {z ∈ C : |z| < R}. If U is a subset of E, the
symbol H(D, U) will denote the set of all holomorphic mappings from D
into E whose ranges are contained in U . The space H(D, U) will always be
endowed with the compact-open topology.

The main tool in the papers of Globevnik and Rudin was the interpola-
tion of a dense sequence in E by a sequence of holomorphic mappings on D.
We recall this result as it appears in the paper of Rudin.

Proposition 2.1 (Rudin [9]). Let U be a connected open subset of E
and let (xn)∞n=1 be a dense sequence in U . Then there are three sequences,
(δn)∞n=1, (Dn)∞n=1 and (fn)∞n=1, with the following properties:

(a) 0 < 2δn+1 < δn for all n.
(b) Dn is an open disc centered at ei/n∈∂D whose radius is less than 1/n2.
(c) Each fn is a continuous mapping from D into U and is holomorphic

on D.
(d) fn(ei/n) = xn and fn(ei/k) = 0 if n 6= k.
(e) ‖fn(z)‖ < δn for every z ∈ D \Dn.
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(f)
∑∞

n=1 fn is a continuous mapping from D \ {1} into U and is holo-
morphic on D.

Using this proposition we can prove the main result of this paper.

Theorem 2.2. The set

{f ∈ H(D, E) : f(D) is dense in E}
is lineable.

Proof. Let (ym)∞m=1 be a dense sequence in E \ {0}. Let (xn)∞n=1 be the
following sequence obtained from (ym)∞m=1:

y1,︸︷︷︸ y2, y1,︸ ︷︷ ︸ y3, y2, y1,︸ ︷︷ ︸ y4, y3, y2, y1,︸ ︷︷ ︸ y5, y4, y3, y2, y1︸ ︷︷ ︸ . . . .
That is, xn = yj−k+1, where j and k are the unique natural numbers such
that

1 ≤ k ≤ j and n =
j(j − 1)

2
+ k.

Let (δn)∞n=1, (Dn)∞n=1 and (fn)∞n=1 be sequences associated to U = E and
(xn)∞n=1 by Proposition 2.1. For every k, define gk : D \ {1} → E by

gk =

∞∑
j=k

fj(j−1)/2+k.

Note that if k1 6= k2, j1 ≥ k1 and j2 ≥ k2, then

j1(j1 − 1)

2
+ k1 6=

j2(j2 − 1)

2
+ k2.

Let K be a compact subset of D \ {1}. As ei/n → 1 and the radius of Dn

is less than 1/n2, there is n0 ∈ N such that K ∩ Dn = ∅ for all n ≥ n0. If
z ∈ K, then

∞∑
n=n0

‖fn(z)‖ ≤
∞∑

n=n0

δn ≤ 2δn0 <∞.

Therefore, the series which defines each function gk converges uniformly on
compact subsets of D \ {1}. Hence every gk is continuous on D \ {1} and
holomorphic on D.

Suppose that k ∈ N, λ1, . . . , λk ∈ C and λ1g1 + · · ·+λkgk = 0 on D. The
sum λ1g1 + · · ·+ λkgk is continuous on D \ {1}, so

0 = (λ1g1 + · · ·+ λkgk)(e
i

k(k−1)/2+k ) = λkfk(k−1)/2+k(e
i

k(k−1)/2+k )

= λkxk(k−1)/2+k.

Hence λk = 0 and λ1g1 + · · · + λk−1gk−1 = 0. If we repeat this argument,
we get λ1 = · · · = λk = 0. Therefore, the sequence (gk)

∞
k=1 is linearly

independent and span{gk : k ∈ N} is infinite-dimensional.
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Finally, we have to prove that every non-zero element of span{gk : k ∈ N}
has dense range. Pick α1, . . . , αk ∈ C, where at least αk is non-zero. Let
x ∈ E and ε > 0. Then there is m such that∥∥∥∥ym − 1

αk
x

∥∥∥∥ < ε

2|αk|
.

Let

n =
(k +m− 1)(k +m− 2)

2
+ k.

Then xn = ym and fn is a summand in gk, so

gk(e
i/n) = fn(ei/n) = xn = ym.

As fn is not a summand in g1, . . . , gk−1, we have

g1(e
i/n) = 0, . . . , gk−1(e

i/n) = 0.

Since g1, . . . , gk are continuous on D \ {1}, there is w ∈ D such that

‖(α1g1 + · · ·+ αkgk)(w)− (α1g1 + · · ·+ αkgk)(e
i/n)‖ < ε/2.

