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Atomic decomposition on Hardy–Sobolev spaces

by

Yong-Kum Cho and Joonil Kim (Seoul)

Abstract. As a natural extension of Lp Sobolev spaces, we consider Hardy–Sobolev
spaces and establish an atomic decomposition theorem, analogous to the atomic decompo-
sition characterization of Hardy spaces. As an application, we deduce several embedding
results for Hardy–Sobolev spaces.

1. Introduction. Let Hp be the real-variable Hardy space on R
n for

p > 0 . Given a positive integer ℓ, the homogeneous Hardy–Sobolev space Ḣp
ℓ

consists of all tempered distributions f on R
n such that each weak derivative

∂σf of order |σ| = ℓ belongs to Hp. We define

‖f‖Ḣp
ℓ

=
∑

|σ|=ℓ

‖∂σf‖Hp ,

a quasi-norm on Ḣp
ℓ modulo polynomials of degree less than ℓ. For p > 1, Ḣp

ℓ

is identical to the homogeneous Lp Sobolev space Ẇ ℓ,p. For 0 < p ≤ 1, it is
well known that the Hp provide an ideal alternative of the Lp and thus the
Ḣp

ℓ may be thought as a natural substitute of the Ẇ ℓ,p. The inhomogeneous

Hardy–Sobolev space Hp
ℓ is defined as Hp

ℓ = Hp∩Ḣp
ℓ with the quasi-norm (1)

‖f‖Hp
ℓ

= ‖f‖Hp + ‖f‖Ḣp
ℓ
≈

∑

|σ|≤ℓ

∥∥∂σf‖Hp .

The primary purpose of the present paper is to obtain an atomic de-
composition theorem on Hardy–Sobolev spaces, analogous to the atomic
decomposition characterization of Hardy spaces.

Briefly, the atomic decomposition theorem of Coifman [Co] and Latter
[L] asserts that f ∈ Hp for 0 < p ≤ 1 if and only if there exist a sequence (ak)
of Hp atoms and a sequence (λk) of scalars with

∑ |λk|p <∞ such that f =
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(1) Throughout this article, the symbol ≈ stands for quasi-norm equivalence.
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26 Y.-K. Cho and J. Kim

∑
λkak in the sense of distributions. An Hp atom is any bounded function

a with support in a cube Q, with ‖a‖∞ ≤ |Q|−1/p, and with vanishing
moments at least up to order n(1/p− 1), that is,\

xσa(x)dx = 0 for all |σ| ≤ np,

where np denotes the smallest integer greater than or equal to n(1/p− 1).
For each positive integer m and a point z ∈ R

n, we denote by ∆m
z the

mth forward difference operator defined inductively as

∆zf(x) = f(x+ z) − f(x), ∆m
z f(x) = ∆z[∆

m−1
z f ](x) (m ≥ 2)

for each function f on R
n. We recall from [G] that a bounded continuous

function f on R
n belongs to the Lipschitz space Λα(Rn) of order α > 0 if

|∆[α]+1
z f(x)| ≤ C|z|α (x, z ∈ R

n)

for some constant C > 0. When α = k + δ for some k ∈ Z+, 0 < δ < 1, it is
the space of Ck functions f with bounded derivatives up to order k and

|∆z[∂
σf ](x)| ≤ C|z|δ (x, z ∈ R

n)

for all |σ| = k and for some constant C > 0. If α is an integer, then it is the
space of Cα−1 functions f with bounded derivatives up to order α− 1 and

|∆2
z[∂

σf ](x)| ≤ C|z| (x, z ∈ R
n)

for all |σ| = α− 1 and for some constant C > 0.
The notion of atoms relevant to Hardy–Sobolev spaces is given as follows.

Definition 1.1. A function b ∈ Λℓ(R
n) is called an atom for Ḣp

ℓ if it
has the following properties.

(i) It has support in a cube Q.
(ii) ‖b‖∞ ≤ |Q|−1/p+ℓ/n, |∆ℓ+1

z b(x)| ≤ |Q|−1/p|z|ℓ (x, z ∈ R
n).

(iii) For 0 < p ≤ n/(n+ℓ), it has vanishing moments at least up to order
n(1/p− ℓ/n− 1).

Owing to the method of our proofs and the embedding nature of the
statements, it turns out that the hypotheses and the convergence behavior
of atomic decompositions on Hardy–Sobolev spaces vary with the range
of p’s. Accordingly, we put our results into two separate statements.

In the range 0 < p ≤ n/ℓ, we have the following result that resembles
the aforementioned theorem of Coifman and Latter.

Theorem A. Let ℓ be a positive integer.

(a) If f ∈ Ḣp
ℓ for 0 < p < n/ℓ or f ∈ Hp

ℓ for p = n/ℓ, then there exist a

sequence (µk) of scalars and a sequence (bk) of Ḣp
ℓ atoms such that

f =
∑
µkbk in the sense of distributions and

∑
|µk|p ≤ C‖f‖p

Ḣp
ℓ

.
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Moreover , the series
∑
µkbk converges absolutely almost everywhere

and represents a locally integrable function when p ≥ n/(n+ ℓ).
(b) For 0 < p ≤ min(n/ℓ, 1), suppose that f =

∑
µkbk in the sense of

distributions, where (µk) is a sequence of scalars with
∑ |µk|p < ∞

and (bk) is a sequence of Ḣp
ℓ atoms. Then f ∈ Ḣp

ℓ and

‖f‖p

Ḣp
ℓ

≤ C
∑

|µk|p.

