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On the relative fundamental solutions for a second order
differential operator on the Heisenberg group

by

T. Gopoy and L. SAAL (Cordoba)

Abstract. Let Hy be the (2n + 1)-dimensional Heisenberg group, let p,q > 1 be
integers satisfying p + ¢ = n, and let
p n
L= (G+¥)) = 3 (XF+Y7),
Jj=1 Jj=p+1
where {X1,Y1,...,Xn,Yn, T} denotes the standard basis of the Lie algebra of Hy. We
compute explicitly a relative fundamental solution for L.

1. Introduction. Let n > 2 and let p,q > 1 be a pair of integers such
that p+ ¢ = n. Let H, be the Heisenberg group defined by H, = C"* x R
with group law (z,t)(z/, ') = (z+ 2/, t+t' — 3 Im B(z, 2')) where B(z,w) =
D12 W =5 2w For o = (z1,...,2,) € R”, we write x = (2/,2")
with 2/ € RP, z” € RY9. So, R?" can be identified with C" via the map
o, 2"y, y") = (@ + i/, 2" —ay’), o',y € RP, 2"y € R% In this
setting the form —Im B(z,w) agrees with the standard symplectic form on
R2(P+9) and the vector fields

1 0 0 1 o0 0

D It P T VR T R
1T Y T e T2 T oy,

and T' = 0/0t form the standard basis for the Lie algebra h,, of H,,. Thus
H,, can be viewed as R™ x R™ x R via the map (z,y,t) — (¢(x,y),t). From
now on, we will use freely this identification.

As usual we denote by S(H,,) the Schwartz space on H,, and by S'(H,,)
the space of corresponding tempered distributions.

Let L =30 (X7 +Y7) = >0, (X7 +Y}), so L has a self-adjoint
extension (that we still denote by L), as an operator densely defined on
L?(H,). Let K be the (closed) kernel of L in L?(H,) and let 7 be the

j=1....n,
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orthogonal projection on K. We recall that ¢ € S'(H,,) is a relative funda-
mental solution for L if

L(f+«®)=L(f)«®=f—m(f) forall feS(H,).

In [M-R1] and [M-R2] it is proved that there exist relative fundamental
solutions for a wide class of left invariant second order differential operators
that includes L. On the other hand, for the case ¢ = 0 (i.e. the case L =
Z?Zl(X ?+7Y7?)), a fundamental solution is computed in [F1].

Consider the natural action of U(p, q) on H,, given by g- (2,t) = (gz,1).
So U(p, q) acts on L?(H,,), S(H,) and S’(H,,) in the canonical way.

In [G-S] it is proved that there exists a family of tempered U(p,q)-
invariant distributions Sy x, A € R — {0}, k € Z, satisfying

(1.1) LS}\,k = —|>\|(2k‘+p— q)S)\7k, iTS)\7k = )\SA,k~

It is also proved that the solution space in S’(H,, )Y 9 of the system (1.1)
is one-dimensional (see also [F2] and [H-T]) and that the distributions S
defined there satisfy

o0

(1.2) F=Y" 1 FxSaulAmdA

k€Z —oo

for all f € S(H,,). The convolution product is given, as usual, by the formula
(f *Sxw)(z,t) = (Sak, (Lzpy-1 f)Y), where we write, for g : H,, — C,

(Lzy-19) () = g((2,) (2, 1) and g"((2,1)) = g((=,6)7").

In this setting, it is not hard to show (see Lemma 2.1 below) that @
defined by

1
(1.3) (@, f) = ————— N (Sar, AN dA
2k+;q¢o 2k+p—q §>o -

is a well defined element in S’(H,) and that & is a relative fundamental
solution for L.

Let us introduce some notation and recall some known facts. Let H be
the space of functions ¢ : R — C such that ¢(7) = ¢1(7) + H(7)pa ()7L,
where 1,02 € S(R) and H denotes the Heaviside function, i.e. H(7) =
X(0,00) (7). It is proved in [T] that H provided with a suitable topology is a
Fréchet space. Also, for p+q = n, p, ¢ > 1, there is given a continuous linear
surjective map N : S(R") — H such that its adjoint N’ : H' — S'(R")O®:9)
is a linear homeomorphism onto the space of O(p,¢q)-invariant tempered
distributions on R™. As pointed out in [G-S], this construction also works for
the space S’ ((C")U(p"?’), i.e., there exists a continuous linear surjective map
N : S(C") — H whose adjoint N’ : H' — S’(C™)V(P9) is a homeomorphism.
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From now on, N : S'(C") — S'(R) will be the operator given by (2.11) of
[G-S]. For f € S(H,,), we write N f(7,t) for N(f(-,t))(7).
Our aim in this paper is to obtain a rather explicit description of the

relative fundamental solution @ for L. In Theorem 4.10 we will compute a
distribution u € S'(R?) satisfying (@, f) = (u, Nf), f € S(H,,).

Acknowledgments. We express our thanks to Fulvio Ricci, who in-
spired this work and kindly helped us during its preparation.

