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Holomorphy types and ideals of multilinear mappings

by

G. Botelho (Uberlândia), H.-A. Braunss (Potsdam),
H. Junek (Potsdam) and D. Pellegrino (Campina Grande)

Abstract. We explore a condition under which the ideal of polynomials generated by
an ideal of multilinear mappings between Banach spaces is a global holomorphy type. After
some examples and applications, this condition is studied in its own right. A final section
provides applications to the ideals formed by multilinear mappings and polynomials which
are absolutely (p; q)-summing at every point.

Introduction. Special classes of homogeneous polynomials between
Banach spaces have been studied by taking two different approaches. On the
one hand, inspired by the dual theory of polynomials, L. Nachbin [19] intro-
duced holomorphy types as classes of polynomials which are uniformly stable
under differentiation. On the other hand, as a natural consequence of the suc-
cessful theory of operator ideals, A. Pietsch [25] introduced the notion of ide-
als of multilinear mappings, which was immediately adapted to polynomials.

Both notions have been widely studied, holomorphy types as a branch of
infinite-dimensional holomorphy (see the references cited in [12, p. 135]) and
ideals of multilinear mappings/polynomials as a branch of Banach space the-
ory (see [3, 9] and the references therein). Many outstanding examples, such
as nuclear and compact polynomials, are simultaneously holomorphy types
and ideals of polynomials. In this paper we try to give a unified treatment of
the subject, exploring the interplay between these two notions, mainly try-
ing to identify when an ideal of multilinear mappings generates a (global)
holomorphy type. Recently, some particular ideals of polynomials have been
proved to be global holomorphy types, for example: everywhere absolutely
(p; q)-summing polynomials (M. Matos [17]), strongly almost q-summing
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polynomials (D. Pellegrino [20]), fully (or multiple) summing polynomials
(D. Pellegrino and M. Souza [23]) and mixing summing polynomials (M.
Matos [18]).

In an attempt to treat this question in a systematic way, we first identify
a condition under which a Banach ideal of multilinear mappings generates
a global holomorphy type. This condition, which we call property (B), is
applied to the two methods introduced by A. Pietsch in [25], namely the
linearization and the factorization methods. Once the relevance of property
(B) is established we study it in its own right and extend it to ideals of poly-
nomials. In both the multilinear and polynomial cases we identify situations
where having property (B) is equivalent to being (or generating) a global
holomorphy type. Differences between the real and complex cases show that,
though holomorphy types are more closely related for ideals of polynomials,
property (B) is more appropriate for ideals of multilinear mappings. The
paper ends with applications of the results obtained to the ideals formed by
multilinear mappings and polynomials which are absolutely (p; q)-summing
at every point.

Some of the results, such as Theorems 3.2, 4.1 and 5.1, appeared, either
exactly or at least in essence, in the second named author’s thesis [6].

1. Definitions and notations. Throughout this paper n is a positive
integer, and E1, . . . , En, E, F,G1, . . . , Gn and G are Banach spaces over K =
R or C. E′ is the dual space of E and BE denotes the closed unit ball of E.
The Banach space of all continuous n-linear mappings A : E1×· · ·×En → F
will be denoted by L(E1, . . . , En;F ) (L(nE;F ) if E1 = · · ·=En = E), and the
Banach space of all continuous n-homogeneous polynomials P : E → F by
P(nE;F ). If F = K we use the simplified notations L(E1, . . . , En), L(nE)
and P(nE). By P̌ we mean the unique continuous symmetric n-linear map-

ping associated to the polynomial P , and by Â the polynomial generated
by a multilinear mapping A, that is, Â(x) = A(x, . . . , x). For the general
theory of multilinear mappings and homogeneous polynomials we refer to
S. Dineen [12].

Definition 1.1. Although L. Nachbin [19] introduced the notion of
holomorphy type between two fixed Banach spaces E and F , all interesting
examples work for every couple of Banach spaces. So, the following definition
is quite natural. A global holomorphy type PH is a class of continuous ho-
mogeneous polynomials between Banach spaces such that for every natural
n and any Banach spaces E and F , the component

PH(nE;F ) := P(nE;F ) ∩ PH

is a linear subspace of P(nE;F ) which is a Banach space when endowed with
a norm denoted by P 7→ ‖P‖H , and
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(i) PH(0E;F ) = F , as a normed linear space for all E and F ,
(ii) there is σ ≥ 1 such that for any Banach spaces E and F , n ∈ N,

k ≤ n, a ∈ E and P ∈ PH(nE;F ), d̂kP (a) ∈ PH(kE;F ) and
∥∥∥∥

1

k!
d̂kP (a)

∥∥∥∥
H

≤ σn‖P‖H‖a‖n−k,

where d̂kP (a) is the kth differential of P at a (see [12, 19]).

If we have quasi-norms instead of norms (each PH(nE;F ) is a complete
quasi-normed space with quasi-norm constants not depending on the under-
lying spaces E and F , but possibly depending on n), we say that PH is a
global quasi-holomorphy type.

Remark 1.2. Let PH be a global (quasi-)holomorphy type with constant
σ and ‖ · ‖K be another (quasi-)norm on PH for which there is γ ≥ 1 such
that

‖P‖H ≤ ‖P‖K ≤ γn‖P‖H

for all n, E, F and P ∈ PH(nE;F ). It is clear that (PH , ‖ · ‖K) is a global
(quasi-)holomorphy type with constant σγ. In many applications γ will be
the Euler number e.

Definition 1.3. An ideal of multilinear mappings is a class M of con-
tinuous multilinear mappings between Banach spaces such that for all n ∈ N

and Banach spaces E1, . . . , En and F , the components M(E1, . . . , En;F ) :=
L(E1, . . . , En;F ) ∩M satisfy:

(i) M(E1, . . . , En;F ) is a linear subspace of L(E1, . . . , En;F ) which
contains the n-linear mappings of finite type,

(ii) the ideal property: if A ∈ M(E1, . . . , En;F ), uj ∈ L(Gj ;Ej) for
j = 1, . . . , n and t ∈ L(F ;H), then t◦A◦(u1, . . . , un) is in M(G1, . . . ,
Gn;H).

If ‖ · ‖M : M → R+ satisfies

(i′) for each natural n there is 0 < pn ≤ 1 such that ‖ · ‖M restricted
to M(E1, . . . , En;F ) is a pn-norm for all Banach spaces E1, . . . , En

and F ,
(ii′) ‖A : Kn → K : A(λ1, . . . , λn) = λ1 · · ·λn‖M = 1 for all n,
(iii′) if A ∈ M(E1, . . . , En;F ), uj ∈ L(Gj ;Ej) for j = 1, . . . , n and

t ∈ L(F ;H), then ‖t◦A◦(u1, . . . , un)‖M ≤ ‖t‖ ‖A‖M‖u1‖ · · · ‖un‖,

then M is called a quasi-normed (normed if all pn = 1) ideal of multilin-

ear mappings. Quasi-Banach (Banach if all pn = 1) ideals of multilinear

mappings are defined in the obvious way. For a fixed ideal M of multilin-
ear mappings and n ∈ N, the class Mn :=

⋃
E1,...,En,F M(E1, . . . , En;F ) is

called an ideal of n-linear mappings.
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A Banach ideal Mn of n-linear mappings is said to be closed if its norm
is the usual sup norm and each component M(E1, . . . , En;F ) is a closed
subspace of L(E1, . . . , En;F ). A Banach ideal M of multilinear mappings is
closed if each Mn is closed.

Definition 1.4. An ideal of homogeneous polynomials, or simply an
ideal of polynomials, is a class Q of continuous homogeneous polynomials
between Banach spaces such that for all n ∈ N and Banach spaces E and
F , the components Q(nE;F ) := P(nE;F ) ∩Q satisfy:

(i) Q(nE;F ) is a linear subspace of P(nE;F ) which contains the n-
homogeneous polynomials of finite type,

(ii) the ideal property: if u ∈ L(G;E), P ∈ Q(nE;F ) and t ∈ L(F ;H),
then t ◦ P ◦ u is in Q(nG;H).

