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Suitable domains to define fractional integrals of Weyl
via fractional powers of operators

by

Celso Mart́ınez (València), Antonia Redondo (Albacete)
and Miguel Sanz (València)

Abstract. We present a new method to study the classical fractional integrals of
Weyl. This new approach basically consists in considering these operators in the largest
space where they make sense. In particular, we construct a theory of fractional integrals of
Weyl by studying these operators in an appropriate Fréchet space. This is a function space
which contains the Lp(R)-spaces, and it appears in a natural way if we wish to identify
these fractional operators with fractional powers of a suitable non-negative operator. This
identification allows us to give a unified view of the theory and provides some elegant
proofs of some well-known results on the fractional integrals of Weyl.

1. Introduction and results in L1
loc(R). Many of the fractional opera-

tors that appear in Fractional Calculus can be described as fractional powers
of some non-negative operator considered on a suitable function space. Fre-
quently this space is not a Banach space. However, if it is a sequentially
complete locally convex space, the theory of fractional powers can provide
global results applicable to the part of the operator in certain classical spaces
such as the Lebesgue spaces Lp. This approach to Fractional Calculus has
already been considered by the authors (see [11]–[13]).

The theory of fractional powers in Banach spaces is well-known and it
was developed mainly by A. V. Balakrishnan [1] and H. Komatsu [5] for non-
negative operators (see also [9] and [3]). An extensive bibliography of this
theory can be found in [9] and [16]. The concept of a non-negative operator
in a Fréchet space and the corresponding theory of fractional powers were
developed in [10] and [8] (see also [9]). Previously, W. Lamb [6] constructed
another more restrictive extension.

Fractional integrals and derivatives of Weyl have been widely studied
(see [4] and [14] and the books [2] and [15]), but usually they have not been

2010 Mathematics Subject Classification: Primary 47A60, 26A33.
Key words and phrases: fractional derivatives and integrals, fractional powers of operators,
non-negative operators, fractional integrals of Weyl.

DOI: 10.4064/sm202-2-3 [145] c© Instytut Matematyczny PAN, 2011



146 C. Mart́ınez et al.

considered as operators defined in suitable function spaces, and so their
properties have only been proved for certain kinds of functions.

In this paper we develop a method to study the classical Weyl fractional
integrals. The basic idea is to consider these operators in the largest space
where they make sense and where these operators can be described as frac-
tional powers of a certain non-negative operator.

From now on, given a function g ∈ L1
loc(R) which is not necessarily inte-

grable, the expression
	∞
a g(t) dt will be understood as an improper integral.

C+ will stand for the set of complex numbers with strictly positive real
part. Given a linear operator A, D(A) and R(A) will denote, respectively,
the domain and the range of A.

Given a complex number α ∈ C+ and f ∈ L1
loc(R), if there exist points

a > x0 such that the integral
∞�

a

(t− x0)α−1f(t) dt

is convergent, then we deduce without difficulty (see [11, Lemmas 3.1, 3.2
and 3.3]) that for almost every x ∈ R, the integral

(1)
∞�

x

(t− x)α−1f(t) dt

also converges, and the function

Kα
wf(x) :=

1
Γ (α)

∞�

x

(t− x)α−1f(t) dt, a.e. x ∈ R,

belongs to the space L1
loc(R). The function Kα

wf is called the classical frac-
tional integral of Weyl of order α of the function f . So, if we do not make
any restrictions, the natural space where we can consider the linear operator
Kα
w : f 7→ Kα

wf is L1
loc(R), and its natural domain is

D(Kα
w) :=

{
f ∈ L1

loc(R) :
∞�

x

(t− x)α−1f(t) dt exists for a.e. x ∈ R
}
.

This was already indicated in [11, Remark 3.5], where we also noted that,
from the merely algebraic point of view, the operator K1

w (which we will
call K) cannot be a non-negative operator in L1

loc(R), since 1 + K is not
surjective. We cannot work with the closure operator either, since K is not
closable, and thus fractional powers of K do not make sense in L1

loc(R), and
obviously, we cannot establish relationships between them and fractional
integrals of Weyl either.

In this paper we overcome these difficulties by constructing a suitable
function space which entirely contains the domain and the range of K. This
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space will be a Fréchet space and K will be a non-negative operator in this
space. The aforementioned space contains all the Lebesgue spaces, and in
algebraic sense, it is maximal with respect to the property of non-negativity
of K.

In [11, Lemma 3.2 and Theorem 3.6] we proved the following results:

Lemma 1.1. Let α ∈ C+ and a, x, x0 ∈ R with x, x0 ∈ ]−∞, a[. If f ∈
D(Kα

w), then

∣∣∣∞�
a

(t− x)α−1f(t) dt
∣∣∣

≤
(
A+B

(
a− x
a− x0

)Reα−1)
sup
t≥a

∣∣∣∞�
t

(s− x0)α−1f(s) ds
∣∣∣

when Reα 6= 1, and∣∣∣∞�
a

(t− x)α−1f(t) dt
∣∣∣

≤
(

1 + C| log
(
a− x
a− x0

)∣∣∣∣) sup
t≥a

∣∣∣∞�
t

(s− x0)α−1f(s) ds
∣∣∣

when Reα = 1, where A, B, C are positive constants which only depend on
the complex number α.