As a particular consequence, Theorem A gives an atomic decomposition
characterization of Ḣp

ℓ for 0 < p ≤ 1 when 1 ≤ ℓ < n.

In the range p > n/ℓ, it turns out that each distribution of Hp
ℓ coincides

with a bounded continuous function satisfying a certain Lipschitz estimate
and has an atomic decomposition with absolute convergence.

Theorem B. Suppose that f ∈ Hp
ℓ for n/ℓ < p <∞. Then f coincides

with a function in the class Λℓ−n/p having the following properties:

(i) ‖f‖∞ ≤ C‖f‖Hp
ℓ

and |∆m
z f(x)| ≤ C‖f‖Ḣp

ℓ
|z|ℓ−n/p (x, z ∈ R

n) for

any integer m > ℓ− n/p.
(ii) There exist a sequence (µk) of scalars and a sequence (bk) of Ḣp

ℓ
atoms such that f =

∑
µkbk with absolute convergence and
∑

|µk|p ≤ C‖f‖p

Ḣp
ℓ

.

It is the size and Lipschitz conditions on atoms that provide a basic
insight into the structure of Hp Sobolev spaces. For instance, each atom b
for Ḣp

ℓ is an Hq atom with 1/q = 1/p − ℓ/n when q ≤ 1, which indicates
how the Sobolev exponent arises. More extensively, we shall derive several
Sobolev embedding inequalities as an application of our results.

It is possible to characterize Ḣp
ℓ by certain variants of non-tangential

maximal functions. The proofs of our results rely on such a characteriza-
tion and the standard method of decomposing distributions via Calderón’s
reproducing formula and Whitney’s decomposition lemma as in the article
[Ca] of Calderón and the book [GR] of Garćıa-Cuerva and Rubio de Francia.

We finally remark that there are other atomic decomposition results
different from ours as well as alternative definitions of Hardy–Sobolev spaces.
We shall state some of those results in Section 5 and compare them with
our results.

Acknowledgements. The authors are grateful to the anonymous ref-
eree who pointed out the existence of atomic decompositions of Triebel–
Lizorkin spaces due to Frazier and Jawerth, and made a few valuable com-
ments.
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2. A characterization. For a tempered distribution f and a Schwartz
function ϕ on R

n, let ϕt(x) = t−nϕ(x/t) for each t > 0 and u(x, t) =
(f ∗ ϕt)(x). One of the several equivalent characterizing means of Hp is the
non-tangential maximal function defined by

u∗δ(x) = sup
|y−x|<δt

|u(y, t)| (δ > 0).

According to the fundamental work of Fefferman and Stein [FS], f ∈ Hp for
0 < p ≤ ∞ if and only if u∗δ ∈ Lp for any choice of ϕ satisfying ϕ̂(0) 6= 0 and
δ > 0. Set ‖f‖Hp = ‖u∗δ‖p. As usual, ϕ̂ stands for the Fourier transform of
ϕ given by

ϕ̂(ξ) =
\

Rn

e−iξ·xϕ(x) dx (ξ ∈ R
n).

Under certain admissibility conditions on f and ϕ, it turns out that a
variant of the non-tangential maximal functions characterizes Ḣp

ℓ .

Definition 2.1. Given a positive integer ℓ, define

Mℓ
δ(x, u) = sup

|y−x|<δt
t−ℓ|u(y, t)| (δ > 0).

Lemma 2.2 ([CT], Lemma 4.1). For a Schwartz function ϕ on R
n, the

following statements are equivalent.

(a) supt>0 |ϕ̂(tξ)| > 0 for each ξ 6= 0.

(b) There exists a Schwartz function ζ such that ζ̂ has compact support

away from the origin and

∞\
0

ϕ̂(tξ)ζ̂(tξ)
dt

t
= 1 (ξ 6= 0).

This lemma leads instantly to the so-called Calderón’s reproducing for-
mula that plays a crucial role in establishing our result. Let Oℓ be the class
of all Schwartz functions ϕ on R

n with vanishing moments up to order ℓ− 1
and supt>0 |ϕ̂(tξ)| > 0 for ξ 6= 0. (See [BPT] and [Ch2] for the detailed
properties of Oℓ.)

Theorem 2.3 ([Ch1, Theorem I]). Let f be a tempered distribution on

R
n satisfying the following admissibity condition: either f̂ coincides with a

locally integrable function away from the origin or f ∈ Lq for some 1 ≤
q ≤ ∞. Then f ∈ Ḣp

ℓ for 0 < p ≤ ∞ if and only if Mℓ
δ(x, u) ∈ Lp for any

δ > 0 and ϕ ∈ Oℓ with

‖f‖Ḣp
ℓ
≈ ‖Mℓ

δ(x, u)‖p.

Moreover , different choices of δ > 0 or ϕ ∈ Oℓ yield equivalent norms.
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Remark 2.4. It can be shown that statement (a) or (b) in Lemma 2.2
is equivalent to

∞\
0

|ϕ̂(tξ)|2 dt
t

≥ c > 0 (ξ 6= 0)

(see [Ch2, Lemma A2]). Regarding the admissibility condition on f in The-
orem 2.3, we observe the following facts that will be used later on.