Hence

‖(α1g1 + · · ·+ αkgk)(w)− x‖ < ε/2 + ‖(α1g1 + · · ·+ αkgk)(e
i/n)− x‖

= ε/2 + ‖αkxn − x‖ = ε/2 + ‖αkym − x‖ < ε.

This shows that (α1g1 + · · ·+ αkgk)(D) is dense in E.

It is clear that the set H(D, BE) does not contain any non-zero vector
space. However, the next theorem shows that the subset of H(D, BE) of
holomorphic mappings with dense range has a property similar to lineability.
We use co(X) to denote the convex hull of a subset X.

Theorem 2.3. There is a linearly independent sequence (hk)
∞
k=1 of holo-

morphic mappings from D into BE such that

co((hk)
∞
k=1) ⊂ {f ∈ H(D, BE) : f(D) is dense in BE}.

Proof. By [1], there are holomorphic mappings f1 : D → Bc0 and f2 :
Bc0 → B`2 such that f1(D) is dense in Bc0 and f2(Bc0) is dense in B`2 . We
will define a sequence (gk)

∞
k=1 of holomorphic mappings from `2 into E and

then hk will be gk ◦ f2 ◦ f1.
Denote by (en)∞n=1 the canonical basis of `2. Let (ym)∞m=1 be a dense

sequence in BE \ {0}. Let (xn)∞n=1 be the sequence

y1,︸︷︷︸ y2, y1,︸ ︷︷ ︸ y3, y2, y1,︸ ︷︷ ︸ y4, y3, y2, y1,︸ ︷︷ ︸ y5, y4, y3, y2, y1︸ ︷︷ ︸ . . . .
For each k ∈ N, define gk : `2 → E by

gk((an)∞n=1) =
∞∑
n=k

a2nxn.
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This series converges for every (an)∞n=1 ∈ `2 because
∞∑
n=k

‖a2nxn‖ ≤
∞∑
n=1

|an|2 <∞.

The mapping gk is holomorphic on `2. Indeed, for a = (an)∞n=1 and b =
(bn)∞n=1 in `2, let

La(b) =

∞∑
n=k

2anbnxn.

Then La : `2 → E is a continuous linear mapping and

lim
b→0

gk(a+ b)− gk(a)− La(b)
‖b‖

= 0.

If k ∈ N and (an)∞n=1 ∈ B`2 , then

‖gk((an)∞n=1)‖ ≤
∞∑
n=k

‖a2nxn‖ ≤
∞∑
n=1

|an|2 < 1;

that is, gk((an)∞n=1) ∈ BE . The set BE is convex, so if t1, . . . , tk ∈ [0, 1] and
t1 + · · ·+ tk = 1, then

(t1g1 + · · ·+ tkgk)(B`2) ⊂ BE .
Let t1, . . . , tk ∈ [0, 1] be such that t1 + · · · + tk = 1. In order to prove

that (t1g1 + · · · + tkgk)(B`2) is dense in BE , take x ∈ BE and ε > 0. Then
there is m ∈ N such that

‖ym − x‖ < ε/2.

Let n ∈ N be such that n ≥ k and xn = ym. Then

g1(en) = xn = ym, . . . , gk(en) = xn = ym.

As g1, . . . , gk are continuous on `2, there is a ∈ B`2 such that

‖(t1g1 + · · ·+ tkgk)(a)− (t1g1 + · · ·+ tkgk)(en)‖ < ε/2.

Hence

‖(t1g1 + · · ·+ tkgk)(a)− x‖ < ε/2 + ‖(t1g1 + · · ·+ tkgk)(en)− x‖
= ε/2 + ‖(t1ym + · · ·+ tkym)− x‖
= ε/2 + ‖ym − x‖ < ε.

This shows that (t1g1 + · · ·+ tkgk)(B`2) is dense in BE .
For every k, let

hk = gk ◦ f2 ◦ f1 ∈ H(D, E).

If k ∈ N, t1, . . . , tk ∈ [0, 1] and t1 + · · ·+ tk = 1, then (t1h1 + · · ·+ tkhk)(D)
is densely contained in BE because f1(D) is dense in Bc0 , f2(Bc0) is dense
in B`2 and (t1g1 + · · ·+ tkgk)(B`2) is dense in BE .
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To conclude, let us prove that (hk)
∞
k=1 is a linearly independent sequence.

