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On the Taylor functional calculus

by

V. Müller (Praha)

Abstract. We give a Martinelli–Vasilescu type formula for the Taylor functional
calculus and a simple proof of its basic properties.

Let A = (A1, . . . , An) be an n-tuple of mutually commuting operators
acting on a Banach space X. The existence of the Taylor functional calculus
[18], [19] (for simpler versions see [10], [8], [3]–[5] and [15]) is one of the
most important results of spectral theory. However, the formula defining
f(A) for a function f analytic on a neighbourhood of the Taylor spectrum
has some drawbacks. The operator f(A) is defined locally, the formula gives
only f(A)x for each x ∈ X. Therefore it is not easy to see that f(A) is
bounded. Moreover, the formula is rather inexplicit and it is quite difficult
to prove even the basic properties of the calculus.

The situation is better for Hilbert space operators. In [20] and [21],
Vasilescu gave an explicit Martinelli-type formula defining f(A) which is
much easier to handle.

The ideas of Vasilescu were used in [9] to prove a similar formula for
Banach space operators. The method works, however, only for functions
analytic on a neighbourhood of the split-spectrum which is in general larger
than the Taylor spectrum. The main tool is the existence of generalized
inverses for operators that appear in the Koszul complex. For similar ideas
see also [1].

In this paper we obtain a similar formula for the general Taylor func-
tional calculus. The main innovation is the use of nonlinear (but continuous)
general inverses. In this way we obtain a formula that defines f(A) globally,
and so the continuity of f(A) and the continuity of the functional calculus
become clear. The formula is more explicit, hence it is possible to avoid some
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technical difficulties in the proof of the basic properties of the calculus. The
cohomological methods are avoided and the proofs are based only on the
Stokes and the Bartle–Graves theorems.

The author wishes to thank to Professor F.-H. Vasilescu for numerous
consultations concerning details of the calculus.

All Banach spaces in this paper are complex. Denote by B(X) the algebra
of all bounded linear operators on a Banach space X.

Definition 1. Let X,Y be Banach spaces. Denote by H(X,Y ) the set
of all continuous mappings f : X → Y that are homogeneous (i.e., f(αx) =
αf(x) for all α ∈ C and x ∈ X).

If f ∈ H(X,Y ) then sup{‖f(x)‖ : x ∈ X, ‖x‖ = 1} < ∞. Clearly
H(X,Y ) with this norm is a Banach space. Write for short H(X) instead of
H(X,X). Clearly B(X) ⊂ H(X).

Theorem 2 (Bartle–Graves, see [2], Proposition 5.9). Let M be a closed
subspace of a Banach space X and let ε > 0. Then there is h ∈ H(X/M,X)
such that ‖h‖ < 1 + ε and h(x+M) ∈ x+M for each class x+M ∈ X/M .

Lemma 3. Let X, Y be Banach spaces and let T : X → Y be a bounded
linear operator with closed range. Let f ∈ H(Y ) satisfy f(Y ) ⊂ ImT . Then
there exists g ∈ H(Y,X) such that f = Tg.

Proof. Let h : X/KerT → X be the selection given by the Bartle–
Graves theorem. Let T0 : X/KerT → ImT be the operator induced by T .
Set g = hT−1

0 f . For y ∈ Y we have Tgy = ThT−1
0 fy = fy, and so Tg = f .

Proposition 4. Let X0, . . . ,Xn be Banach spaces, let δj : Xj → Xj+1

(j = 0, . . . , n− 1) be bounded linear operators and suppose that the sequence

0→ X0
δ0→ X1

δ1→ . . .
δn−1−→ Xn → 0

is exact. Let gj ∈ H(Xj) (j = 0, . . . , n). The following statements are equiv-
alent :

(i) δjgj = gj+1δj (j = 0, . . . , n− 1);
(ii) there exist mappings Vj ∈ H(Xj+1,Xj) (j = 0, . . . , n− 1) such that

V0δ0 = g0,

Vjδj + δj−1Vj−1 = gj (j = 1, . . . , n− 1),

δn−1Vn−1 = gn.

Proof. (ii)⇒(i). Suppose that the mappings Vj satisfy (ii). We have

δjgj = δj(Vjδj + δj−1Vj−1) = δjVjδj ,

gj+1δj = (Vj+1δj+1 + δjVj)δj = δjVjδj



Taylor functional calculus 81

(the same relations are true also for j = 0 and j = n−1). Thus δjgj = gj+1δj
for all j.