Lemma 1.2. Given α, β ∈ C+ such that Reα > Reβ, we have D(Kα
w) ⊂

D(Kβ
w), and for a, x ∈ R with x ∈ ]−∞, a[ the following estimate holds:∣∣∣∞�
a

(t− x)β−1f(t) dt
∣∣∣ ≤ E(a− x)Re(β−α) sup

t≥a

∣∣∣∞�
t

(s− x)α−1f(s) ds
∣∣∣

where E is a constant which only depends on α and β.

By means of these two results we proved (see [11, Theorem 3.7]) that for
α, β ∈ C+ with Reβ < 1, the operator Kβ

wKα
w is an extension of Kα+β

w . In
what follows, with a more careful use of these same results, we will prove
that the restriction on the size of the real part of β can be removed.

Theorem 1.3. If α, β ∈ C+, then the operator Kβ
wKα

w is an extension
of Kα+β

w .

Proof. Given f ∈ D(Kα+β
w ), let x in R be a point where the function

Kα+β
w f is defined, and let a > x. At the beginning of the proof of [11,
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Theorem 3.7] we proved that
a�

x

(t− x)β−1(Kα
wf)(t) dt =

Γ (β)
Γ (α+ β)

a�

x

(t− x)α+β−1f(t) dt

+
1

Γ (α)

a�

x

(t− x)β−1
(∞�
a

(s− t)α−1f(s) ds
)
dt

for any α, β ∈ C+. So, in order to prove our statement, it is sufficient to
show that the last iterated integral converges to zero as a→∞. For a fixed
x0 < a, we denote

(2) M(a) := sup
t≥a

∣∣∣∞�
t

(s− x0)α+β−1f(s) ds
∣∣∣

and we write σ = Reα and τ = Reβ. By applying successively Lemmas 1.1
and 1.2 we find that there exist positive constants P, Q, P1, Q1 such that∣∣∣∞�

a

(s− t)α−1f(s) ds
∣∣∣ ≤ (P +Q

(
a− t
a− x0

)σ−1)
(a− x0)−τM(a)

if σ 6= 1, and∣∣∣∞�
a

(s− t)α−1f(s) ds
∣∣∣ ≤ (P1 +Q1 log

(
a− x0

a− t

))
(a− x0)−τM(a)

if σ = 1. Since lima→∞M(a) = 0, it is sufficient to prove that the expressions

M1(a) := (a− x0)−τ
a�

x

(t− x)τ−1 dt,

M2(a) := (a− x0)−τ−σ+1
a�

x

(t− x)τ−1(a− t)σ−1 dt,

M3(a) := (a− x0)−τ
a�

x

(t− x)τ−1 log
(
a− x0

a− t

)
dt

are bounded in a. But this is evident, since it is easy to see that

M1(a) =
1
τ

(
a− x
a− x0

)τ
,

M2(a) =
(
a− x
a− x0

)σ+τ−1 1�

0

vτ−1(1− v)σ−1 dv,

M3(a) =
(
a− x
a− x0

)τ[
log
(
a− x0

a− x

)
−

1�

0

vτ−1 log(1− v) dv
]
,

which completes the proof.
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Remark 1.4. In general, the operator Kα+β
w is not an extension of the

composition Kα
wK

β
w. Set f(x) := e−2πix. If 0 < Reα < 1 we have

(3) (Kα
wf)(x) =

1
Γ (α)

∞�

x

(t− x)α−1f(t) dt =
1

Γ (α)
e−2πix

∞�

0

e−2πissα−1 ds.

In view of the identities

sα−1 =
1

Γ (1− α)

∞�

0

e−vsv−α dv,

1
Γ (1− α)Γ (α)

∞�

0

(
1

v + 2πi

)
v−α dv = (2πi)−α,

the last integral in (3) is equal to

1
Γ (1− α)

∞�

0

e−2πis
(∞�

0

e−vsv−α dv
)
ds

=
1

Γ (1− α)

∞�

0

1
v + 2πi

v−α dv = Γ (α)(2πi)−α,

hence
(Kα

wf)(x) = (2πi)−αf(x).

Thus f belongs to the domain of D(K1/2
w K

1/2
w ). However, it is evident that

f /∈ D(K).

The following partial result of additivity will be useful later on.

Theorem 1.5. Given α, β, γ ∈ C+ such that Re(α + β) = Re γ, if f ∈
D(Kγ

w) and Kα
wf ∈ D(Kβ

w), then

f ∈ D(Kα+β
w ) and Kα+β

w f = Kβ
wK

α
wf.

Proof. By applying similar arguments to those in the proof of Theo-
rem 1.3, we first note that it is sufficient to show that, given a point x ∈ R
such that (Kβ

wKα
wf)(x) is defined, we have

lim
a→∞

a�

x

(t− x)β−1
(∞�
a

(s− t)α−1f(s) ds
)
dt = 0.

