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ε-Kronecker and I0 sets in abelian groups, IV:

interpolation by non-negative measures

by

Colin C. Graham (Vancouver) and Kathryn E. Hare (Waterloo)

Abstract. A subset E of a discrete abelian group is a “Fatou–Zygmund interpolation
set” (FZI0 set) if every bounded Hermitian function on E is the restriction of the Fou-
rier–Stieltjes transform of a discrete, non-negative measure.

We show that every infinite subset of a discrete abelian group contains an FZI0 set of
the same cardinality (if the group is torsion free, a stronger interpolation property holds)
and that ε-Kronecker sets are FZI0 (with that stronger interpolation property).

1. Introduction and summary of results. In this paper we continue
[6, 7, 10], where we studied I0 and ε-Kronecker sets (definitions are below) in
discrete abelian groups Γ , with compact dual groups G. In particular, in [7],
we showed that many I0 sets (including ε-Kronecker and Hadamard sets)
had the property that every bounded function on them could be interpolated
by the Fourier–Stieltjes transform of a discrete measure with arbitrarily
small support.

In this paper we address the interpolation issue, but now ask that the
interpolating measures be real or non-negative. Our main results show that
such interpolation sets are plentiful, as is well known to be the case for other
interpolation sets such as Sidon and I0 sets.

1.1. Definitions and main results

Definition 1. A function ϕ on a subset E ⊂ Γ is Hermitian if ϕ(χ) =

ϕ(χ−1) for all χ ∈ E with χ−1 ∈ E.

Definition 2. Let ε > 0. A set E ⊂ Γ is:

(1) asymmetric if γ ∈ E ∩ E−1 implies γ = γ−1, antisymmetric if E ∩
E−1 = ∅, and symmetric if E = E−1;
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(2) Sidon (resp. I0) if every bounded function ϕ on E is the restriction
of a Fourier–Stieltjes transform of a measure (resp. of a discrete
measure) [19, 14];

(3) ε-Kronecker if for every function ϕ : E → T, there exists x ∈ G such
that |〈χ, x〉 − ϕ(χ)| < ε for all χ ∈ E (1);

(4) RI0 (resp. FZI0) if every bounded Hermitian function ϕ on E is
the restriction of a Fourier–Stieltjes transform of a real (resp. non-
negative real), discrete measure.

In each case but the first, we append “(U)” to the definition if the inter-
polating measures can be taken to be concentrated on the set U ⊂ G.

Definition 3. E is FZI0(U) for all open U with bounded constants (2)
if there is a constant K such that for each open U there is a finite set ∆
such that for each bounded ϕ : E \ ∆ → C there is a non-negative, discrete
measure µ concentrated on U such that µ̂ = ϕ on E \ ∆ and ‖µ‖ ≤ K. We
make analogous definitions for a set to be “I0(U) (or RI0(U)) with bounded
constants”.

Item (4) of Definition 2 is new (but not unanticipatable), and it is with
these classes of sets and their relations to the other classes that this paper
is concerned.

Clearly I0(U) sets are Sidon(U) (the converse is shown to be not true in
[17]), FZI0(U) sets are RI0(U), and any asymmetric RI0(U) set is I0(U).
Less trivially, we show here that a set E is RI0(U) if and only if E ∪ E−1

is I0(U), and hence there are I0 sets that are not RI0 (see Thm. 2.5 and
Example 2.8). The class of FZI0 sets is smaller again, as the singleton
{0} ⊂ Z is RI0 but not FZI0. However, we do not know if E being RI0

and the identity not in E implies E is FZI0. We also do not know if there
are any non-trivial sets that are I0(U) with bounded constants that are not
FZI0. Sidon sets in the dual of a connected group are Sidon(U) [3]; such
interpolation can also be done with non-negative measures (see Florek [1]
who improves upon previous results and gives a Sidon set version of our
FZI0(U) results).

The main contributions of this paper improve upon the previous exis-
tence theorem for I0 sets [13, 15], and are:

(1) Every infinite discrete abelian group Γ contains an FZI0(U) set with
bounded constants and of cardinality #Γ (Theorem 4.1).

(1) See [5, 6, 10, 7, 21] for applications and properties of ε-Kronecker sets. Given and
Kunen [5] use the term “ε-free”. For existence theorems for ε-Kronecker sets, see [4, Lem.
3.2], [5, Lem. 3.8], [11, Thm. 3.1], and [12, Thm. 4.1].

(2) We generally omit the phrase “for all open U”.
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(2) Every infinite subset E of the discrete abelian group Γ contains an
FZI0 set of the same cardinality as E (Theorem 4.4).

(3) If the dual G is connected (i.e., Γ is torsion free), then every infinite
subset E ⊂ Γ contains an FZI0(U) set with bounded constants
of the same cardinality (Theorem 4.6). (Connectedness cannot be
dispensed with here; see Remark 4.5.)