(i) Let f ∈ Hp. If p ≤ 1, then it is known ([CT, Theorem 4.4]) that f̂
is a continuous function satisfying

|f̂(ξ)| ≤ C‖f‖Hp |ξ|n(1/p−1) (ξ ∈ R
n).

Thus f satisfies the admissibility condition for any p > 0.
(ii) Let f ∈ Ḣp

ℓ . Since (∂σf )̂ (ξ) = (iξ)σf̂(ξ), the preceding remark

shows that f̂ is a locally integrable function away from the origin
when p ≤ 1. In the case 1 < p < n/ℓ, f ∈ Lq for 1/q = 1/p− ℓ/n by
the usual Lp Sobolev embedding theorem (see [A]). Thus f satisfies
the admissibility condition automatically when 0 < p < n/ℓ or 0 <
p ≤ 1.

3. Preliminary lemmas. The purpose of this section is to state and
prove a few preliminary results in preparation for the proofs of Theorems A
and B. To begin with, consider the difference operators ∆m

z . In addition to
the well known identity

(1) ∆m
z f(x) =

m∑

k=0

(−1)m−k

(
m

k

)
f(x+ kz),

we shall need the following form of the mean value theorem.

Lemma 3.1. If f ∈ Cm(Rn) for m ≥ 1, then for any x, z ∈ R
n,

∆m
z f(x) = m!

∑

|σ|=m

zσ

σ!

1\
0

· · ·
1\
0

(∂σf)[x+ (θ1 + · · · + θm)z] dθ1 · · · dθm.

Proof. The fundamental theorem of calculus shows that

∆zf(x) = (z1∂1 + · · · + zn∂n)

1\
0

f(x+ θz) dθ.

It follows that ∆m
z operates on Cm functions by the formula

∆m
z f(x) =

(z1∂1 + · · · + zn∂n)m
{1\

0

· · ·
1\
0

f [x+ (θ1 + · · · + θm)z] dθ1 · · · dθm

}
.
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Applying the multinomial theorem and changing the order of integrations,
we obtain the stated result immediately.

We next derive an elementary combinatorial identity.

Lemma 3.2. For a positive integer m,
m∑

k=1

(−1)k

(
m

k

)
kj =

{
0 for 1 ≤ j < m,

( − 1)mm! for j = m.

Proof. Apply the differential operator D = td/dt to the identity

(1 + t)m =

m∑

k=0

(
m

k

)
tk

repeatedly and then evaluate at t = −1.

Lemma 3.3. If b is an Ḣp
ℓ atom for 0 < p <∞, then b ∈ Ḣp

ℓ with

‖b‖Ḣp
ℓ
≤ Cp,ℓ

where the constant Cp,ℓ depends on p, ℓ, n but not on b.

Proof. Let b be an atom supported in the cube Q. In view of translation
invariance, we may assume that the center of Q lies at the origin. Choose a
non-zero radial function ζ ∈ C∞

c (B(0, 1)) with ζ̂(0) = 0 and let

Φ(x) =
ℓ+1∑

k=1

(−1)ℓ+1−k

(
ℓ+ 1

k

)
1

kn
ζ

(
−x
k

)
.

Then Φ̂(tξ) does not vanish identically as a function of t > 0 for ξ 6= 0, and

(∂σΦ̂)(0) = (∂σ ζ̂)(0)
ℓ+1∑

k=1

(−1)ℓ+1−k

(
ℓ+ 1

k

)
(−k)|σ| = 0

for all σ with |σ| ≤ ℓ in view of Lemma 3.2. Thus Φ ∈ Oℓ. Put now U(y, t) =
(b∗Φt)(y). Since b ∈ L1, Theorem 2.3 is applicable and so it suffices to verify
‖Mℓ

1(x, U)‖p ≤ Cp,ℓ.

On account of the identity (1) and ζ̂(0) = 0, we have

U(y, t) =
\

|z|<t

(∆ℓ+1
z b)(y)ζt(z) dz.

By the Lipschitz condition on b in Definition 1.1(ii),

|U(y, t)| ≤ ‖ζ‖1|Q|−1/ptℓ

for any y ∈ R
n and t > 0. Thus Mℓ

1(x, U) ≤ ‖ζ‖1|Q|−1/p and\
3
√

nQ

[Mℓ
1(x, U)]pdx ≤ C.
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For x ∈ (3
√
nQ)c, we have |x| > 3

√
n l(Q)/2 and |z| < |x|/3 for all

z ∈ Q. Since Φ is supported in the unit ball, this implies that U(y, t) = 0
for |y−x| < t ≤ |x|/3. Assume t > |x|/3. If p > n/(n+ ℓ), then we estimate

t−ℓ|U(y, t)| ≤ ‖Φ‖∞|Q|−1/p+ℓ/n+1|x|−(n+ℓ).

As Mℓ
1(x, U) satisfies the same estimate, we have\

(3
√

nQ)c

[Mℓ
1(x, U)]p dx ≤ C.

In the case 0 < p ≤ n/(n + ℓ), let Np denote the smallest integer greater
than or equal to n(1/p− ℓ/n− 1). Using the moment cancelation property
of b, we can write

U(y, t) =
\
Q

b(z)

{
Φt(y − z) −

∑

|σ|≤Np

(∂σΦt)(y)

σ!
(−z)σ

}
dz

and so Taylor’s formula gives the estimate

t−ℓ|U(y, t)| ≤ C|Q|−1/p+ℓ/n+1+(1/n)(Np+1)|x|−(n+ℓ+Np+1).

