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Uniqueness of unconditional basis
of 0,(cp) and £,(¢2), 0 <p <1

by

F. ALBIAC and C. LERANOZ (Pamplona)

Abstract. We prove that the quasi-Banach spaces £, (cg) and £p(£2) (0 < p < 1) have
a unique unconditional basis up to permutation. Bourgain, Casazza, Lindenstrauss and
Tzafriri have previously proved that the same is true for the respective Banach envelopes
£1(co) and £1(¢2). They used duality techniques which are not available in the non-locally
convex case.

1. Introduction. Suppose that X is a quasi-Banach space (in particu-

lar, a Banach space) with a quasi-norm || - || and a normalized unconditional
basis (€,)52q, i.e. |len] = 1 for all n € N. We say that X has a unique

unconditional basis up to permutation if whenever (x,)5°, is another nor-
malized unconditional basis of X, then there is a permutation 7 of N so that
(Tn)pZy is equivalent to (ex(n))ney, that is, there is a constant D so that

n=1
n n n
~1
D Hzai% < Hzaieﬂ(i) < DHZCM%‘
i—1 i=1 =1

for any choice of scalars (a;)?_; and every n € N. In that case, we will write
(xn)nEN ~ (eﬂ(n))neN-

In [7], the authors showed that ¢ has a unique unconditional basis. Lin-
denstrauss and Pelczynski ([9]) proved that the same holds for ¢o and ¢;.
Lindenstrauss and Zippin ([11]) showed that ¢y, ¢; and {2 are the only
Banach spaces with this property, which indicates that in the context of
Banach spaces it is quite exceptional for a space to have a unique uncondi-
tional basis. The situation for quasi-Banach spaces which are not Banach is
quite different. Kalton ([3]) showed that a wide class of non-locally convex
Orlicz sequence spaces, including /¢, for 0 < p < 1, have a unique uncon-
ditional basis. Edelstein and Wojtaszczyk proved in [2] that finite direct
sums of ¢, 1 and /5 have a unique unconditional basis up to permutation.
Bourgain, Casazza, Lindenstrauss and Tzafriri studied in [1] infinite direct
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sums of these spaces, showing that in co(¢1), co(¢2), ¢1(co) and ¢1(f3) the
canonical unit vector basis is unique up to permutation, while the result is
not true for ¢3(co) and ¢2(¢1). This was the motivation to ask about the
uniqueness of unconditional basis up to permutation of the quasi-Banach
spaces co(lp), £p(co) and £,(¢2) (0 < p < 1), whose Banach envelopes co(¢1),
l1(co) and ¢4 (¢3), respectively, were the ones on the previous list which had
that property. Leranoz proved in [8] that in ¢y(¢p), 0 < p < 1, all normalized
unconditional bases are equivalent up to permutation to the canonical basis.

In Sections 2 and 3 we prove that the same result is true for the spaces
lp(co) and €, (¢2), respectively.

We recall that if X is a quasi-Banach space whose dual separates points,
then the gauge functional of the convex hull of the closed unit ball of X
is a norm on X; we will denote it by | - ||c. The Banach space X resulting
from the completion of (X, || - ||c) is called the Banach envelope of X (see
[6] and [4]). The Banach envelope has the property that every continuous
linear operator from X into a Banach space extends to X with preservation
of norm. In particular, the dual of X is X*. If (e,,)%° 2, is a K-unconditional
basis X, then it is also a K-unconditional basis of X and

(1.1) K Yenll < llenlle < llen]l  for all n € N.

A quasi-Banach lattice X is said to be p-conver, where 0 < p < oo, if there
is a constant C' > 0 such that for any z1,...,z, € X and n € N, we have

‘)<§;|mi|p>1/l’ (é,mi“py/p

The procedure to define the element (37, |2;|?)}/? € X is exactly the same
as in Banach lattices (see [10], pp. 40-41).

2. Uniqueness of unconditional basis of ¢,(cp), 0 < p < 1. For
0 < p<1 fixed,

ly(co) ={(T1);21 1 71 € ¢ for each | and (||71]|00)i2; € 4p}-

This space endowed with the p-norm

(@illy = (Zuxzup )"

is a p-Banach space.