If ‖ · ‖Q : Q → R+ satisfies

(i′) for each natural n there is 0 < pn ≤ 1 such that ‖ · ‖Q restricted to
Q(nE;F ) is a pn-norm for all Banach spaces E and F ,

(ii′) ‖P : K → K : P (λ) = λn‖Q = 1 for all n,
(iii′) if u ∈ L(G;E), P ∈ Q(nE;F ) and t ∈ L(F ;H), then ‖t ◦P ◦u‖Q ≤

‖t‖ ‖P‖Q‖u‖
n,

then Q is called a quasi-normed (normed if all pn = 1) ideal of polynomials.
Quasi-Banach (Banach if all pn = 1) ideals of polynomials are defined in
the obvious way. For a fixed ideal Q of polynomials and n ∈ N, the class
Qn :=

⋃
E,F Q(nE;F ) is called an ideal of n-homogeneous polynomials. If

Q is an ideal of polynomials, we set Q(0E;F ) = F for every E and F . In
particular, if (Qn)∞n=1 is a sequence of ideals of n-homogeneous polynomials,
when we write (Qn)∞n=0 it is understood that Q0(

0E;F ) = F for every E
and F .

Closed ideals of polynomials are defined similarly to the case of ideals of
multilinear mappings.

For any ideal of multilinear mappings M such that each Mn is a com-
plete pn-normed ideal of n-linear mappings, defining

PM := {P : P̌ ∈ M}, ‖P‖PM
:= ‖P̌‖M,

we obtain a quasi-Banach (Banach if M is Banach) ideal of polynomials
(see [9, Proposition 2.5.2]), called the ideal of polynomials generated by M.

Remark 1.5. The components of either a global holomorphy type, or an
ideal of multilinear mappings, or an ideal of polynomials, are always spaces
of mappings between Banach spaces over the same fixed field K.

2. Examples and counterexamples. Examples of global holomorphy
types and of ideals of multilinear mappings/polynomials are easily found in
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the literature. In this section we restrict ourselves to examples which show
that these two categories are incomparable.

Example 2.1. For n = 1 define PH(nE;F ) := L(E;F ) with the sup
norm for every E and F . For n > 1, define PH(nE;F ) := P(nE;F ) with the
sup norm if E = F = ℓ1 and PH(nE;F ) := {0} otherwise. It is obvious that
PH is a global holomorphy type which is not an ideal of polynomials. More
natural examples will appear later (cf. Example 8.3 and Remark 8.6(c)).

Example 2.2. An n-linear mapping A ∈ L(E1, . . . , En;F ) is said to
be absolutely (1; 1)-summing , written A ∈ Las(1;1)(E1, . . . , En;F ), if the

sequence (A(x1
j , . . . , x

n
j ))∞j=1 is absolutely summable in F whenever (xk

j )
∞
j=1

are weakly summable in Ek, k = 1, . . . , n. The characterization by means of
inequalities, which defines a natural ideal norm on Las(1;1)(E1, . . . , En;F ),
can be found in [1, Theorem 3.5].

Let E be an infinite-dimensional Banach space with the Orlicz prop-
erty (that is, the identity operator on E is absolutely (2;1)-summing), and
choose a ∈ E and ϕ ∈ E′ such that ϕ(a) = 1. Putting P (x) = ϕ(x)x we ob-
tain P ∈ P(2E;E). We have P ∈ PLas(1;1)

(2E;E) because Las(1;1)(
nE;E) =

L(nE;E) for every n ≥ 2 [1, Proposition 3.8]. For every x ∈ E, we have
x = 2P̌ (a, x) − ϕ(x)a. Since ϕ(·)a is a finite rank operator and the iden-
tity operator idE /∈ Las(1;1)(E;E) (see [10, Theorem 2.18]), it follows that

P̌ (a, ·) /∈ Las(1;1)(E;E). But dP (a) = 2P̌ (a, ·), so the ideal of polynomials
generated by the ideal of all absolutely (1; 1)-summing n-linear mappings,
n ∈ N, is not a global holomorphy type.

Remark 2.3. S. Dineen [11] introduced some refinements in the defini-
ton of holomorphy types, such as α-holomorphy types (see [11, Definition
4]), which are, in some sense, closer to ideals of polynomials. For instance,
the type PH of Example 2.1 is not an α-holomorphy type.

3. Property (B) and holomorphy types. In his thesis [6], the second
named author proved that, under a certain condition, the ideal of polyno-
mials generated by an ideal of multilinear mappings is a global holomorphy
type. Inspired by [6, Satz 3.3.4], in this section we prove that the same holds
true with a weaker condition.

Definition 3.1. For the sake of simplicity, we shall write (nE,G;F )

instead of (E, (n). . ., E,G;F ).

• An (n + 1)-linear mapping A ∈ L(nE,G;F ) is said to be symmetric

in the first n variables if A(x1, . . . , xn, y) = A(xσ(1), . . . , xσ(n), y) for
every permutation σ of the set {1, . . . , n}, any x1, . . . , xn ∈ E and
y ∈ G.
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• Given A ∈ L(E1, . . . , En;F ) and a ∈ En, we define Aa ∈ L(E1, . . . ,
En−1;F ) by Aa(x1, . . . , xn−1) = A(x1, . . . , xn−1, a).

• Let J be a class of continuous multilinear mappings between Ba-
nach spaces such that for all n ∈ N and Banach spaces E1, . . . , En

and F , the component J (E1, . . . , En;F ) := L(E1, . . . , En;F ) ∩ J is
a linear subspace of L(E1, . . . , En;F ) equipped with a quasi-norm de-
noted by ‖ · ‖J . We say that J has property (B) if there is C ≥ 1
such that for every n ∈ N, any Banach spaces E and F and every
A ∈ J (nE,K;F ) symmetric in the first n variables, A1 ∈ J (nE;F )
and ‖A1‖J ≤ C‖A‖J .

Given a ∈ E and k ∈ N, by ak we mean a, a, . . . , a where a appears k
times.

Theorem 3.2. If the Banach ideal M of multilinear mappings has prop-

erty (B) with constant C, then the Banach ideal PM of polynomials is a

global holomorphy type with constant σ = 2C.

Proof. Let a ∈ E and A ∈ M(n+1E;F ) be a symmetric (n + 1)-linear
mapping. Choosing ϕ : K → E with ϕ(1) = a and B(x1, . . . , xn, λ) =
A(x1, . . . , xn, ϕ(λ)), using the ideal property and property (B) we get Aa =
B1 ∈ M(nE;F ) and

‖Aa‖M = ‖B1‖M ≤ C‖B‖M ≤ C‖A‖M‖ϕ‖ = C‖A‖M‖a‖.

Now, let P ∈ PM(nE;F ), k ≤ n and a ∈ E be given. Then P̌ ∈
M(nE;F ) is symmetric, therefore P̌ a ∈ M(n−1E;F ) and

‖P̌ a‖M ≤ C‖P̌‖M‖a‖ = C‖P‖PM
‖a‖.

If Pa ∈ P(n−1E;F ) is defined by Pa(x) = P̌ (a, xn−1), it is easy to see that
(Pa)∨ = P̌ a, thus Pa ∈ PM(n−1E;F ) and

‖Pa‖PM
= ‖(Pa)∨‖M = ‖P̌ a‖M ≤ C‖P‖PM

‖a‖.

For 1 ≤ j ≤ n, define Paj ∈ P(n−jE;F ) by Paj(x) = P̌ (aj , xn−j). It is
trivial to check that Pa2 = (Pa)a, so

‖Pa2‖PM
= ‖(Pa)a‖PM

≤ C‖Pa‖PM
‖a‖ ≤ C2‖P‖PM

‖a‖2.

By iteration of this procedure, it follows that Paj ∈ PM(n−jE;F ) and

‖Paj‖PM
≤ Cj‖P‖PM

‖a‖j ≤ Cn‖P‖PM
‖a‖j .

From

d̂kP (a)(x) =
n!

(n− k)!
P̌ (an−k, xk),

we obtain

1

k!
d̂kP (a)(x) =

(
n

k

)
P̌ (an−k, xk) =

(
n

k

)
Pan−k(x).
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It follows that d̂kP (a) ∈ PM(n−kE;F ) and
∥∥∥∥

1

k!
d̂kP (a)

∥∥∥∥
PM

≤ 2n‖Pan−k‖PM
≤ (2C)n‖P‖PM

‖a‖n−k.

