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On the relative fundamental solutions for a second order
differential operator on the Heisenberg group

by

T. Godoy and L. Saal (Cordoba)

Abstract. Let Hn be the (2n + 1)-dimensional Heisenberg group, let p, q ≥ 1 be
integers satisfying p+ q = n, and let

L =
p∑

j=1

(X2
j + Y 2

j )−
n∑

j=p+1

(X2
j + Y 2

j ),

where {X1, Y1, . . . , Xn, Yn, T} denotes the standard basis of the Lie algebra of Hn. We
compute explicitly a relative fundamental solution for L.

1. Introduction. Let n ≥ 2 and let p, q ≥ 1 be a pair of integers such
that p + q = n. Let Hn be the Heisenberg group defined by Hn = Cn × R
with group law (z, t)(z′, t′) =

(
z+ z′, t+ t′− 1

2 ImB(z, z′)
)

where B(z, w) =∑p
j=1 zjwj−

∑n
j=p+1 zjwj . For x = (x1, . . . , xn) ∈ Rn, we write x = (x′, x′′)

with x′ ∈ Rp, x′′ ∈ Rq. So, R2n can be identified with Cn via the map
ϕ(x′, x′′, y′, y′′) = (x′ + iy′, x′′ − iy′′), x′, y′ ∈ Rp, x′′, y′′ ∈ Rq. In this
setting the form − ImB(z, w) agrees with the standard symplectic form on
R2(p+q), and the vector fields

Xj = −1
2
yj
∂

∂t
+

∂

∂xj
, Yj =

1
2
xj
∂

∂t
+

∂

∂yj
, j = 1, . . . , n,

and T = ∂/∂t form the standard basis for the Lie algebra hn of Hn. Thus
Hn can be viewed as Rn ×Rn ×R via the map (x, y, t) 7→ (ϕ(x, y), t). From
now on, we will use freely this identification.

As usual we denote by S(Hn) the Schwartz space on Hn and by S′(Hn)
the space of corresponding tempered distributions.

Let L =
∑p
j=1(X2

j + Y 2
j ) −∑n

j=p+1(X2
j + Y 2

j ), so L has a self-adjoint
extension (that we still denote by L), as an operator densely defined on
L2(Hn). Let K be the (closed) kernel of L in L2(Hn) and let π be the
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orthogonal projection on K. We recall that Φ ∈ S ′(Hn) is a relative funda-
mental solution for L if

L(f ∗ Φ) = L(f) ∗ Φ = f − π(f) for all f ∈ S(Hn).

In [M-R1] and [M-R2] it is proved that there exist relative fundamental
solutions for a wide class of left invariant second order differential operators
that includes L. On the other hand, for the case q = 0 (i.e. the case L =∑n
j=1(X2

j + Y 2
j )), a fundamental solution is computed in [F1].

Consider the natural action of U(p, q) on Hn given by g · (z, t) = (gz, t).
So U(p, q) acts on L2(Hn), S(Hn) and S′(Hn) in the canonical way.

In [G-S] it is proved that there exists a family of tempered U(p, q)-
invariant distributions Sλ,k, λ ∈ R− {0}, k ∈ Z, satisfying

(1.1) LSλ,k = −|λ|(2k + p− q)Sλ,k, iTSλ,k = λSλ,k.

It is also proved that the solution space in S ′(Hn)U(p,q) of the system (1.1)
is one-dimensional (see also [F2] and [H-T]) and that the distributions Sλ,k
defined there satisfy

(1.2) f =
∑

k∈Z

∞�

−∞
f ∗ Sλ,k|λ|n dλ

for all f ∈ S(Hn). The convolution product is given, as usual, by the formula
(f ∗ Sλ,k)(z, t) = 〈Sλ,k, (L(z,t)−1f)∨〉, where we write, for g : Hn → C,

(L(z,t)−1g)(z′, t′) = g((z, t)−1(z′, t′)) and g∨((z, t)) = g((z, t)−1).

In this setting, it is not hard to show (see Lemma 2.1 below) that Φ
defined by

(1.3) 〈Φ, f〉 =
∑

2k+p−q 6=0

−1
2k + p− q

∞�

−∞
〈Sλ,k, f〉|λ|n−1 dλ

is a well defined element in S′(Hn) and that Φ is a relative fundamental
solution for L.

Let us introduce some notation and recall some known facts. Let H be
the space of functions ϕ : R→ C such that ϕ(τ) = ϕ1(τ) +H(τ)ϕ2(τ)τn−1,
where ϕ1, ϕ2 ∈ S(R) and H denotes the Heaviside function, i.e. H(τ) =
χ(0,∞)(τ). It is proved in [T] that H provided with a suitable topology is a
Fréchet space. Also, for p+q = n, p, q ≥ 1, there is given a continuous linear
surjective map N : S(Rn)→H such that its adjoint N ′ : H′ → S′(Rn)O(p,q)

is a linear homeomorphism onto the space of O(p, q)-invariant tempered
distributions on Rn. As pointed out in [G-S], this construction also works for
the space S′(Cn)U(p,q), i.e., there exists a continuous linear surjective map
N : S(Cn)→H whose adjoint N ′ : H′ → S′(Cn)U(p,q) is a homeomorphism.
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From now on, N : S′(Cn) → S′(R) will be the operator given by (2.11) of
[G-S]. For f ∈ S(Hn), we write Nf(τ, t) for N(f(·, t))(τ).

Our aim in this paper is to obtain a rather explicit description of the
relative fundamental solution Φ for L. In Theorem 4.10 we will compute a
distribution µ ∈ S′(R2) satisfying 〈Φ, f〉 = 〈µ,Nf〉, f ∈ S(Hn).

Acknowledgments. We express our thanks to Fulvio Ricci, who in-
spired this work and kindly helped us during its preparation.

2. Notations and preliminaries. For λ ∈ R − {0}, let πλ be the
Schrödinger representation on L2(Rn) of the Heisenberg group Rn×Rn×R
defined by

πλ(x, y, t)h(ζ) = e−i(λt+sgn(λ)
√
|λ|x·ζ+ 1

2λx·y)h(ζ +
√
|λ|y).