(i)⇒(ii). Since δn−1 is onto, there exists Vn−1 such that δn−1Vn−1 = gn.
We construct mappings Vj inductively. Suppose that 1 ≤ j ≤ n− 1 and

that Vj ∈ H(Xj+1,Xj) satisfies Vj+1δj+1 + δjVj = gj+1 (for j = n − 1 set
formally Vn = 0 and δn = 0). We have

δj(gj − Vjδj) = gj+1δj − δjVjδj = gj+1δj − (gj+1 − Vj+1δj+1)δj = 0.

Thus (gj−Vjδj)(Xj)⊂Ker δj=Im δj−1 and there exists Vj−1∈H(Xj ,Xj−1)
such that δj−1Vj−1 = gj − Vjδj . Thus Vjδj + δj−1Vj−1 = gj .

Finally, suppose that V0 ∈ H(X1,X0) satisfies g1 = V1δ1 + δ0V0. Then
δ0V0δ0 = (g1 − V1δ1)δ0 = g1δ0 = δ0g0. Since δ0 is one-to-one, we have
V0δ0 = g0. This finishes the proof.

We now recall the basic notations of Taylor [18].
Denote by Λ[s] the complex exterior algebra generated by the indeter-

minates s = (s1, . . . , sn). Then

Λ[s] =
n⊕

p=0

Λp[s],

where Λp[s] is the set of all elements of degree p in Λ[s]. Thus the elements
of Λp[s] are of the form

∑

1≤i1<...<ip≤n
αi1,...,ipsi1 ∧ . . . ∧ sip

where αi1,...,ip are complex numbers. The multiplication operation ∧ is anti-
commutative, si ∧ sj = −sj ∧ si for all i, j. In particular si ∧ si = 0. Clearly
dimΛp[s] =

(
n
p

)
and dimΛ[s] = 2n.

Let X be a Banach space. Then we write Λ[s,X] = X ⊗ Λ[s] and
Λp[s,X] = X ⊗ Λp[s]. Thus the elements of Λp[s,X] are of the form

∑

1≤i1<...<ip≤n
xi1,...,ipsi1 ∧ . . . ∧ sip

where xi1,...,ip ∈ X (the symbol ⊗ is omitted in order to simplify the nota-
tion).

Let A = (A1, . . . , An) be an n-tuple of mutually commuting operators
in X. Define the operator δA : Λ[s,X]→ Λ[s,X] by

δA(xsi1 ∧ . . . ∧ sip) =
n∑

j=1

(Ajx)sj ∧ si1 ∧ . . . ∧ sip .

Write δpA = δA|Λp[s,X]. The Koszul complex K(A) is the sequence

0→ Λ0[s,X]
δ0
A−→ Λ1[s,X]

δ1
A−→ . . .

δn−1
A−→ Λn[s,X]→ 0.
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Then (δA)2 = 0, i.e., δpAδ
p−1
A = 0 for all p. It is convenient to set formally

Λ−1[s,X] = Λn+1[s,X] = 0; similarly let δ−1
A and δnA be the zero operators.

We say that the n-tuple A = (A1, . . . , An) is Taylor regular if the
Koszul complex K(A) is exact (i.e., Im δA = Ker δA). The Taylor spec-
trum σT(A) is the set of all n-tuples λ = (λ1, . . . , λn) ∈ Cn such that
A− λ = (A1 − λ1, . . . , An − λn) is not Taylor regular. It is well known that
σT(A) is a nonempty compact subset of Cn. Further, the Taylor spectrum
has the projection property (see [18], [16]).

Let A = (A1, . . . , An) be a Taylor regular n-tuple of operators. By Propo-
sition 4, there are “generalized inverses” Vj ∈ H(Λj+1[s,X], Λj [s,X]) such
that δj−1

A Vj−1 + Vjδ
j
A = IΛj [s,X]. In a simpler form, we have δAV + V δA =

IΛ[s,X] where V ∈ H(Λ[s,X]) is defined by V (
⊕n

j=0 ψj) =
⊕n

j=1 Vj−1ψj
(ψj ∈ Λj [s,X]).