Remark 3.3. Observing that the proof of Theorem 3.2 does not use
the triangle inequality, we conclude that if M is a quasi-Banach ideal of
multilinear mappings such that each Mn is a complete pn-normed ideal
of n-linear mappings and M has property (B) with constant C, then the
quasi-Banach ideal PM of polynomials is a global quasi-holomorphy type
with constant σ = 2C.

Along the paper we will provide plenty of examples of ideals of multilinear
mappings having property (B). In particular, the following two sections show
that the ideals of multilinear mappings which are generated by the two
general methods introduced by A. Pietsch [25] have property (B).

4. The linearization method. The notation E1, î. . . , En means that

Ei is omitted, and the same for (x1, î. . . , xn). For i = 1, . . . , n, consider the

isometric isomorphism Ii : L(E1, . . . , En;F ) → L(Ei;L(E1, î. . . , En;F )),

Ii(A)(xi)(x1, î. . . , xn) = A(x1, . . . , xn).

For the case n = 1 to make sense, we set I1(A) = A for A ∈ L(E;F ).

Given a sequence (In)∞n=1 of Banach operator ideals, an n-linear map-
ping A ∈ L(E1, . . . , En;F ) is said to be of type [I1, . . . , In], written A ∈
[I1, . . . , In](E1, . . . , En;F ), if

Ii(A) ∈ Ii(Ei;L(E1, î. . . , En;F )) for every i = 1, . . . , n.

For A ∈ [I1, . . . , In](E1, . . . , En;F ) we define

‖A‖[I1,...,In] = max{‖I1(A)‖I1 , . . . , ‖In(A)‖In
}.

For every n, [I1, . . . , In] is a Banach ideal of n-linear mappings, hence
([I1, . . . , In])∞n=1 is a Banach ideal of multilinear mappings and (P[I1,...,In])

∞
n=1

is a Banach ideal of polynomials; the proofs can be found in [9, Proposi-
tion 2.3.3].

Theorem 4.1. For every sequence (In)∞n=1 of Banach operator ideals,
the Banach ideal ([I1, . . . , In])∞n=1 of multilinear mappings has property (B)
with constant C = 1. Therefore, the ideal (P[I1,...,In])

∞
n=0 of polynomials is a

global holomorphy type with constant σ = 2.

Proof. The second assertion follows from the first by Theorem 3.2. Let
A ∈ [I1, . . . , In+1](E1, . . . , En,K;F ). So, for j = 1, . . . , n, Ij(A) ∈ Ij(Ej ;

L(E1,
ĵ. . . , En,K;F )). Define a linear operator uj : L(E1,

ĵ. . . , En,K;F ) →
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L(E1,
ĵ. . . , En;F ) by

B 7→ uj(B)(x1,
ĵ. . . , xn) = B(x1,

ĵ. . . , xn, 1).

So we have

(uj ◦ Ij(A))(xj)(x1,
ĵ. . . , xn)

= uj(Ij(A)(xj))(x1,
ĵ. . . , xn) = Ij(A)(xj)(x1,

ĵ. . . , xn, 1)

= A(x1, . . . , xn, 1) = A1(x1, . . . , xn) = Ij(A1)(xj)(x1,
ĵ. . . , xn).

We proved that Ij(A1) = uj ◦Ij(A), so by the ideal property Ij(A1) ∈ Ij for
all j = 1, . . . , n, as Ij(A) ∈ Ij . Therefore A1 ∈ [I1, . . . , In](E1, . . . , En;F ).
Moreover,

‖Ij(A1)‖Ij
= ‖uj ◦ Ij(A)‖Ij

≤ ‖uj‖ ‖Ij(A)‖Ij
= ‖Ij(A)‖Ij

.

Since In+1(A) is defined on K, we have ‖In+1(A)‖In+1 = ‖In+1(A)‖ = ‖A‖ =
‖Ij(A)‖ ≤ ‖Ij(A)‖Ij

, j = 1, . . . , n. So,

‖A1‖[I1,...,In] = max{‖I1(A1)‖I1 , . . . , ‖In(A1)‖In
}

≤ max{‖I1(A)‖I1 , . . . , ‖In(A)‖In
}

= max{‖I1(A)‖I1 , . . . , ‖In+1(A)‖In+1} = ‖A‖[I1,...,In,In+1],

completing the proof.

5. The factorization method. Given a sequence (In)∞n=1 of Banach
operator ideals, we say that an n-linear mapping A ∈ L(E1, . . . , En;F ) is of

type L(I1, . . . , In) if there are Banach spaces G1, . . . , Gn, linear operators
uj ∈ Ij(Ej ;Gj), j = 1, . . . , n, and a continuous n-linear mapping B ∈
L(G1, . . . , Gn;F ) such that A = B ◦ (u1, . . . , un). In this case we write
A ∈ L(I1, . . . , In)(E1, . . . , En;F ), and define

‖A‖L(I1,...,In) = inf ‖B‖ ‖u1‖I1 · · · ‖un‖In
,

where the infimum is taken over all possible factorizations A=B◦(u1, . . . , un)
with uj ∈ Ij .

For every n, L(I1, . . . , In) is a complete 1/n-normed ideal of n-linear
mappings, hence (L(I1, . . . , In))∞n=1 is a quasi-Banach ideal of multilinear
mappings and (PL(I1,...,In))

∞
n=1 is a quasi-Banach ideal of polynomials; the

proofs can be found in [9, Proposition 2.3.3].

It is noteworthy that if I1, . . . , In are closed operator ideals, then
‖ · ‖L(I1,...,In) is a norm (this fact was first proved in [6, Satz 2.5.7]) and
the components L(I1, . . . , In)(E1, . . . , En;F ) are closed (see [7, Proposi-
tion 3.5]). Actually, in this case, from [14, Lemma 1.2] (or [15, Lemma 6]) it is
easy to see that ‖A‖ = ‖A‖L(I1,...,In) for all A∈L(I1, . . . , In)(E1, . . . , En;F ).
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Theorem 5.1. For every sequence (In)∞n=1 of Banach operator ideals,
the quasi-Banach ideal (L(I1, . . . , In))∞n=1 of multilinear mappings has prop-

erty (B) with constant C = 1. Therefore, the ideal (PL(I1,...,In))
∞
n=0 of poly-

nomials is a global quasi-holomorphy type with constant σ = 2.

Proof. The second assertion follows from the first by Remark 3.3. Given
an (n + 1)-linear mapping A ∈ L(I1, . . . , In+1)(E1, . . . , En,K;F ), there
exist Banach spaces G1, . . . , Gn, G, linear operators u ∈ In+1(K;G), uj ∈
Ij(Ej ;Gj), j = 1, . . . , n, and B ∈ L(G1, . . . , Gn, G;F ) such that A =
B ◦ (u1, . . . , un, u). Defining

D : G1 × · · · ×Gn → F, D(y1, . . . , yn) = B(y1, . . . , yn, u(1)),

we get

A1(x1, . . . , xn) = A(x1, . . . , xn, 1) = B(u1(x1), . . . , un(xn), u(1))

= D(u1(x1), . . . , un(xn)) = (D ◦ (u1, . . . , un))(x1, . . . , xn),

showing that A1 = D ◦ (u1, . . . , un). Since each uj belongs to Ij it follows
that A1 ∈ L(I1, . . . , In)(E1, . . . , En;F ). Moreover, from ‖D‖ ≤ ‖B‖ ‖u‖
and ‖u‖ ≤ ‖u‖In+1 (see [10, p. 131]), we have

‖A1‖L(I1,...,In) ≤ ‖D‖ ‖u1‖I1 · · · ‖un‖In
≤ ‖B‖ ‖u‖In+1‖u1‖I1 · · · ‖un‖In

.