For each | € N, we can write 7, = (x;1,22,...,%k,...) € Co, and
then identify £,(co) with the space of infinite matrices (21)7%—, satisfying
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x;, — 0 for alll € N as k — oo, and

l@u )il = (Zsumxmp)

The dual space of ¢,(cp) can be identified with £ (¢1), where £ (¢1) is
the Banach space of infinite matrices a = (ax)75,—; such that

|al| = supz laik| < oo,
k=1
and the Banach envelope of (¢,(co), || - |lp) is (¢1(co), | - [|1)-

| - || will denote without confusion both the quasi-norm in #,(co) and
the norm in the dual ¢ (¢1), and || - || will denote the norm in the Banach
envelope £ (cp).

The spaces £, (co) (0 < p < 1) have a canonical 1-unconditional basis of
unit vectors that we will denote by (e;;)75._;. The (I, k) coordinate of e,
islifl =1y and k = kg, and 0 otherwise. The lattice structure induced by
the canonical basis in £,(co) (0 < p < 1) is p-convex.

Suppose Q is a bounded linear projection from ¢, (cy) onto a subspace X
with normalized K-unconditional basis (z,,);_; (the symbol 1 can denote
either a positive integer or co). The sequences in £ (¢1) of the biorthogonal
linear functionals associated with the unconditional bases (e;) and (x,,) are
denoted by (ej,) and () respectively. From now on, for abbreviation, we
will write

e (wn) = bjj,  and a7 (ew) = ag.

Then
(2.1) |l = Sl;pz laz,| < K|[Ql-
k=1

We also recall that (z,,);_; is a K-unconditional basis of X , the Banach
envelope of X, which is complemented in ¢;(cp), and that from (2.1) we
easily obtain

(IQUE)™ < |lzalle <1 forallm=1,...,7.

In this section, we prove the next theorem:

THEOREM 2.1. Suppose 0 < p < 1. Let Q) be a bounded linear projection
from £,(co) onto a subspace X with a normalized K -unconditional basis
(xn)!_1. Then there exist constants Ay, Ay and a partition of {1,...,n}
nto mutually disjoint subsets (L){ 1 So that

! 1/p (2) )
a3 p o) 2 [
i=1"h

< AQ(Z sup |an|p)
for any choice of scalars (ap)y.
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Bourgain, Casazza, Lindenstrauss and Tzafriri proved the analogue of
the previous result for the Banach envelope ¢4 (cp):

THEOREM 2.2 (Corollary 4.8 of [1]). Let Q be a bounded linear projec-
tion from €1(co) onto a subspace Z with a normalized K-unconditional basis
(zn)!_1. Then there exist a constant A, depending only on K and ||Q||, and
a partition of the integers {1,...,n} into mutually disjoint subsets (Bj)jzl
such that

J n J
(2.2) A_lz sup |a,| < H Zanzn < AZ sup |ay|
j:l nEB]’ n=1 c j:l nEB]’

for any choice of scalars (ap)n. In particular, 1(co) has a unique normalized
unconditional basis up to permutation.

The proof of Theorem 2.2 uses duality techniques which are not available
in the non-locally convex case. We will prove Theorem 2.1 in two parts,
corresponding to each one of the inequalities (1) and (2).

The proof of Theorem 2.1(1) is based on two deep results: Theorem 2.2
itself and the following theorem due to Kalton.

LEMMA 2.3 (Theorem 3.3 of [4]). Let Y be a p-conver quasi-Banach
lattice with unconditional basis such that Y™ has finite cotype. Then there
exists a constant A, depending only on p and the cotype constant of Y*,
such that

lylly < Allylle

for every y € Y. (In particular, Y is isomorphic to its Banach envelope.)

Proof of Theorem 2.1(1). The Banach envelope X of X is a comple-
mented subspace of ¢1(co) and (z,,);_; is a K-unconditional basis of X,
equivalent in £ (co) to the normalized basis (z,,/||n||c);_;. Therefore, The-
orem 2.2 applies, hence there exist a constant D, depending only on K and
|Ql|, and a partition of {1,...,n} into disjoint subsets (B;)7_, so that (2.2)
holds. We will see that this is the partition (L;)!_; stated in Theorem 2.1.