The first sets of these types were the Hadamard sets E = {nj} ⊂ N,
where inf nj+1/nj ≥ q > 1. Hadamard sets with ratio q are known to be ε-
Kronecker for ε > |1−eiπ/(q−1)| ([15, Lem. 2.4(1)]) and I0(U) with bounded
constants (3). Similar arguments can be used to show that they are FZI0(U)
with bounded constants. More generally, in Theorem 3.1 we prove that ε-
Kronecker sets are FZI0(U) with bounded constants if ε <

√
2 and this

fact is used in obtaining our main results.
The terminology FZ (for Fatou–Zygmund set) was adapted from [16]

where it was used to denote sets with the property that every bounded
function on the set can be interpolated by a non-negative (but not necessar-
ily discrete) measure. Examples include asymmetric Sidon sets in duals of
connected groups [3]. The notion “I0(U) with bounded constants” appears
in [7], where it gives some insight into why some sets are I0(U).

For non-abelian versions of our results, see [8]. For further characteriza-
tions of and union results for RI0 and FZI0 sets, see [9].

2. Preliminaries

2.1. Notation. For a compact abelian group G, Gd denotes the corre-
sponding group with the discrete topology. The Bohr compactification of Γ
is denoted by Γ . If E ⊂ Γ , E denotes the closure of E in Γ . Our groups
are written multiplicatively, except for Z and R, and 1 = 1Γ denotes the
identity of Γ except for Z, R, where 0 is used. We write B(ℓ∞(E)) for the
unit ball of ℓ∞(E). We write Md(U) for the discrete measures concentrated
on U ⊆ G and we let

D(N, U) =
{ N∑

j=1

ajδxj
: |aj| ≤ 1, xj ∈ U, 1 ≤ j ≤ N

}
.

A superscript r or + on a space of measures refers to the real (respectively,
positive) measures in that subset.

We have the following variation of a result in [7, Prop. 2.2].

Proposition 2.1. Let G be a compact group, U a σ-compact subset of

G and E ⊂ Γ . The following are equivalent :

(3) That Hadamard sets are I0 was first proved in [20]; for other proofs see [14, 15].
The I0 with bounded constants property was proved in [7].
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(1) E is RI0(U) (resp. FZI0(U)).
(2) There is a constant N such that for all Hermitian ϕ ∈ B(ℓ∞(E))

there exists µ ∈ M r
d(U) (resp. M+

d (U)) with ‖µ‖ ≤ N and µ̂(γ) =
ϕ(γ) for all γ ∈ E.

(3) There exist 0 < ε < 1 (equivalently , for every 0 < ε < 1) and

integer N such that for all Hermitian ϕ ∈ B(ℓ∞(E)) there exists

µ ∈ M r
d(U) (resp. M+

d (U)) with ‖µ‖M(G) ≤ N and |µ̂(γ)−ϕ(γ)| < ε
for all γ ∈ E.

(4) There exists 0 < ε < 1 (equivalently , for all 0 < ε < 1) and N such

that for all Hermitian φ ∈ B(l∞(E)) there is some µ ∈ Dr(N, U)
(resp. D+(N, U)) with |µ̂(γ) − φ(γ)| < ε for all γ ∈ E.

(5) There exists 0 < ε < 1 (equivalently , for all 0 < ε < 1) such that for

all Hermitian ϕ ∈ B(ℓ∞(E)) there exists µ ∈ M r
d(U) (resp. M+

d (U))
with |µ̂(γ) − ϕ(γ)| < ε for all γ ∈ E.

Proof. (2)⇒(1)⇒(5) and (4)⇒(3) are trivial. The implication (3)⇒(2)
is an iteration argument which is essentially shown in [7]. A finite iteration
argument shows the equivalences of “there exists” and “for all” in (3)–(5).
We remark that for RI0(U) sets, the implication (1)⇒(2) is a standard
application of the open mapping theorem. It remains only to show (5)⇒(4).
We give the proof for the FZI0(U) case.

There is no loss of generality in assuming E is asymmetric since a Her-
mitian function has a unique Hermitian extension from E to E ∪ E−1.

As U is σ-compact we can write U =
⋃∞

n=1 Vn, where Vn are compact,
nested sets. Let Dγ = [−1, 1] if γ = γ−1 and Dγ = {t ∈ C : |t| ≤ 1} if
γ 6= γ−1. Let DE =

∏
γ∈E Dγ . Set

Wn,k = {φ ∈ DE : ∃µ ∈ D+(n, Vk) with |µ̂(γ) − φ(γ)| ≤ ε/2 ∀γ ∈ E}.
Given µ =

∑n
j=1 ajδxj

with xj ∈ U , there exists k such that xj ∈ Vk for
all j = 1, . . . , n. Hence

D+(n, U) =

∞⋃

k=1

D+(n, Vk).

Using (5) with suitably small ε > 0, we have
⋃

n,k Wn,k = DE .

The closure of Vk ensures that Wn,k is closed and hence the Baire cat-
egory theorem implies that some Wn,k has non-empty interior. If we let
Wn =

⋃
k Wn,k, it follows that some Wn has non-empty interior and therefore

there is a finite set F ⊆ E and a point (z1, . . . , z|F |) such that (z1, . . . , z|F |)×
DE\F ⊆ Wn.

Consider the subset S of l∞(E) consisting of the Hermitian elements
which vanish off F . As F is finite, S is a finite-dimensional, real subspace.
Take a basis of S, say e1, . . . , el, where ej ∈ B(l∞(E)). Since all norms are
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comparable on a finite-dimensional space, there is some c > 0 such that
∥∥∥

∑
bjej

∥∥∥
l∞

≥ c
∑

|bj|.