So, ‖A1‖L(I1,...,In) ≤ ‖B‖ ‖u1‖I1 · · · ‖un‖In
‖u‖In+1 for every representation

A = B ◦ (u1, . . . , un, u) with uj ∈ Ij , j = 1, . . . , n and u ∈ In+1. We finish
the proof by taking the infimum over all such representations to obtain
‖A1‖L(I1,...,In) ≤ ‖A‖L(I1,...,In+1).

In the special case where In = I for every n ∈ N, we shall write L(I)
and PL(I) instead of L(I, . . . , I) and PL(I,...,I). Until now, in PL(I) we have

considered the 1/n-norm P ∈ PL(I)(
nE;F ) 7→ ‖P‖L(I) = ‖P̌‖L(I). It is well

known that P ∈ PL(I)(
nE;F ) ⇔ there exists A ∈ L(I)(nE;F ) such that

Â = P ⇔ there are a Banach space G, a linear operator u ∈ I(E;G) and
a polynomial Q ∈ P(nG;F ) such that P = Q ◦ u (see [3, Proposition 4.3]).
So, for P ∈ PL(I)(

nE;F ) we can consider

‖P‖L(I),1 := inf{‖A‖L(I) : Â = P},

‖P‖L(I),2 := inf{‖Q‖ ‖u‖n
I : P = Q ◦ u, u ∈ I},

which define two other complete 1/n-norms on PL(I)(
nE;F ) (see [8, p. 50]

and [9, Proposition 2.5.5]).

Theorem 5.2. For every Banach operator ideal I, the ideal PL(I) of

polynomials is a global quasi-holomorphy type with either ‖ · ‖L(I), ‖ · ‖L(I),1

or ‖ · ‖L(I),2.

Proof. From Theorem 5.1 we know that (PL(I), ‖ · ‖L(I)) is a global
quasi-holomorphy type with constant σ = 2. So, for every n, any k ≤ n,
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a ∈ E and P ∈ PL(I)(
nE;F ), we have d̂kP (a) ∈ PL(I)(

kE;F ) and

(∗)

∥∥∥∥
1

k!
d̂kP (a)

∥∥∥∥
L(I)

≤ 2n‖P‖L(I)‖a‖
n−k.

Let n ∈ N, k ≤ n, a ∈ E and P ∈ PL(I)(
nE;F ). We already know that

d̂kP (a) ∈ PL(I)(
kE;F ). We conclude that (PL(I), ‖ · ‖L(I),1) and (PL(I),

‖ · ‖L(I),2) are global quasi-holomorphy types with constant σ = 2e by ob-
serving that

∥∥∥∥
1

k!
d̂kP (a)

∥∥∥∥
L(I),2

≤

∥∥∥∥
1

k!
d̂kP (a)

∥∥∥∥
L(I),1

≤

∥∥∥∥
1

k!
d̂kP (a)

∥∥∥∥
L(I)

≤ 2n‖P‖L(I)‖a‖
n−k ≤ (2e)n‖P‖L(I),2‖a‖

n−k

≤ (2e)n‖P‖L(I),1‖a‖
n−k,

where the first and the last inequalities follow from [8, Lemma 3.1], the
second is obvious, the third follows from (∗), and the fourth from [9, Propo-
sition 2.5.5].

Example 5.3. Given a sequence (pn)∞n=1 of numbers with each pn ≥ 1,
we denote by Ld;p1,...,pn

the class of all (p1, . . . , pn)-dominated n-linear map-
pings (see [3, 4, 9]) endowed with the (p1, . . . , pn)-dominated quasi-norm.
Since L(Πp1 , . . . , Πpn

) = Ld;p1,...,pn
isometrically, where Πp is the ideal of

all absolutely p-summing linear operators, from Theorem 5.1 we see that
(Ld;p1,...,pn

)∞n=1 has property (B) with constant C = 1. Therefore, given
p ≥ 1, the class Pd,p of all p-dominated homogeneous polynomials is a global
quasi-holomorphy type, with respect to the p-dominated quasi-norm, with
constant σ = 2.

6. Sufficient conditions for holomorphy type to imply prop-
erty (B). Let M be a Banach ideal of multilinear mappings. Information
about polynomials in PM implies information about symmetric multilinear
mappings in M. But there are plenty of non-symmetric multilinear map-
pings in M, so a full converse of Theorem 3.2 is not to be expected. Even
so, we are going to see that a partial converse holds true, that is, for certain
ideals, having property (B) is equivalent to generating a holomorphy type.
A little preparation is needed.

Given A ∈ L(nE;F ), we denote by AS the symmetrization of A. An ideal
of multilinear mappings M is said to be

• symmetric if AS ∈ M(nE;F ) whenever A ∈ M(nE;F ) (cf. [13]);
• closed for scalar multiplication (csm, for short) if M satisfies at least

one of the following conditions (cf. [4]):
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(i) if A ∈ M(nE;F ), ϕ ∈ E′ and ϕA ∈ L(n+1E;F ) is given by

ϕA(x1, . . . , xn+1) = ϕ(x1)A(x2, . . . , xn+1),

then ϕA ∈ M(n+1E;F );
(ii) if A ∈ M(nE;F ), ϕ ∈ E′ and Aϕ ∈ L(n+1E;F ) is given by

Aϕ(x1, . . . , xn+1) = ϕ(xn+1)A(x1, . . . , xn),

then Aϕ ∈ M(n+1E;F ).

Theorem 6.1. Let M be a csm symmetric closed ideal of multilinear

mappings. The following assertions are equivalent.

(a) For all n, E and F , A1 ∈ M(nE;F ) for every A ∈ M(nE,K;F )
symmetric in the first n variables.

(b) M has property (B) (with best constant C = 1).
(c) PM is a global holomorphy type (with best constant σ not greater

than 2).

Proof. (a)⇒(b). Obvious because ‖A1‖ = ‖A‖.

(b)⇒(c). This is a particular case of Theorem 3.2.

(c)⇒(a). Let A ∈ M(nE,K;F ) be symmetric in the first n variables.

Choose ϕ ∈ E′ and a ∈ E such that ϕ(a) = 1 and define B := A ◦ (idE ,
(n). . .,

idE , ϕ). Then B ∈ M(n+1E;F ) by the ideal property. Since M is symmetric,

BS ∈ M(n+1E;F ), hence B̂ = B̂S ∈ PM(n+1E;F ). As PM is a global

holomorphy type by assumption, d̂kB̂(a) ∈ PM(kE;F ) for k = 1, . . . , n.

For k = 0, 1, . . . , n− 1, define Pk ∈ P(k+1E;F ) by

Pk(x) = ϕ(x)A1(an−k, xk).

Let us prove, by induction on k, that Pk∈PM(k+1E;F ) for k=0, 1, . . . , n−1.

For k = 0 this is obvious.

Now we assume that Pk∈PM(k+1E;F ) and prove Pk+1∈PM(k+2E;F ).
For every x ∈ E and k = 0, 1, . . . , n− 2, we have

(n− k)!

(n+ 1)!
d̂k+1B̂(a)(x) = BS(an−k, xk+1)

=
1

n+ 1
[(n− k)ϕ(a)A1(an−k−1, xk+1) + (k + 1)ϕ(x)A1(an−k, xk)]

=
1

n+ 1
[(n− k)A1(an−k−1, xk+1) + (k + 1)Pk(x)].

But d̂k+1B̂(a) and Pk belong to PM(k+1E;F ), so the (k + 1)-homogeneous
polynomial Q(x) := A1(an−k−1, xk+1) belongs to PM(k+1E;F ) as well. So
Q̌ ∈ M(k+1E;F ). Since A1 is symmetric (because A is symmetric in the
first n variables), it follows that Q̌(x1, . . . , xk+1) = A1(an−k−1, x1, . . . , xk+1).
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Suppose that M satisfies condition (i) of the definition of csm ideals. Us-
ing this condition for ϕ and Q̌ we find that the (k + 2)-linear mapping
Ck+1(x1, . . . , xk+2) := ϕ(x1)Q̌(x2, . . . , xk+2) belongs to M(k+2E;F ). Since

M is symmetric, Pk+1 = Ĉk+1 = (Ĉk+1)S ∈ PM(k+2E;F ). If M satisfies
condition (ii) of the definition of csm ideals, then a suitable modification of
the definition of Ck+1 completes the proof by induction.