For each j € {1,...,J} let X; be the closed linear span in ¢,(cy) of
{z,, : n € B;}. The Banach envelope X ; of X is the closed linear span in
l1(co) of {zy, : n € B;}. By (2.2) applied to each fixed j, we obtain

(2.3 A7 sup |a,| < H AnTn
o ampes| T

nebB;

< A sup |ay),
C nEBj

for any scalars (an)n. That is, (z5)neB, is A-equivalent (in f1(co)) to
(en)neB,, where (e,);2; denotes the canonical basis of ¢y, with the equiv-
alence constant A independent of j. Hence, X7 (= X ;o= KgIBjI)) has
cotype 2.
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By Lemma 2.3 applied to X; (p-convex quasi-Banach lattice with an un-
conditional basis (7, )nep,, so that X has cotype 2) there exists a constant

A (not depending on j) so that
< AH Z anTy

(2.4) H Z an T

neb;

for any choice of scalars (ay ).
By the p-subadditivity of || - ||,

n » J
(2.5) H nzz:lanxn = H Z;né, an;rn‘

Combining (2.3), (2.4) and (2.5) we get

n
1> anan
n=1

for any scalars (a, ), so the inequality (1) holds with Ay = AA.

The proof of Theorem 2.1(2) relies on the next four lemmas.

The following technique was introduced by N. Kalton to prove the uni-
queness of unconditional basis in non-locally convex Orlicz sequence spaces
(cf. [3]), and was used to prove the uniqueness of unconditional basis up to
permutation of ¢o(€,) (0 < p < 1) (see [8]).

Z H > anzy

nebB;

AI’AI’Z su]g) |an|P
. ne

LEMMA 2.4 (cf. Theorem 2.3 of [5]). Let X be a p-convex quasi-Banach
lattice (0 < p < 1) with a normalized unconditional basis (en)>q; let Q
be a bounded linear projection from X onto a subspace Z with a normal-
ized unconditional basis (xyn)nes (S C N). Let (e)22, and (z})nes be

n=1
the sequences of biorthogonal linear functionals associated with ()52 and

(Tn)nes respectively, i.e.

= i er(x)e, and Q(z Z z,
n=1

nes

for all x € X. Suppose that there is a constant 8 > 0 and an injective map
o:5 — N so that

oy (@)l = 8 and |z (es(n))] = 8

for all n € S. Then there exist positive constants o, o' so that
QH Z An€o(n) < H Z apTy|| < Q,H Z An€o(n)
nes nes nes

for any scalars (o).
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The following result is an elementary remark which nevertheless becomes
fundamental when we want to apply Lemma 2.4 to those quasi-Banach
spaces in which ¢, (0 < p < 1) is involved.

LEMMA 2.5 (Lemma 2.2 of [8]). Fiz 0 < p < 1. For any e > 0 there exist
C: > 0 so that

N N 1/p
Z || < Cesup |ay| + S(Z ]an|p>
n=1 " n=1

for any choice of scalars (c,)Y_; and N € N.
The next result is a “patching lemma”:
LEMMA 2.6. Suppose {A; : i = 1,...,N} is a partition of {1,...,J}

and that for each j =1,...,J, {27 :m =1,..., M} is a partition of B;.
Suppose there is a constant ¢ > 0 so that for each i and m

1/p
H > anmn HZ > antn >Q(Z e !an|p>

nGQ}"’,jEAi JEA;n Qm
for any sequence of scalars (ay). Further suppose that M, N and o depend
only on K and ||Q||. Then there exists a constant I' > 0 so that

L J J 1/p
350w = [ 55 5 a2 (3 s leot)
n—1 j=1neB; j—1"€B8;

for any sequence of scalars (ay).