Suppose that k ∈ N, λ1, . . . , λk ∈ C and λ1h1 + · · ·+λkhk = 0 on D; that is,

(λ1g1 + · · ·+ λkgk)(f2 ◦ f1(z)) = 0

for all z ∈ D. The set f2 ◦f1(D) is dense in B`2 , so (λ1g1 + · · ·+λkgk)(a) = 0
for all a in a dense subset of B`2 . Consequently,

‖λ1x1‖ = ‖(λ1g1 + · · ·+ λkgk)(e1)‖ = 0,

‖λ1x2 + λ2x2‖ = ‖(λ1g1 + · · ·+ λkgk)(e2)‖ = 0,

...

‖λ1xk + · · ·+ λkxk‖ = ‖(λ1g1 + · · ·+ λkgk)(ek)‖ = 0.

As x1 6= 0, . . . , xk 6= 0, we deduce that λ1 = 0, . . . , λk = 0.

Proposition 2.4. Let U be a subset of E. Then

{f ∈ H(D, U) : f(D) is dense in U}
is a Gδ subset of H(D, U).

Proof. Let (ym)∞m=1 be a dense sequence in U . Given m, k ∈ N, let

Fm,k = {f ∈ H(D, U) : There is z ∈ D such that ‖f(z)− ym‖ < 1/k}.
We will prove that each Fm,k is an open subset of H(D, U) and

(2.1) {f ∈ H(D, U) : f(D) is dense in U} =
⋂

m,k∈N
Fm,k.

Let f ∈ Fm,k. Then there is z0 ∈ D such that ‖f(z0) − ym‖ < 1/k. The
set

Vf = {g ∈ H(D, U) : ‖g(z0)− f(z0)‖ < 1/k − ‖f(z0)− ym‖}
is a neighborhood of f in H(D, U) in the compact-open topology. If g ∈ Vf ,
then

‖g(z0)− ym‖ ≤ ‖g(z0)− f(z0)‖+ ‖f(z0)− ym‖ < 1/k,

so Vf ⊂ Fm,k. This shows that Fm,k is open in H(D, U).
To prove (2.1), take h ∈ H(D, U) such that h(D) is dense in U . Then

for every m, k ∈ N there is z ∈ D such that ‖h(z) − ym‖ < 1/k; that is,
h ∈

⋂
m,k∈N Fm,k.

Conversely, suppose that h ∈
⋂
m,k∈N Fm,k. Let x ∈ U and ε > 0. As

(ym)∞m=1 is dense in U , there are k0,m0 ∈ N such that

1/k0 < ε/2 and ‖ym0 − x‖ < 1/k0.

As h ∈ Fm0,k0 , there is z ∈ D such that ‖h(z)− ym0‖ < 1/k0. Therefore,

‖h(z)− x‖ ≤ ‖h(z)− ym0‖+ ‖ym0 − x‖ < 1/k0 + 1/k0 < ε,

which shows that h(D) is dense in U . This completes the proof.
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Theorem 2.5. The set

{f ∈ H(D, E) : f(D) is dense in E}
is a dense Gδ subset of H(D, E).

Proof. Let K be a compact subset of D, g ∈ H(D, E) and ε > 0. Then
there is a polynomial P : C → E such that ‖P (z) − g(z)‖ < ε/2 for all
z ∈ K (see [7, Theorem 7.11]).

Let (ym)∞m=1, (xn)∞n=1 and (fn)∞n=1 be as in the proof of Theorem 2.2.
Then

f =
∞∑
n=1

fn

is a continuous mapping from D \ {1} into E which is holomorphic on D. If
we define

t =
ε

2 supz∈K ‖f(z)‖+ 1
,

then ‖(tf + P )(z)− g(z)‖ < ε for all z ∈ K.
In order to prove that (tf + P )(D) is dense in E, take x ∈ E and δ > 0.

As (ym)∞m=1 is dense in E, there is m ∈ N such that∥∥∥∥ym − (1

t
x− 1

t
P (1)

)∥∥∥∥ < δ

3t
;

that is,

‖tym + P (1)− x‖ < δ/3.

Since P is continuous on C and ei/n → 1, there is n0 ∈ N such that

‖P (ei/n)− P (1)‖ < δ/3 for every n ≥ n0.
Now, take n ∈ N such that xn = ym and n ≥ n0. The mapping tf + P is
continuous on D \ {1}, so there is w ∈ D such that

‖(tf + P )(w)− (tf + P )(ei/n)‖ < δ/3.