2. Notations and preliminaries. For A\ € R — {0}, let 7w be the
Schrédinger representation on L?(R™) of the Heisenberg group R™ x R™ x R
defined by

(@, y, h(C) = e~ IOV CEAT D (4 /N]y).

We still denote by 7y the corresponding representation of H,, = C" xR (via
the map ¢ of the introduction). For f € S(H,,), we set

m(f) = | Fz t)ma(z )  dzdt

Hn

where dzdt means the Lebesgue measure on C" x R. For f € S(H,,) and
hi,hy € L*(R™), let Ex(h1, h2) be the associated matrix entry given by

E)\(hl, hg)(z, t) = <7T)\(Z, t)hl, h2>
For a = (aq,...,ay) € (NU{0})™, let h, be the Hermite function given by

ha(C) = (21°laly/m)=/2e7 1612 H Ha, (G)
Jj=1

with |a] = a1 + ...+ oy, ol = ag!. .. a,! and where

Hi(s) = (ke L o)

is the kth Hermite polynomial. Finally we also set

P n
ol = o= > aj
j=1

Jj=p+1
We also recall that, for nonnegative integers m, k with k& < m, the La-
guerre polynomials L¥ (z) are defined by (see e.g. [Sz])

i td d
10 (4) — MY CE sty — Y8,
ho =3 (") B0 = -G Ia0
The distributions S j are defined in [G-S] by

(Sxir £) =Y (Ex(haha), f).

llell =k
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It is proved (see [G-S|, Theorem 4.1 and Remarks 4.2, 4.3) that Sy, =
Fyr® e~ where Fy 1 € S'(C") is described, in terms of the Laguerre
polynomials and the operator N, by

(2.1)  (Fxk,9)
_ 2 2 N
= <<L2q+n1H)(n 1)7T = We /2N9<W7—>>7 g € S<(C )7
for k> q, A #0,
(2.2)  (Fak,9)

n— 2 -7 2 n
= <(L0kp+n1H)( 1)77_ = We /2Ng (_WT>>7 g e S<(C )a
for kK < —p, A #0, and
(2.3)  (Fak9)

n—2 l —j .
2\"1 (=)™ (j\(n+k—qg—1Y\ 4 n
S(m, Z S () e, sesen
1=0 I<j<n-2

Jj2q—k-1

for —p < k < q, A # 0.
The next lemma states that (1.3) gives a relative fundamental solution
& for L.

LEMMA 2.1. The formula (1.3) defines a tempered distribution that sat-
isfies L(f x®) = L(f)«® = f —7w(f) for all f € S(Hy).
Proof. We first prove that

o0

1
(2.4) > ———— | (S Ol A" dA < oo
ki |2R P —al

Indeed, the above series can be written

Y i V| X B et

2k+p—gq#0 12k +p —dl -0 lafl=k

1 T n—1
= > PEtp—dql | ’ D TA()has had [[A"! dA

2k+p—q7#0 -0 |la||=k
< Z S |<7T>\(f)homho¢>| ’ |)‘|n_1 dA.
kEeZ™ —oo

Now, proceeding as in [B-D-R|, Lemma 4.10, we can use results of [M-R1]
and [M-R2] to get (2.4) and so @ is well defined. Moreover, the bounds given
there show that ¢ € S'(H,,).
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We recall that, for f € S(H,,), 7f = 0 if n is odd and that, for n is even,
Tf =7 (Sx(g—py/2: [)A™ dX (see [G-S], Remark 4.8).

In order to see that Lf x® = f — 7 f we write (see, e.g., (1.3) in [G-S])
L = Lo+ Li where

p 52 52 n 52 52
+ 3 (" 7) ~ 2 (a0 )
and
0 < 0 0
L= 2 9,9
' o ; <‘””f ay; U axj>
Now, for g € S(H,) we have Lo(g") = (Lo(g))" and L1(g") = —(L1(9))".
Since (Lf * @)(z,t) = (P, (L(;¢)-1(Lf))Y) and L = Lo + L1 we get
(Lf *®)(2,t) = (P, Lo((Lz -1 f)) = (P, Li((L(zip—1 £)Y))-

But & € S'(H,,)V®™9 and hence L& = 0. Also, Ly and L, are self-adjoint,
thus (Lf % ®)(2,1) = (&, L((Le.— /)")). So

oo

-1 _
(Lfx®)(z,t) = > T — | (Sxks LU(L -1 )Y DA dA
2k+p—q#0 p=q —o0
-1 o0
= Y o | @Sun Ly HIAdr
2k-+p—q£0 2k+p—q

= Z S (Saes (L1 )V)AI™ dX
2k+p—q#0 —oc0

= Y. L UeSaEON AN = (f =7 f)(z,1)
2k+p—q#0 —oc0
and thus Lf «® = f — « f.
On the other hand, using (1.1), (1.2) and the fact that L is a left invariant
operator, it is easy to check that L(f «®) = f —«f for f € S(H,). =

Let us recall a well known Abel lemma about power series that states that
if a numerical series Z/iio ag converges to a sum s, then lim,._, - Z/iio r*ay,
=s.