Proof. By the unconditionality of the basis (z,,);_; we have

J n
|5 5 o] < K]S 5 o] = - um].
JEA; nEN] j=1neB; n=1

for each ¢ and m fixed. Then, by the hypothesis,

|3 e

> KPPy up, |an|?;
jea; "€

therefore

> K Pp” sup sup E sup |a,|P.
y m
1<i<N lgmﬁMjeAi neN;

i p
1> anan
n=1
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N
1
sup (s 3 swp fanl) = 3 ( s 3 sup fal)

LN N 1<m<M ZH neay pt 1gmgMj€Ai neQm
M
1 p 1 p
2 Far 2= 2 2 S ol :WZZ Z Sup fan|
i—1 m=1jeA, €% i—1 jed; m=1"€5
1 p p
= NM E E sup  sup |an|” = M § sup |a,|”.
o A 1<m<M neg; “ neB;
Hence

n
| 32 an
n=1

The following is a “counting lemma”.

p
> Ml/le/p(ngg || )

LEMMA 2.7. Let {F; : j € N} be a family of sets so that:
(i) |F;| < forall j €N,
(ii) {j e N:l € F;}| < M for every,

for some constants r, M independent of j. Then there exists a partition
of Ninto N <rM subsets

N=SU...USy
so that Fj, N Fj, =0 for any j1 # j2 € S;, 0 <i < N.

Proof. From the hypotheses it is easy to deduce that, for each jo € N
fixed,
|{j EN:FjﬂFjO #@H <rM.

We will prove the existence of a partition N = S; U ... U Sy satisfying
the assertion by building the sets S, .55, ... recurrently, as follows:

e We put the element j, = 1 into a set, namely 5.

e Now, for jo = 2, if F5 N F; = () then we put the element 2 into the set
S1 (because we still do not have any needs of taking a new set in order for
the lemma to be satisfied), but if Fo N F; # () then we must put the element
2 into a new set, namely Ss.

o Let jo > 2.

If F;, NF; =0 for all j €. S1 (j < jo, of course) then j, € S.
If F;, N F; # 0 for some j € S then jo ¢ S1. Now, if F;, N F; = () for all
J € S5 then jy € Ss.
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If Fj, N F; # 0 for some j € S1 (j < jo), Fj, N F; # 0 for some j € Sy
(4 < jo), ..., Fjo N F; # 0 for some j € Sx_1 (j < jo), then we put jo
into Sk, where

k = min{m € N : there is no j € Sy, (j < k) such that F;, N F; # (0}.
Since [{j € N: F; N Fj, # 0}| < rM it follows that
’{jEN,j<j0:FjﬂFj07é®H <rM,

so k is finite and uniformly bounded by rM, the number of sets we need, at
most, in order to distribute all j’s according to the lemma.

Proof of Theorem 2.1(2). For each n € Bj, j € {1,...,J}, we have

1=, (zn) = 377*1( i b?kelk> = io: biy.ary < Z (Z |agy,bij, )
Lk=1 =1 k=1

1k=1
On the other hand, since ||z,|| =1 and ||z} || < K||Q],

i(imlnkblnk) <ZSUP’bUJ <Z|alk|> (SUPZWM) Zsup|bzk|p

=1 k=1
= IIfUnII”II:EnH” < KP[1Q]”

From Lemma 2.5 applied to the sequence (Y -, bl |)ien, with € =
1/(2K]|Q]|), there is a constant C' = C(e) so that

- n n 1
1<Z(Z|alkb ) SCSlllpzmlkblH‘Fg
=1 k=1

Then
[o@)
n n
sup Z |z, b,
bok=1

and therefore, there exists [ = I(n) so that Y -, |al bl | > 1/(4C).
Thus, we can define a function {1,... ,n} — N,n —[,, so that

Z|al KLkl > = C

Let us remark that
1 o oo
ol Z [N IS Sup 107, k| Z lag! k|,
k=1 k=1

and, in particular, we have

1 [o.e]
> ———— and a pl > —
wrfgl ™ > d

for each n € {1,...,n}.
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We want the correspondence {1,...,n7} — N, n+ [, to be injective on
J, that is, to all n’s belonging to B, (j fixed) should correspond the same I,
and to n’s in different B;’s should correspond different I’s. We will see that
we are not essentially far from this situation.