From this, we reason in the same way as in Theorem 1.3, but taking

M(a) := sup
t≥a

∣∣∣∞�
t

(s− x0)γ−1f(s) ds
∣∣∣

instead of (2).
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In order to establish the next two results, given λ > 0, we introduce the
set

D(Hλ) :=
{
f ∈ L1

loc(R) :
∞�

x

e−λtf(t) dt is convergent
}

and we consider the operator Hλ : D(Hλ)→ L1
loc(R) defined by

(Hλf)(x) := eλx
∞�

x

e−λtf(t) dt for all f ∈ D(Hλ) and x ∈ R.

Proposition 1.6. If α ∈ C+, then D(Kα
w) ⊂ D(Hλ), and

(4) lim
x→∞

xα−1(Hλf)(x) = 0 for all f ∈ D(Kα
w).

In addition, if Reα > 1, then

(5) lim
x→∞

xα−1(Kf)(x) = 0 for all f ∈ D(Kα
w).

Proof. Let f ∈ D(Kα
w) and x ∈ R. When c < x < a, we have

a�

x

e−λtf(t) dt = (x− c)1−αe−λx
a�

x

(t− c)α−1f(t) dt

+
a�

x

((1− α)− λ(t− c))
eλt(t− c)α

(a�
t

(s− c)α−1f(s) ds
)
dt,

which easily implies that f ∈ D(Hλ). Moreover

|xα−1(Hλf)(x)| ≤
∣∣∣xα−1(x− c)1−α

∞�

x

(t− c)α−1f(t) dt
∣∣∣

+ Sx(α)
∣∣∣xα−1eλx

∞�

x

e−λt((1− α)(t− c)−α − λ(t− c)1−α) dt
∣∣∣

where

Sx(α) := sup
t≥x

∣∣∣∞�
t

(s− c)α−1f(s) ds
∣∣∣.

By taking into account that

lim
x→∞

xα−1(x− c)1−α = 1 and lim
x→∞

Sx(α) = 0

and using L’Hôpital’s rule, we obtain

lim sup
x→∞

∣∣∣xα−1eλx
∞�

x

e−λt((1− α)(t− c)−α − λ(t− c)1−α) dt
∣∣∣ ≤ 1

and therefore limx→∞ x
α−1(Hλf)(x) = 0.

If Reα > 1, from Lemma 1.2 we deduce that f ∈ D(K) and in the same
way the relation (5) is proved.
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In the case 0 < Reα < 1 we have D(K) ⊂ D(Kα
w). However, as we will

see in the next proposition, we cannot guarantee a similar inclusion when
Reα > 1. As usual, we will denote

D(K∞) :=
⋂
n∈N

D(Kn), R(K∞) :=
⋂
n∈N

R(Kn).

Proposition 1.7. For all α ∈ C+ with Reα > 1,

D(K∞) ∩R(K∞) * D(Kα
w).

Proof. First, let us see that the function

fβ(x) :=
{
e2πixx−β, x > 1,
0, x ≤ 1,

belongs to D(Kr) for all β ∈ C+ and for all positive integers r. This is
obvious for r = 1, since by integration by parts, it is easy to prove that
fβ ∈ D(K). If we reiterate this process p times, we obtain an expression

(6) Kfβ = c0fβ + c1fβ+1 + · · ·+ cp−1fβ+p−1 + cpKfβ+p,

valid for x > 1, where c0, . . . , cp are complex constants.
Now, we are going to prove that fβ ∈ D(Kr). In fact, if we assume the

result up to exponent r − 1, we can apply this induction hypothesis to the
functions fβ, . . . , fβ+p−1 and we only need to prove that Kfβ+p ∈ D(Kr−1),
which is obvious when p ≥ r, since

|Kfβ+p(x)| ≤ γx−Reβ−p+1 for x > 1,

where γ is a positive constant. Consequently, fβ ∈ D(K∞).
Letting p = 1, directly from (6) it follows that fβ ∈ R(K), and by

induction we can easily prove that fβ ∈ R(Kr) for all positive integers r.
In particular, given α ∈ C+ with Reα > 1, the function fα−1 belongs to
D(K∞)∩R(K∞). However, it does not belong to D(Kα

w). In fact, from (6),
taking β = α−1 and p = 2, by means of L’Hôpital’s rule we easily find that

xα−1(Kfα−1)(x) = − 1
2πi

e2πix +O(x−1),

and thus fα−1 does not satisfy (5).

Theorem 1.8. If α ∈ C+ and f ∈ D(Kα
w), then

Kα
wf ∈ D(Hλ) ⇔ Hλf ∈ D(Kα

w),

and in that case HλK
α
wf = Kα

wHλf.

Proof. From Proposition 1.6, if f ∈ D(Kα
w) then f ∈ D(Hλ). Given

x > 0 such that the function Kα
wf is defined at x, for all a > x, applying
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the Tonelli theorem, we obtain the identities

(7)
a�

x

(t− x)α−1eλt
(a�
t

e−λsf(s) ds
)
dt =

a�

x

e−λsf(s)
(s�
x

(t− x)α−1eλt dt
)
ds

and
a�

x

e−λt
(a�
t

(s− t)α−1f(s) ds
)
dt =

a�

x

f(s)
(a�
t

(s− t)α−1e−λt dt
)
ds.