Taking account of (2.4), we can decompose the series (1.3) as

PORED DD B

k<—-p —p<k<g k2>q
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Now, (2.4), the Lebesgue dominated convergence theorem (applied to the
measure space R x Z) and the above Abel lemma allow us to write

_ 2k+n—2q
(@, f) = lim lim !

- —elA| n—1
r—1- e—0*+ 2k+p—q S c <S>\7k’f>|>\‘ dA
k>q —00

— — oo
—_r 2k+n—2p

lim i L — =S s YA AN
i i D Srapeg ) SR

_1 oo
li - —<lAl(g AP d
U 2k+p—q S e S NIA
—p<k<q -

We change the summation indices writing k = k' + ¢ and k = —k’ — p in the
first and second series respectively. Using the fact that Sy, = F)\ 1 ® e~ iM
and the formulas (2.1) and (2.2) we get

(2.5) (@, f) = (D1, f) + (P2, )
where (@1, f) and (Do, f) are defined by the convergent expressions

_T2k+n oo oo )
S S efe\M’)\’nflefMt

(n-1) ., o-7/22 N2
X<(L’3+"1H) hre 2|A\[Nf<w ) Nf( 3 ’tmd““

and

(@1, f) = lim lim
r—1-e—0*t k>0 2k +n

_ —1 T n—1
(@2, f) = T | (S M AA.
—p<k<q —0o0

Now, a computation gives

n—2
k+n-1 :
2.6 LY HY=D) — (—)ynipn—lg —1)" 2
(26) (Lgyn1H) (-1) X +j§0( n—j—29

On the other hand,

e (O R Cr D)

-2 ( )23 l(lAl) T 0

0<I<j
lodd
Using (2.6), (2.7) and the fact that for g € L?(0,00) and h € L?(R),
(2.8) § 9(m)[a(r) = h(=))dr = | sen(r)g(|7|)(r) dr,

0 —00
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we obtain

(et r et v () = 35 (<))

= (=) ! OSO Lyt (%\s\)ew'lsl/‘l sgn(s)N f(s,t)ds

—0o0
n—2 n—2

HlalN
2 Y Sou(h) Gien

0<i<n—-2 j=l
lodd

where )

— 1 /j _(k+n—-1
2. = E — -1 .
(2.9) b = 21—l<l>( ) (n—j—2>

For k>0 and 0 < <n— 2, we also set

oo

1

(2.10) ari =5 SL" Ys)e /sl ds
and

n—2 l]Vf
2.11
(21) Gty = Nf(rt) - 3 2N

7=0
Let @11 be the linear functional on S(H,,) defined by

— i (_1)nr2k+n : T —e|Al]y|n—1,—iAt

(212) @)= lm ) ot )} e

T A

| LZ_I(%]T\)G_M"MMsgn(T)Gf(T,t)detd)\.
We will prove below (Proposition 4.3) that (®4,1, f) makes sense, i.e. that
the expression (2.12) converges. Assume provisionally this fact. From (2.5)
it follows that @1 5 : S(H,,) — C defined by

2k4+n ©©

2.13 P =921 Ii —e| Al \[n—1p—iAt
(2.13) (P12, f) r—lgl*si%ibo 2k+n—SOO_SOOe A" e

2 I+1 8ZN
Z (_) (a1 + br) o lf(O t) dt d\

0<i<n—2 Al
“lodd

is also well defined and that #; = @, 1 + P12 and so & = D11 + P o + Po.
Note that the same arguments that prove that N : S'(C") — H is
surjective, show that for f € S(H,), N f(7,t) agrees with a certain function

r




150 T. Godoy and L. Saal

¢1 € S(R?) on {(7,t) € R? : 7 > 0} and with another function s € S(IR?)
on {(7,t) € R? : 7 < 0}. So, for each polynomial P(,t) and for each pair of
nonnegative integers o = (o, ) we have
(2.14) sup |P(1,t)D*N f(7,t)| < 0.

T7#0,teR
In order to see that @ ; is well defined, we first note that, for k € Z and
e >0, (2.14) implies that the function

» A
Sgn(T)efs\/\\*z)\t|)\|n71L271 (%|T|)€AI-|7/4GJC(7_7 t)

belongs to L!(R3, drdtd)). On the other hand, by (2.8),
S efs\/\\fi)\th—l <%|T|>e|>\|-r|/4’)\|n1 d\
T oainepnt A A7]/4\n—1
:2Rexe Ly §|T| e AT A
0
and as in (4.9) of [G-S], writing there 7 instead of B(z), we find that the
value of this integral is

(|7| — 4e — 4it)*
205 R
e <(|T| + e + dit)Ftn
with
k -1
(2.15) an :4"(n—1)!(—1)k< +Z >
Thus, to prove that (2.12) converges, we must show the convergence of
r2htn (|7| — 4e — 4it)*
2.16 li -1 lim 2 R
(216)  lim ;;)( T RS ¢ <(|T| e+ 4it)k+”>

x sgn(7)G¢(T,t) dr dt.
We will need the following

LEMMA 2.2. The function
1
=+ 16027 (7:%)

is integrable on R2.