For each given j € {1,...,J}, we define

Fj = {ln ne B]}
Let us first see that |F}| is uniformly bounded on j. Fix j € {1,...,J}

and suppose that li,...,[, are different elements in F}, that is, there exist
ni,...,n, € B; so that
v 1 .
sup |bt | > ————, i=1,...,7
ko T ACK| Q)

Then, by Banach lattice estimates (Theorem 1.d.6 of [10]),

A D
LN [2n, + oo+ op, e ”(’xn1|2 +.o.+ ’an’2)1/2”c

— - ;|2 1/2 - - ng |2 1/2 - g
=S () > Yo () > S eunlt
=1 k= s—=1 F i1 i—1 F

1

="K
Thus, for j fixed, there is a partition of the set B,

_ g (r)
B;=B"uU...uB",

in such a way that to all n’s belonging to one of these subsets BJ@ corre-

sponds the same [, i.e. [,, =: lj; for any n € Bj(-i), and ¢ = 1,...,r. Fur-
thermore, r < 4ACDKA||Q| (a constant that does not depend on j) for all
jed{l, ..., J}

Now, for each fixed [, we will see that | € F}; for, at most, a finite and
uniformly bounded number of j’s. Suppose that there are M different j’s,
J1,--.,jum, such that [ € F;n. ﬂF]M, i.e. there is n; € By, so that

Uz
Z |az,,
k=1

Then, combining Banach lattice estimates and the triangular inequality of
the /5 norm, we have

12 lah + .ok > (V2E) Y (kP4 2k, 1)

o M 1/2 o M 1/2
- (VER) s S (Sleip P) > (RS (S )

k=1 m=1 k=1 m=1

— i =1,..., M.
>407 ? ) ’

o

_4<§§(E:WK”Y)U2ZAﬁM4¢;CK'

m=1 k=1
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Therefore, M < (4v/2CKA")? (a constant that does not depend on ).
Lemma 2.7 will allow us to split the set {1,...,J} into subsets in such a
way that the correspondence j +— [; will be injective in each one of them.

Combining Lemma 2.7 and the partitions of B;, we obtain a partition of
{1,...,J} into at most N < rM subsets,

{1,...,J} =51U...U SN,

and a function

o:{(,i):7e{1,....J}, ie{l,...,r}} = N, a(j,7) =,

so that 1

bl vkl > ——=
Sl]ip| a(],z)k’ A1CK

for each n € Bj(-i). Furthermore, given j; # jo € S,,, we have o(j1,i1) #
0(ja,i2) for any ij,ip € {1,...,7} and 1 < m < N. Therefore, for each
n e B]@ there exists k,, so that
oL

ACK| QI

105 i)
We want the correspondences

I/JZ: :B]@ — N, nHV;(n):kn,

to be injective on each B§i) for all (4,7). Let us see that we are not essentially
far from this situation by proving that the number of n’s belonging to the

same B ]@ to which can correspond the same k is at most finite and uniformly
bounded. ‘
Indeed, for (j,17) fixed, suppose there are different ni,...,n; € Bj(-z) SO

that kp, = ... =k,, =k, i.e.

MNm 1 —
bG(j,i)E‘>4_C'—K7 m—l,...,[.
Then
A D
LR 2ny + -+ Tl gy ~ M@ 2+ 2, Y2,

00 I 1/
= ngp(ZM?,ﬁm 2) >SUP(Z| (ﬂ)k| )
=1 m=1
I

1/2 1
> prm 2) szt
= (Z a(j,z)k’ = ACK| Q[

m=1
therefore I < (4CKDA)?, a constant that depends on neither (j,4) nor k.
Hence, for each (j,4) there is a partition of B () into at most I subsets,

(i) __ pil il
Bj _Rj U...URj,
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and a function V} : BJ@ — N whose restriction to each R;t is injective and

such that )

|ba(],z)1/]z(n)’ > A1CK
forallnij(-i).Inthisway, forany 1<m<N,1<i¢<r, 1<t<] fixed
we have injective functions
mit U RPN xN,  neal (n) = (loga,vin),

so that
1

b > ——
o0l > 10K

By Lemma 2.4, there is a constant ¢ > 0 (independent of m, i, t) so that,
forany 1< m <N, 1<¢<r, 1<t<] given we have