Our first goal is to show that it is possible to find such generalized
inverses depending smoothly on z ∈ Cn \ σT(A).

Proposition 5. Let A = (A1, . . . , An) be an n-tuple of mutually com-
muting operators on a Banach space X. Let G = Cn \ σT(A). Then there
exists a C∞-function V : G→ H(Λ[s,X]) such that δA−zV (z) + V (z)δA−z
= IΛ[s,X], and

V (z)Λp[s,X] ⊂ Λp−1[s,X] (z ∈ G, p = 0, . . . , n).

Proof. Consider the Banach spaces

M1 =
n−1⊕

j=0

H(Λj+1[s,X], Λj [s,X]),

M2 =
n⊕

j=0

H(Λj [s,X]),

M3 =
n−1⊕

j=0

H(Λj [s,X], Λj+1[s,X]).

For z ∈ G define mappings Φ(z) : M1 →M2 and Ψ(z) : M2 →M3 by

Φ(z)
(n−1⊕

j=0

Vj

)
= V0δ

0
A−z ⊕

n−1⊕

j=1

(Vjδ
j
A−z + δj−1

A−zVj−1)⊕ δn−1
A−zVn−1

and

Ψ(z)
( n⊕

j=0

gj

)
=
n−1⊕

j=0

(δjA−zgj − gj+1δ
j
A−z).

Clearly Φ(z) and Ψ(z) are bounded linear operators depending analytically
on z ∈ G and, by Proposition 4, ImΦ(z) = KerΨ(z). Further IΛ[s,X] =⊕
IΛi[s,X] ∈ ImΦ(z) for all z ∈ G.
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Let λ ∈ G. By [18], Lemma 2.2 (cf. also [17]), there is a neighbourhood
Uλ of λ and an analytic function Vλ : Uλ → M1 such that Φ(z)Vλ(z) = I
(z ∈ Uλ).

Let {ϕi}∞i=1 be a C∞-partition of unity subordinate to the cover {Uλ :
λ ∈ G} of G, i.e. ϕi’s are C∞-functions, 0 ≤ ϕi ≤ 1, suppϕi ⊂ Uλi for some
λi ∈ G, for each λ ∈ G there exists a neighbourhood U of λ such that all
but finitely many of ϕi’s are 0 on U and

∑∞
i=1 ϕi(z) = 1 for each z ∈ G.

For z ∈ G set V (z) =
∑∞
i=1 ϕi(z)Vλi(z). Clearly V is a C∞-function

satisfying V (z)Λp[s,X] ⊂ Λp−1[s,X] and Φ(z)V (z) = I for all z ∈ G.

Remark 6. (i) The function Φ is regular in G (i.e., ImΦ(z) changes
continuously). The existence of a C∞-function V satisfying Φ(z)V (z) = I
follows also directly from a deep result of Mantlik [11]. The present argu-
ment, however, is more elementary.

(ii) It is possible to require also that V (z)2 = 0 and V (z)δA−zV (z) =
V (z) for all z ∈ G. In particular, V (z) is a generalized inverse of δA−z.

Indeed, let V : G→ H(Λ[s,X]) be the function constructed in Proposi-
tion 5, i.e., δA−zV (z) + V (z)δA−z = I and V (z)Λp[s,X] ⊂ Λp−1[s,X].

Clearly δA−zV (z)δA−z = δA−z. Set V ′(z) = V (z)δA−zV (z). Then

δA−zV
′(z)δA−z = δA−zV (z)δA−zV (z)δA−z = δA−z

and
V ′(z)δA−zV ′(z) = V (z)δA−zV (z)δA−zV (z)δA−zV (z)

= V (z)δA−zV (z) = V ′(z).

Further

δA−zV
′(z) + V ′(z)δA−z = δA−zV (z)δA−zV (z) + V (z)δA−zV (z)δA−z

= δA−zV (z) + V (z)δA−z = I.

Finally we have

V ′(z) = (V ′(z)δA−z + δA−zV
′(z))V ′(z) = V ′(z) + δA−zV

′(z)2,

and so δA−zV ′(z)2 = 0. Thus V ′(z)2 = (V ′(z)δA−z +δA−zV ′(z))V ′(z)2 = 0.
These additional properties of the generalized inverse V , however, are

not essential for our purpose and we are not going to use them in what
follows.