Each ±ej is Hermitian, so again by (5) we can obtain µj , νj ∈ M+
d (U) such

that

|µ̂j(γ) − ej(γ)| < cε/4n, |ν̂j(γ) − (−ej)(γ)| < cε/4n

for all γ ∈ E. By taking suitably large partial sums we can assume there
exists some m such that µj , νj ∈ D+(m, U) for all j.

Let φ ∈ B(l∞(E)) be Hermitian. Since φ coincides on E \ F with an
element of Wn, we can find µ ∈ D+(n, U) such that |µ̂(γ)− φ(γ)| ≤ ε/2 for
all γ ∈ E \ F . As µ is a positive measure and E is asymmetric, (φ − µ̂)|F
(extended by 0 off F ) belongs to S and therefore equals

∑
bjej for some bj

real. Write bj = b+
j − b−j where b±j ≥ 0. Notice

c
∑

|bj | ≤ ‖(φ − µ̂)|F‖l∞ ≤ 1 + ‖µ‖M(U) ≤ 2n.

For γ ∈ E,
∣∣∣φ − µ̂ −

(∑
(b+

j µ̂j + b−j ν̂j)
)
(γ)

∣∣∣

=
∣∣∣(φ − µ̂)|E\F +

∑
(b+

j (ej − µ̂j) + b−j (−ej − ν̂j))
∣∣∣

≤ sup
γ∈E\F

|(φ − µ̂)(γ)| + sup
γ∈E

∣∣∣
( ∑

(b+
j (ej − µ̂j) + b−j (−ej − ν̂j))

)
(γ)

∣∣∣

≤ ε

2
+

cε

4n

∑
|bj | ≤ ε.

Finally, we note that

µ +
∑

b+
j µj +

∑
b−j νj ∈ D+(N, U),

with N = n + m dim F, and as N is independent of the choice of φ this
completes the proof.

Remark 2.2. A similar Baire category theorem argument will show that
E ⊆ Γ is I0(U) if there exists some ε > 0 such that for every bounded φ on E
there is a discrete measure µ, concentrated on U , such that |µ̂(γ) − ϕ(γ)| < ε
for all γ ∈ E. This improves [7] where it was shown that such a set E is
I0(U

2).

Remark 2.3. Proposition 2.1(3) implies that ε-Kronecker sets with ε < 1
are FZI0. We will show in Theorem 3.1 that this is true whenever ε <

√
2

and that such sets are even FZI0(U) with bounded constants.

It is a classical result that I0 sets are characterized by having the property
that ±1-valued E-functions have continuous extensions to Γ . A similar result
holds for RI0(U) and FZI0(U) sets, as we show in Proposition 2.4 below.
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Note that a set is I0(U), RI0(U) or FZI0(U), if and only if the same is
true for any translate of U, so there is no loss of generality in assuming U
is a neighbourhood of the identity.

Proposition 2.4. Let 0 < ε < 1, E ⊂ Γ be asymmetric, and U ⊂ G
a symmetric, compact neighbourhood of the identity. Let E2 = {χ ∈ E :
χ2 = 1}. Suppose that for each pair of Hermitian functions r : E → {±1}
and s : E \E2 → {±i} there are measures µ1, µ2 ∈ M r

d(U) (resp. ∈ M+
d (U))

such that |µ̂1(χ) − r(χ)| < ε for all χ ∈ E and |µ̂2(χ) − s(χ)| < ε for all

χ ∈ E \ E2. Then E is RI0(U
2) (resp. FZI0(U

2)).

Proof. We give the proof in the FZI0(U) case. Let 0 < ε0 < 1/2. First,
suppose ϕ ∈ B(ℓ∞(E \ E2)) is imaginary and Hermitian. Put

s(χ) =

{
i if ℑϕ(χ) ≥ 0,

−i if ℑϕ(χ) < 0.

Since E is asymmetric, s is Hermitian. Thus, we can obtain µ2 as in the
hypothesis. Then

∣∣∣∣
µ̂2(χ)

2
− ϕ(χ)

∣∣∣∣ <
1 + ε

2
for all χ ∈ E \ E2.

Replacing ϕ with ϕ − iℑµ̂2/2, and iterating this process, we obtain ν2 ∈
M+

d (U) such that

|ν̂2 − ϕ| < ε0 on E \ E2.

Now consider the general case, ϕ(χ) = aχ + bχi on E. We find ν2 as
above for iℑϕ on E \E2. We note that ϕ− ν̂2 is Hermitian on E since ν2 is
a real measure. We set

r(χ) =

{
1 if ℜϕ(χ) −ℜν̂2(χ) ≥ 0,

−1 if ℜϕ(χ) −ℜν̂2(χ) < 0,

for χ ∈ E. Obtain µ1 as in the hypothesis. Then µ1 + µ̃1 ∈ M+
d (U) (4). Also

µ̂1(χ) + (µ̃1)
∧(χ) = 2ℜµ̂1(χ). Hence

∣∣∣∣
µ̂1(χ) + (µ̃1)

∧(χ)

4
− (ℜϕ(χ) −ℜν̂2(χ))

∣∣∣∣ <
1 + ε

2
for all χ ∈ E.