Moreover

e−λs
s�

x

(t− x)α−1eλt dt = eλ(x−s)
s−x�

0

τα−1eλτ dτ = eλx
s�

x

(s− t)α−1e−λt dt.

So, the left member of (7) is equal to

eλx
a�

x

e−λt
(a�
t

(s− t)α−1f(s) ds
)
dt.

Now, it only remains to prove that the expressions

(8)

a�

x

(t− x)α−1eλt dt

∞�

a

e−λsf(s) ds and

eλx
a�

x

e−λt
(∞�
a

(s− t)α−1f(s) ds
)
dt

converge to zero as a goes to infinity.
In order to prove the convergence of the first expression, it is sufficient

to write it in this way:
	a−x
0 ξα−1eλξ dξ

aα−1eλ(a−x) · aα−1eλa
∞�

a

e−λsf(s) ds

and to apply L’Hôpital’s rule on the left and Proposition 1.6 on the right.
On the other hand, given c such that c < x, we have

∞�

a

(s− t)α−1f(s) ds =
(
a− c
a− t

)1−α∞�

a

(s− c)α−1f(s) ds

− (1− α)
∞�

a

(
s− c
s− t

)−α t− c
(s− t)2

(∞�
s

(ξ − c)α−1f(ξ) dξ
)
ds,

which implies the estimate∣∣∣∞�
a

(s− t)α−1f(s) ds
∣∣∣ ≤ k(a, c)

[
(p(α) + 1)

(
a− c
a− t

)1−Reα

− p(α)
]
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where

k(a, c) := sup
s≥a

∣∣∣∞�
s

(ξ − c)α−1f(ξ) dξ
∣∣∣ and p(α) :=

|1− α|
Reα

.

Then, using L’Hôpital’s rule, we find

lim
a→∞

(a− c)1−σ
x�

a

e−λt(a− t)σ−1 dt = lim
a→∞

	a−x
0 τσ−1eλτdτ

(a− c)σ−1eλa
= e−λx

with σ = Reα. Since f ∈ D(Kα
w), we have lima→∞ k(a, c) = 0. Conse-

quently, the second expression in (8) also converges to zero as a goes to
infinity.

2. Relation between the Weyl operators and the fractional pow-
ers of K. In this section, we are going to construct a Fréchet space con-
tained in L1

loc(R) and containing the domain and the range of K and where
this operator will be non-negative. This space will not be a topological sub-
space of L1

loc(R). These conditions uniquely characterize the aforementioned
space. We will study the relationships between the fractional powers of K
and Weyl’s operators.

Proposition 2.1. Let λ > 0. In the space L1
loc(R) the operator 1 + λK

is injective and its range is

X := {f ∈ D(Hλ) : lim
x→∞

(Hλf)(x) = 0}

=
{
f ∈ L1

loc(R) :
∞�

x

e−λtf(t) dt exists and lim
x→∞

∞�

x

eλ(x−t)f(t) dt = 0
}
,

which is independent of λ > 0. Furthermore,

D(K) ∪R(K)  X.

Proof. Given f ∈ X, the function

(9) h(x) := eλx
∞�

x

e−λtf(t) dt

is absolutely continuous and it is very easy to prove that

g = −h′ ∈ D(K) and (1 + λK)g = f.

Conversely, given f ∈ R(1+λK) and g ∈ D(K) satisfying (1+λK)g = f,
the absolutely continuous function h = Kg satisfies the differential equation

−h′(x) + λh(x) = f(x) (a.e. x ∈ R)

and in addition limx→∞ h(x) = 0. An elementary calculation yields the
unique solution of this Cauchy problem, and it establishes that h can be
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expressed by means of (9), hence f ∈ X. The uniqueness of h implies that
of g, so the operator 1 + λK is injective.

Let us see that the range of the operator 1+λK is independent of λ > 0.
In fact, given λ, µ > 0 and f ∈ R(1 + λK), if we consider c, d such that
c ≤ d, by integration by parts we get

d�

c

e−µtf(t) dt = ec(λ−µ)
d�

c

e−λtf(t) dt

+ (λ− µ)
d�

c

et(λ−µ)
(d�
t

e−λsf(s) ds
)
dt,

which leads to∣∣∣d�
c

e−µtf(t) dt
∣∣∣ ≤ e−µc∣∣∣eλc d�

c

e−λtf(t) dt
∣∣∣

+
|λ− µ|(e−µc − e−µd)

µ
sup
t∈[c,d]

∣∣∣eλt d�
t

e−λsf(s) ds
∣∣∣.

This estimate implies the convergence of the integral
	∞
x e−µtf(t) dt for all

x ∈ R. Likewise, we deduce that

(10)
∣∣∣eµc∞�

c

e−µtf(t) dt
∣∣∣ ≤ (1 + µ−1|λ− µ|) sup

t≥c

∣∣∣eλt∞�
t

e−λsf(s) ds
∣∣∣,

which implies that the first member converges to zero as c goes to infinity.
Therefore, we can conclude that f ∈ R(1 + µK), and so R(1 + λK) is

contained in R(1 +µK). This proves that R(1 + λK) is in fact independent
of λ > 0.