Setting k = n− 1 we see that Pn−1 ∈ PM(nE;F ). For every x ∈ E,

1

n!
d̂nB̂(a)(x) = (n+ 1)BS(a, xn) = ϕ(a)A1(xn) + nϕ(x)A1(a, xn−1)

= Â1(x) + nPn−1(x).

But d̂nB̂(a) and Pn−1 belong to PM(nE;F ), so Â1 ∈ PM(nE;F ) as well.

Since A1 is symmetric, it follows that A1 = (Â1)∨ ∈ M(nE;F ).

Remark 6.2 (On the definiton of property (B)). We could have used
the following variant of property (B):

• An (n + 1)-linear mapping A ∈ L(G,E, (n). . ., E;F ) is said to be sym-

metric from the second variable on if

A(y, x1, . . . , xn) = A(y, xσ(1), . . . , xσ(n))

for every permutation σ of the set {1, . . . , n}, any x1, . . . , xn ∈ E and
y ∈ G.

• Given A ∈ L(E1, . . . , En;F ) and a ∈ E1, we define aA ∈ L(E2, . . . ,
En;F ) by aA(x2, . . . , xn) = A(a, x2, . . . , xn).

• Let J be a class of multilinear mappings such that each component
J (E1, . . . , En, F ) is endowed with a quasi-norm ‖ · ‖J . We say that
J has property (B′) if there is C ≥ 1 such that for every n ∈ N and

every A ∈ J (K, E, (n). . . , E;F ) symmetric from the second variable on,
1A ∈ J (nE;F ) and ‖1A‖J ≤ C‖A‖J .

A simple adaptation of the proof of Theorem 3.2 shows that a Banach
ideal of multilinear mappings having property (B′) also generates a holomor-
phy type. It is not difficult to see that even for Banach ideals of multilinear
mappings, properties (B) and (B′) are not equivalent. Nevertheless, to each
ideal M with property (B′) we can associate an ideal M′ with property (B)
by defining M′(E1, . . . , En;F ) := M(En, . . . , E1;F ).

The notion of strongly symmetric quasi-normed ideals of multilinear
mappings was introduced by K. Floret and D. Garćıa [13]. It is easy to see
that, for strongly symmetric ideals, properties (B) and (B′) are equivalent.

7. Weak property (B). In the proof of Theorem 6.1, we used the
trivial fact that if M is a closed ideal of multilinear mappings and A1 ∈ M
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whenever A ∈ M, then M has property (B). It is natural to ask if this weak
version of property (B), namely:

A ∈ M(nE,K;F ) symmetric in the first n variables ⇒ A1 ∈ M(nE;F ),

implies property (B) in general. The ideal we construct in this section
proves that the answer is negative, that is: in general, the norming condition
‖A1‖M ≤ C‖A‖M does not follow from the condition A ∈ M ⇒ A1 ∈ M.

Let N denote the operator ideal of nuclear operators on Hilbert spaces.
According to [24, Section 15.2] we can restrict ourselves to operators from a
Hilbert space H into itself. Given u ∈ N (H;H), from [10, Theorem 5.30(b)]
we know that ‖u‖N =

∑∞
j=1 sj(u), where sj(u) is the jth approximation (or

singular) number of u.

Definition 7.1. For an operator u in N and n ≥ 1, we put

νn(u) := s1(u) +
1

(n− 1)!

∞∑

j=2

sj(u).

Proposition 7.2. Let n ≥ 1.

(a) νn is an ideal norm on N equivalent to the nuclear norm ‖·‖N = ν1.

(b) νn+1(u) ≤ νn(u) ≤ nνn+1(u) for all u in N and the constant n is

optimal in the second inequality , that is, sup0 6=u∈N νn(u)/νn+1(u)
= n.

Proof. (a) We only prove the triangle inequality. For any compact linear
operators u, v : H → H and every n ≥ 1, from [27, Proposition III.G.11] we
know that

∑n
j=1 sj(u + v) ≤

∑n
j=1(sj(u) + sj(v)). So, if u, v ∈ N (H;H),

then

νn(u+ v) = s1(u+ v) +
1

(n− 1)!

∞∑

j=2

sj(u+ v)

≤ s1(u) + s1(v) +
1

(n− 1)!

∞∑

j=2

(sj(u) + sj(v)) = νn(u) + νn(v).

(b) We have

νn+1(u) = s1(u) +
1

n!

∞∑

j=2

sj(u) ≤ s1(u) +
1

(n− 1)!

∞∑

j=2

sj(u)

= νn(u) = n

(
s1(u)

n
+

1

n!

∞∑

j=2

sj(u)

)
≤ nνn+1(u).

To see the optimality of the constant n, let (ej) be the standard unit vectors

of sequence spaces and define, for each k ∈ N, uk :=
∑k

j=1 e
∗
j⊗ej ∈ N (ℓ2; ℓ2).

So,
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νn(uk)

νn+1(uk)
=

1 + 1
(n−1)!(k − 1)

1 + 1
n!(k − 1)

=
n! + n(k − 1)

n! + (k − 1)
→ n as k → ∞.

We denote by U the maximal extension of N to the class of all Banach
spaces. By [24, Theorem 15.6.3], an operator u : E → F between Banach
spaces belongs to U if and only if for all Hilbert spaces H1, H2 and all
operators v ∈ L(H1;E), t ∈ L(F ;H2), the composition t ◦ u ◦ v belongs
to N .

Following [24, Section 7.2], it can be easily seen that, for each n, the
norm νn on N can be extended to a Banach ideal norm νn on U defined by
νn(u) := sup{νn(t ◦ u ◦ v) : ‖t‖, ‖v‖ ≤ 1}. Proposition 7.2 implies

Proposition 7.3. νn(u) ≤ nνn+1(u) for all n and u ∈ U , where the con-

stant n is optimal. Therefore sup{νn(u)/νn+1(u) : 0 6= u ∈ U , n ∈ N} = ∞.

Given an operator ideal I and n ∈ N, for convenience we shall write [nI]

instead of [I, (n). . . , I].

Theorem 7.4. Let (In)∞n=1 be a sequence of Banach operator ideals such

that , for every n ∈ N, In+1 ⊆ In and ‖u‖In
≤ Cn‖u‖In+1 for all u ∈ In+1,

where Cn is the optimal constant. Then, for all A ∈ [n+1In+1](E1, . . . , En,
K;F ) we have A1 ∈ [nIn](E1, . . . , En;F ) and ‖A1‖[nIn] ≤ Cn‖A‖[n+1In+1],
where Cn is the optimal constant.

Proof. Let A ∈ [n+1In+1](E1, . . . , En,K;F ). For j = 1, . . . , n, we have

Ij(A1) ∈ L(Ej ;L(E1,
ĵ. . . , En;F )). The mapping

J : L(G1, . . . , Gn,K;F ) → L(G1, . . . , Gn;F ), B 7→ J(B) := B1,

is an isometric isomorphism. Since Ij(A) ∈ In+1(Ej ;L(E1,
ĵ. . . , En,K;F ))

for j = 1, . . . , n, it follows that

Ij(A1) = J◦Ij(A) ∈ In+1(Ej ;L(E1,
ĵ. . . , En;F )) ⊆ In(Ej ;L(E1,

ĵ. . . , En;F )),

and ‖Ij(A1)‖In
= ‖J ◦ Ij(A)‖In

= ‖Ij(A)‖In
≤ Cn‖Ij(A)‖In+1 . Hence

A1 ∈ [nIn](E1, . . . , En;F ) and ‖A1‖[nIn] ≤ Cn‖A‖[n+1In+1].

Given 0 < ε < Cn, choose u ∈ In+1(E;F ) such that ‖u‖In
/‖u‖In+1 ≥

Cn − ε. Defining A ∈ L(E,K, (n). . . , K;F ) by A(x, λ1, . . . , λn) = λ1 · · ·λnu(x)

we find that A ∈ [n+1In+1](E,K,
(n). . . , K;F ) and

‖A‖[n+1In+1] = max{‖I1(A)‖In+1 , ‖Ij(A)‖In+1 : 2 ≤ j ≤ n+ 1}

= max{‖u‖In+1 , ‖u‖} = ‖u‖In+1 .