As µ̂1 + (µ̃1)
∧ is real-valued, we iterate as before, and thus we find a ν1 ∈

M+
d (U) with a real-valued Fourier transform and satisfying

|ν̂1(χ) − (ℜϕ(χ) −ℜν̂2(χ))| < ε0.

Then |ν̂1(χ) + ν̂2(χ) − ϕ(χ)| < 2ε0 < 1.

We appeal to Proposition 2.1 to complete the argument.

(4) µ̃(X) = µ(X−1) for a Borel set X.
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Of course, E is RI0(U) (or FZI0(U)) if and only if E ∪ E−1 is RI0(U)
(FZI0(U)), as the transform of a real measure is Hermitian. More is true,
however.

Theorem 2.5. Let E ⊂ Γ and U ⊂ G be a symmetric neighbourhood of

the identity. Then E is RI0(U) if and only if E ∪ E−1 is I0(U).

Proof. Suppose that E is RI0(U); we must show that E ∪E−1 is I0(U).
The argument is an adaptation of [7, proof of 2.11]. The novelty in the
adaptation is to use “anti-Hermitian” functions: ν(γ) = −ν(γ−1) for all
relevant γ and to decompose each bounded real-valued ϕ : E ∪ E−1 → C

into the sum of Hermitian and anti-Hermitian functions, which will be the
transform of measures of the form 1

2(µ+µ̃) and 1
2 i(ν−ν̃), respectively, where

µ, ν ∈ M r
d(U). We omit further details.

Now suppose that E ∪ E−1 is I0(U). Let ϕ : E → C be the bounded
Hermitian function to be interpolated on E by an element of M r

d(U). Extend
ϕ to E−1 \ E by

ϕ(γ−1) = ϕ(γ), γ ∈ E \ E−1.

Let µ ∈ Md(U) be such that µ̂(γ) = ϕ(γ) for γ ∈ E ∪ E−1. Such a µ exists
because E ∪ E−1 is I0(U). Let ν = 1

2(µ + µ). Then for γ ∈ E, ν̂(γ) =
1
2(µ̂(γ) + µ̂(γ−1)) = ϕ(γ), so E is indeed RI0(U).

Corollary 2.6. Suppose E, F are RI0 sets and that E ∪E−1 and F ∪
F−1 have disjoint closures in Γ . Then E ∪ F is RI0.

Proof. E ∪ E−1 and F ∪ F−1 are I0 sets with disjoint closures. Hence
their union is I0 by [6, Lem. 2.1].

Corollary 2.7. Let G be a connected group and suppose E is RI0(U).
If λ ∈ Γ , then for any neighbourhood V of the identity of G, E ∪ {λ} is

RI0(U · V ).

Proof. This follows since the union of an I0(U) set and a finite set is
I0(U · V ) [7, 2.7].

The characterization of RI0 given in the theorem can be used to prove
the class of RI0 sets is strictly smaller than the I0 sets:

Example 2.8 (A set in Z that is I0(U) for all open U , but not RI0).
Let E1 = {10j + 5j + 1 : j ≥ 1} and E2 = {10j + 1 : j ≥ 1}. Then E1 ∪ E2

is not I0 [17, p. 178]. Let E = E1 ∪ −E2. Then E ∪ −E is not I0 and so E
is not RI0 by the theorem.

Now suppose U ⊇ (−4π/10N , 4π/10N) and put b = π/10N . Except for
a finite number of n ∈ E (say, for all n ∈ E \ ∆),

δ̂b(n) =

{
e−iπ/10N

if n = −10j − 1,

eiπ(5j+1)/10N
if n = 10j + 5j + 1.
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Put ν = eiπ/10N
δb − δ0. Then ν̂ = 0 on E2 \ ∆, |ν̂| ≥ |1 − eiπ/10N | > 0 on

E1 \ ∆ and ν ∈ Md(−2π/10N , 2π/10N).

Let ϕ ∈ ℓ∞(E). As E1 and E2 are ε-Kronecker sets for some ε < 1, the
tail of each is I0(−π/10N , π/10N) [7, Thm. 3.2]. Since ν̂ is bounded away
from 0 on E1\∆ we can find ω1, ω2 ∈ Md(−π/10N , π/10N) such that ω̂1 = ϕ
on E2 \ ∆ (∆ renamed as necessary) and

ω̂2 = (ϕ − ω̂1)/ν̂ on E1 \ ∆.

Take ω = ω1 + ω2 ∗ ν. Then ω ∈ Md(−3π/10N , 3π/10N) and interpolates ϕ
on E \ ∆. Now apply [7, 2.8] to conclude that E is I0(U).

Corollary 2.7 implies that a set is RI0(U) for all open sets U if it is
RI0(U) with bounded constants (in the connected case). In contrast, no

non-empty set is FZI0(U) for all open sets U since even singletons are not
FZI0(U) for small neighbourhoods of the identity.

However, the class of FZI0 sets is closed under the adjunction of finite
sets.

Proposition 2.9. Suppose E is FZI0 and F is a finite set not contain-

ing 1. Then E ∪ F is FZI0.

Proof. There is no loss in assuming F is a singleton {γ} and γ, γ−1 /∈ E.
As E ∩ Γ = E (see [18]), there is a (Bohr) closed neighbourhood V of 1 in
Γ such that E ∩ V · V −1 = ∅ and E ∩ {γ, γ−1}V · V −1 = ∅. Put

f =
1

2m(V )
(1γV ∪V ∗ 1γ−1V −1∪V −1).