H Z Z AnLn >QH Z Z AnCrt, (n) —QH Z Z An€l ik,

Jesrn TLER!? ]E m nER ]E m nER”

_Q< > sup Ianlp)

t
JESm NER;

for any scalars (ay). Now, the result follows from Lemma 2.6.
As a consequence we get the following infinite-dimensional results:

THEOREM 2.8. FEvery normalized unconditional basis of an infinite-
dimensional complemented subspace of £y(co) (0 < p < 1) is equivalent
to a permutation of the unit vector basis of one of the following spaces: £,
co, p ® co, Lp(£3) 2y, co D €p(€5)niy, Lp(co).

THEOREM 2.9. The following quasi-Banach spaces have a unique uncon-
ditional basis up to permutation: £, ® co, £p(0o)olq, co B Lp (L)1, Lp(co).

3. Uniqueness of unconditional basis of ¢,(¢3), 0 < p < 1. Let
€p(£2) (0 < p <1) be the space of infinite matrices (zx)7%5,—, satisfying

= (35 (S ) ) <

=1
Then || - ||, is a p-norm and (¢,(¢2), || - ||») is a p-Banach space; in particular,
(¢1(£2),] - |[1) is a Banach space, the Banach envelope of (¢,(l2), || - [|5)-

The dual space of ¢,(¢2) can be identified with £ (¢2), where £ (¢3) is
the Banach space of infinite matrices a = (ai)7%—; satisfying

> 2\ 1/2
lal :slllp(Zmlky ) <o
k=1
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We will denote by || - || without confusion both the quasi-norm in ¢, (¢2) and
the norm in the dual ¢ (¢2), and || - || will denote the norm in the Banach
envelope £1({3).

The spaces £, (f2) (0 < p < 1) have a canonical 1-unconditional basis of
unit vectors that we will denote by (e;;)75._;. The (I, k) coordinate of e,
islifl=1Iyand k = kg, and 0 otherwise.

As in the previous section, if (z,),_; is a complemented normalized
unconditional basic sequence in £, (¢2), we will write, for abbreviation,

e (Tn) = b, and  , (ew) = ajj,.

Then
* C n (2 1/2
a5 = sup (3 lafi?) < K@l

k=1

where @ is the projection from £,(¢2) onto the closed linear span of (z,);_;.
The lattice structure induced by the canonical basis in £,(¢2) (0 < p < 1)

is p-convex.

Bourgain, Casazza, Lindenstrauss and Tzafriri proved:

THEOREM 3.1 (Theorem 2.2 of [1]). Let Q be a bounded linear projec-
tion from €1(¢3) onto a subspace Z which has a normalized K -unconditional
basis (zn)!'_1. Then there exist a constant A and a partition (Bj)}'le of the

integers {1,...,n} into mutually disjoint subsets so that
J 1/2 n J 1/2
31 A7 (X ) <[ Yan| < a3 (3 lanl?)
j=1 neB, n=1 j=1 neB;

for any choice of scalars (ap)y,. In particular, ¢1({2) has a unique normalized
unconditional basis up to permutation.

This was the motivation for the following result:

THEOREM 3.2. Suppose 0 < p < 1. Let Q be a bounded linear pro-
jection from €,(l2) onto a subspace X with a normalized K -inconditional
basis (z,,);_1. Then there exist constants I, Iy (which depend only on K
and ||Q|) and a partition of {1,...,n} into mutually disjoint subsets (L;)1_,

so that

(X (X ) ) S

i=1 nekL;

(2)

< FQ(Z ( Z ]anP)p/Q)l/p

i=1 ne€ekL;

for any scalars (an)!_;.

The proof of Theorem 3.2 is completely analogous to that of Theorem 2.1,
and uses essentially the same lemmas. As we did in the previous case, we will
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prove Theorem 3.2 in two parts, corresponding to each one of the inequalities
(1) and (2).

The proof of Theorem 3.2(1) is based on Theorem 3.1 (the analogue of
Theorem 2.2) and Lemma 2.3.