Proof. Let B = {(1,t) : 72 + 16t*> < 1}. From (2.14) and the familiar
expression for the remainder of a Taylor development, it follows that there
exists a positive constant ¢ such that for (7,t) € B,

1
(72 + 16t2)/2

Gy(r,t)| < 7'|"_1

C
(7E+ 162777
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and a change to polar coordinates shows that |7|"~(|7|> + 16t2)~"/2 is
integrable on B.
On the other hand, for (7,t) € R? — B we have

1
(T2 + 16t2)"/?

n—2 ;
< |wrtrol+ X0
j=1

Gf(T,t)‘

N f 1
o O ”H (7P + 1662)772°

Let A= {(7,t) : |t| < 1/2} N (R? — B). For (1,t) € A, we have |7| > 1/2 and
so, by (2.14), for 1 < j < n — 2 we have

,§

The same argument shows that the analogous integral with 97N f(0,t)/077
replaced by N f(,t) is finite. Now, let A’ = {(7,t) : |t| > 1/2} N (R? — B).
For (7,t) € A’ and 0 < j < n — 2 we have

7 (171 + 16¢%) 72 < |r (|7 [* + 4) "2
and by (2.14), |G¢(r,t)| < ¢(1 +¢*)~1. Thus

[ (712 + 168%)/2|G s (7, )| dr dt < 0. w
A/

1/2
Sdrdt < S

—1/2

[ee]

Nf

NFf
W( 9 )

1
g (O,t)‘dt | — dr < .
1/2

kal
(712 + 16¢2)"/

LEMMA 2.3.

: (|7| — 4e — 4it)*
Elir& S Re <(|T YR sgn(7)Gy(r,t)drdt

R2

BN S S (U G (r,t) dr dt
- RX (2 +16:2)/2 - \\ (72 + 162)1/2 su(7)Gy(r,t) dr dt.

Proof. This follows from Lemma 2.2 and the Lebesgue dominated con-
vergence theorem. m

So, to see that (@1 1, f) is well defined for f € S(H,), we need to study
the convergence of
r2k+n 1
lim (=" ag \ ———m————
r—1- lg) 2k +n RSQ (12 + 16t2)n/2
| —4it "
X 2Re<(m SgH(T)Gf(T,t) dr dt

with oy given by (2.15). We decompose this integral as the sum of integrals
over the right and left halfplanes. Taking polar coordinates 7 — 4it = pe?,
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we can see that the above expression agrees with

00 27
,r2k+n

(217)  2(=1)" lim Re <Z Tl | | e Ok, (0,0) d9dg>
k>0 00

r—1-—

where Kf(p,0) is the function defined for n odd by

1
(2.18) Ky (00) = Gy (0cos0). ~ osin(0)
and for n even by
1

(2.19) Ky (0,0) = sgn(cos(9))o' "G (g cos(#), —ngin(ﬂ))
Note that, for 0 < r < 1, from Lemma 2.2, it follows that

Z r2k+n OSOQSW

k>0 2%k +n 00
0 (2.17) can be written as

0 r2k+n 2m (26

(220)  2(=1)" lim Re (S] LZ;) Tl § e K¢(o,0) d@] do.

Recall that a = 4"(n — 1)!(—1)k(k+" 1) So, in order to study (2.20), in
the next section we will study the distributions defined, for 0 < r < 1 and
0 € R, by

(2.21) ¥, (0) = Re [Z AN (’“ T 1>ei<2k+n>e} .

P 2k +n k

3. Computation of lim,_,;- ¥,. Let ¥, be defined by (2.21). Thus

dv, k —1\ .
(3.1) TR Re [l Z T2k+n(_1)k( + Z >ez(2k+n)9:| ‘
k>0
Now, we take t = 0, z = —r2e% in the generating identity for the Laguerre
polynomials
(32 S L3 @) = (1 - 2) e s 0-2),
k>0

Using the fact that L}~ '(0) = (kJrZ*l) we obtain

dv, ret? "
. =-1 e .
(3 3) do m (<1+7«2€219> >
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Note that the limit lim, ;- ¥, (0) exists. Indeed,

r2ktn k+n—1

wr(o):Z%Jrn(—l)k( L ) for 0 <7 < 1.
k>0

So, a computation shows that d¥,.(0)/dr = r"=1/(1+7?)" for 0 < r < 1.
Also, ¥,(0) = 0 and thus

1
(3.4) lim %, (0) =o' 1+ 0% do.
r—1- 0

We also have

PROPOSITION 3.1. If 0 < 0 < /2 then there ezists a positive constant
c such that |¥,.(0) — ¥,.(0)| < ch?(1 —7) for =6 <0 < § and 0 <r < 1.

retc "
I —_— .
()