Then f(γ) ≥ 1/2 and f = 0 on E. As f is positive definite, there exists
µ ∈ M+

d (G) such that µ̂ = f on Γ . It follows easily that E ∪ {γ} is FZI0.

3. FZI0(U) with bounded constants

3.1. ε-Kronecker sets are FZI0(U) with bounded constants

Theorem 3.1. Let 0 < ε <
√

2 and let E be an ε-Kronecker subset of

the discrete abelian group Γ . Let U ⊂ G be open. Then E is FZI0(U) with

bounded constants.

Proof. Let U be a neighbourhood of the identity. Let W ⊂ U be a
symmetric neighbourhood such that W 2 ⊂ U . By [7, Thm. 3.2], for any
(fixed) ε′ > ε there is a finite subset ∆ such that E \∆ is ε′-Kronecker(W ).
Choose δ = δ(ε′) ∈ (0, 1) such that |〈γ, x0〉 − 1| < ε′ implies ℜ〈γ, x0〉 ≥ δ
and pick b > 0 such that b +

√
1 − δ2 < 1.
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Let ϕ ∈ B(ℓ∞(E \∆)), say ϕ(γ) = aγ +ibγ , for aγ , bγ real and γ ∈ E \∆.
Let x0 ∈ W satisfy

|〈γ, x0〉 − 1| < ε′ if aγ ∈ [b, 1],

|〈γ, x0〉 + 1| < ε′ if aγ ∈ [−1,−b],

|〈γ, x0〉 − i| < ε′ if aγ ∈ (−b, b).

Then

|aγ −ℜ〈γ, x0〉| < max(1 − δ, 1 − b, b +
√

1 − δ2) = ε0 < 1.

By iterating we can interpolate any real sequence on E\∆ with the Fourier–
Stieltjes transform of some µ ∈ M+

d (W ).
To interpolate {ibγ}γ∈E\∆ we argue as follows: Let x1 ∈ W be such that

|〈γ, x1〉 − rγi| < ε for all γ ∈ E \ ∆,

where rγ = 1 if bγ ≥ 0 and rγ = −1 if bγ < 0. By the previous part of the
proof there exists µ ∈ M+

d (W ) such that µ̂(γ) = −ℜ〈γ, x1〉 for γ ∈ E \ ∆.
For such γ,

∣∣∣∣
µ̂ + δx1

(γ)

2
− ibγ

∣∣∣∣ =

∣∣∣∣
ℑ〈γ, x1〉

2
− bγ

∣∣∣∣ < 1 − δ

2
,

where δ is as above.
Consequently, if σ ∈ M+

d (U) is a measure interpolating aγ , then

ν = σ + (µ + δx1
)/2 ∈ M+

d (U)

satisfies |ν̂(γ) − ϕ(γ)| < 1 − δ/2. Now iterate. It is clear that the constant
of interpolation depends only on ε.

The following result should be contrasted with Example 5.1, which shows
FZI0 and RI0 sets are not preserved under translation.

Proposition 3.2. Let E be an ε-Kronecker subset of the discrete abel-

ian group Γ . Then for all γ and ε′ > ε, there exists a finite set ∆ such that

(E \ ∆) · γ is ε′-Kronecker and FZI0(U) with bounded constants.

Proof. Choose a neighbourhood U of the identity such that γ ≈ 1 on U .
There exists ∆ such that E \∆ is ε′-Kronecker(U); thus we can approximate

any ϕ ∈ B(ℓ∞((E \ ∆) · γ)) with δ̂x, where x ∈ U .

3.2. Other FZI0(U) sets with bounded constants. In this subsection we
collect examples of FZI0(U) sets in non-classical abelian groups. These re-
sults will be used for the general existence theorems in Section 5.

Proposition 3.3. Let ε > 0 and let E = {χn} be an infinite sequence

in the (discrete group of ) rationals, Q. Then E has an infinite ε-Kronecker

subset and hence a subset that is FZI0(U) with bounded constants.

Proof. Fix q such that 1 + π/ε < q.
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Case 1: {χn} is unbounded in R. Then we can find a subsequence (not
renamed) such that χn+1/χn > q for all n. Such a set is ε-Kronecker by [15,
2.4(1)].

Case 2: The {χn} accumulate at r ∈ R in the usual topology of R. Then
we can find a subsequence (not renamed) such that (χn+1 − r)/(χn − r) <
1/3q. Obviously all finite portions of such a set are ε/3-Kronecker. By taking
elements in the dual of Rd, the Bohr compactification of R, we see that
{χn − r : n ≥ 1} is ε/2-Kronecker. Given a 0-neighbourhood U there is
some integer N such that F = {χn}∞n=N is 2ε/3-Kronecker(U). But then
F is ε-Kronecker in Q, and hence FZI0(U) with bounded constants by
Theorem 3.1.

For a prime p, C(p∞) denotes the discrete group generated by all elements
of the form χ = e2πik/pn ∈ T, where 1 ≤ k < p and n ≥ 1, i.e., the infinite
p-subgroup of Td consisting of all elements whose orders are a power of p.
Integers ℓ ∈ Z give rise to characters on C(p∞): 〈̺, ℓ〉 = e2πikℓ/pn

, where
̺ = e2πik/pn

. Of course, any element of the coset ℓ + pnZ gives rise to the
same value.