Proof of Theorem 3.2(1). The Banach envelope X of X is a comple-
mented subspace of ¢1(f2) and (x,);_; is a K-unconditional basis of X,
equivalent in £ (¢3) to the normalized basis (2, /|| ||c);!_;. Therefore, The-
orem 3.2 applies, hence there exist a constant A, depending only on K and
|Ql|, and a partition of {1,...,n} into disjoint subsets (B;)7_; so that (3.1)
holds. We will see that this is the partition (L;)!_; stated in Theorem 3.2.

For each j € {1,...,J} let X, be the closed linear span in ¢,(¢3) of
{z), : n € B;}. The Banach envelope )?j of X; is the closed linear span in
l(la) of {zy, : n € B;}.

By (3.1) applied to each fixed j, we obtain

A_l( Z ’an|2)1/2 - H Z an, < A( Z |an’2>

TLEJ‘ TLEJ' nEj

1/2

for any j and scalars (a,),. That is, (2, )nep; is A-equivalent (in ¢1(¢2)) to
(en)neB,, where (e,)52; denotes the canomcal basis of £, and the equiva-
lence constant A is independent of j.

Thus, X7 (= )?J* ~a £5771) has cotype 2.
Hence, the same arguments used in Theorem 2.1(1) lead us to

DTN 59 SR 55 3{ ) oo

<A1”ZH Zan:pn <ApApZ<Z |an|)

neB; j=1 neB;

for any sequence of scalars (a,). Therefore, the inequality (1) holds with
I = AA.

The proof of Theorem 3.2(2) relies on Lemmas 2.4, 2.5, 2.7 and 3.3, an
analogue of Lemma 2.6.

LEMMA 3.3. Suppose {S,, : m = 1,...,N} is a partition of the set
{1,...,J} and that for each j = 1,...,J, {$2; i =1,...,7} is a parti-
tion of Bj. Suppose there is a constant o > 0 so that for each i and m,

|5 5 a2 o X (3 wr)™)"

j€ mnGQl Sm  neEN l
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for any sequence of scalars (ay). Further suppose that N, r and o depend
only on K and ||Q||. Then there exists a constant I > 0 so that

|2 w2 (3 (52 b))

j=1 neB;
for any sequence of scalars (ay,).

Proof. For every m € {1,...,N} and i € {1,...,r} fixed, by the uncon-
ditionality of the basis (z,,);!_; we have

| X 3 e <KHZ 3 | =] S|

]e m 'VLG.Q’L
Raising to the pth power and using the hypothesis, we get

HZanxn > K~ pH Z Z An Ty zK_pQP Z (Z |an|2>p/

JE€Sm ne! JE€Sm  nefd
Therefore,

n
IS anan
n=1

Observe that,

y N
sup  sup Z (Z |a/n|2)p ’ > %; 51}2

1<m<N 1<:< )
m % 7“ nE.Q;

1 N
Z TZ
m=

1i=1j€8n, nE.Q; m=1j€S,, i=1 necnt

pZKfp sup  sup Z (Z [ )

1<m<N 1<z<7’j€S nGQl

2 Nl/pr1/p(z]:( Z lan| )p/2>1/p

Jj=1

n
| ananl| =
n=1
Proof of Theorem 3.2(2). For each j € {1,...,J}, and n € B;, we have

1= (o) =2 (D0 Vkew) = 3 et < 3 (D lafibiil).
l,k=1 =1 k=1

Lk=1
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On the other hand, for each [ € N, by Holder’s inequality,
o o 12, = 1/2
> lafibixl < (Zraw) (D Ieiel?)
k=1 k=1
e 1/2
< (Z 1073 ) Slllp (Z ‘a?k|2)
k=1

Then, since ||z,| =1, ||z}] < K||Q||, we obtain
Z (Z |alkblk|) < sup (Z |alk’2> Z (Z [248 2)
=1 k=1 b=t =1 k=1

= ([ l[” [lznl” < KP[Q".