(3.6) Im L " i Im(r"em“(l + 7“26*2%"7)”)
. 1 + r2e2tc o (14 2r2cos(20) + r4)»

L sin(na) 30, (?)7’% cos(2jo) — cos(no) 327, (?)r2j sin(2j0)
(1 + 272 cos(20) + r4)» '

Proof. From (3.3), we have

0
(3.5) 7,(0) =, (0)] < |
0

=r

An induction on n shows that Im ((%)n) =0 for 0 & 7/2 + wZ. Also,
the denominator of (3.6) is bounded away from 0, and so the numerator is a
polynomial expression in r that vanishes at r = 1 for all o whose coefficients
are trigonometrical polynomials divisible by sin(¢). So the numerator can
be written as (1 — r)sin(o)Q(r, cos(o),sin(c))) where @ is a polynomial in
its arguments. It follows that there exists a positive constant ¢ such that

i () )| = it -

for 0 <r < 1and |f| < ¢ and so (3.5) gives the lemma. m

REMARK 3.2. If 0 < 0 < 7/2, the same argument shows that |¥,(0) —
U, (m)| < const (§ —m)2(1 —r) for - <O -7 <dand 0 <r < 1.

Let V be the vector space of functions g € C"~2(S1) satisfying (9/00)" g
€ L>°(SY). For h : S' — C and g € V we write (h, g) for S?)ﬂ h(e)g(e?) do
whenever the integral makes sense.
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For g € V let

1 E4+n—1\ ¢ sonime o
(3.7) <£P,g>:ReZQk+n(—1)k< L ) | elCrrmig (e do.
k>0

—T

Let H : S' — R be the function defined by H(e) = H(cos(f)). Also, for
s € R, let &5 : V — R be the distribution given by (ds, g) = g(e®®).

PROPOSITION 3.3. For all g € V the series (3.7) converges. Moreover:

(1) If n is even, then there exists a constant co and a polynomial Q. —o
of degree n — 2 such that for all g € V,

(W,9) = —co(l,9) + <Qn 2<§9>(57r/2 +5w/2)ag>-

(2) If n is odd, then there exist two constants co and dy and a polynomial
Qn_2 of degree n — 2 such that for all g €V,

#.9) = (—ao+ dafl ) + (Qu-a 35 ) e = 6.0 ).

Proof. For g € V, the convergence of (3.7) follows from the fact that
g (TR = 0G0 and (g, @) < [K[7"D[(gn N, €] with
g~ e L2(Sh).

The familiar Fourier expansion for a function ¢ € V can be read as
8s = Y pez €% 91, where ¢p,(e?) = e*?. Then a computation gives

1 S 1 R
5 (Onj2 +0-ns2) = D (=1)7e 5 (Onj2 =0-np2) = D o (1)eiEEe,

JEZ JEZL

From (3.7) we have

-1 kE+1 )
(3.8) Rez pk+n—1)...(k+ )iez(zkm)e_

= (n—1)!

Assume n is even. A change of the summation index in (3.8) gives

(2j—n+2)...(21+n—2) .
j+n/2 1250
Rez ) = 1(n — 1)1 e,

jzn/2
On the other hand, the change 2k + n = —2j of the summation index in
(3.7) also gives

— Re Z 1)i+n/2 (2 —n+2)...(21+n—2) 1219

<, 9n—1(n—1)!
j_?’l
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and, since n is even, we also have (25 +n —2)...(2j —n+2) = 0 for
—n/2<j< n/2. Thus

2k—n+2)...2k+n-2) ,
_ - k+n/2 2k
= Re E (= 1)! e’

kEZ
Let P,_; the polynomial of degree n — 1 given by
(2s—n+2)...2s+n—2)
27(n —1)! ’
k)ie'?*? Thus ¥' = Re ©. Since n is even,
s) = sQn 2(s) for some polynomial @2
g) ek 1 >0, and so

_lg . k+n/2 A 190 12k6
9_22‘89<ZZ( DI 0n—2{ 559 ) )

kEZ

Pn_l(S) =

s €R,

andlet © = >, ,(-1)k"/2p, 4
we have P,,_1(0) = 0 and so P,
of degree n — 2. Now, ke’ = (

m|,_.A/—\

Then, taking account of 1 (0, /2 + 0_r/2) = > cz(—1)" e’ we obtain

#'.5) = Re(0,) = { 500255 ) Gora+ 3ep2)0)

for some polynomial @,,_s of degree n — 2 with real coefficients. So

0
¥ = —Cp + Qn 2 (80) (571'/2 + 5—77/2)

for some constant cg. This ends the proof for the case of n even.
Assume now that n is odd. By (3.7) we now have

', )220+ —=1) ... (21 —n+3) . 054100
U’ = Re Z (—1)7 3= 1(n — 1)1 1e"\ T,

2j+1>n

Thus we get as above,

_ 1 ttn-1)2 (27 +n—=1)... (2 —n+3) . 011
v = ReZ( 1)’ 3 =1(n — 1)1 ie" T

keZ
Let P,_1 be the polynomial given by
2s+n—1)...(2s —n+3)
2n(n —1)! ’
and let © = 3, ,(—1)F+(=1/2P, | (2k + 1)ie’®*+ D Thus ¥’ = Re®.