In the same way we obtain ‖A1‖[nIn] = ‖u‖In
and therefore

‖A1‖[nIn]

‖A‖[n+1In+1]
=

‖u‖In

‖u‖In+1

≥ Cn − ε.
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Combining Proposition 7.3 and Theorem 7.4, with Un := (U , νn) playing
the role of In in Theorem 7.4 and Cn = n, we accomplish the task of this
section:

Corollary 7.5. The symmetric Banach ideal M = ([nUn])∞n=1 of mul-

tilinear mappings is such that :

(a) A1 ∈ M(E1, . . . , En;F ) whenever A ∈ M(E1, . . . , En,K;F ).

(b) M does not have property (B).

8. Polynomial property (B). In this section we define and explore
the polynomial counterpart of property (B).

Definition 8.1. Let R be a class of continuous homogeneous polyno-
mials between Banach spaces such that for all n ∈ N and Banach spaces E
and F , the component R(nE;F ) := P(nE;F ) ∩ R is a linear subspace of
P(nE;F ) endowed with a quasi-norm ‖ · ‖R. As before, R(0E;F ) = F for
every E and F . We say that R has property (B) if there is C ≥ 1 such that
for all n ∈ N, P ∈ R(nE;F ) and a ∈ E, we have Pa ∈ R(n−1E;F ) and
‖Pa‖R ≤ C‖P‖R‖a‖ (remember that Pa(x) = P̌ (a, xn−1)).

From the proof of Theorem 3.2 we have the following result:

Proposition 8.2. Every class of homogeneous polynomials with prop-

erty (B) with constant C such that the components are quasi-Banach spaces

is a global quasi-holomorphy type (global holomorphy type if the components

are Banach spaces) with constant σ = 2C.

Now we illustrate the polynomial property (B). We denote by LK and PK

the classes of all continuous multilinear mappings and homogeneous polyno-
mials between Banach spaces over K with the usual sup norm, respectively.

Example 8.3. Let HK be the subclass of PK formed by all continuous
homogeneous polynomials defined on Hilbert spaces, that is: given P ∈
PK(nE;F ), P ∈ HK(nE;F ) if and only if E is a Hilbert space over K or
P = 0. From [12, Proposition 1.44] we know that ‖P‖ = ‖P̌‖ for all scalar-
valued polynomials P in HK. By composing with a given linear functional
and applying the Hahn–Banach theorem, we see that ‖P‖ = ‖P̌‖ for all P
in HK, proving that HK has property (B) with respect to the sup norm with
constant C = 1. In particular, HK is a global holomorphy type with constant
σ = 2 (Proposition 8.2) which is not an ideal of polynomials (obvious).

It is obvious that LR and LC have property (B) with constant C = 1.
From the classical estimates

‖P̌‖ ≤
nn

n!
‖P‖ ≤ en‖P‖,
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which hold for every natural n, any Banach spaces E and F , and P ∈
P(nE;F ), we know that PR and PC are global holomorphy types with con-
stant 2e. We are about to see that the polynomial property (B) works out
well in the complex case, but, surprisingly, in the real case it does not.

Proposition 8.4. Let Q be a closed ideal of polynomials between com-

plex Banach spaces. The following assertions are equivalent.

(a) Q has property (B) (with best constant C = e).
(b) Q is a global holomorphy type (with best constant σ ≤ 2e).
(c) For all n, E and F , Pa ∈ Q(n−1E;F ) whenever P ∈ Q(nE;F ) and

a ∈ E.

Proof. (a)⇒(b). This is a particular case of Proposition 8.2.

(b)⇒(c). Since Pa = (1/n!)d̂n−1P (a), this implication follows immedi-
ately from the definition of global holomorphy type.

(c)⇒(a). The case n = 1 is immediate. Given n > 1, complex Banach
spaces E and F , a ∈ E and P ∈ Q(nE;F ), by assumption we have Pa ∈
Q(n−1E;F ). It follows from the definitions that

‖a‖P
a

‖a‖
= Pa =

1

n!
d̂n−1P (a).

Using [16, Corollary 3] with k = n− 1 we obtain

‖Pa‖ =

∥∥∥∥P
a

‖a‖

∥∥∥∥‖a‖ =
1

n!

∥∥∥∥d̂
n−1P

(
a

‖a‖

)∥∥∥∥‖a‖ ≤
1

n!

nn(n− 1)!

(n− 1)n−1
‖P‖ ‖a‖

=

(
n

n− 1

)n−1

‖P‖ ‖a‖ ≤ e‖P‖ ‖a‖,

proving that Q has property (B).
For each n ∈ N, let Pn be the nth Nachbin polynomial, that is

Pn : (Cn, ‖ · ‖ℓ1) → C, Pn((λ1, . . . , λn)) = λ1 · · ·λn.

Since every ideal of polynomials contains the polynomials of finite type and
continuous homogeneous polynomials on finite-dimensional spaces are of
finite type, each Pn belongs to Q. Taking an = (1, 0, . . . , 0) ∈ Cn, it is easy
to see that ‖Pnan‖ = 1/n(n− 1)n−1. But ‖Pn‖ = 1/nn, so

‖Pnan‖

‖Pn‖ ‖an‖
=

nn−1

(n− 1)n−1
→ e as n→ ∞,

showing that e is the best constant.

Proposition 8.5. Every closed ideal of polynomials between real Banach

spaces lacks property (B).

Proof. Suppose that a closed ideal Q of polynomials between real Banach
spaces has property (B) with constant C. For n ∈ N and 0 ≤ k ≤ n, let
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cn,k be the numbers defined by L. Harris [16, p. 477]. By [16, Theorem 2],
for each n ∈ N there are Pn ∈ P(n(R2, ‖ · ‖ℓ1)) and 0 6= an ∈ R2 such that

‖d̂n−1Pn(an)‖ = cn,n−1‖Pn‖ ‖an‖. Using again the facts that every ideal
of polynomials contains the polynomials of finite type and that continuous
homogeneous polynomials on finite-dimensional spaces are of finite type, we
deduce that each Pn belongs to Q. By [26, Theorem 1], there is an absolute
constant c1 > 0 such that c1n log n ≤ cn,1 for all n. So,

c1n! logn‖Pn‖ ‖an‖ = (n− 1)!c1n log n‖Pn‖ ‖an‖ ≤ (n− 1)!cn,1‖Pn‖ ‖an‖

= cn,n−1‖Pn‖ ‖an‖ = ‖d̂n−1Pn(an)‖ = n!‖Pnan‖

≤ n!C‖Pn‖ ‖an‖,

yielding the contradiction c1 logn ≤ C for all n. Hence every closed ideal of
polynomials between real Banach spaces fails to have property (B).

Remark 8.6. (a) By Proposition 8.5, PR, or any closed real ideal of
polynomials Q such that Pa ∈ Q(n−1E;F ) whenever P ∈ Q(nE;F ) and
a ∈ E, shows that the converse of Proposition 8.2 fails even for ideals of
polynomials, and that property (B) is more appropriate for ideals of multi-
linear mappings than for ideals of polynomials.

(b) The proofs of Propositions 8.4 and 8.5 use neither property 1.3(ii)
(just the containment of the polynomials of finite type) nor the fact that
each Q(nE;F ) is closed in P(nE;F ) (just the fact that the underlying norm
is the usual sup norm).

(c) Let R be a subclass of PR such that each component R(nE;F ) is a
closed subspace of P(nE;F ). If R has property (B) with respect to the sup
norm, then R is a global holomorphy type (Proposition 8.2) which is not an
ideal of polynomials (Proposition 8.5).

9. Everywhere absolutely summing mappings. Several classes
have already been studied as multilinear/polynomial generalizations of the
ideals of p-summing and (p; q)-summing linear operators. Quite promising
is the class of all multilinear mappings/polynomials which are absolutely
summing at every point of the domain, which we define next. This class was
introduced by M. Matos [17] and developed in [21, 22, 23].

Given p ∈ [1,∞), let ℓp(E) be the Banach space of all absolutely p-
summable sequences (xj)

∞
j=1 in E with the norm

‖(xj)
∞
j=1‖p =

( ∞∑

j=1

‖xj‖
p
)1/p

.