We still denote by πλ the corresponding representation of Hn = Cn×R (via
the map ϕ of the introduction). For f ∈ S(Hn), we set

πλ(f) =
�

Hn

f(z, t)πλ(z, t)−1 dz dt

where dzdt means the Lebesgue measure on Cn × R. For f ∈ S(Hn) and
h1, h2 ∈ L2(Rn), let Eλ(h1, h2) be the associated matrix entry given by

Eλ(h1, h2)(z, t) = 〈πλ(z, t)h1, h2〉.
For α = (α1, . . . , αn) ∈ (N ∪ {0})n, let hα be the Hermite function given by

hα(ζ) = (2|α|α!
√
π)−n/2e−|ζ|

2/2
n∏

j=1

Hαj (ζj)

with |α| = α1 + . . .+ αn, α! = α1! . . . αn! and where

Hk(s) = (−1)kes
2 dk

dsk
(e−s

2
)

is the kth Hermite polynomial. Finally we also set

‖α‖ =
p∑

j=1

αj −
n∑

j=p+1

αj .

We also recall that, for nonnegative integers m,k with k ≤ m, the La-
guerre polynomials Lkm(x) are defined by (see e.g. [Sz])

L0
m(t) =

m∑

j=0

(
m

j

)
(−1)j

tj

j!
, Lβ+1

m−1(t) = − d

dt
Lβm(t).

The distributions Sλ,k are defined in [G-S] by

〈Sλ,k, f〉 =
∑

‖α‖=k
〈Eλ(hα, hα), f〉.
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It is proved (see [G-S], Theorem 4.1 and Remarks 4.2, 4.3) that Sλ,k =
Fλ,k ⊗ e−iλt, where Fλ,k ∈ S′(Cn) is described, in terms of the Laguerre
polynomials and the operator N, by

(2.1) 〈Fλ,k, g〉

=
〈

(L0
k−q+n−1H)(n−1), τ 7→ 2

|λ|e
−τ/2Ng

(
2
|λ|τ

)〉
, g ∈ S(Cn),

for k ≥ q, λ 6= 0,

(2.2) 〈Fλ,k, g〉

=
〈

(L0
−k−p+n−1H)(n−1), τ 7→ 2

|λ|e
−τ/2Ng

(
− 2
|λ|τ

)〉
, g ∈ S(Cn),

for k ≤ −p, λ 6= 0, and

(2.3) 〈Fλ,k, g〉

=
n−2∑

l=0

(
2
|λ|

)l 1
|λ|

∑

l≤j≤n−2
j≥q−k−1

(−1)n−j

2n+j−l

(
j

l

)(
n+ k − q − 1
n− j − 2

)
〈δl, Ng〉, g∈S(Cn),

for −p < k < q, λ 6= 0.
The next lemma states that (1.3) gives a relative fundamental solution

Φ for L.

Lemma 2.1. The formula (1.3) defines a tempered distribution that sat-
isfies L(f ∗ Φ) = L(f) ∗ Φ = f − π(f) for all f ∈ S(Hn).

Proof. We first prove that

(2.4)
∑

2k+p−q 6=0

1
|2k + p− q|

∞�

−∞
|〈Sλ,k, f〉| · |λ|n−1 dλ <∞.

Indeed, the above series can be written

∑

2k+p−q 6=0

1
|2k + p− q|

∞�

−∞

∣∣∣
∑

‖α‖=k
〈Eλ(hα, hα), f〉

∣∣∣|λ|n−1 dλ

=
∑

2k+p−q 6=0

1
|2k + p− q|

∞�

−∞

∣∣∣
∑

‖α‖=k
〈πλ(f)hα, hα〉

∣∣∣|λ|n−1 dλ

≤
∑

k∈Zn

∞�

−∞
|〈πλ(f)hα, hα〉| · |λ|n−1 dλ.

Now, proceeding as in [B-D-R], Lemma 4.10, we can use results of [M-R1]
and [M-R2] to get (2.4) and so Φ is well defined. Moreover, the bounds given
there show that Φ ∈ S′(Hn).
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We recall that, for f ∈ S(Hn), πf = 0 if n is odd and that, for n is even,
πf = � ∞−∞〈Sλ,(q−p)/2, f〉|λ|n dλ (see [G-S], Remark 4.8).

In order to see that Lf ∗ Φ = f − πf we write (see, e.g., (1.3) in [G-S])
L = L0 + L1 where

L0 =
( p∑

j=1

(x2
j + y2

j )−
n∑

j=p+1

(x2
j + y2

j )
) ∂2

∂t2

+
p∑

j=1

(
∂2

∂xj2 +
∂2

∂yj2

)
−

n∑

j=p+1

(
∂2

∂xj2 +
∂2

∂yj2

)

and

L1 =
∂

∂t

n∑

j=1

(
xj

∂

∂yj
− yj

∂

∂xj

)
.

Now, for g ∈ S(Hn) we have L0(g∨) = (L0(g))∨ and L1(g∨) = −(L1(g))∨.
Since (Lf ∗ Φ)(z, t) = 〈Φ, (L(z,t)−1(Lf))∨〉 and L = L0 + L1 we get

(Lf ∗ Φ)(z, t) = 〈Φ,L0((L(z,t)−1f)∨)〉 − 〈Φ,L1((L(z,t)−1f)∨)〉.
But Φ ∈ S′(Hn)U(p,q), and hence L1Φ = 0. Also, L0 and L1 are self-adjoint,
thus (Lf ∗ Φ)(z, t) = 〈Φ,L((L(z,t)−1f)∨)〉. So

(Lf ∗ Φ)(z, t) =
∑

2k+p−q 6=0

−1
2k + p− q

∞�

−∞
〈Sλ,k, L((L(z,t)−1f)∨)〉|λ|n−1 dλ

=
∑

2k+p−q 6=0

−1
2k + p− q

∞�

−∞
〈LSλ,k, (L(z,t)−1f)∨〉|λ|n−1 dλ

=
∑

2k+p−q 6=0

∞�

−∞
〈Sλ,k, (L(z,t)−1f)∨〉|λ|n dλ

=
∑

2k+p−q 6=0

∞�

−∞
(f ∗ Sλ,k)(z, t)|λ|n dλ = (f − πf)(z, t)

and thus Lf ∗ Φ = f − πf .
On the other hand, using (1.1), (1.2) and the fact that L is a left invariant

operator, it is easy to check that L(f ∗ Φ) = f − πf for f ∈ S(Hn).

Let us recall a well known Abel lemma about power series that states that
if a numerical series

∑∞
k=0 ak converges to a sum s, then limr→1−

∑∞
k=0 r

kak
= s.