Now
10 -
— -1 k+(n_1)/2Pn, . 1,2k0'
e ,;ez( ) 1\ 290 ) €

Pn,1(28 + 1) =

s € R,
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But 5(0r/2 = 8-r2) = Dpen (1)1 and hence

#'19) = Re(6.9) = ( Paca (33 ) Gaja = 6-np2).0)

for some polynomial P,y of degree n — 1 with real coefficients. Thus,

0 0
(W', g) = —do (62 — 0—72) + Qn 2(89)(5n/2 —0_r/2)

for some polynomial Q,,_o of degree n — 2 and some constant dy. Now,
Orj2 —0_r/2 = —%H and so

69

0
Qn 2(8(9)(5”/2 d_ 7r/2)+d0

Thus ¥ = —¢o + dOI:T + Qn—2(0/00)(67 /2 — 0_r2) for some constant cy. m
COROLLARY 3.4. lim,_1-(¥,.,g) = (¥, g) for all g € V.
Proof. Follows from the Abel lemma and Proposition 3.3. =
PROPOSITION 3.5. If n is even and if co is the constant of Proposi-
tion 3.3 then ¢y = —lim, ;- ¥,.(0).
If n is odd and if co,dg are the constants of Proposition 3.3 then co =

lim,_,;- ¥,.(0) and dy = 2cp.

Proof. Assume that n is odd. Let h € C2°(R) be such that supp(h) C
(—m/4,7/4), h > 0 and {h = 1, and let Q,,_2 be the polynomial given by
Proposition 3.3. Thus Q,,—2(9/00)(65/2 £ 0_r/2)(h) =0 and so

lim (&, h) = (~co + doH, h) = —co + do.
On the other hand, since {h =1 we have
lim (#,,h) = lim || ((6) = %,(0)h(6) 49 + 7, (0)|
and by Proposition 3.1,
J @ (0) — m()h@) 0| <| | 12:(0) — 2,(0)|n(6) do|
|0]1<1/2
< const (1 — 7’)‘ X 02h(6) dﬁ‘ < const (1 —r)
|0]<1/2

and so —cg + dp = lim,_,;- ¥,.(0). Similarly, taking h € C°(R) such that
supp(h) C (7/2,37/2) with h > 0 and {h =1 we get dy = lim, ;- ¥, (7).

Since ¥, (7) = —¥,.(0) if n is odd, the lemma follows in this case. The proof
for n even follows the same lines. m
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4. The main result

REMARK 4.1. Let K¢(p,6) be defined by (2.18) and (2.19). A computa-
tion shows that K(p, ) € C" %(R) for each g € (0, 00). Moreover, for such
a0, d" ' Ky(0,0)/d0" ! is well defined for 6 & 7/2 + Z,

%(i%) —0 forj=0,...,n—2
and d"1K¢(o,0)/d0""" € L>(R). We also need the following facts.

Let A = [6,7—0]U[r+6,2r—6] with 0 < § < w/2 and let K : A — R be
defined by I~(f(6) = {° Kf(0,0) do. Then a computation using (2.14) and
the Lebesgue dominated convergence theorem show that K € C"1(A).
Moreover I?J(cj)(:tw/2) =0 for 0 < j < n — 2. The same argument gives
that the function Sé Ky(o,-)do belongs to V with its n — 2 first derivatives
vanishing at /2.

PROPOSITION 4.2. Let ay, be given by (2.15) and let ¢y be as in Propo-
sititon 3.3. Then

©0 r2k+n 2”'
4.1 li i(2k+n)0 [0 (0. 0)dO| d
)t Re | |32 g § K 0,0) a0 d

! 5 sen(7)Gy(7,t) dr dt.

= 4" — 1) - -
4"(n — 1ley | ERRTTET

R2

Proof. Assume n is odd. Since

1
o S —(7_2 162)2 Gy(r,t)drdt

R2

o m(—q}—i—doH(T))Sgn(T)Gf(T,t) dr dt

R2
oo 21 _
= | V(—co+ doH(0))E{(0,0) d0 do
00
it is enough to prove that

o0 oo

(4.2) lim § (., K¢(0,))do = | (—co+doH, K;(o,)) do.

1-
r— 0

In order to see this, we decompose the integral as Sé —i—ﬁo To study the
second term of this sum, we pick 0 < § < 7/4. We first show that

o0

(4.3) Tlir{l_s | (@(0) — (—co+ doH(0)))E (0, 0) db do = 0.

1160]<s
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To see this, we decompose the integral in (4.3) as

oo

(44)  § § (@(0) = . (0)Ks(,0) db do
116|<é
+ (- (0) — (—co + do)) S S Ky(o0,0)db do.
1 |0|<é

From the definition of Kf(p,6) and (2.14) we have | K ¢(0, 0)| <co™?|sin(6)| !
for some constant ¢ and for all p > 1, |#| < §. Then by Proposition 3.1,

oo

(45) | ] | @(0) ~ 200K (0,0) 0 do|
1 10|<é
< const (1 —r) § |9|S<5 m@ df < const (1 —r).