Since Mℓ
1(x, U) satisfies the same estimate and −(n+ ℓ+Np + 1)p+n < 0,

we obtain the same conclusion as above.

Lemma 3.4. Let ϕ ∈ C∞
c (B(0, 1)) and let ζ be a Schwartz function on

R
n such that ζ̂ has compact support away from the origin. For a tempered

distribution f on R
n, define

(2) g(x) =

∞\
0

(f ∗ ζt ∗ ϕt)(x)
dt

t

if the integral converges.

(a) Let f ∈ Ḣp
ℓ for 0 < p < n/ℓ and u(y, t) = (f ∗ ζt)(y). Then the

integral (2) converges absolutely almost everywhere and

|g(x)| ≤ C‖f‖pℓ/n

Ḣp
ℓ

[Mℓ
1(x, u)]

p(1/p−ℓ/n).

If f ∈ Hp
ℓ for p = n/ℓ and ϕ̂(0) 6= 0, then the integral also converges

and

|g(x)| ≤ C‖f‖1/2
Hp [Mℓ

1(x, u)]
1/2.

(b) Let f ∈ Hp
ℓ for n/ℓ < p < ∞ and ϕ̂(0) 6= 0. Then the integral (2)

converges absolutely everywhere, g ∈ Λℓ−n/p and

‖g‖∞ ≤ C‖f‖Hp
ℓ
, |∆m

z g(x)| ≤ C‖f‖Ḣp
ℓ
|z|ℓ−n/p (x, z ∈ R

n)

for any integer m > ℓ− n/p.
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Proof. To prove (a), consider first the case 0 < p < n/ℓ. Write the
integral in (2) as

∞\
0

\
B(x,t)

u(y, t)ϕt(x− y) dy
dt

t
.

By Theorem 2.3 and Remark 2.4, Mℓ
1(x, u) ∈ Lp and

‖Mℓ
1(x, u)‖p ≈ ‖f‖Ḣp

ℓ
.

Fix a point y ∈ R
n. For any z ∈ B(y, t), we have by definition

(3) |u(y, t)| ≤ tℓMℓ
1(z, u).

Raising this inequality to the power p and then integrating over B(y, t) with
respect to dz, we get

(4) |u(y, t)| ≤ Ctℓ−n/p‖Mℓ
1(z, u)‖p.

It follows readily from the estimates (3) and (4) that the integral
∞\
0

\
B(x,t)

|u(y, t)| |ϕt(x− y)| dy dt
t

is bounded by

‖ϕ‖1

{
Mℓ

1(x, u)

A\
0

tℓ
dt

t
+ C‖Mℓ

1(z, u)‖p

∞\
A

tℓ−n/p dt

t

}

≤ C{Mℓ
1(x, u)A

ℓ + ‖Mℓ
1(z, u)‖pA

ℓ−n/p}
for any A > 0. Choosing A so that

Mℓ
1(x, u)A

ℓ = ‖Mℓ
1(z, u)‖pA

ℓ−n/p,

we obtain the desired estimate.

In order to prove the remaining case p = n/ℓ and (b), assume f ∈ Hp
ℓ

and put v(y, t) = (f ∗ ϕt)(y). Since ϕ̂(0) 6= 0, the non-tangential maximal
function v∗(x) = sup|y−x|<t |v(y, t)| is in Lp with ‖v∗‖p ≈ ‖f‖Hp . Proceeding
as above, we have the well known estimate

(5) |v(y, t)| ≤ Ct−n/p‖f‖Hp

valid for all y ∈ R
n. In the case p = n/ℓ, we use the estimates (3) and (5)

as before to obtain the stated property. In the case p > n/ℓ, if we set

G(t) =

{
‖f‖Ḣp

ℓ
tℓ−n/p for 0 < t ≤ 1,

‖f‖Hpt−n/p for t > 1,

then |(f ∗ ζt ∗ ϕt)(x)| ≤ CG(t) for all x ∈ R
n and t > 0 because of the

estimates (4) and (5). Since G is integrable on (0,∞) with respect to dt/t,
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the integral in (2) converges absolutely for every x ∈ R
n with

|g(x)| ≤ C

∞\
0

G(t)
dt

t
≤ C‖f‖Hp

ℓ
(x ∈ R

n).

Moreover, as the function f ∗ ζt ∗ ϕt is smooth, the continuity of g follows
from the dominated convergence theorem. To verify the Lipschitz estimate,
note that

∆m
z g(x) =

∞\
0

\
B(x,t)

u(y, t)[∆m
z ϕt(x− y)] dy

dt

t
.

Using Lemma 3.1 and the identity (1), it is plain to observe\
Rn

|∆m
z ϕt(x− y)| dy ≤ Cmin{1, |z/t|m}.

By the estimate (4), we obtain in turn

|∆m
z g(x)| ≤ C‖f‖Ḣp

ℓ

{|z|\
0

tℓ−n/p dt

t
+ |z|m

∞\
|z|
tℓ−m−n/p dt

t

}

≤ C‖f‖Ḣp
ℓ
|z|ℓ−n/p.