Taking account of (2.4), we can decompose the series (1.3) as
∑

k≤−p
+

∑

−p<k<q
+
∑

k≥q
.
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Now, (2.4), the Lebesgue dominated convergence theorem (applied to the
measure space R× Z) and the above Abel lemma allow us to write

〈Φ, f〉 = lim
r→1−

lim
ε→0+

∑

k≥q

−r2k+n−2q

2k + p− q

∞�

−∞
e−ε|λ|〈Sλ,k, f〉|λ|n−1 dλ

+ lim
r→1−

lim
ε→0+

∑

k≤−p

−r−2k+n−2p

2k + p− q

∞�

−∞
e−ε|λ|〈Sλ,k, f〉|λ|n−1 dλ

+ lim
ε→0+

∑

−p<k<q

−1
2k + p− q

∞�

−∞
e−ε|λ|〈Sλ,k, f〉|λ|n−1 dλ.

We change the summation indices writing k = k′+ q and k = −k′− p in the
first and second series respectively. Using the fact that Sλ,k = Fλ,k ⊗ e−iλt
and the formulas (2.1) and (2.2) we get

(2.5) 〈Φ, f〉 = 〈Φ1, f〉+ 〈Φ2, f〉
where 〈Φ1, f〉 and 〈Φ2, f〉 are defined by the convergent expressions

〈Φ1, f〉 = lim
r→1−

lim
ε→0+

∑

k≥0

−r2k+n

2k + n

∞�

−∞

∞�

−∞
e−ε|λ||λ|n−1e−iλt

×
〈

(L0
k+n−1H)(n−1), τ 7→ e−τ/2

2
|λ|

[
Nf

(
2
|λ|τ, t

)
−Nf

(
− 2
|λ|τ, t

)]〉
dt dλ

and

〈Φ2, f〉 =
∑

−p<k<q

−1
2k + p− q

∞�

−∞
〈Sλ,k, f〉|λ|n−1 dλ.

Now, a computation gives

(2.6) (L0
k+n−1H)(n−1) = (−1)n−1Ln−1

k H +
n−2∑

j=0

(−1)n−j
(
k + n− 1
n− j − 2

)
δ(j).

On the other hand,

(2.7)
〈
δ(j), τ 7→ e−τ/2

[
Nf

(
2
|λ|τ, t

)
−Nf

(
− 2
|λ|τ, t

)]〉

= −2
∑

0≤l≤j
l odd

(
j

l

)
1

2j−l

(
2
|λ|

)l
∂lNf

∂τ l
(0, t).

Using (2.6), (2.7) and the fact that for g ∈ L2(0,∞) and h ∈ L2(R),

(2.8)
∞�

0

g(τ)[h(τ)− h(−τ)] dτ =
∞�

−∞
sgn(τ)g(|τ |)h(τ) dτ,
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we obtain〈
(L0

k+n−1H)(n−1), τ 7→ e−τ/2
2
|λ|

[
Nf

(
2
|λ|τ, t

)
−Nf

(
− 2
|λ|τ, t

)]〉

= (−1)n−1
∞�

−∞
Ln−1
k

( |λ|
2
|s|
)
e−|λ|·|s|/4 sgn(s)Nf(s, t) ds

− 2
n−2∑

0≤l≤n−2
l odd

n−2∑

j=l

bk,l

(
2
|λ|

)l+1
∂lNf

∂τ l
(0, t)

where

(2.9) bk,l =
n−2∑

j=l

1
2j−l

(
j

l

)
(−1)n−j

(
k + n− 1
n− j − 2

)
.

For k ≥ 0 and 0 ≤ l ≤ n− 2, we also set

(2.10) ak,l =
1
l!

∞�

0

Ln−1
k (s)e−s/2sl ds

and

(2.11) Gf (τ, t) = Nf(τ, t)−
n−2∑

j=0

∂lNf

∂τ j
(0, t)

τ j

j!
.

Let Φ1,1 be the linear functional on S(Hn) defined by

〈Φ1,1, f〉 = lim
r→1−

∑

k≥0

(−1)nr2k+n

2k + n
lim
ε→0+

∞�

−∞

∞�

−∞
e−ε|λ||λ|n−1e−iλt(2.12)

×
∞�

−∞
Ln−1
k

( |λ|
2
|τ |
)
e−|λ|·|τ |/4 sgn(τ)Gf (τ, t) dτ dt dλ.

We will prove below (Proposition 4.3) that 〈Φ1,1, f〉 makes sense, i.e. that
the expression (2.12) converges. Assume provisionally this fact. From (2.5)
it follows that Φ1,2 : S(Hn)→ C defined by

〈Φ1,2, f〉 = 2 lim
r→1−

lim
ε→0+

∑

k≥0

r2k+n

2k + n

∞�

−∞

∞�

−∞
e−ε|λ||λ|n−1e−iλt(2.13)

×
∑

0≤l≤n−2
l odd

(
2
|λ|

)l+1

(ak,l + bk,l)
∂lNf

∂τ l
(0, t) dt dλ

is also well defined and that Φ1 = Φ1,1 + Φ1,2 and so Φ = Φ1,1 + Φ1,2 + Φ2.
Note that the same arguments that prove that N : S ′(Cn) → H is

surjective, show that for f ∈ S(Hn), Nf(τ, t) agrees with a certain function
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ϕ1 ∈ S(R2) on {(τ, t) ∈ R2 : τ > 0} and with another function ϕ2 ∈ S(R2)
on {(τ, t) ∈ R2 : τ < 0}. So, for each polynomial P (τ, t) and for each pair of
nonnegative integers α = (α1, α2) we have

(2.14) sup
τ 6=0, t∈R

|P (τ, t)DαNf(τ, t)| <∞.

In order to see that Φ1,1 is well defined, we first note that, for k ∈ Z and
ε > 0, (2.14) implies that the function

sgn(τ)e−ε|λ|−iλt|λ|n−1Ln−1
k

( |λ|
2
|τ |
)
e−|λ|·|τ |/4Gf (τ, t)

belongs to L1(R3, dτdtdλ). On the other hand, by (2.8),
∞�

−∞
e−ε|λ|−iλtLn−1

k

( |λ|
2
|τ |
)
e−|λ|·|τ |/4|λ|n−1 dλ

= 2 Re
∞�

0

e−ελ−iλtLn−1
k

(
λ

2
|τ |
)
e−λ|τ |/4λn−1 dλ

and as in (4.9) of [G-S], writing there τ instead of B(z), we find that the
value of this integral is

2αk Re
(

(|τ | − 4ε− 4it)k

(|τ |+ 4ε+ 4it)k+n

)

with

(2.15) αk = 4n(n− 1)!(−1)k
(
k + n− 1

k

)
.