It is also clear that the second term of the sum (4.4) converges to 0 as r
tends to 1, so (4.3) holds. Replacing ¥,.(0) by ¥, (7) and —co + do by dp in
the above proof we also obtain the analogue of (4.3) where the integration
domain |f| < § is replaced by [0 — 7| < 6.

On the other hand, we also have

(46)  Tim | | (@,(0) — (—co + doH(0))) K (0, 0) df do = 0.
TN 1 (67— 8)U(n46,—6)

Indeed, let A and K 7 be as in Remark 4.1. Let K} be an extension of K ¥

belonging to V. Then (4.6) follows from the facts that lim, .,- (¥, K}) =

(¥, K7) and that for some positive constant and all 6 € (—4,)U(m—d,7+0)

we have [, (0) — (—co + doH(0))| < const (1 — r)é2.
Finally, since Sé K¢(p,-)do belongs to V and since for 0 < r < 1 the
function ¥, (0)K (o, 8) is integrable on (0,27) x (0,1) we have

1 1
lim (S) (@, K¢(o,-)) do = Jlim <%,§Kf(@, -)d9>
27 _ 1
= [ (co+doH(0)) | Kf(0,0)dodb
0 0

and the lemma follows for n odd.

The proof for n even is similar with —co + doH (0) replaced by —cp in
the above argument. =
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PROPOSITION 4.3. (P11, f) is well defined for f € S(Hy,) and

. 1
(48 (@) =400 § oy

n—2 ;
« sen(r) (N frn =% ; . 3;\]]?0 (0, t)> dr dt
=0 J°

where cq is the constant of Proposition 3.3.

Proof. The right member of (4.8) is finite by Lemma 2.3. On the other
hand, the expression (2.12) that defines (@1 1, f) agrees, term to term, with
(2.16) and so, by Lemma 2.3, also agrees with (2.17). Thus the corollary
follows from Proposition 4.2. =

So (@12, f) is also well defined for f € S(H,). Our next step will be to
compute (@1 o, f).
Fore > 0,1 € Nand f € S(H,) we set
O'Nf
or!

(4.9) det = S eeIM| N2l irt
R2

(0,¢) dt dA.

So, (2.13) reads

410) (@ — lim i gr+2 7 be)d
(4.10) (D12, 1) Tg{l_gi%{r; lozdd S (ak,z+ ki) de i, f

0<I<n—2

with ay; and by, defined by (2.10) and (2.9) respectively.
We will need the following

LEMMA 4.4. Let ay; be defined by (2.10). Then

I+1 , ;
B k
ag; = (—1) E :W(l_]’+1)( k )

7j=1

n—I[{—1 . .
n—j3—1\/j+k-1
+ Zinjl( l )( k )

Proof. From the generating identity (3.2) for the Laguerre polynomials
we can write, for 0 < r < 1,
1 1T
n— 1 —T/2 l _ . L, —(r+1)7/(2(1—7))
(4.11) g SL (1)e dr = 0 (1—r)”§]7—6 dr
2l+1

(=) )L
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So ag; is the coefficient of 7% in the power expansion at the origin of (4.11).
We decompose (4.11) in simple fractions

2l+1 n—Il—1 AJ I+1 Bj
T T s le 1—r) +]Zl At

Thus, by the residue theorem, we have, for a small positive o > 0,

2l+1 1

A, =2 , .
/ 2mi | § (1 —2z)n=t=3(1 + z)HH1 dz
z—1l=¢
So
2l+1(_1)n—l—j d n—l—j—1 1 n—j—1
Aj=— — 1 B .
’ (n—l—j—l)!(dz)’zl (1+2) ) 2n—l=j-1 ( l )
Similarly,
2l 1
J = i S 1 _ 2 )n—1-1(1 1—j+2 dz
i \z+1\:g( z) (1+2)
_ a Hlij((l _ )Ly = 1 n—j—1
(I H+1=)\dz )y S oonlmisl\ -] -2 )"

Since, for m € NU{0}, (me*l) is the coefficient of r* in the power expan-
sion at the origin of (1 — 7)™, the lemma follows. m

For T € S'(R), we write 7' for its Fourier transform and, as before, for
g: R — C we set g¥(t) = g(—t).

LEMMA 4.5. Assume 0 <1 <n—2. Fore >0 and f € S(Hy) letd.;
be defined by (4.9). Then, for n —1 odd,

1 O 2Nf
- oyt (L .
Jm, ey =2(=1) <p‘v'<t)’ oriann-i2 )>’

and for n — 1 even,

(n—1-2)/2 I"ANf

i, dea s = 2(=1) arign-i-2 0
Proof. Let g(\) = e s |A|"=2=L. Since
ONf A
_ —e|Al|y|n—2-1 .
deay = §e P (5 0.0) oy

a computation of g and the properties of the Fourier transform give the
assertion. m
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REMARK 4.6. For j e Nand 0 <r < 1, let

r2k+n ]-{—k’—l
hj(r)zz2k+n(—1)’f( . >
k>0

Then lim, 1- h;(r) = S(l] ri=1(1+r2)~J dr. Indeed, h;(0) = 0 and proceeding
as at the beginning of Section 3, we now get h;(r) = r/~"/(1 4 r2)7.