In order to show that D(K) ⊂ X, we reason in a similar way. Note that
the inclusion R(K) ⊂ X is a direct consequence of the fact that all the
functions in R(K) have zero limit as x→∞.

On the other hand, the function f : R→ R defined by

f(x) :=
{

1, x ∈ [n, n+ n−1[, n = 1, 2, . . . ,
0, x ∈ R \

⋃
n∈N[n, n+ n−1[,

does not belong to D(K) since
∞�

n

f(t) dt =
∑
m≥n

1/m =∞;

also f 6∈ R(K), since f(x) does not converge to zero as x goes to ∞. Never-
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theless, f ∈ X since for x ∈ [n, n+ 1[ we have

ex
∞�

x

e−tf(t) dt ≤ ex−nen
∞�

n

e−tf(t) dt ≤ e

n

∑
m≥0

e−m

and the right side tends to zero as n→∞. Thus, D(K) ∪R(K)  X.

Remark 2.2. It is evident that X  L1
loc(R), since the function f(x) :=

ex does not belong to X.

Proposition 2.3. If α ∈ C and n ∈ N, then the following relations hold:

(i)
⋂

0<Reα<1(D(Kα
w) ∩R(Kα

w)) \X 6= ∅.
(ii)

⋃
Reα=1D(Kα

w) ⊂ X.
(iii)

⋃
Reα>nD(Kα

w) ⊂ D(Kn
w) ⊂ D(Kn) ⊂ X.

(iv)
⋃

Reα>nR(Kα
w) ⊂ R(Kn

w) ⊂ R(Kn) ⊂ X.

Proof. In Remark 1.4, we have considered f(x) := e−2πix, which ob-
viously does not belong to X. In addition, Kα

wf = (2πi)−αf whenever
0 < Reα < 1. Consequently, f ∈ D(Kα

w) ∩R(Kα
w), which proves (i).

If Reα = 1 and f ∈ D(Kα
w), then taking into account (4), from Propo-

sition 1.6 we get
lim
x→∞

(H1f)(x) = 0,

which means that f ∈ X and proves (ii). Finally, the inclusions in (iii) and
(iv) are straightforward consequences of Theorem 1.3.

Remark 2.4. For α ∈ C+, λ > 0 and f ∈ D([Kα
w]X) (the part of Kα

w

in X, see Remark 2.10), we have Kα
wf ∈ X ⊂ D(Hλ). Theorem 1.8 implies

that Hλf = K(1 + λK)−1f ∈ D(Kα
w) and

Kα
wK(1 + λK)−1f = K(1 + λK)−1Kα

wf,

therefore (1 + λK)−1f ∈ D(Kα
w) and

Kα
w(1 + λK)−1f = (1 + λK)−1Kα

wf.

By repeating this argument, we find that (1 + λK)−nf ∈ D(Kα
w) for all

n ∈ N and
Kα
w(1 + λK)−nf = (1 + λK)−nKα

wf.

But Theorem 1.8 does not ensure that the conditions

f ∈ X ∩D(Kα
w) and (1 + λK)−1f ∈ D(Kα

w)

imply that Kα
wf ∈ X. We can only assert that

Kα
wK(1 + λK)−1f = HλK

α
wf.

That is,
Kα
w(1 + λK)−1f = (1− λHλ)Kα

wf.
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Theorem 2.5. The set X, endowed with the seminorms

‖f‖∞,a := sup
x≥a
|[K(K + 1)−1f ](x)|

= sup
x≥a

∣∣∣ex∞�
x

e−tf(t) dt
∣∣∣ for a ∈ R,

‖f‖1,[a,b] :=
b�

a

|f(t)| dt for b > a,

is a Fréchet space.

Proof. Let {gn}∞n=1 be a Cauchy sequence in X. By the definition of the
topology of X, and the fact that the space L1

loc(R) is complete, this sequence
is convergent in L1

loc(R). In order to prove that X is complete, it is enough
to see that its limit f belongs to X.

Given ε > 0 and a ∈ R, there exists n0 such that

‖gm − gn0‖∞,b ≤ ε for m ≥ n0, b ≥ a.

On the other hand, taking b ≥ a such that

‖gn0‖∞,b ≤ ε,

we get

‖gm‖∞,c ≤ ε+ ‖gn0‖∞,c ≤ 2ε for all m ≥ n0 and c ≥ b.

Let d, c be such that d ≥ c ≥ b, and m0 ≥ n0 such that

‖gm0 − f‖1,[c,d] ≤ ε.

Then∣∣∣ec d�
c

e−tf(t) dt− ec
d�

c

e−tgm0(t) dt
∣∣∣

≤ ec
d�

c

e−t|f(t)− gm0(t)| dt ≤
d�

c

|f(t)− gm0(t)| dt

= ‖gm0 − f‖1,[c,d] ≤ ε,

hence

(11)
∣∣∣d�
c

e−tf(t) dt
∣∣∣ ≤ ∣∣∣∞�

c

e−tgm0(t) dt
∣∣∣+
∣∣∣∞�
d

e−tgm0(t) dt
∣∣∣+ e−cε

= e−c‖gmo‖∞,c + e−d‖gmo‖∞,d + e−cε ≤ 3εe−c + 2εe−d.