Thus, to prove that (2.12) converges, we must show the convergence of

(2.16) lim
r→1−

∑

k≥0

(−1)n
r2k+n

2k + n
lim
ε→0+

2αk
�

R2

Re
(

(|τ | − 4ε− 4it)k

(|τ |+ 4ε+ 4it)k+n

)

× sgn(τ)Gf (τ, t) dτ dt.

We will need the following

Lemma 2.2. The function
1

(τ2 + 16t2)n/2
Gf (τ, t)

is integrable on R2.

Proof. Let B = {(τ, t) : τ 2 + 16t2 < 1}. From (2.14) and the familiar
expression for the remainder of a Taylor development, it follows that there
exists a positive constant c such that for (τ, t) ∈ B,∣∣∣∣

1
(τ2 + 16t2)n/2

Gf (τ, t)
∣∣∣∣ ≤

c

(|τ |2 + 16t2)n/2
|τ |n−1
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and a change to polar coordinates shows that |τ |n−1(|τ |2 + 16t2)−n/2 is
integrable on B.

On the other hand, for (τ, t) ∈ R2 −B we have
∣∣∣∣

1
(τ2 + 16t2)n/2

Gf (τ, t)
∣∣∣∣

≤
[
|Nf(τ, t)|+

n−2∑

j=1

|τ |j
j!

∣∣∣∣
∂jNf

∂τ j
(0, t)

∣∣∣∣
]

1
(|τ |2 + 16t2)n/2

.

Let A = {(τ, t) : |t| ≤ 1/2}∩ (R2−B). For (τ, t) ∈ A, we have |τ | ≥ 1/2 and
so, by (2.14), for 1 ≤ j ≤ n− 2 we have

�

A

∣∣∣∣
∂jNf

∂τ j
(0, t)

∣∣∣∣
|τ |j

(|τ |2 + 16t2)n/2
dτ dt ≤

1/2�

−1/2

∣∣∣∣
∂jNf

∂τ j
(0, t)

∣∣∣∣ dt
∞�

1/2

1
τ2 dτ <∞.

The same argument shows that the analogous integral with ∂jNf(0, t)/∂τ j

replaced by Nf(τ, t) is finite. Now, let A′ = {(τ, t) : |t| > 1/2} ∩ (R2 − B).
For (τ, t) ∈ A′ and 0 ≤ j ≤ n− 2 we have

|τ |j(|τ |2 + 16t2)−n/2 ≤ |τ |j(|τ |2 + 4)−n/2

and by (2.14), |Gf (τ, t)| ≤ c(1 + t2)−1. Thus
�

A′

(|τ |2 + 16t2)−n/2|Gf (τ, t)| dτ dt <∞.

Lemma 2.3.

lim
ε→0+

�

R2

Re
(

(|τ | − 4ε− 4it)k

(|τ |+ 4ε+ 4it)k+n

)
sgn(τ)Gf (τ, t) dτ dt

=
�

R2

1
(τ2 + 16t2)n/2

Re
(( |τ | − 4it

(τ2 + 16t2)1/2

)2k+n)
sgn(τ)Gf (τ, t) dτ dt.

Proof. This follows from Lemma 2.2 and the Lebesgue dominated con-
vergence theorem.

So, to see that 〈Φ1,1, f〉 is well defined for f ∈ S(Hn), we need to study
the convergence of

lim
r→1−

∑

k≥0

(−1)n
r2k+n

2k + n
αk

�

R2

1
(τ2 + 16t2)n/2

× 2 Re
(( |τ | − 4it

(τ2 + 16t2)1/2

)2k+n)
sgn(τ)Gf (τ, t) dτ dt

with αk given by (2.15). We decompose this integral as the sum of integrals
over the right and left halfplanes. Taking polar coordinates τ − 4it = %eiθ,
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we can see that the above expression agrees with

(2.17) 2(−1)n lim
r→1−

Re
(∑

k≥0

r2k+n

2k + n
αk

∞�

0

2π�

0

ei(2k+n)θKf (%, θ) dθ d%
)

where Kf (%, θ) is the function defined for n odd by

(2.18) Kf (%, θ) = %1−nGf

(
% cos(θ),−1

4
% sin(θ)

)

and for n even by

(2.19) Kf (%, θ) = sgn(cos(θ))%1−nGf

(
% cos(θ),−1

4
% sin(θ)

)
.

Note that, for 0 < r < 1, from Lemma 2.2, it follows that

∑

k≥0

r2k+n

2k + n
|αk|

∞�

0

2π�

0

|Kf (%, θ)| d% dθ <∞,

so (2.17) can be written as

(2.20) 2(−1)n lim
r→1−

Re
∞�

0

[∑

k≥0

r2k+n

2k + n
αk

2π�

0

ei(2k+n)θKf (%, θ) dθ
]
d%.

Recall that αk = 4n(n − 1)!(−1)k
(
k+n−1

k

)
. So, in order to study (2.20), in

the next section we will study the distributions defined, for 0 ≤ r < 1 and
θ ∈ R, by

(2.21) Ψr(θ) = Re
[∑

k≥0

r2k+n

2k + n
(−1)k

(
k + n− 1

k

)
ei(2k+n)θ

]
.

3. Computation of limr→1− Ψr. Let Ψr be defined by (2.21). Thus

(3.1)
dΨr
dθ

= Re
[
i
∑

k≥0

r2k+n(−1)k
(
k + n− 1

k

)
ei(2k+n)θ

]
.

Now, we take t = 0, z = −r2e2iθ in the generating identity for the Laguerre
polynomials

(3.2)
∑

k≥0

Ln−1
k (t)zk = (1− z)−ne−zt/(1−z).

Using the fact that Ln−1
k (0) =

(
k+n−1

k

)
we obtain

(3.3)
dΨr
dθ

= − Im
((

reiθ

1 + r2e2iθ

)n)
.
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Note that the limit limr→1− Ψr(0) exists. Indeed,

Ψr(0) =
∑

k≥0

r2k+n

2k + n
(−1)k

(
k + n− 1

k

)
for 0 ≤ r < 1.

So, a computation shows that dΨr(0)/dr = rn−1/(1 + r2)n for 0 ≤ r < 1.
Also, Ψ0(0) = 0 and thus

(3.4) lim
r→1−

Ψr(0) =
1�

0

σn−1(1 + σ2)−n dσ.

We also have

Proposition 3.1. If 0 < δ < π/2 then there exists a positive constant
c such that |Ψr(θ)− Ψr(0)| ≤ cθ2(1− r) for −δ < θ < δ and 0 < r < 1.