We denote by ℓwp (E) the Banach space of all weakly p-summable sequences
(xj)

∞
j=1 in E with the norm ‖(xj)

∞
j=1‖w, p = supϕ∈BE′

‖(ϕ(xj))
∞
j=1‖p. We

denote by ℓup(E) the closed subspace of ℓwp (E) formed by all sequences
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(xj)
∞
j=1 ∈ ℓwp (E) such that limm→∞‖(xj)

∞
j=m‖w, p = 0. If 0 < p < 1 we have

p-norms instead of norms, and the resulting spaces are complete metrizable
topological vector spaces.

Definition 9.1. Let 1 ≤ q ≤ p. An n-linear mapping A ∈ L(E1, . . . ,
En;F ) is said to be (p; q)-summing at (a1, . . . , an) ∈ E1 × · · · × En if

(A(a1 + x
(1)
j , . . . , an + x

(n)
j ) −A(a1, . . . , an))∞j=1 ∈ ℓp(F ),

whenever (x
(k)
j )∞j=1 ∈ ℓuq (Ek), k = 1, . . . , n. The space of all n-linear map-

pings in L(E1, . . . , En;F ) which are (p; q)-summing at every point of E1 ×
· · · ×En will be denoted by Lev

as(p;q)(E1, . . . , En;F ).

To endow this space with a norm we adapt [17, Section 7]. First we fix
some terminology. An n-linear mapping A ∈ L(E1, . . . , En;F ) is said to be
(p; q)-summing if it is (p; q)-summing at (0, . . . , 0). In this case we write
A ∈ Las(p;q)(E1, . . . , En;F ). It is well known [2, Theorem 1.2(ii)] that A is
(p; q)-summing if and only if there is C ≥ 0 such that for every m ∈ N and

x
(k)
j ∈ Ek, j = 1, . . . ,m, k = 1, . . . , n,

‖(A(x
(1)
j , . . . , x

(n)
j ))m

j=1‖p ≤ C
n∏

k=1

‖(x
(k)
j )m

j=1‖w,q.

The least such C is denoted by ‖A‖as(p;q) and it defines an ideal norm on
Las(p;q)(E1, . . . , En;F ).

Lemma 9.2. If A ∈ Lev
as(p;q)(E1, . . . , En;F ) and (a1, . . . , an) ∈ E1 × · · ·

× En, then there exists a constant Ca1,...,an
≥ 0 so that

∞∑

j=1

‖A(a1 + x
(1)
j , . . . , an + x

(n)
j ) −A(a1, . . . , an)‖p ≤ Ca1,...,an

whenever ‖(x
(k)
j )∞j=1‖w,q ≤ 1, k = 1, . . . , n.

Proof. We argue for n = 2. Let A ∈ Lev
as(p;q)(E1, E2;F ), (a, b) ∈ E1 ×E2,

(xj)
∞
j=1 ∈ Bℓu

q (E1) and (yj)
∞
j=1 ∈ Bℓu

q (E2). It is clear that the linear operators

A(a, ·) and A(·, b) and the bilinear mapping A are (p; q)-summing. So,

( ∞∑

j=1

‖A(a+ xj , b+ yj) −A(a, b)‖p
)1/p

≤
( ∞∑

j=1

‖A(a, yj)‖
p
)1/p

+
( ∞∑

j=1

‖A(xj , b)‖
p
)1/p

+
( ∞∑

j=1

‖A(xj , yj)‖
p
)1/p

≤ ‖A(a, ·)‖as(p;q) + ‖A(·, b)‖as(p;q) + ‖A‖as(p;q) =: C
1/p
a,b .
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Given A ∈ Lev
as(p;q)(E1, . . . , En;F ), the n-linear mapping ψp,q(A) : ℓuq (E1)

× · · · × ℓuq (En) → ℓp(F ) given by

ψp,q(A)((x
(1)
j )∞j=1, . . . , (x

(n)
j )∞j=1)

= (A(x
(1)
1 , . . . , x

(n)
1 ), (A(x

(1)
1 + x

(1)
j , . . . , x

(n)
1 + x

(n)
j ) −A(x

(1)
1 , . . . , x

(n)
1 ))∞j=2)

is clearly well defined. Actually, much more is true:

Proposition 9.3. Let A ∈ L(E1, . . . , En;F ). The following assertions

are equivalent :

(a) A ∈ Lev
as(p;q)(E1, . . . , En;F ).

(b) ψp,q(A) is well defined and continuous on ℓuq (E1) × · · · × ℓuq (En).
(c) There is C > 0 such that

(
‖A(a1, . . . , an)‖p+

∞∑

j=1

‖A(a1+x
(1)
j , . . . , an+x

(n)
j )−A(a1, . . . , an)‖p

)1/p

≤ C‖(a1, (x
(1)
j )∞j=1)‖w,q · · · ‖(an, (x

(n)
j )∞j=1)‖w,q

for every (a1, . . . , an) ∈ E1 × · · · × En and (x
(k)
j )∞j=1 ∈ ℓuq (Ek), k =

1, . . . , n.
(d) There is C > 0 such that for every (a1, . . . , an) ∈ E1 × · · · × En,

m ∈ N and x
(k)
1 , . . . , x

(k)
m ∈ Ek, k = 1, . . . , n,

(
‖A(a1, . . . , an)‖p+

m∑

j=1

‖A(a1+x
(1)
j , . . . , an+x

(n)
j )−A(a1, . . . , an)‖p

)1/p

≤ C‖(a1, (x
(1)
j )m

j=1)‖w,q · · · ‖(an, (x
(n)
j )m

j=1)‖w,q.

(e) There is C > 0 such that

(
‖A(a1, . . . , an)‖p+

∞∑

j=1

‖A(a1+x
(1)
j , . . . , an+x

(n)
j )−A(a1, . . . , an) ‖p

)1/p

≤ C‖(a1, (x
(1)
j )∞j=1)‖w,q · · · ‖(an, (x

(n)
j )∞j=1)‖w,q,

for every (a1, . . . , an) ∈ E1 × · · · × En and (x
(k)
j )∞j=1 ∈ ℓwq (Ek), k =

1, . . . , n.

Proof. (a)⇒(b). Given k ∈ N and (x
(r)
j )∞j=1 ∈ ℓuq (Er), r = 1, . . . , n,

define

F
k,(x

(1)
j

)∞
j=1,...,(x

(n)
j

)∞
j=1

= {(b1, . . . , bn) ∈ E1 × · · · × En :

‖ψp,q(A)((b1, (x
(1)
j )∞j=1), . . . , (bn, (x

(n)
j )∞j=1))‖p ≤ k}.

For each k ∈ N and (x
(r)
j )∞j=1 ∈ Bℓu

q (Er), r = 1, . . . , n, this set is closed in E1×

· · · × En. Hence so is Fk :=
⋂
F

k,(x
(1)
j

)∞
j=1,...,(x

(n)
j

)∞
j=1

, where the intersection



62 G. Botelho et al.

is taken over all (x
(r)
j )∞j=1 ∈ Bℓu

q (Er), r = 1, . . . , n. Using Lemma 9.2 it is

not difficult to check that E1 × · · · × En =
⋃

k∈N
Fk. By the Baire category

theorem there is k0 such that Fk0 has non-empty interior. Let (b1, . . . , bn)
be in the interior of Fk0 , so there is 0 < ε < 1 such that

‖ψp,q(A)((c1, (x
(1)
j )∞j=1), . . . , (cn, (x

(n)
j )∞j=1))‖p ≤ k0

whenever ‖cr − br‖ < ε and (x
(r)
j )∞j=1 ∈ Bℓu

q (Er), r = 1, . . . , n. Thus, if

(x
(r)
j )∞j=1 ∈ ℓuq (Er), r = 1, . . . , n, are such that ‖(x

(r)
j )∞j=1‖w,q < ε, then

‖(br + x
(r)
1 ) − br‖ < ε and (x

(r)
j )∞j=2 ∈ Bℓu

q (Er), r = 1, . . . , n. It follows that

‖ψp,q(A)((b1, 0, 0, . . .) + (x
(1)
j )∞j=1, . . . , (bn, 0, 0, . . .) + (x

(n)
j )∞j=1)‖p ≤ k0.