Remark 3.5. The integral in (2) converges if the double limit

lim
ε→0

N→∞

N\
ε

(f ∗ ζt ∗ ϕt)(x)
dt

t

exists. Assume that f ∈ Ḣp
ℓ for p > 0.

(i) Owing to the estimate (3), the limit

lim
ε→0

1\
ε

(f ∗ ζt ∗ ϕt)(x)
dt

t

exists for almost every x for any p > 0.
(ii) If 0 < p < n/ℓ, the estimate (4) ensures that the limit

lim
N→∞

N\
1

(f ∗ ζt ∗ ϕt)(x)
dt

t

exists for every x. However, in the case p ≥ n/ℓ, it is necessary to
impose an extra condition on f such as f ∈ Hp in order to obtain
the convergence of this limit.

4. Proofs of Theorems A and B

Proof of Theorem A. To prove (a), assume first f ∈ Ḣp
ℓ for 0 < p < n/ℓ.

For the sake of clarity, we divide our proof into several stages.
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1. Take a function ϕ ∈ C∞
c (B(0, 1)) with vanishing moments up to order

Np, the smallest integer greater than or equal to n(1/p − ℓ/n − 1), in the
case p ≤ n/(n + ℓ) and supt>0 |ϕ̂(tξ)| > 0 for ξ 6= 0. By Lemma 2.2, there

exists a Schwartz function ζ such that ζ̂ has compact support away from
the origin and

∞\
0

ϕ̂(tξ)ζ̂(tξ)
dt

t
= 1 (ξ 6= 0).

Let u(y, t) = (f ∗ ζt)(y). By Theorem 2.3 and Remark 2.4, Mℓ
δ(x, u) ∈ Lp

for any δ > 0 and ‖Mℓ
δ(x, u)‖p ≈ ‖f‖Ḣp

ℓ
. According to Lemma 3.4(a), the

integral

g(x) =

∞\
0

(f ∗ ζt ∗ ϕt)(x)
dt

t
=

∞\
0

\
Rn

u(y, t)ϕt(x− y) dy
dt

t

converges absolutely for almost every x ∈ R
n. Upon taking Fourier trans-

forms, it is plain to see that

(f, η) = lim
ε→0

N→∞

\
Rn

[N\
ε

(f ∗ ζt ∗ ϕt)(x)
dt

t

]
η(x) dx

=
\

Rn

[∞\
0

(f ∗ ζt ∗ ϕt)(x)
dt

t

]
η(x) dx =

\
Rn

g(x)η(x) dx

for every Schwartz function η (see [Ca] and [GR, pp. 260–266] for details) (2).

2. Fix δ with δ ≥ 6
√
n. For each k ∈ Z, put

Ωk = {x ∈ R
n : Mℓ

δ(x, u) > 2k}.
Since the maximal function Mℓ

δ(x, u) is lower semicontinuous, the Ωk is a
decreasing sequence of open sets. We use Whitney’s decomposition lemma
to write Ωk =

⋃
j≥1Q

k
j , where (Qk

j ) is a sequence of non-overlapping cubes
satisfying

diam(Qk
j ) ≤ dist(Qk

j , Ω
c
k) ≤ 4 diam(Qk

j ).

For any cube Q ⊂ R
n with side length l(Q), let Q̂ denote the square tent

Q̂ = Q× (0, l(Q)] in the upper-half space R
n+1
+ . Setting

Ω̂k =
⋃

j≥1

Q̂k
j , T k

j = Q̂k
j − Ω̂k+1,

we have the following decomposition:

(6) g =
∑

k∈Z

∑

j≥1

ak
j , ak

j (x) =
\\
T k

j

u(y, t)ϕt(x− y) dy
dt

t
.

(2) One cannot simply claim f = g unless g itself defines a tempered distribution.
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3. Let us investigate the properties of ak
j :

(i) It has support in Q̃k
j = 3Qk

j , the concentric triple of Qk
j .

(ii) It is bounded and continuous with ‖ak
j ‖∞ ≤ Aℓ2

k|Q̃k
j |ℓ/n.

As to the boundedness, we claim that

(7) |u(y, t)| ≤ 2k+1tℓ for each (y, t) ∈ T k
j .

To see this, take any (y, t) ∈ T k
j . If y ∈ Qk

j − Ωk+1, then it is obvious. If

y ∈ Qk
j ∩Ωk+1, then y ∈ Qk+1

m for some m. By the definition of T k
j , we have

t > l(Qk+1
m ). Since dist(Qk+1

m , Ωc
k+1) ≤ 4 diam(Qk+1

m ), we can find a point

z ∈ Ωc
k+1 satisfying dist(z,Qk+1

m ) ≤ 5 diam(Qk+1
m ). Hence

|y − z| ≤ 6 diam(Qk+1
m ) < 6

√
n t ≤ δt.

It follows that

|u(y, t)| ≤ tℓMℓ
δ(z, u) ≤ 2k+1tℓ,

proving the claim. Using the estimate (7), we have

|ak
j (x)| ≤ 2k+1

∫∫

T k
j

|ϕt(x− y)|tℓ dy dt
t

≤ 2k+1‖ϕ‖1

l(Qk
j )\

0

tℓ
dt

t
= Aℓ2

k|Q̃k
j |ℓ/n.

The continuity of ak
j follows plainly from the dominated convergence

theorem on account of the estimate (7).