Proof. From (3.3), we have

(3.5) |Ψr(θ)− Ψr(0)| ≤
θ�

0

∣∣∣∣ Im
((

reiσ

1 + r2e2iσ

)n)∣∣∣∣ dσ.

Now,

(3.6) Im
((

reiσ

1 + r2e2iσ

)n)
=

Im(rneinσ(1 + r2e−2iσ)n)
(1 + 2r2 cos(2σ) + r4)n

= rn
sin(nσ)

∑n
j=0

(
n
j

)
r2j cos(2jσ)− cos(nσ)

∑n
j=1

(
n
j

)
r2j sin(2jσ)

(1 + 2r2 cos(2σ) + r4)n
.

An induction on n shows that Im
((

eiσ

1+e2iσ
)n)

= 0 for σ 6∈ π/2 + πZ. Also,
the denominator of (3.6) is bounded away from 0, and so the numerator is a
polynomial expression in r that vanishes at r = 1 for all σ whose coefficients
are trigonometrical polynomials divisible by sin(σ). So the numerator can
be written as (1− r) sin(σ)Q(r, cos(σ), sin(σ))) where Q is a polynomial in
its arguments. It follows that there exists a positive constant c such that

∣∣∣∣ Im
((

reiσ

1 + r2e2iσ

)n)∣∣∣∣ ≤ c|sin(σ)|(1− r)

for 0 ≤ r < 1 and |θ| < δ and so (3.5) gives the lemma.

Remark 3.2. If 0 < δ < π/2, the same argument shows that |Ψr(θ) −
Ψr(π)| ≤ const (θ − π)2(1− r) for −δ < θ − π < δ and 0 < r < 1.

LetV be the vector space of functions g∈Cn−2(S1) satisfying (∂/∂θ)n−1g

∈ L∞(S1). For h : S1 → C and g ∈ V we write 〈h, g〉 for � 2π
0 h(eiθ)g(eiθ) dθ

whenever the integral makes sense.



154 T. Godoy and L. Saal

For g ∈ V let

(3.7) 〈Ψ, g〉 = Re
∑

k≥0

1
2k + n

(−1)k
(
k + n− 1

k

) π�

−π
ei(2k+n)θg(eiθ) dθ.

Let H̃ : S1 → R be the function defined by H̃(eiθ) = H(cos(θ)). Also, for
s ∈ R, let δs : V → R be the distribution given by 〈δs, g〉 = g(eis).

Proposition 3.3. For all g ∈ V the series (3.7) converges. Moreover :

(1) If n is even, then there exists a constant c0 and a polynomial Qn−2

of degree n− 2 such that for all g ∈ V,

〈Ψ, g〉 = −c0〈1, g〉+
〈
Qn−2

(
∂

∂θ

)
(δπ/2 + δ−π/2), g

〉
.

(2) If n is odd , then there exist two constants c0 and d0 and a polynomial
Qn−2 of degree n− 2 such that for all g ∈ V,

〈Ψ, g〉 = 〈−c0 + d0H̃, g〉+
〈
Qn−2

(
∂

∂θ

)
(δπ/2 − δ−π/2), g

〉
.

Proof. For g ∈ V, the convergence of (3.7) follows from the fact that
1

2k+n

(
k+n−1

k

)
= O(kn−2) and |〈g, eiκθ〉| ≤ |k|−(n−1)|〈g(n−1), eiκθ〉| with

g(n−1) ∈ L2(S1).
The familiar Fourier expansion for a function g ∈ V can be read as

δs =
∑
k∈Z e

iksφk, where φk(eiθ) = eikθ. Then a computation gives

1
2

(δπ/2 + δ−π/2) =
∑

j∈Z
(−1)jei2jθ,

1
2

(δπ/2 − δ−π/2) =
∑

j∈Z
(−1)jei(2j+1)θ.

From (3.7) we have

(3.8) Ψ ′ = Re
∑

k≥0

(−1)k
(k + n− 1) . . . (k + 1)

(n− 1)!
iei(2k+n)θ.

Assume n is even. A change of the summation index in (3.8) gives

Ψ ′ = Re
∑

j≥n/2
(−1)j+n/2

(2j − n+ 2) . . . (2j + n− 2)
2n−1(n− 1)!

iei2jθ.

On the other hand, the change 2k + n = −2j of the summation index in
(3.7) also gives

Ψ ′ = Re
∑

j≤n/2
(−1)j+n/2

(2j − n+ 2) . . . (2j + n− 2)
2n−1(n− 1)!

iei2jθ,
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and, since n is even, we also have (2j + n − 2) . . . (2j − n + 2) = 0 for
−n/2 < j < n/2. Thus

Ψ ′ =
1
2

Re
∑

k∈Z
(−1)k+n/2 (2k − n+ 2) . . . (2k + n− 2)

2n−1(n− 1)!
iei2kθ.

Let Pn−1 the polynomial of degree n− 1 given by

Pn−1(s) =
(2s− n+ 2) . . . (2s+ n− 2)

2n(n− 1)!
, s ∈ R,

and let Θ =
∑
k∈Z(−1)k+n/2Pn−1(k)iei2kθ. Thus Ψ ′ = ReΘ. Since n is even,

we have Pn−1(0) = 0 and so Pn−1(s) = sQ̃n−2(s) for some polynomial Q̃n−2

of degree n− 2. Now, klei2kθ =
(

1
2i

∂
∂θ

)l
ei2kθ , l ≥ 0, and so

Θ =
1
2i

∂

∂θ

(
i
∑

k∈Z
(−1)k+n/2Q̃n−2

(
1
2i

∂

∂θ

)
ei2kθ

)
.

Then, taking account of 1
2 (δπ/2 + δ−π/2) =

∑
k∈Z(−1)kei2kθ, we obtain

〈Ψ ′, g〉 = Re〈Θ, g〉 =
〈
∂

∂θ
Qn−2

(
∂

∂θ

)
(δπ/2 + δ−π/2), g

〉

for some polynomial Qn−2 of degree n− 2 with real coefficients. So

Ψ = −c0 +Qn−2

(
∂

∂θ

)
(δπ/2 + δ−π/2)

for some constant c0. This ends the proof for the case of n even.
Assume now that n is odd. By (3.7) we now have

Ψ ′ = Re
∑

2j+1≥n
(−1)j+(n−1)/2 (2j + n− 1) . . . (2j − n+ 3)

2n−1(n− 1)!
iei(2j+1)θ.

Thus we get, as above,

Ψ ′ =
1
2

Re
∑

k∈Z
(−1)j+(n−1)/2 (2j + n− 1) . . . (2j − n+ 3)

2n−1(n− 1)!
iei(2j+1)θ.