Proposition 3.4. Let ε > 0 and let E = {γj} be an infinite sequence in

C(p∞). Then E has an infinite ε-Kronecker subset and hence a subset that

is FZI0(U) with bounded constants.

Proof. Let 1 ≤ C < ∞ be such that |1 − eπi/pC | < ε/2. By passing to a

subsequence χj of the γj , we may assume χj = e2πikj/pnj
where n1 ≥ C and

nj+1 − nj ≥ C for j ≥ 1.

Let ϕ : {χj} → T be given. Then the possible values of a character at χ1

are e2πik1ℓ/pn1 . Since 1 ≤ k1 ≤ p, those values are spaced equidistantly on T

with distance between them equal to |1− e2πik1ℓ/pn1 | < ε/2, so one of them
is at most |1 − eπi/pn1 | < ε/2 from ϕ(χ1). Choose ℓ1 ∈ Z such that

|e2πik1ℓ1/pn1 − ϕ(χ1)| < ε/2.

The last inequality does not change if we replace ℓ1 by an element of the
coset ℓ1 + pn1Z.

Now consider e2πik2(ℓ1+ℓ2pn1)/pn2 for ℓ2 ∈ Z. Those quantities are equally
spaced on the unit circle at spacing of |1− eπik2/pn2−n1 |. Since n2 − n1 ≥ C,
the distance between those values is less than ε/2, so we can find ℓ2 such
that

|e2πik2(ℓ1+ℓ2pn1 )/pn2 − ϕ(χ2)| < ε/2.

Those values do not change if we replace ℓ2 by an element of ℓ2 + pn2Z.

Continuing in this manner, we obtain a sequence in Z which does the
correct interpolation on each finite subset of E. So any accumulation point
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in the dual of C(p∞) will interpolate ϕ with error less than or equal to ε/2
and from this we may conclude that E is ε-Kronecker.

We recall that a subset E of an abelian group L is called independent if
N ≥ 1, x1, . . . , xN ∈ E, n1, . . . , nN ∈ Z and

∑N
j=1 x

nj

j = 1L imply x
nj

j = 1L

for 1 ≤ j ≤ N .

Proposition 3.5. Let E ⊂ Γ be independent. Then E is FZI0(U) for

all open U with bounded constants.

Proof. Let Λ be the subgroup of Γ generated by E. For each χ ∈ E, let
Λχ be the cyclic subgroup of Γ generated by χ, and Hχ be the dual group
of Λχ. The independence of E implies that Λ =

⊕
χ∈E Λχ and that the dual

group, H, of Λ is the direct product H =
∏

χ∈E Hχ. We may assume that
Γ = Λ.

Let U ⊂ G be any neighbourhood of the identity. Then there exists
a finite set ∆ ⊂ E such that

∏
χ∈E\∆ Hχ ⊂ U . Let F ⊂ E \∆ be the

elements of order 2 (if any). Without loss of generality, we may assume that
U = {1} × U0 × U1, where U0 =

∏
χ∈F Hχ and U1 =

∏
χ∈E\(∆∪F ) Hχ.

Let ϕ : E \ ∆ → T be Hermitian. If F is non-empty, then the indepen-
dence of F and the fact that ϕ takes only the values ±1 on F imply that for
each χ ∈ F there exists xχ ∈ Hχ with 〈χ, xχ〉 = ϕ(χ). Let x =

∏
χ∈F\∆ xχ

if F is non-empty, and let x be the identity of G otherwise.
For each χ ∈ E \ F , there exists xχ such that |〈χ, xχ〉 − ϕ(χ)| ≤ 1, by

the definition of Hχ. (The worst case occurs if χ has order 3, and otherwise
the above difference is at most

√
2/2.) This shows that an independent set

containing only elements of order greater than 2 is ε-Kronecker for all ε > 1.
By Theorem 3.1 applied to E \ F, there is a constant K (independent

of U1), a finite set ∆1 ⊂ E \ F (depending only on U1), and a measure
ν1 ∈ M+

d (U1) such that

ν̂1(χ) = ϕ(χ) on E \ (F ∪ ∆1), ‖ν1‖ ≤ K.

Let ν = δx × ν1. Then ν̂(χ) = ϕ(χ) for each χ ∈ E \ (∆ ∪ ∆1). Hence
E \ (∆ ∪ ∆1) is FZI0(U) with constant K.

4. Existence theorems for FZI0 and FZI0(U) sets

4.1. Γ has large FZI0(U) sets with bounded constants

Theorem 4.1. Let Γ be an infinite discrete abelian group. Then Γ con-

tains an FZI0(U) set with bounded constants and having the same cardinal-

ity as Γ .

The following corollary is due to [13]; another proof is in [15].

Corollary 4.2. Every discrete abelian group contains an I0 set of the

same cardinality.
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Before proving Theorem 4.1, we need a lemma.

Lemma 4.3. Let E ⊂ Γ . Suppose that E is uncountable. Then E con-

tains an independent set A such that #A = #E.