REMARK 4.7. Note that if P is a nonzero polynomial then
2k+n

Indeed, without loss of generality we can assume that the leading term of
P has a positive coefficient. Then, for k large enough, P(k) is greater than
a positive constant and the assertion follows.

For1 <j5<n—1, we set

ri—1
PROPOSITION 4.8. For n even we have

(4.13) (D12, f) = Z 221+3—n(_1)(n—l+1)/2

1<I<n—2
l odd

+1 . -
oo (" o (2) S Ao
ijl2 Cj<l—j+1><p.v.<t>’a7-la)\nl2(07 )

and for n odd we have

(414) <¢1,27 f> = Z 22l+3_n(_1)(n—l+2)/2
1<i<n—2
l odd

I+1 ) ,
E(  (n—j—1\ 0" °Nf

e COMANS |

’ P “ < l—j+1 > Iz (0:0)

Proof. Let ay; and by; be defined by (2.10) and (2.9) respectively. We
write a; = aj; + ay ;, with

(4.12) cj = dr.

O ey =

I+1 . .
1 n—j—1\/j+k—-1
/ _ _1 k _
@ = (=1 ; 2n—l=i=1\ | —j+1 k ’
n—[—1

1 (n—j—1\[j+k—1
a%,l:ZW( z )< L >

j=1
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Fore >0,0<1<n-2and f € S(H,) let d.; ¢ be defined by (4.9). We
set

% . . r2k+n
<¢1,27 f)= hmﬁ lim Z Z ST 2l+2ds,l,fa;€7l.

1 ot
T T k>0 o<i<n—2

lodd

Note that, by Lemma 4.5 and Remark 4.6, (@7 ,, f) is well defined, and
moreover

141 .
* _ 1+2 1 n—7j -1
(4.15) <¢1,2>f>— Z 2 sli%l+de,l,f22n l—j— 1(l—j+1)cj

0<i<n—2
lodd

So, the functional @77 defined by

%k k ,r
(@15, f) = Tim lim 3 >~ 2“2% — e 0+ )
TR ETY k>0 0<i<n—2

lodd
is also well defined. Now, given ¢ € S(R), it is easy to see that there exists
f € S(Hy) such that 9N f(0,t) /0™ = § mep(t) form =0,...,n—2,t € R.
Indeed, pick g € S(R) such that ¢\)(0) = §;; for j = 0,1,...,n — 2. Since
N : S(C™) — H is surjective, there exists g € S(C™) such that Ng = g.
Now, f(z,t) = g(z)¢(t) has the desired property. So for each ! odd with
0 <! <n-—2the limit

T,2k+n

lin. > m(ag,z + bi.1)
" E>0

exists and is finite. But a ; +bi is a polynomial in %, so Remark 4.7 implies
that ay; + by, vanishes 1dentlcally at k and so <(F{j‘2,f> = 0. Now, (4.15)
and Lemma 4.5 give the assertion. m

REMARK 4.9. Let @, be as in (2.5). Then

(4.16) (Do, f Z > n_l%

1=0 1<k<n—1
k#n/2

D U O [ EE T

max(n—k—1,1)<j<n—2

where

n—2
55) = ot (1), 28 00)
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if n — [ is odd, and

. ) 8”*2Nf
(T, f) = ()22 e (0, 0)

if n — [ is even.
Indeed, to see (4.16), we recall that Sy = F ; ® e~**. Then a change
of indices in (2.3) gives

1
(P2, f Z Z n — 2k

1=0 1<k<n—1
k#n/2

ol E—1 o
" 2 -y J+l<l)(n—j—2)2m+2 et

max(n—k—1,1)<j<n—2

so the assertion follows from Lemma 4.5. =
Now, we can state

THEOREM 4.10. There exist constants co, €q, .. .,€n—2, €y, . .., €n_o such
that, for f € S(Hy,),

n—2 1
sgn(T) T 0 Nf
= 4" — 1) S A .
(@, f) =4"(n 1).005 = 16t2)"/2< (1,t)— l' 0,t) |drdt
1 aHNf 2 9N
T Zel<pv( ) ey > Z 5121 (0;0)-

Proof. Since @ = $11 + D12 + P9, the theorem follows from Proposi-

tions 4.3, 4.8 and 4.9. =

Finally, we remark that the constants co, €q, ..., en—_2, €, ..., €,_o in the
above theorem can be explicitly computed; in fact, the value of ¢q is found
from Proposition 4.3 and (3.4) and the values of eg,...,en_2, €),..., € _,

are found from (4.13), (4.14) and (4.16).
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