Consequently, for fixed x ∈ R, the integral
	∞
x e−tf(t) dt always converges.
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Now, multiplying (11) by ec and taking limits as d goes to infinity, we obtain∣∣∣ec∞�
c

e−tf(t) dt
∣∣∣ ≤ 3ε for all c ≥ b.

Thus f ∈ X.
Lemma 2.6. The set C1

0 (R) of functions of class C1 with compact sup-
port is dense in the Fréchet space X.

Proof. Given g ∈ X, the sets

{f ∈ X : ‖g − f‖1,[a,b] ≤ ε and ‖g − f‖∞,b ≤ ε} (ε > 0, a < b)

are a neighborhood base of g in the topology of X. Now, given ε > 0 and
a < b, choose c ≥ b such that ‖g‖∞,c ≤ ε. As C∞0 (]a, c[) is dense in L1([a, c]),
there exists f ∈ C∞0 (]a, c[) such that

‖g − f‖1,[a,c] ≤ ε,
so we get

‖g − f‖1,[a,b] ≤ ‖g − f‖1,[a,c] ≤ ε
and

‖g − f‖∞,b ≤ ‖g − f‖∞,a ≤ ‖g − f‖1,[a,c] + ‖g‖∞,c ≤ 2ε,

which implies that C1
0 (R) is dense in X.

Theorem 2.7. The operator K : D(K) → X is a densely defined non-
negative operator in the space X and its range is dense.

Proof. The density of D(K) and R(K) is a direct consequence of the
preceding lemma. In fact, it is evident that C1

0 (R) ⊂ D(K), and for f ∈
C1

0 (R), we have

f(x) = −
∞�

x

f ′(s) ds for all x ∈ R,

which means that f ∈ R(K), so C1
0 (R) ⊂ R(K).

Now let us prove that K is non-negative. Given a ∈ R, for all λ > 0 we
get

‖λK(1 + λK)−1f‖∞,a = sup
x≥a
|[K(K + 1)−1λK(1 + λK)−1f ](x)|

= sup
x≥a
|[λK(1 + λK)−1K(K + 1)−1f ](x)|

= sup
x≥a

∣∣∣λeλx∞�
x

e−λt[K(K + 1)−1f ](t) dt
∣∣∣

≤ sup
x≥a
|[K(K + 1)−1f ](x)|λeλx

∞�

x

e−λt dt = ‖f‖∞,a.
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Assuming that b > a, in order to estimate

‖λK(1 + λK)−1f‖1,[a,b]
we write

[λK(1 + λK)−1f ](x) = g(x) + h(x),

with

g(x) := λeλx
b�

x

e−λtf(t) dt, h(x) := λeλx
∞�

b

e−λtf(t) dt (x ∈ [a, b]).

Note that, taking into account (10), we obtain

|h(x)| ≤ (λ+ |λ− 1|)e−λ(b−x)‖f‖∞,b
where λ+ |λ− 1| = max{1, 2λ− 1}. This implies

b�

a

|h(x)| dx ≤
{

(b− a)‖f‖∞,b, 0 < λ < 1,
2(1− e−λ(b−a))‖f‖∞,b, λ ≥ 1,

hence
b�

a

|h(x)| dx ≤ max{2, b− a}‖f‖∞,b.

On the other hand
b�

a

|g(x)| dx ≤
b�

a

λeλx
(b�
x

e−λt|f(t)| dt
)
dx

=
b�

a

e−λt|f(t)|
(t�
a

λeλx dx
)
dt

=
b�

a

(1− eλ(a−t))|f(t)| dt ≤ ‖f‖1,[a,b].

Thus, it is shown that

‖λK(1 + λK)−1f‖1,[a,b] ≤
b�

a

|g(x)| dx+
b�

a

|h(x)| dx

≤ ‖f‖1,[a,b] + max{2, b− a}‖f‖∞,b,
which proves that the operator K is non-negative.

Remark 2.8. The inverse of K is the distributional derivative operator
on the domain of absolutely continuous functions which vanish at infinity.

Remark 2.9. We will say that a topological space of locally integrable
functions has the property of convergence almost everywhere if the conver-
gence of a sequence in this space implies the pointwise convergence of some
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subsequence except on a set of measure zero. As is well known, this happens
in Lebesgue spaces and in L1

loc(R), with the usual topologies. This property
also holds for the topology of X since it is finer than the one induced by
L1

loc(R).

Remark 2.10. Given a linear operator A : D(A) ⊂ X → X and a linear
subspace Y of X, we denote by AY the operator with domain

D(AY ) := {φ ∈ D(A) ∩ Y : Aφ ∈ Y }
and defined as AY φ := Aφ for φ ∈ D(AY ). The operator AY is called the
part of A in Y .

From Proposition 1.7 we find that [Kα
w]X 6= Kα for all α ∈ C+ with

Reα > 1, since we know that D(K∞) ⊂ D(Kα), and D(Kα)\D(Kα
w) 6= ∅.