Let Pn−1 be the polynomial given by

Pn−1(2s+ 1) =
(2s+ n− 1) . . . (2s− n+ 3)

2n(n− 1)!
, s ∈ R,

and let Θ =
∑
k∈Z(−1)k+(n−1)/2Pn−1(2k + 1)iei(2k+1)θ. Thus Ψ ′ = ReΘ.

Now

Θ =
∑

k∈Z
(−1)k+(n−1)/2Pn−1

(
1
2i

∂

∂θ

)
iei2kθ.
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But 1
2 (δπ/2 − δ−π/2) =

∑
k∈Z(−1)kei(2k+1)θ and hence

〈Ψ ′, g〉 = Re〈Θ, g〉 =
〈
P̃n−1

(
∂

∂θ

)
(δπ/2 − δ−π/2), g

〉

for some polynomial P̃n−1 of degree n− 1 with real coefficients. Thus,

〈Ψ ′, g〉 = −d0(δπ/2 − δ−π/2) +
∂

∂θ
Qn−2

(
∂

∂θ

)
(δπ/2 − δ−π/2)

for some polynomial Qn−2 of degree n − 2 and some constant d0. Now,
δπ/2 − δ−π/2 = − ∂

∂θ H̃, and so

Ψ ′ =
∂

∂θ
Qn−2

(
∂

∂θ

)
(δπ/2 − δ−π/2) + d0

∂

∂θ
H̃.

Thus Ψ = −c0 + d0H̃ +Qn−2(∂/∂θ)(δπ/2 − δ−π/2) for some constant c0.

Corollary 3.4. limr→1−〈Ψr, g〉 = 〈Ψ, g〉 for all g ∈ V.

Proof. Follows from the Abel lemma and Proposition 3.3.

Proposition 3.5. If n is even and if c0 is the constant of Proposi-
tion 3.3 then c0 = − limr→1− Ψr(0).

If n is odd and if c0, d0 are the constants of Proposition 3.3 then c0 =
limr→1− Ψr(0) and d0 = 2c0.

Proof. Assume that n is odd. Let h ∈ C∞c (R) be such that supp(h) ⊂
(−π/4, π/4), h ≥ 0 and � h = 1, and let Qn−2 be the polynomial given by
Proposition 3.3. Thus Qn−2(∂/∂θ)(δπ/2 ± δ−π/2)(h) = 0 and so

lim
r→1−

〈Ψr, h〉 = 〈−c0 + d0H̃, h〉 = −c0 + d0.

On the other hand, since � h = 1 we have

lim
r→1−

〈Ψr, h〉 = lim
r→1−

[ �
(Ψr(θ)− Ψr(0))h(θ) dθ + Ψr(0)

]

and by Proposition 3.1,
∣∣∣

�
(Ψr(θ)− Ψr(0))h(θ) dθ

∣∣∣ ≤
∣∣∣

�

|θ|<1/2

|Ψr(θ)− Ψr(0)|h(θ) dθ
∣∣∣

≤ const (1− r)
∣∣∣

�

|θ|<1/2

θ2h(θ) dθ
∣∣∣ ≤ const (1− r)

and so −c0 + d0 = limr→1− Ψr(0). Similarly, taking h ∈ C∞c (R) such that
supp(h) ⊂ (π/2, 3π/2) with h ≥ 0 and � h = 1 we get d0 = limr→1− Ψr(π).
Since Ψr(π) = −Ψr(0) if n is odd, the lemma follows in this case. The proof
for n even follows the same lines.



Relative fundamental solutions 157

4. The main result

Remark 4.1. Let Kf (%, θ) be defined by (2.18) and (2.19). A computa-
tion shows that Kf (%, ·) ∈ Cn−2(R) for each % ∈ (0,∞). Moreover, for such
a %, dn−1Kf (%, θ)/dθn−1 is well defined for θ 6∈ π/2 + Z,

djKf (%, ·)
dθj

(
± π

2

)
= 0 for j = 0, . . . , n− 2

and dn−1Kf (%, θ)/dθn−1 ∈ L∞(R). We also need the following facts.
Let A = [δ, π−δ]∪[π+δ, 2π−δ] with 0 < δ < π/2 and let K̃f : A→ R be

defined by K̃f (θ) = � ∞1 Kf (%, θ) d%. Then a computation using (2.14) and
the Lebesgue dominated convergence theorem show that K̃f ∈ Cn−1(A).
Moreover K̃(j)

f (±π/2) = 0 for 0 ≤ j ≤ n − 2. The same argument gives

that the function � 1
0 Kf (%, ·) d% belongs to V with its n− 2 first derivatives

vanishing at ±π/2.

Proposition 4.2. Let αk be given by (2.15) and let c0 be as in Propo-
sition 3.3. Then

(4.1) lim
r→1−

Re
∞�

0

[∑

k≥0

r2k+n

2k + n
αk

2π�

0

ei(2k+n)θKf (%, θ) dθ
]
d%

= 4n(n− 1)!c0
�

R2

1
(τ2 + 16t2)n/2

sgn(τ)Gf (τ, t) dτ dt.

Proof. Assume n is odd. Since

c0
�

R2

1
(τ2 + 16t2)n/2

Gf (τ, t) dτ dt

=
�

R2

1
(τ2 + 16t2)n/2

(−c0 + d0H(τ)) sgn(τ)Gf (τ, t) dτ dt

=
∞�

0

2π�

0

(−c0 + d0H̃(θ))Kf (%, θ) dθ d%

it is enough to prove that

(4.2) lim
r→1−

∞�

0

〈Ψr,Kf (%, ·)〉d% =
∞�

0

〈−c0 + d0H̃,Kf (%, ·)〉 d%.

In order to see this, we decompose the integral as � 1
0 + � ∞1 . To study the

second term of this sum, we pick 0 < δ < π/4. We first show that

(4.3) lim
r→1−

∞�

1

�

|θ|<δ
(Ψr(θ)− (−c0 + d0H̃(θ)))Kf (%, θ) dθ d% = 0.
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To see this, we decompose the integral in (4.3) as

(4.4)
∞�

1

�

|θ|<δ
(Ψr(θ)− Ψr(0))Kf (%, θ) dθ d%

+ (Ψr(0)− (−c0 + d0))
∞�

1

�

|θ|<δ
Kf (%, θ) dθ d%.