Thus,

‖(tf + P )(w)− x‖ < δ/3 + ‖tf(ei/n) + P (ei/n)− x‖
= δ/3 + ‖txn + P (ei/n)− x‖
= δ/3 + ‖tym + P (ei/n)− x‖
≤ δ/3 + ‖tym + P (1)− x‖+ ‖P (ei/n)− P (1)‖
< δ.

This shows that (tf + P )(D) is dense in E.

The proof of the density of {f ∈ H(D, BE) : f(D) is dense in BE} in
H(D, BE) is much longer and we will need some preliminary results.
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Proposition 2.6. Let 0 < R < 1 and ε > 0. There is a sequence (an)∞n=1

of real numbers such that 0 < an < 1 for all n,
∑∞

n=1(1 − an) < ∞ and
|b(z)− 1| < ε for every z ∈ D(0, R), where

b(z) =
∞∏
n=1

an − z
1− anz

is the usual Blaschke product (see [10, p. 302]).

Proof. We can assume that ε < 1. Let n ∈ N and δn = ε/2n+1 ∈ (0, 1).
As R < 1, we have δnR < δn, so

1 +R− δnR > 1 +R− δn > 0.

This implies that
1 +R− δn

1 +R− δnR
< 1.

Therefore, there is an ∈ R such that

(2.2) 1− 1

2n
< an < 1 and

1 +R− δn
1 +R− δnR

< an < 1.

The first inequality in (2.2) implies that
∑∞

n=1(1−an) <∞, so the product

b(z) =
∞∏
n=1

an − z
1− anz

is well defined for every z ∈ D. The second property in (2.2) implies that

1 +R− δn < an + anR− δnanR,
so

(2.3) (1− an)(1 +R) < δn(1− anR).

Let z ∈ C be such that |z| ≤ R. Then

|(an − z)− (1− anz)| ≤ (1− an) + (1− an)|z|(2.4)

≤ (1− an) + (1− an)R = (1− an)(1 +R).

We now use the inequalities (2.3) and (2.4):

|(an − z)− (1− anz)| < δn(1− anR) ≤ δn(1− an|z|) ≤ δn|1− anz|.
Therefore,

(2.5)

∣∣∣∣ an − z1− anz
− 1

∣∣∣∣ < δn =
ε

2n+1

for every n ∈ N and every z ∈ C such that |z| ≤ R.
Let z ∈ D(0, R). For each n, let

wn =
an − z
1− anz

.
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Note that |wn| < 1 because |z| < 1. In addition, there is m ∈ N such that∣∣∣b(z)− m∏
n=1

wn

∣∣∣ < ε

2
.

Then

|b(z)− 1| < ε

2
+
∣∣∣ m∏
n=1

wn − 1
∣∣∣ ≤ ε

2
+
∣∣∣ m∏
n=2

wn − 1
∣∣∣|w1|+ |w1 − 1|

≤ ε

2
+
∣∣∣ m∏
n=2

wn − 1
∣∣∣+ |w1 − 1| ≤ · · · ≤ ε

2
+

m∑
n=1

|wn − 1|.

By (2.5), we obtain

|b(z)− 1| < ε

2
+

m∑
n=1

ε

2n+1
< ε for all z ∈ D(0, R).

Proposition 2.7. Let (ym)∞m=1 be a dense sequence in BE. Then for
every m, k ∈ N, the set

Fm,k = {f ∈ H(D, BE) : There is z ∈ D such that ‖f(z)− ym‖ < 1/k}

is dense in H(D, BE).

Proof. Let g ∈ H(D, BE), K a compact subset of D and 0 < ε < 1/(3k).
We can assume that K = D(0, R) for some 0 < R < 1. By Proposition 2.6,
there is a sequence (an)∞n=1 of real numbers such that 0 < an < 1 for every n,
the Blaschke product

b(z) =
∞∏
n=1

an − z
1− anz

defines a holomorphic function on D, |b(z)| < 1 for all z ∈ D and |b(z)−1| < ε
if |z| ≤ R. As b is uniformly continuous on D(0, a1), there is δ > 0 such that
if z, w ∈ D(0, a1) and |z − w| < δ, then

(2.6) |b(z)− b(w)| < ε.