However, as we will see later, there exists a certain relation between both
operators.

Proposition 2.11. If 0 < Reα < 1 and f ∈ D(K), then Kα
wf = Kαf.

Proof. We know that D(K) is contained in D(Kα). From Theorem 1.3,
it is also contained in the domain of Kα

w. Let f ∈ D(K) and

Ω := {x > 0 : (Kα
wf)(x) exists}.

The set R\Ω has measure zero. Given x ∈ Ω, we are going to prove that the
function λ 7→ λ−α[K(1 + λK)−1f ](x) is integrable in ]0,∞[. Given b > x,
writing [K(1 + λK)−1f ](x) = g(λ) + h(λ), where

g(λ) := eλx
b�

x

e−λtf(t) dt, h(λ) := eλx
∞�

b

e−λtf(t) dt,

and applying the Tonelli theorem, we see that λ−αg(λ) is integrable in ]0,∞[,
and

∞�

0

λ−αg(λ) dλ =
b�

x

(∞�
0

λ−αe−λ(t−x) dλ
)
f(t) dt

= Γ (1− α)
b�

x

(t− x)α−1f(t) dt.

On the other hand, by using integration by parts, we can prove without
difficulty the estimate

|h(λ)| ≤ 2e−λ(b−x) sup
t≥b

∣∣∣∞�
t

f(s) ds
∣∣∣,

which implies that the function λ−αh(λ) is integrable and∣∣∣∞�
0

λ−αh(λ) dλ
∣∣∣ ≤ 2Γ (1− Reα)(b− x)Reα−1 sup

t≥b

∣∣∣∞�
t

f(s) ds
∣∣∣.
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The right side tends to 0 as b→∞. So, the function λ−α[K(1+λK)−1f ](x)
is integrable with respect to λ on the interval ]0,∞[, and we have

∞�

0

λ−α[K(1 + λK)−1f ](x) dλ = Γ (1− α) lim
b→∞

b�

x

(t− x)α−1f(t) dt

= Γ (1− α)Γ (α)(Kα
wf)(x).

Finally, since the topology of X has the property of convergence almost
everywhere, it is easy to prove that there exists a set Ω0 ⊂ Ω such that
Ω \Ω0 has measure zero and for all x ∈ Ω0 we have(∞�

0

λ−α[K(1 + λK)−1f ] dλ
)

(x) =
∞�

0

λ−α[K(1 + λK)−1f ](x) dλ.

Therefore, (Kα
wf)(x) = (Kαf)(x) for all x ∈ Ω0, and the proposition is

proved.

Theorem 2.12. For all α ∈ C+ the fractional power Kα is an extension
of [Kα

w]X , and so the latter operator is closable. If 0 < Reα < 1, both
operators are equal. If Reα = 1, the power operator Kα coincides with the
closure of the operator [Kα

w]X .

Proof. To see that Kα extends [Kα
w]X , let n be an integer such that

n > Reα. Given f ∈ D([Kα
w]X) we will prove by induction on n that (1 +

K)−1f ∈ D(Kα) and

(1 +K)−1Kα
wf = Kα(1 +K)−1f .

For n = 1 this is a direct consequence of Proposition 2.11 and Remark 2.4.
Now, assuming the assertion holds up to n − 1, consider α such that 0 <
Reα < n. Then taking into account the induction hypothesis, jointly with
Theorem 1.3 and the additivity of fractional powers, we obtain

(1 +K)−1Kα
wf = Kα−α/n

w Kα/n
w (1 +K)−1f

= Kα−α/n
w Kα/n(1 +K)−1f

= Kα−α/nKα/n(1 +K)−1f = Kα(1 +K)−1f.

By the characterization of fractional powers (see [7, Def. 2.1 and Corol-
lary 3.5] and [9, Th. 5.2.1]), the relation obtained shows that f ∈ D(Kα)
and that Kα

wf and Kαf coincide.
Suppose that 0 < Reα < 1 and f ∈ D(Kα). As

(K + 1)−1Kαf ∈ D(K),

from Theorem 1.3 it follows that the function φ = K1−α
w (K + 1)−1Kαf

belongs to D([Kα
w]X). On the other hand, applying Proposition 2.11 and
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the additivity of fractional powers, we obtain

φ = K1−α
w (K + 1)−1Kαf = K1−α(K + 1)−1Kαf

= K1−αKα(K + 1)−1f = K(K + 1)−1f.

Then, as K(K + 1)−1f = f − (K + 1)−1f and (K + 1)−1f ∈ D(K) ⊂
D([Kα

w]X), we obtain f ∈ D([Kα
w]X).

Finally, in the case Reα = 1, given f ∈ D(Kα), for all λ > 0 we have

Kα(1 + λK)−1f = Kα/2Kα/2(1 + λK)−1f.

Then, from Proposition 2.11, it follows that

Kα/2(1 + λK)−1f = Kα/2
w (1 + λK)−1f

and, by the arguments in the case of exponents less than one,

Kα/2Kα/2
w (1 + λK)−1f = Kα/2

w Kα/2
w (1 + λK)−1f.