(iii) For all x, z ∈ R
n, it satisfies |(∆ℓ+1

z ak
j )(x)| ≤ Bℓ2

k|z|ℓ.
To verify this, use the estimate (7) to observe

|(∆ℓ+1
z ak

j )(x)| ≤ 2k+1
\\
T k

j

|∆ℓ+1
z ϕt(x− y)|tℓ dy dt

t
.

An application of Lemma 3.1 and the identity (1) yield the estimate\
Rn

|∆ℓ+1
z ϕt(x− y)|dy ≤ Cmin{1, |z/t|ℓ+1}.

Consequently, we have

|(∆ℓ+1
z ak

j )(x)| ≤ C2k+1

(|z|\
0

tℓ
dt

t
+ |z|ℓ+1

∞\
|z|
t−1 dt

t

)
,

which gives the desired inequality upon integrating.

(iv) It has vanishing moments up to order Np when p ≤ n/(n+ ℓ).
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4. To finish our proof, we let Cℓ = max(Aℓ, Bℓ) and

µk
j = Cℓ2

k|Q̃k
j |1/p, bkj (x) =

ak
j (x)

Cℓ2k|Q̃k
j |1/p

so that g =
∑
µk

j b
k
j . Because of properties (i) to (iv) in the preceding stage,

each bkj is an atom for Ḣp
ℓ . Enumerating suitably, we now have the desired

atomic decomposition of f .

It remains to prove the size estimate for
∑ |µk

j |p. Let h be any non-
negative measurable function on R

n. For p > 0, observe\
Rn

[h(x)]p dx = p
∑

k∈Z

2k+1\
2k

sp−1|{h > s}| ds ≥ (2p − 1)2−p
∑

k∈Z

2kp|{h > 2k}|.

Rewriting, we have

(8)
∑

k∈Z

2kp|{h > 2k}| ≤ 2p

2p − 1
‖h‖p

p.

Exploiting this inequality, we proceed to estimate

∑

k,j

|µk
j |p = C

∑

k∈Z

2kp
( ∞∑

j=1

|Qk
j |

)
= C

∑

k∈Z

2kp|Ωk|

= C
∑

k∈Z

2kp|{Mℓ
δ(x, u) > 2k}|

≤ C‖Mℓ
δ(x, u)‖p

p ≈ C‖f‖p

Ḣp
ℓ

.

The proof of (a) in the case 0 < p < n/ℓ is now complete.

As for the proof of the case p = n/ℓ, we take ϕ ∈ C∞
c (B(0, 1)) with

ϕ̂(0) 6= 0 in the first stage. Then Lemma 3.4 shows that the integral

g(x) =

∞\
0

(f ∗ ζt ∗ ϕt)(x)
dt

t

converges absolutely for almost every x ∈ R
n and the rest of the proof is

the same as above.

Regarding (b), let 0 < p ≤ min(n/ℓ, 1) and suppose that f =
∑
µkbk

where (µk) is a sequence of scalars with
∑ |µk|p <∞ and (bk) is a sequence

of Ḣp
ℓ atoms. Choose any ψ ∈ Oℓ and let

u(y, t) = (f ∗ ψt)(y), uk(y, t) = (bk ∗ ψt)(y).
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For any δ > 0, we have Mℓ
δ(x, u) ≤

∑ |µk|Mℓ
δ(x, uk). Since p ≤ 1,\

Rn

[Mℓ
δ(x, u)]

p dx ≤
∑

|µk|p
\

Rn

[Mℓ
δ(x, uk)]

p dx

≤ C
∑

|µk|p‖bk‖p

Ḣp
ℓ

≤ C
∑

|µk|p

where the last inequality results from Lemma 3.3. Thus the desired con-
clusion is a consequence of Theorem 2.3 once we verify the admissibility
condition that either f̂ coincides with a locally integrable function away
from the origin or f ∈ Lq for some 1 ≤ q ≤ ∞.

First, consider the case p ≤ n/(n+ ℓ). By definition, each Ḣp
ℓ atom b is

an Hq atom with 1/q = 1/p− ℓ/n. It follows that

‖f‖q
Hq ≤

∑
|µk|q‖bk‖q

Hq ≤ C
∑

|µk|q ≤ C
(∑

|µk|p
)q/p

since p < q ≤ 1. Thus f ∈ Hq and f satisfies the admissibility condition in
view of Remark 2.4. Next consider the case n/(n+ ℓ) < p < n/ℓ and p ≤ 1.
With q determined by 1/q = 1/p− ℓ/n < 1, we observe that each Ḣp

ℓ atom
b is an Lq function with ‖b‖q ≤ 1. Therefore f ∈ Lq because

‖f‖q ≤
∑

|µk| ‖bk‖q ≤
∑

|µk| ≤
(∑

|µk|p
)1/p

.

In the last case p = n/ℓ ≤ 1, each Ḣp
ℓ atom b satisfies ‖b‖∞ ≤ 1. Thus

‖f‖∞ ≤
∑

|µk| ≤
(∑

|µk|p
)1/p

so the admissibility condition on f is satisfied.