From the definition ofKf (%, θ) and (2.14) we have |Kf (%, θ)|≤c%−2|sin(θ)|−1

for some constant c and for all % > 1, |θ| < δ. Then by Proposition 3.1,

(4.5)
∣∣∣
∞�

1

�

|θ|<δ
(Ψr(θ)− Ψr(0))Kf (%, θ) dθ d%

∣∣∣

≤ const (1− r)
∞�

1

�

|θ|<δ

1
%2|sin(θ)|θ

2dθ ≤ const (1− r).

It is also clear that the second term of the sum (4.4) converges to 0 as r
tends to 1, so (4.3) holds. Replacing Ψr(0) by Ψr(π) and −c0 + d0 by d0 in
the above proof we also obtain the analogue of (4.3) where the integration
domain |θ| < δ is replaced by |θ − π| < δ.

On the other hand, we also have

(4.6) lim
r→1−

∞�

1

�

(δ,π−δ)∪(π+δ,−δ)
(Ψr(θ)− (−c0 + d0H̃(θ)))Kf (%, θ) dθ d% = 0.

Indeed, let A and K̃f be as in Remark 4.1. Let K∗f be an extension of K̃f

belonging to V. Then (4.6) follows from the facts that limr→1−〈Ψr,K∗f 〉 =
〈Ψ,K∗f 〉 and that for some positive constant and all θ ∈ (−δ, δ)∪(π−δ, π+δ)

we have |Ψr(θ)− (−c0 + d0H̃(θ))| ≤ const (1− r)δ2.

Finally, since � 1
0 Kf (%, ·) d% belongs to V and since for 0 ≤ r < 1 the

function Ψr(θ)Kf (%, θ) is integrable on (0, 2π)× (0, 1) we have

lim
r→1−

1�

0

〈Ψr,Kf (%, ·)〉 d% = lim
r→1−

〈
Ψr,

1�

0

Kf (%, ·) d%
〉

=
2π�

0

(c0 + d0H̃(θ))
1�

0

Kf (%, θ) d% dθ

and the lemma follows for n odd.
The proof for n even is similar with −c0 + d0H̃(θ) replaced by −c0 in

the above argument.



Relative fundamental solutions 159

Proposition 4.3. 〈Φ1,1, f〉 is well defined for f ∈ S(Hn) and

〈Φ1,1, f〉 = 4n(n− 1)!c0
�

R2

1
(τ2 + 16t2)n/2

(4.8)

× sgn(τ)
(
Nf(τ, t)−

n−2∑

j=0

τ j

j!
· ∂

jNf

∂τ j
(0, t)

)
dτ dt

where c0 is the constant of Proposition 3.3.

Proof. The right member of (4.8) is finite by Lemma 2.3. On the other
hand, the expression (2.12) that defines 〈Φ1,1, f〉 agrees, term to term, with
(2.16) and so, by Lemma 2.3, also agrees with (2.17). Thus the corollary
follows from Proposition 4.2.

So 〈Φ1,2, f〉 is also well defined for f ∈ S(Hn). Our next step will be to
compute 〈Φ1,2, f〉.

For ε > 0, l ∈ N and f ∈ S(Hn) we set

(4.9) dε,l,f =
�

R2

e−ε|λ||λ|n−2−le−iλt
∂lNf

∂τ l
(0, t) dt dλ.

So, (2.13) reads

(4.10) 〈Φ1,2, f〉 = lim
r→1−

lim
ε→0+

∑

k≥0

∑

l odd
0≤l≤n−2

2l+2 r
2k+n

2k + n
(ak,l + bk,l)dε,l,f

with ak,l and bk,l defined by (2.10) and (2.9) respectively.
We will need the following

Lemma 4.4. Let ak,l be defined by (2.10). Then

ak,l = (−1)k
l+1∑

j=1

1
2n−l−j−1

(
n− j − 1
l − j + 1

)(
j + k − 1

k

)

+
n−l−1∑

j=1

1
2n−l−j−1

(
n− j − 1

l

)(
j + k − 1

k

)
.

Proof. From the generating identity (3.2) for the Laguerre polynomials
we can write, for 0 ≤ r < 1,

∞∑

k=0

rk
1
l!

∞�

0

Ln−1
k (τ)e−τ/2τ l dτ =

1
l!
· 1

(1− r)n
∞�

0

τ le−(r+1)τ/(2(1−r))dτ(4.11)

=
2l+1

(1− r)n−l−1(1 + r)l+1 .
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So ak,l is the coefficient of rk in the power expansion at the origin of (4.11).
We decompose (4.11) in simple fractions

2l+1

(1− r)n−l−1(1 + r)l+1 =
n−l−1∑

j=1

Aj
(1− r)j +

l+1∑

j=1

Bj
(1 + r)j

.

Thus, by the residue theorem, we have, for a small positive % > 0,

Aj = −2l+1

2πi

�

|z−1|=%

1
(1− z)n−l−j(1 + z)l+1 dz.

So

Aj =− 2l+1(−1)n−l−j

(n− l − j − 1)!

(
d

dz

)n−l−j−1

|z=1
((1 + z)−l−1)=

1
2n−l−j−1

(
n− j − 1

l

)
.

Similarly,

Bj =
2l+1

2πi

�

|z+1|=%

1
(1− z)n−l−1(1 + z)l−j+2 dz

=
2l+1

(l + 1− j)!

(
d

dz

)l+1−j

|z=−1
((1− z)l+1−n) =

1
2n−l−j−1

(
n− j − 1
n− l − 2

)
.

Since, for m ∈ N∪{0},
(
m+k−1

k

)
is the coefficient of rk in the power expan-

sion at the origin of (1− r)−m, the lemma follows.

For T ∈ S′(R), we write T̂ for its Fourier transform and, as before, for
g : R→ C we set g∨(t) = g(−t).

Lemma 4.5. Assume 0 ≤ l ≤ n− 2. For ε > 0 and f ∈ S(Hn) let dε,l,f
be defined by (4.9). Then, for n− l odd ,

lim
ε→0+

dε,l,f = 2(−1)(n−l−1)/2
〈

p.v.
(

1
t

)
,
∂n−2Nf

∂τ l∂λn−l−2 (0, ·)
〉
,

and for n− l even,

lim
ε→0+

dε,l,f = 2(−1)(n−l−2)/2 ∂n−2Nf

∂τ l∂λn−l−2 (0, 0).

Proof. Let g(λ) = e−ε|λ||λ|n−2−l. Since

dε,l,f =
�

R
e−ε|λ||λ|n−2−l

(
∂lNf

∂τ l
(0, ·)

)∧
(λ) dλ,

a computation of ĝ and the properties of the Fourier transform give the
assertion.
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Remark 4.6. For j ∈ N and 0 ≤ r < 1, let

hj(r) =
∑

k≥0

r2k+n

2k + n
(−1)k

(
j + k − 1

k

)
.