As before, (xn)∞n=1 will be the sequence

y1,︸︷︷︸ y2, y1,︸ ︷︷ ︸ y3, y2, y1,︸ ︷︷ ︸ y4, y3, y2, y1,︸ ︷︷ ︸ y5, y4, y3, y2, y1︸ ︷︷ ︸ . . . .
Let (δn)∞n=1, (Dn)∞n=1 and (fn)∞n=1 be the sequences associated to U = BE
and (xn)∞n=1 by Proposition 2.1. Let n ∈ N be chosen so that

xn = ym, R+ 1/n2 < 1, δn < ε, 1/n2 < δ.

For each z ∈ D, let

f(z) = b(a1e
−i/nz)g(z) + fn(z).
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The mapping f is holomorphic from D into E. If z ∈ D \Dn, then

‖f(z)‖ ≤ ‖g(z)‖+ ‖fn(z)‖ ≤ ‖g(z)‖+ δn ≤ 1 + δn < 1 + ε.

If z ∈ D ∩Dn, then |z − ei/n| < 1/n2 < δ by Proposition 2.1(b). Hence

|a1e−i/nz − a1| = a1|z − ei/n| < δ.

Moreover, a1e
−i/nz ∈ D(0, a1). By (2.6),

|b(a1e−i/nz)| = |b(a1e−i/nz)− b(a1)| < ε.

Consequently,

‖f(z)‖ ≤ |b(a1e−i/nz)|+ ‖fn(z)‖ < ε+ 1.

Therefore, ‖f(z)‖ < 1 + ε for every z ∈ D.

Let z ∈ D(0, R). Then a1e
−i/nz also belongs to D(0, R), so

|b(a1e−i/nz)− 1| < ε.

As R + 1/n2 < 1, we have D(0, R) ∩Dn = ∅, so z ∈ D \Dn and ‖fn(z)‖ <
δn < ε. Hence

‖f(z)− g(z)‖ ≤ |b(a1e−i/nz)− 1| · ‖g(z)‖+ ‖fn(z)‖ < 2ε

for every z ∈ D(0, R).

Since fn is continuous on D, there is z1 ∈ D∩Dn such that

‖fn(z1)− fn(ei/n)‖ < ε.

Again by (2.6),

|b(a1e−i/nz1)| = |b(a1e−i/nz1)− b(a1)| < ε

and

‖f(z1)− ym‖ ≤ ε+ ‖fn(z1)− ym‖ ≤ 2ε+ ‖fn(ei/n)− ym‖
= 2ε+ ‖xn − ym‖ = 2ε.

Finally, we consider the function 1
1+εf ∈ H(D, BE), which belongs to

Fm,k as ∥∥∥∥ 1

1 + ε
f(z1)− ym

∥∥∥∥ =

∥∥∥∥ 1

1 + ε
f(z1)− f(z1)

∥∥∥∥+ ‖f(z1)− ym‖

≤ ε+ 2ε = 3ε < 1/k.

If z ∈ K = D(0, R), then∥∥∥∥g(z)− 1

1 + ε
f(z)

∥∥∥∥ ≤ ‖g(z)− f(z)‖+

∥∥∥∥f(z)− 1

1 + ε
f(z)

∥∥∥∥
< 2ε+ ε = 3ε.

This proves that Fm,k is dense in H(D, BE).
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Theorem 2.8. The set

{f ∈ H(D, BE) : f(D) is dense in BE}
is a dense Gδ subset of H(D, BE).

Proof. As before, (ym)∞m=1 denotes a dense sequence in BE and we set

Fm,k = {f ∈ H(D, BE) : There is z ∈ D such that ‖f(z)− ym‖ < 1/k}.
In Propositions 2.4 and 2.7, we have seen that each Fm,k is a dense open
subset of H(D, BE) and

(2.7) {f ∈ H(D, BE) : f(D) is dense in BE} =
⋂

m,k∈N
Fm,k.

The space H(D, E), endowed with the compact-open topology, is a complete
metric space. As H(D, BE) is a closed subset of H(D, E), it follows that
H(D, BE) is also a complete metric space. By Baire’s theorem and (2.7),
the set

{f ∈ H(D, BE) : f(D) is dense in BE}
is dense in H(D, BE).

Finally, let h ∈ H(D, BE), K a compact subset of D and ε > 0. Then
there is f : D→ BE such that f(D) is dense in BE and ‖f(z)−h(z)‖ < ε for
every z ∈ K. If there were z1 ∈ D such that ‖f(z1)‖ = 1, then ‖f(z)‖ = 1
for all z ∈ D, so f would not have dense range. Therefore, we deduce that
f ∈ H(D, BE).
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