From Lemma 2.5 applied to the sequence (Y ;- bl |)ien, with € =
1/(2K]|Q]|), there is a constant C' = C(e) so that

1< Z (Z |alkblk’) < CSUPZ |agj.big | +
=1 k=1
Thus,
b
SUPZ |agibi| = 20

and therefore, there exists I = [(n) so that Y, |ajbi | > 1/(4C).

So, we can define a function {1,...,n7} — N, n+ [, so that
i lap b1 1| > 1
kOl kl = 5
k=1

for any n € Bj, j € {1,...,J}. Let us remark that for each n,
10 < > lag kbp gl < (Z ’alnk|2) (Z |blnk|2) ;
k=1 k=1 k=1
then, in particular,
© 1/2 1 © 1/2 1
b 2) d ( n 2) .
(;' R TeT o] ;’“lnk ~ 40

For each j € {1,...,J}, we define F; := {l,, : n € B;}. Let us first see
that |F;| is uniformly bounded in j: Fix j € {1,...,J} and suppose that

li,...,l, are different elements in F}, i.e., there exist nq,...,n, € B; so that
© 2\ 1/2 1
> i=1,...,7
( ) > R e

k=1
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Then, by Banach lattice estimates (Theorem 1.d.6 of [10]),

A D
2 S an, 4t lle X (@, P o 2, )

(S (E

=1 k=11i=1

)/ S 1
P—.
—4ACK[Q|

Thus, for each j € {1,...,J} there is a partition of the set Bj,
B;=B"uU...uB",

in such a way that l,, =:1;; for any ne BJ(.i). Furthermore, r <(4CDK A[|Q]])?
(a constant that does not depend on j) for all j =1,...,J.

Now, for each fixed [, we will see that | € F} for, at most, a finite and
uniformly bounded number of j’s. Suppose that there are M different j’s,
J1,-+.,jm, such that [ € F;, n...NF;,,,ie. there are n; € Bj, so that

oo
g 2
<Z |aik
k=1

Then, by Banach lattice estimates,

v = =1 M
) >E, t=1,..., .

1R g, 4ot H>(\/_K)”H(\m;ill2+...+!xZM\2)1/2H
1/2 oo M 1/2
=(V2K)~ sup(ZZ\a ) 2(\/§K)_1<22\a;€"‘ 2)
k=1m=1 k=1m=1

1
Y A —
- 41V20K

Therefore, M < (4/2CK A")? (a constant that does not depend on 1).

Combining Lemma 2.7 and the partitions of the sets B;, we get a parti-
tion of {1,...,J} into at most N < rM subsets S1,...,Sn, and a function

o:{{,i):jed{l,....J}, ie{l,...,r}} =N, (4,1) — 0(4,7) =L,
so that

> . 1/2 1
(;|ba(]‘,i)k|2) >40T||QH

for each n € B, Furthermore, given j; # jo € Sy, we have o(j1,41) #
0(ja,12) for any i1,i2 € {1,...,r} and 1 <m < N.

Now, for each 1 < m < N and 1 < i < r fixed, by quasi-Banach lattice
estimates (Proposition 2.1 of [5]),
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|2 5 2(Z 5 o)

]Esm neB ]G m TLGB( i)
p/2 g p/
03D SID SRTHETID S SI0 S SNAEL Y
I=1  k=1j€Sm pep® JE€Sm k=1,cg®
J J

=3 (Xl Y b
k=1

JESm nEBJ(.i)

2\ P/2 2\ P/2
)" > Geriar 2 (Xl

JESm nEBJ(.i)

for any scalars (ay,).
Hence, the inequality (2) follows from Lemma 3.3.

As a consequence we get the following results:

THEOREM 3.4. Every normalized unconditional basis of an infinite-
dimensional complemented subspace of (,(¢2) (0 < p < 1) is equivalent
to a permutation of the unit vector basis of one of the following spaces: ¢,
la, by ® Ly, Lp(£3)52y, bo @ Ly (£3)7%y, Lp(L2).

THEOREM 3.5. The following quasi-Banach spaces have a unique uncon-
ditional basis up to permutation: £y, & Lo, Lp(05)0 1, la & L, (05)02 1, £p(L2).

The authors want to thank Prof. Gustavo Ochoa for showing them the
proof of Lemma 2.7.
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