Therefore, ψp,q(A) is bounded in the ball of radius ε and center at the
point ((b1, 0, 0, . . .), . . . , (bn, 0, 0, . . .)) ∈ ℓuq (E1)×· · ·×ℓuq (En). It follows that
ψp,q(A) is continuous.

To prove (b)⇒(c), observe that

‖ψp,q(A)((a1, (x
(1)
j )∞j=1), . . . , (an, (x

(n)
j )∞j=1))‖

p

= ‖A(a1, . . . , an)‖p +
∞∑

j=1

‖A(a1 + x
(1)
j , . . . , an + x

(n)
j ) −A(a1, . . . , an)‖p,

and put C = ‖ψp,q(A)‖. The implications (c)⇒(d)⇒(e)⇒(a) are trivial.

Proposition 9.4. The map

ψp,q : Lev
as(p;q)(E1, . . . , En;F ) → L(ℓuq (E1), . . . , ℓ

u
q (En); ℓp(F ))

is linear injective and its range is closed in L(ℓuq (E1), . . . , ℓ
u
q (En); ℓp(F )).

Proof. ψp,q is well defined by Proposition 9.3. Its linearity and injec-
tivity are obvious. Let us prove that its range is closed. Let (Ak)

∞
k=1 ⊂

Lev
as(p;q)(E1, . . . , En;F ) with ψp,q(Ak) → h. So, ‖ψp,q(Ak)‖ → ‖h‖. Given

aj ∈ Ej , j = 1, . . . , n, from

ψp,q(Ak)((a1, 0, 0, . . .), . . . , (an, 0, 0, . . .)) = (Ak(a1, . . . , an), 0, . . . , 0),

if πj denotes the projection onto the jth coordinate, we get

lim
k
Ak(a1, . . . , an) = π1(h((a1, 0, 0, . . . , ), . . . , (an, 0, 0, . . . , ))).

So we can define A∈L(E1, . . . , En;F ) by A(a1, . . . , an) :=limk Ak(a1, . . . , an).

Let (b1, . . . , bn) ∈ E1 × · · · × En and (x
(r)
j )∞j=1 ∈ ℓuq (Er), r = 1, . . . , n. For

each m ∈ N,
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‖(A(b1 + x
(1)
j , . . . , bn + x

(n)
j ) −A(b1, . . . , bn))m

j=1‖p

≤
(
‖A(b1, . . . , bn)‖p +

m∑

j=1

‖A(b1 + x
(1)
j , . . . , bn + x

(n)
j ) −A(b1, . . . , bn)‖p

)1/p

= lim
k

‖ψp,q(Ak)((b1, (x
(1)
j )m

j=1), . . . , (bn, (x
(n)
j )m

j=1))‖p

≤ lim
k

‖ψp,q(Ak)‖
n∏

r=1

‖(br, (x
(r)
j )m

j=1)‖w,q

≤ ‖h‖
n∏

r=1

(‖br‖ + ‖(x
(r)
j )m

j=1‖w,q) ≤ ‖h‖
n∏

r=1

(‖br‖ + ‖(x
(r)
j )∞j=1‖w,q),

showing that A ∈ Lev
as(p;q)(E1, . . . , En;F ). Moreover, it is not difficult to see

that

πj(h((x
(1)
i )∞i=1, . . . , (x

(n)
i )∞i=1))

= A(x
(1)
1 + x

(1)
j , . . . , x

(n)
1 + x

(n)
j ) −A(x

(1)
1 , . . . , x

(n)
1 )

for every j = 2, 3, . . . . Since

π1(h((x
(1)
i )∞i=1, . . . , (x

(n)
i )∞i=1)) = A(x

(1)
1 , . . . , x

(n)
1 ),

h((x
(1)
i )∞i=1, . . . , (x

(n)
i )∞i=1) = ψp,q(A)((x

(1)
i )∞i=1, . . . , (x

(n)
i )∞i=1).

So ψp,q(A) = h, and therefore h belongs to the range of ψp,q.

It is plain that Lev
as(p;q) is an ideal of multilinear mappings. From Propo-

sitions 9.3 and 9.4 it follows that the correspondence

A ∈ Lev
as(p;q)(E1, . . . , En;F ) 7→ ‖A‖ev(p;q) := ‖ψp,q(A)‖

makes Lev
as(p;q)(E1, . . . , En;F ) a Banach space. Straightforward computations

show that (Lev
as(p;q), ‖·‖ev(p;q)) is a Banach ideal of multilinear mappings mod-

ulo property 1.3(ii′). For every A ∈ Lev
as(p;q)(E1, . . . , En;F ), ‖A‖ev(p;q) is the

least constant C for which the inequalities in Proposition 9.3 always hold.

Definition 9.5 (M. Matos [17]). Let 1 ≤ q ≤ p. An n-homogeneous
polynomial P ∈ P(nE;F ) is said to be absolutely (p; q)-summing (or (p; q)-
summing) at a ∈ E if (P (a + xj) − P (a))∞j=1 ∈ ℓp(F ) whenever (xj)

∞
j=1 ∈

ℓuq (E). The space of all n-homogeneous polynomials in P(nE;F ) which are
(p; q)-summing at every point of E will be denoted by Pev

as(p;q)(
nE;F ).

We let P ∈ Pev
as(p;q)(

nE;F ) 7→ ‖P‖ev(p;q) be the norm on Pev
as(p;q)(

nE;F )

introduced in [17]. Adapting the proof of [21, Proposition 4] we find that
P ∈ Pev

as(p;q)(
nE;F ) if and only if P̌ ∈ Lev

as(p;q)(
nE;F ). Characterizations ana-

logous to those of Proposition 9.3 also hold for polynomials. In particular,
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Pev
as(p;q) = PLev

as(p;q)
as ideals. M. Matos [17, Proposition 7.8] proved that

Pev
as(p;q) is a global holomorphy type with respect to the norm P 7→ ‖P‖ev(p;q)

with constant σ = 2e.

Theorem 9.6. Lev
as(p;q) has property (B) with constant C = 1. So, Pev

as(p;q)

is a global holomorphy type with respect to the norm P 7→ ‖P̌‖ev(p;q) with

σ = 2.

Proof. The second assertion follows from the first by applying Theo-
rem 3.2 and observing that its proof does not depend on the property that
Lev

as(p;q) lacks, namely, 1.3(ii′). Let A ∈ Lev
as(p;q)(E1, . . . , En+1;F ) and a ∈

En+1. From

Aa(a1 + x
(1)
j , . . . , an + x

(n)
j ) −Aa(a1, . . . , an)

= A(a1 + x
(1)
j , . . . , an + x

(n)
j , a+ 0) −A(a1, . . . , an, a),

it is clear that Aa ∈ Lev
as(p;q)(E1, . . . , En;F ). Given ak ∈ Ek and (x

(k)
j )∞j=1 ∈

ℓuq (Ek), k = 1, . . . , n, by Proposition 9.3 we get
(
‖Aa(a1, . . . , an)‖p+

∞∑

j=1

‖Aa(a1+x
(1)
j , . . . , an+x

(n)
j )−Aa(a1, . . . , an)‖p

)1/p

=
(
‖A(a1, . . . , an, a)‖

p

+
∞∑

j=1

‖A(a1 + x
(1)
j , . . . , an + x

(n)
j , a+ 0) −A(a1, . . . , an, a)‖

p
)1/p

≤ ‖A‖ev(p;q)‖a‖‖(a1, (x
(1)
j )∞j=1)‖w,q · · · ‖(an, (x

(n)
j )∞j=1)‖w,q.

It follows that ‖Aa‖ev(p;q) ≤ ‖A‖ev(p;q)‖a‖.
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[13] K. Floret and D. Garćıa, On ideals of polynomials and multilinear mappings between

Banach spaces, Arch. Math. (Basel) 81 (2003), 300–308.
[14] S. Geiss, Ein Faktorisierungssatz für multilineare Funktionale, Math. Nachr. 134

(1987), 149–159.
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