Proof of Theorem B. Suppose that f ∈ Hp
ℓ for n/ℓ < p < ∞. Choose

ϕ ∈ C∞
c (B(0, 1)) satisfying ϕ̂(0) 6= 0 and let ζ be as in Lemma 2.2. According

to Lemma 3.4(b), the integral

g(x) =

∞\
0

(f ∗ ζt ∗ ϕt)(x)
dt

t

converges absolutely for every x ∈ R
n and represents a bounded continuous

function. Hence g defines a tempered distribution on R
n and (f, η) = (g, η)

for each Schwartz function η. Therefore f is actually a function coinciding
with g. The proof concerning the atomic decomposition of f is the same as
that of Theorem A. The Lipschitz property of f is contained in Lemma 3.4.

5. Alternatives of atoms and other results. Inspecting the proof
of Theorem A, it is simple to observe that atoms may have additional prop-
erties or may be definable in terms of different conditions. In this section we
list three noteworthy alternatives of atoms.
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(A1) The Lipschitz condition (ii) of Definition 1.1 may be replaced by

|∆m
z b(x)| ≤ |Q|−1/p|z|ℓ (x, z ∈ R

n)

for any given integer m > ℓ.

This follows from the estimate |(∆m
z a

k
j )(x)| ≤ Bm2k|z|ℓ instead of estimate

(iii) in stage 3 of the proof of Theorem A by using\
Rn

|∆m
z ϕt(x− y)| dy ≤ Cmin{1, |z/t|m}.

The necessary modifications in the proof of Lemma 3.3 are trivial.

(A2) An atom for Ḣp
ℓ may be defined as a function b ∈ Cℓ−1(Rn) with

properties (i), (iii) of Definition 1.1 and

(ii)′ ‖∂σb‖∞ ≤ |Q|−1/p+(ℓ−|σ|)/n, |∆m
z [∂σb](x)| ≤ |Q|−1/p|z|ℓ−|σ|

for all x, z ∈ R
n and all σ with |σ| ≤ ℓ− 1, where m+ |σ| > ℓ.

This alternative can be obtained from the properties of ak
j in the proof of

Theorem A with easy modifications.

Given a positive integer m and a point z ∈ R
n, consider the mth sym-

metric difference operator Sm
z defined inductively as

Szf(x) = f(x+ z) − 2f(x) + f(x− z), Sm
z f(x) = Sz[S

m−1
z f ](x).

In view of the identity

Sm
z f(x) = [∆2m

z f ](x−my) =
2m∑

j=0

(−1)2m−j

(
2m

j

)
f(x+ (j −m)z),

we have another alternative of atoms in the following form :

(A3) An atom for Ḣp
ℓ may be defined as a function b ∈ Λℓ with properties

(i), (iii) of Definition 1.1 and

(ii)′′ ‖b‖∞ ≤ |Q|−1/p+ℓ/n, |Sm
z b(x)| ≤ |Q|−1/p|z|ℓ

for all x, z ∈ R
n, where m is a given integer with m > ℓ/2.

As mentioned earlier, there are other atomic decompositions and it would
be interesting to compare those results with ours. We shall take into account
the following two results only.

Result of Strichartz. For α > 0, let Iα(Hp) be the image of Hp under the
Riesz potential operator Iα. As Iℓ(H

p) = Ḣp
ℓ for each integer ℓ, these spaces

give an extension of the homogeneous Hardy–Sobolev spaces to the case of
fractional order. In [Sz, Theorem 5.2], Strichartz proved that f ∈ Iα(Hp)
for n/(n + α) < p ≤ 1 if and only if there exist a sequence (λk) of scalars
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and a sequence (bk) of Iα(Hp) atoms such that

f =
∑

λkbk with
(∑

|λk|p
)1/p

≈ ‖f‖Iα(Hp).

Here an Iα(Hp) atom means a function b ∈ Iα(Lq) for some q ≥ 2 with
support in a cube Q and ‖b‖Iα(Lq) ≤ |Q|−1/p. In comparison with our result,
the atoms in Strichartz’s result seem to be more complicated while the
decomposition forms are the same.

Result of Frazier and Jawerth. Denoting by Ḟα
p,q the homogeneous Trie-

bel–Lizorkin spaces, it is well known that Ḟ ℓ
p,2 ≃ Ḣp

ℓ . In [FJ, Theorem 7.4],
Frazier and Jawerth obtained atomic decomposition theorems for general
Ḟα

p,q spaces. Let D denote the set of all dyadic cubes in R
n. Given Q ∈ D

and an integer N with N ≥ [n(1/p− α/n− 1)], a function aQ ∈ C∞
c (3Q) is

called a smooth N -atom if it has vanishing moments up to order N and

‖∂σaQ‖∞ ≤ |Q|−|σ|/n−1/2 for all multi-indices σ ∈ Z
n
+.

Let us call A an Ḟα
p,q atom if it can be decomposed as A =

∑
Q∈D rQaQ where

(aQ) is a sequence of smooth N -atoms and (rQ) is a sequence of scalars such
that there exists Q0 ∈ D with rQ = 0 if Q is not contained in Q0 and

∥∥∥
[∑

Q∈D
(|Q|−ℓ/n−1/2|rQ|χQ)q

]1/q∥∥∥
∞

≤ |Q0|−1/p.

In a simplified version, their results state that a tempered distribution f on
R

n belongs to Ḟα
p,q for 0 < p ≤ 1, p ≤ q < ∞ if and only if there exist a

sequence (λk) of scalars and a sequence (Ak) of Ḟα
p,q atoms such that

f =
∑

λkAk with
(∑

|λk|p
)1/p

≈ ‖f‖Ḟ α
p,q
.