Proof of Lemma 4.3. Let κ = #E. Let F be the torsion subgroup of
the subgroup H of Γ that E generates. Suppose κ = #(H/F ). Let A be a
subset of E such that the set of cosets A · F is maximal independent in the
quotient H/F . As E generates H, E · F generates H/F , and any maximal
independent subset of E ·F also generates H/F . Hence, the cardinalities of
the four (types of) sets, E · F , H/F , maximal independent subset of H/F ,
and maximal independent subset of E · F , are all equal. Thus, #A = κ if
κ = #(H/F ). Of course, if A · F is independent in the torsion-free group
H/F , then A must be independent in H.

If κ > #(H/F ) then κ = #F . We apply verbatim all but the first two
paragraphs of the proof of [15, Lem. 3.7], from which we conclude that H
contains an independent set A′ with #A′ = κ. Of course that cannot happen
unless E contains an independent set A with #A = κ.

Proof of Theorem 4.1. If Γ is uncountable, then the theorem follows
from Proposition 3.5 and Lemma 4.3 (with E = Γ ).

If Γ is countable and contains an infinite independent set, then the the-
orem follows from Proposition 3.5. We thus assume that E is countable and
does not contain an infinite independent set.

If Γ has an element of infinite order, then Γ contains a copy of Z, which
contains Hadamard sets of ratio greater than 3. These are ε-Kronecker sets
with ε <

√
2 [6, Prop. 2·3] and consequently FZI0(U) with bounded con-

stants, by Theorem 3.1.

We thus assume that Γ is a countable torsion group with no infinite
independent sets. By [2, 20.1], Γ can be identified with a subgroup of the
direct sum

⊕
β C(p∞β ). If that direct sum is minimal with respect to contain-

ing Γ , then the direct sum must be finite, since otherwise induction would
show that Γ contained an infinite independent set. Therefore the projection
of Γ onto one of the summands must be infinite. Applying Proposition 3.4
gives the desired set in C(p∞β ). Taking the corresponding characters in Γ
completes the proof.

4.2. E has large FZI0 sets

Theorem 4.4. Let E be an infinite subset of the discrete abelian group Γ .

Then E has an infinite FZI0 subset of the same cardinality as E.

Proof. If E is uncountable, then E contains a maximal independent sub-
set F of the same cardinality as E by Lemma 4.3, and we may apply Propo-
sition 3.5.
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We thus assume that E = {χn} is countable. By [2, 20.1], Γ can be
identified with a subgroup of a divisible group Λ which is a direct sum

⊕

α

Qα ⊕
⊕

β

C(p∞β ),

where the Qα are copies of the rationals in R. We may assume Γ = Λ. For
convenience, let us write Γ =

⊕
ℓ Γℓ where each Γℓ is one of Q or C(p∞),

the direct sum is (at most) countable, and for each ℓ there is some character
χn ∈ E whose projection onto Γℓ is not trivial.

Let I = {ℓ : there is some n such that the projection of χn onto Γℓ is
not trivial and not of order two}.
Case 1: #I is infinite. As each χn has a non-trivial projection onto only

finitely many factors Γi, it follows that there must be an infinite subsequence
(not renamed) such that the projection onto Γαn is of order ≥ 3, but the
projections of χm onto Γαn are trivial for m < n. As these χn are of order
at least three, they form an ε-Kronecker set for any ε > 1, and hence even
an FZI0(U) set with bounded constants.

Case 2: #I is finite. We distinguish between two subcases.
(a) There is some index ℓ such that the projection of χn onto Γℓ is infinite.

In this case apply Propositions 3.3 or 3.4 to find an infinite ε-Kronecker
subset of these projections, and therefore of the original χn (for any ε > 0).

(b) Otherwise it follows that the projections of χn onto
⊕

ℓ∈I Γℓ form
a finite set and hence infinitely many of them have the same projection,
say γ. We restrict ourselves to this set of projections (again, not renamed).
If ℓ 6∈ I, then Γℓ = C(2∞) and the projection of χn onto Γℓ is either trivial
or is (the unique element) of order two. As the projections of these χn onto⊕

ℓ∈I Γℓ coincide, their projections onto
⊕

ℓ∈Ic Γℓ must be distinct.
Hence the complement Ic must be infinite and therefore we can obtain an

infinite independent set as in Case 1, but consisting of elements of order 2,
say {γj}. Such a set is FZI0(U) with bounded constants: we need only
to interpolate real functions ϕ, since the characters are of order 2. The
corresponding characters are of the form γ ⊕ γj . If γ is of order one or
two it is obvious that {γ ⊕ γj} is FZI0. To see that {γ ⊕ γj} is FZI0

otherwise, we apply Proposition 2.4: Given any choice of signs {rj} we can
find µ ∈ M+

d (
⊕

ℓ∈Ic Γℓ) such that µ̂(γj) = rj . As γ2 6= 1 we can choose

ν ∈ M+
d (

⊕
ℓ∈Ic Γℓ) such that ν̂(γ) = i. Then δ̂1 × µ(γ ⊕ γj) = rj and

ν̂ × µ(γ ⊕ γj) = irj.

Remark 4.5. E need not contain an FZI0(U) set for small U . Take,

for instance, G = Z3 × D2 and let ̺ ∈ Ẑ3, ̺ 6= 1. Let F ⊂ D̂2 be an
independent set. The set E = {̺} × F is FZI0 (it is just a special case of
Case 2(b) above) but no infinite subset is FZI0({0}×D2) as it is clearly only
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possible to interpolate real-valued sequences by positive measures supported
on {0} × D2.