Then limr→1− hj(r) = � 1
0 r

j−1(1+r2)−j dr. Indeed, hj(0) = 0 and proceeding
as at the beginning of Section 3, we now get h′j(r) = rj−1/(1 + r2)j .

Remark 4.7. Note that if P is a nonzero polynomial then

lim
r→1−

∑

k≥0

P (k)
r2k+n

2k + n
= ±∞.

Indeed, without loss of generality we can assume that the leading term of
P has a positive coefficient. Then, for k large enough, P (k) is greater than
a positive constant and the assertion follows.

For 1 ≤ j ≤ n− 1, we set

(4.12) cj =
1�

0

rj−1

(1 + r2)j
dr.

Proposition 4.8. For n even we have

〈Φ1,2, f〉 =
∑

1≤l≤n−2
l odd

22l+3−n(−1)(n−l+1)/2(4.13)

×
l+1∑

j=1

2jcj

(
n− j − 1
l − j + 1

)〈
p.v.

(
1
t

)
,
∂n−2Nf

∂τ l∂λn−l−2 (0, ·)
〉

and for n odd we have

〈Φ1,2, f〉 =
∑

1≤l≤n−2
l odd

22l+3−n(−1)(n−l+2)/2(4.14)

×
l+1∑

j=1

2jcj

(
n− j − 1
l − j + 1

)
∂n−2Nf

∂τ l∂λn−l−2 (0, 0).

Proof. Let ak,l and bk,l be defined by (2.10) and (2.9) respectively. We
write ak,l = a′k,l + a′′k,l, with

a′k,l = (−1)k
l+1∑

j=1

1
2n−l−j−1

(
n− j − 1
l − j + 1

)(
j + k − 1

k

)
,

a′′k,l =
n−l−1∑

j=1

1
2n−l−j−1

(
n− j − 1

l

)(
j + k − 1

k

)
.
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For ε > 0, 0 ≤ l ≤ n − 2 and f ∈ S(Hn) let dε,l,f be defined by (4.9). We
set

〈Φ∗1,2, f〉 = lim
r→1−

lim
ε→0+

∑

k≥0

∑

0≤l≤n−2
l odd

r2k+n

2k + n
2l+2dε,l,fa

′
k,l.

Note that, by Lemma 4.5 and Remark 4.6, 〈Φ∗1,2, f〉 is well defined, and
moreover

(4.15) 〈Φ∗1,2, f〉 =
∑

0≤l≤n−2
l odd

2l+2 lim
ε→0+

dε,l,f

l+1∑

j=1

1
2n−l−j−1

(
n− j − 1
l − j + 1

)
cj .

So, the functional Φ∗∗1,2 defined by

〈Φ∗∗1,2, f〉 = lim
r→1−

lim
ε→0+

∑

k≥0

∑

0≤l≤n−2
l odd

2l+2 r
2k+n

2k + n
dε,l,f (a′′k,l + bk,l)

is also well defined. Now, given ϕ ∈ S(R), it is easy to see that there exists
f ∈ S(Hn) such that ∂mNf(0, t)/∂τm = δl,mϕ(t) form = 0, . . . , n−2, t ∈ R.
Indeed, pick g ∈ S(R) such that g(j)(0) = δj,l for j = 0, 1, . . . , n − 2. Since
N : S(Cn) → H is surjective, there exists g̃ ∈ S(Cn) such that Ng̃ = g.
Now, f(z, t) = g̃(z)ϕ(t) has the desired property. So for each l odd with
0 ≤ l ≤ n− 2 the limit

lim
r→1−

∑

k≥0

r2k+n

2k + n
(a′′k,l + bk,l)

exists and is finite. But a′′k,l+bk,l is a polynomial in k, so Remark 4.7 implies
that a′′k,l + bk,l vanishes identically at k and so 〈Φ∗∗1,2, f〉 = 0. Now, (4.15)
and Lemma 4.5 give the assertion.

Remark 4.9. Let Φ2 be as in (2.5). Then

〈Φ2, f〉 =
n−2∑

l=0

∑

1≤k≤n−1
k 6=n/2

1
n− 2k

(4.16)

×
∑

max(n−k−1,l)≤j≤n−2

(
j

l

)(
k − 1

n− j − 2

)
22l+3−n−j〈Tl, f〉

where

〈Tl, f〉 = (−1)(n−l−1+2j)/2
〈

p.v.
(

1
t

)
,
∂n−2Nf

∂τ l∂tn−l−2 (0, ·)
〉



Relative fundamental solutions 163

if n− l is odd, and

〈Tl, f〉 = (−1)(n−l+2j)/2 ∂n−2Nf

∂τ l∂tn−l−2 (0, 0)

if n− l is even.
Indeed, to see (4.16), we recall that Sλ,k = Fλ,k ⊗ e−iλt. Then a change

of indices in (2.3) gives

〈Φ2, f〉 =
n−2∑

l=0

∑

1≤k≤n−1
k 6=n/2

1
n− 2k

×
∑

max(n−k−1,l)≤j≤n−2

(−1)n−j+l
(
j

l

)(
k − 1

n− j − 2

)
22l+2−n−jdε,l,f

so the assertion follows from Lemma 4.5.

Now, we can state

Theorem 4.10. There exist constants c0, e0, . . . , en−2, e
′
0, . . . , e

′
n−2 such

that , for f ∈ S(Hn),

〈Φ, f〉 = 4n(n− 1)!c0
� sgn(τ)

(τ2 + 16t2)n/2

(
Nf(τ, t)−

n−2∑

l=0

τ l

l!
· ∂

lNf

∂τ l
(0, t)

)
dτ dt

+
n−2∑

l=0

el

〈
p.v.

(
1
t

)
,
∂n−2Nf

∂τ l∂tn−2−l (0, ·)
〉

+
n−2∑

l=0

e′l
∂n−2Nf

∂τ l∂tn−2−l (0, 0).

Proof. Since Φ = Φ1,1 + Φ1,2 + Φ2, the theorem follows from Proposi-
tions 4.3, 4.8 and 4.9.

Finally, we remark that the constants c0, e0, . . . , en−2, e
′
0, . . . , e

′
n−2 in the

above theorem can be explicitly computed; in fact, the value of c0 is found
from Proposition 4.3 and (3.4) and the values of e0, . . . , en−2, e

′
0, . . . , e

′
n−2

are found from (4.13), (4.14) and (4.16).
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