(See also [G, pp. 487–496] for more detailed expositions.) Comparing with
Theorem A, it seems apparent that our atoms have more explicit smooth-
ness properties and simpler forms than those of Frazier and Jawerth, which
perhaps results from different characterizations.

6. Sobolev embedding theorem. One of the principal issues of in-
terest in the theory of Sobolev spaces is the various inclusion inequalities
known as the Sobolev embedding theorem. As our atomic decomposition re-
sults deal with the basic structure of Hp Sobolev spaces, they are intimately
connected with the Sobolev embedding theorem.

The purpose of this section is to obtain several embedding results as well
as some interesting weighted inequalities for Hp Sobolev spaces by applying
our atomic decomposition theorems and Lemma 3.4. For f ∈ Λα, we put

‖f‖Λα = ‖f‖∞ + inf{C > 0 : |∆[α]+1
z f(x)| ≤ C|z|α for all x, z ∈ R

n}.
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Theorem 6.1. Let ℓ be a positive integer.

(a) If f ∈ Ḣp
ℓ for 0 < p < n/ℓ, then f ∈ Hq for 1/q = 1/p− ℓ/n with

‖f‖Hq ≤ Cp,ℓ‖f‖Ḣp
ℓ
.

(b) If f ∈ Hp
ℓ for p = n/ℓ and p ≥ 1/2, then f ∈ L2p with

(9) ‖f‖2p ≤ Cp‖f‖1/2
Hp ‖f‖1/2

Ḣp
ℓ

.

If in addition p ≤ 1, then f ∈ L∞ with ‖f‖∞ ≤ Cp‖f‖Ḣp
ℓ
.

(c) If f ∈ Hp
ℓ for p > n/ℓ, then f ∈ Λℓ−n/p with

‖f‖Λℓ−n/p
≤ Cp,ℓ‖f‖Hp

ℓ
.

Proof. To prove (a), suppose that f ∈ Ḣp
ℓ for p < n/ℓ. Consider first the

case p ≥ n/(n+ ℓ), that is, q ≥ 1. With ζ and ϕ as in the proof of Theorem
A and Lemma 3.4, we have

(f, η) =
\

Rn

g(x)η(x) dx, g(x) =

∞\
0

(f ∗ ζt ∗ ϕt)(x)
dt

t

for every Schwartz function η. According to Lemma 3.4,

|g(x)| ≤ C‖Mℓ
1(x, u)‖pℓ/n

p [Mℓ
1(x, u)]

p(1/p−ℓ/n),

which shows that g ∈ Lq with ‖g‖q ≤ C‖f‖Ḣp
ℓ
. Consequently, g defines a

tempered distribution on R
n and f coincides with g.

In the case 0 < p ≤ n/(n + ℓ), we have q ≤ 1 and each atom for Ḣp
ℓ is

an Hq atom. Writing f =
∑
µkbk in accordance with Theorem A, we have

‖f‖q
Hq ≤

∑
|µk|q‖bk‖q

Hq ≤ C
∑

|µk|q ≤ C
(∑

|µk|p
)q/p

because 0 < p < q ≤ 1. This completes the proof of (a).
To prove (b), suppose that f ∈ Hp

ℓ for p = n/ℓ. Under the same setting
as above, Lemma 3.4 states that

|g(x)| ≤ C‖f‖1/2
Hp [Mℓ

1(x, u)]
1/2.

When 2p ≥ 1, the right side represents an L2p function so that g defines
a tempered distribution and f = g satisfies the inequality (9). In the case
1/2 ≤ p ≤ 1, it is straightforward to verify f ∈ L∞ once we decompose f in
terms of atoms and notice ‖b‖∞ ≤ 1 for each atom b.

Finally, assertion (c) is part of Theorem B.

Remark 6.2. A special case ℓ = 1 and p = n = 2 in (9) leads to

‖f‖4 ≤ C‖f‖1/2
2 ‖∇f‖1/2

2 (f ∈W 1,2(R2)),

known as Ladyzhenskaya’s inequality (see [SS]). The space Ḣp
ℓ for p = n/ℓ is

known to be continuously embedded in the space BMO (see [K] and [Ch1]).
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Theorem 6.3. Let n/(n+ ℓ) ≤ p ≤ 1 and p < n/ℓ. Suppose that ω is a

nonnegative measurable function on R
n satisfying

‖ω‖∗ = sup
Q

|Q|−1/p+ℓ/n
\
Q

ω(x) dx <∞,

where the supremum is taken over all finite cubes Q in R
n. Then\

Rn

|f(x)|ω(x) dx ≤ Cp,ℓ‖ω‖∗‖f‖Ḣp
ℓ
,(10) \

Rn

|f(x)|p|x|−ℓp dx ≤ Cp,ℓ‖f‖p

Ḣp
ℓ

.(11)

Proof. By Theorem 6.1(a), note that f is actually an Lq function with
1/q = 1/p− ℓ/n and so both inequalities make sense. Upon decomposing f
into atoms as in Theorem A, it is trivial to verify both inequalities.

Remark 6.4. An example for (10) is given by ω(x) = |x|n(1/p−ℓ/n−1).
The inequality (11) is motivated by Hardy’s inequality ([SS]) which states
originally that if f ∈W 1,p for 1 ≤ p < n, then

‖f/|x|‖p ≤ C‖f‖W 1,p.
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