4.3. Existence of FZI0(U) subsets with bounded constants

Theorem 4.6. Let G be a compact connected abelian group. Then every

infinite E ⊂ Γ contains an FZI0(U) set with bounded constants of the same

cardinality.

Corollary 4.7. Γ contains a subset of cardinality #Γ that is I0(U)
for all open U .

Proof. If E is uncountable, then E has an independent set of the same
cardinality and Proposition 3.5 completes the proof.

We may thus assume that E, and therefore Γ , is countable. Because Γ
has no elements of finite order, Γ is contained in the countable direct sum
of copies of Q, and we may assume that Γ is such a sum.

Suppose that the projection of E on any one of the factors Q is infinite.
Then by Proposition 3.3, we have an infinite FZI0(U) set with bounded
constants.

Otherwise, E has non-zero projections on an infinite number of the fac-
tors. We again have an infinite independent set of elements whose order is
infinite, so we have an FZI0(U) set with bounded constants by Proposi-
tion 3.5.

5. Translation of FZI0 sets. In contrast to the situation for I0 sets,
translation does not in general preserve RI0 or FZI0 sets.

Example 5.1 (A translate of an FZI0 set which is not RI0). Let E1 =
{16j + 4j : j ≥ 1}, E2 = {−16j − 2 : j ≥ 1}, and E = E1 ∪E2. The two sets
E1, E2 are FZI0(U) with bounded constants, being ε-Kronecker for ε < 1. If

we evaluate δ̂0+ δ̂π/2 on E, we get 2 on E1 and 0 on E2. Standard arguments
show that E is FZI0(U). But E+1 is not even RI0 because (E+1)∪(−E−1)
is not I0.

One reason for the interest in sets that are FZI0(U) with bounded con-
stants is that under this (additional) assumption FZI0 is preserved under
translation.

Proposition 5.2. Suppose E is an antisymmetric FZI0(U) set with

bounded constants and suppose F is a finite, asymmetric set.

(1) Suppose there exists a neighbourhood V ⊂ G such that F is FZI0(V ).
Then there is a finite set ∆ such that (E \ ∆) · F is FZI0(V ).

(2) If F−1 ∩ E = ∅ then E · F is FZI0.

Proof. (2) follows from (1), since a finite set is FZI0(G) and the union
of a finite set with an FZI0 set is FZI0 (Prop. 2.9).
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(1) Assume F ={λ1, . . . , λM}. For each k =1, . . . , M let µk =
∑∞

j=1 ajkδxjk

∈ M+
d (V ) be such that

µ̂k(λi) =

{
1 if i = k,

µ̂k(λi) = 0 otherwise.

(Here we use the fact that F is asymmetric, as well as FZI0(V ).) Choose

Nk such that ‖µk − ∑Nk

j=1 ajkδxjk
‖ < ε/M.

Let K be as in the definition of FZI0(U) with bounded constants (Defi-
nition 3) and let εjk = ε2−j/(KMajk). Choose neighbourhoods Ujk ⊂ V of
xjk such that |λi(xjk) − λi(y)| < εjk for y ∈ Ujk, i = 1, . . . , M.

Let ϕ ∈ ℓ∞(E · F ) be a given Hermitian function of norm one. Select
finite sets ∆jk ⊂ Γ and measures νjk ∈ M+

d (Ujk), of norm at most K,

such that ν̂jk(χ) = ϕ(χλk) for χ ∈ E \ ∆jk. Put ∆ =
⋃M

k=1

⋃Nk

j=1 ∆jk and

let µ =
∑

j,k ajkνjk ∈ M+
d (V ). From (5) we know that for χ ∈ E \ ∆ and

λi ∈ F , ν̂jk(χλi) = λi(xjk)ν̂jk(χ) + Eijk with error term Eijk satisfying
|Eijk| ≤ Kεjk. Thus

|µ̂(χλi) − ϕ(χλi)| ≤
∣∣∣

M∑

k=1

Nk∑

j=1

ajkλi(xjk)ϕ(χλk) − ϕ(χλi)
∣∣∣ +

∑

j,k

ε2−jajk

ajkM
.

As |∑Nk

j=1 ajkλi(xjk) − µ̂k(λi)| ≤ ε/M and µ̂k(λi) = 1 if i = k and 0 else, it
follows that |µ̂(χλi) − ϕ(χλi)| ≤ 2ε. Thus (E \ ∆) · F is FZI0(V ).

A set can be FZI0(U) for all open U without bounded constants:

Example 5.3. The set {9j} ∪ {9j + 3j + 1} is FZI0(U) for all open U ,
but not with bounded constants.

Proof. To see this assume U = [−π/9N , π/9N ]. With a = π/9N we get

δ̂a(9
j) = −1 for j > N and |δ̂a(9

j +3j +1)+1| ≥ ε > 0. Since the transform
of δ0 + δa is 0 on {9j} and bounded away from zero on {9j + 3j + 1}, it
follows that {9j}j>N ∪ {9j + 3j + 1}j>N is FZI0(U). This set is not even
I0(U) with bounded constants as E ∪ (E + 1) is not I0 [7, 3.1].
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