In addition, from Theorem 1.5 we obtain

(12) (1 + λK)−1f ∈ D(Kα
w), Kα

w(1 + λK)−1f = (1 + λK)−1Kαf.

Letting λ → 0 and taking into account that D(K) is dense in X and that
Kα is a closed operator, we obtain f ∈ D([Kα

w]X).

Remark 2.13. When Reα ≥ 1, we do not know if [Kα
w]X is a closed

operator. Nor do we know if [Kα
w]X = Kα when Reα > 1. In the case

Reα > 1, if we try to prove this last property, we have no relation of type
(12). In this case, the use of an integer power of the resolvent operator
does not improve the situation. In fact, if for all f ∈ D(Kα) there exists
an integer m > 0 such that (1 + λK)−mf ∈ D(Kα

w), then by considering
the function (1 + λK)mfα−1 ∈ D(K∞) ⊂ D(Kα), from Proposition 1.7 we
would get a contradiction, since as we saw in the proof of that proposition,
fα−1 6∈ D(Kα

w).

3. Fractional integral of Weyl in Lp(R) and other subspaces of X.
In this section, we will use the following result about fractional powers in
sequentially complete locally convex spaces (see [9, Th. 12.1.6]).

Theorem 3.1. Let E be a sequentially complete locally convex space, and
A : D(A) ⊂ E → E a non-negative linear operator. Let F ⊂ E be a vector
subspace of the same type, not necessarily with the same topology, such that
the operator AF (the part of A in F ) is non-negative. Let α ∈ C+. If there
exists an integer n > Reα such that Aαφ = (AF )αφ for all φ ∈ D[(AF )n],
then

(Aα)F = (AF )α.
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From this theorem jointly with Theorem 2.12, we deduce the following
result about the part of the operator Kα

w in certain subsets of X, such as
the Lp(R) spaces.

As usual, given a ∈ R, the characteristic function of the interval [a,∞[
is denoted by χa.

Theorem 3.2. Let F ⊂ X be a sequentially complete locally convex
vector space whose topology has the property of pointwise convergence almost
everywhere, such that the operator KF is non-negative. Then

[Kα
w]F = (KF )α for 0 < Reα < 1,

[Kα
w]F = (KF )α for Reα = 1,

(KF )α ⊃ [Kα
w]F for Reα > 1.

In particular, this is valid for F = Lp(R) with 1 ≤ p < ∞, and for the
space C+∞(R) of continuous functions which vanish at +∞, endowed with
the seminorms {‖χaf‖∞ : a ∈ R}.

Proof. Let us denote by τX and τF the topologies of the spaces X and F.
First, we are going to show that (KF )α = [Kα]F for α ∈ C+. For this, taking
into account Theorem 3.1, it is sufficient to prove that (KF )αf = Kαf
for f ∈ D[(KF )n] with n > Reα. That is, we will see that the value of	∞
0 λn−αKn(1 + λK)−nf dλ does not depend on the topology, τX or τF ,

considered.
This fact is a direct consequence of the property of pointwise conver-

gence almost everywhere, since the function λn−αKn(1 + λK)−nf is inte-
grable in ]0,∞[ with respect to both topologies, the operators K and KF

are non-negative, and f ∈ D[(KF )n]. From the identity (KF )α = [Kα]F and
Theorem 2.12 we deduce that [Kα

w]F = (KF )α when 0 < Reα < 1, and the
second operator is an extension of the first when Reα ≥ 1.

In the case Reα = 1, in order to prove the identity [Kα
w]F and (KF )α it is

enough to observe that the relation (12) implies that, given f ∈ D((KF )α),
we have

(1 + λKF )−1f ∈ D(Kα
w)

and
Kα
w(1 + λKF )−1f = (1 + λKF )−1(KF )αf.

From this, we proceed as in Theorem 2.12, now taking limits in F as λ goes
to infinity.

Next, we are going to see that the result can be applied to the concrete
spaces mentioned above. In fact, if 1 ≤ p <∞, for f ∈ Lp(R) and x ∈ R we
have∣∣∣∞�

x

e−(t−x)f(t) dt
∣∣∣ ≤ {q−1/q‖χxf‖p if p > 1 (where 1/p+ 1/q = 1),

‖χxf‖1 if p = 1,
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which proves that Lp(R) ⊂ X. Likewise, Young’s inequality implies that, for
all λ > 0, K(1 + λK)−1f ∈ Lp(R) and

‖λK(1 + λK)−1f‖p ≤ ‖f‖p.
For the space C+∞(R), we can reason in the same way.

Remark 3.3. In [12, Th. 3.13], we proved that for F = Lp(R) with
1 < p <∞ and α ∈ C+,

[Kα
w]F = (KF )α.

But in this case, this result follows from the fact that the integral operator
of Weyl is the adjoint operator of the integral operator of Riemann–Liouville
(see [9, Th. 2.1.4]), that the fractional powers commute with the adjoint ([9,
Corollary 5.2.4]), and the fractional integral of Riemann–Liouville coincides
with the corresponding power of the integral operator of Riemann–Liouville
[12, Th. 2.6]).
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