In the following we fix a commuting n-tupleA = (A1, . . . , An) of bounded
linear operators on a Banach space X, the set G = Cn \ σT(A) and a C∞-
function V : G→H(Λ[s,X]) with the properties of Proposition 5.

Consider the space C∞(G,Λ[s,X]). Clearly this space can be identified
with the set Λ[s, C∞(G,X)].
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The function V : G → H(Λ[s,X]) induces naturally the operator (de-
noted by the same symbol) V : C∞(G,Λ[s,X])→ C∞(G,Λ[s,X]) by

(V y)(z) = V (z)y(z) (z ∈ G, y ∈ C∞(G,Λ[s,X])).

Similarly we define the operator δA−z (or δ for short if no ambiguity can
arise) acting in C∞(G,Λ[s,X]) by

(δy)(z) = δA−z y(z) (z ∈ G, y ∈ C∞(G,Λ[s,X])).

Clearly δ2 = 0, V δ + δV = IΛ[s,C∞(G,X)] and both V and δ are “graded”,
i.e.

V Λp[s, C∞(G,X)] ⊂ Λp−1[s, C∞(G,X)],

δΛp[s, C∞(G,X)] ⊂ Λp+1[s, C∞(G,X)].

Consider now other indeterminates dz = (dz1, . . . ,dzn) and the space
Λ[s,dz, C∞(G,X)]. Define the linear operator

∂ : Λ[s,dz, C∞(G,X)]→ Λ[s,dz, C∞(G,X)]

by

∂fsi1∧. . .∧sip∧dzj1∧. . .∧dzjq =
n∑

k=1

∂f

∂zk
dzk∧si1∧. . .∧sip∧dzj1∧. . .∧dzjq .

Clearly ∂
2

= 0.
The operators V and δ can be lifted from Λ[s, C∞(G,X)] to Λ[s,dz,

C∞(G,X)] by

V (ψ ∧ dzi1 ∧ . . . ∧ dzip) = (V ψ) ∧ dzi1 ∧ . . . ∧ dzip ,

δ(ψ ∧ dzi1 ∧ . . . ∧ dzip) = (δψ) ∧ dzi1 ∧ . . . ∧ dzip ,

for all ψ ∈ Λ[s, C∞(G,X)]. Clearly the properties of V and δ are preserved:
δ2 = 0, V δ+δV = I and both V and δ are graded. Note also that δ∂ = −∂δ
and (∂ + δ)2 = 0.

Let W : Λ[s,dz, C∞(G,X)] → Λ[s,dz, C∞(G,X)] be the mapping de-
fined in the following way: if ψ ∈ Λ[s,dz, C∞(G,X)], ψ = ψ0 + . . . + ψn
where ψj is the part of ψ of degree j in dz, then set Wψ = η0 + . . . + ηn
where

(1) η0 = V ψ0, η1 = V (ψ1 − ∂η0), . . . , ηn = V (ψn − ∂ηn−1).

Note that ηj is the part of Wψ of degree j in dz.

Lemma 7. Let W : Λ[s,dz, C∞(G,X)] → Λ[s,dz, C∞(G,X)] be the
mapping defined above. Then:

(i) suppWψ ⊂ suppψ for all ψ;
(ii) if G′ is an open subset of G and ψ ∈ Λ[s,dz, C∞(G,X)] satisfies

(∂ + δ)ψ = 0 on G′, then (∂ + δ)Wψ = ψ on G′;
(iii) (∂ + δ)W (∂ + δ) = ∂ + δ.



Taylor functional calculus 85

Proof. (i) Clear.
(ii) Let ψ = ψ0 + . . . + ψn where ψj is the part of ψ of degree j in dz.

The condition (∂ + δ)ψ = 0 on G′ can be rewritten as

(2) δψ0 = 0, ∂ψ0 + δψ1 = 0, . . . , ∂ψn−1 + δψn = 0

(∂ψn = 0 automatically).
Let Wψ = η0 + . . . + ηn where the ηj are defined by (1). The required

condition (∂ + δ)Wψ = ψ then becomes

(3) δη0 = ψ0, ∂η0 + δη1 = ψ1, . . . , ∂ηn−1 + δηn = ψn

on G′ (again, ∂ηn = 0 automatically).
By (1) and (2), we have δη0 = δV ψ0 = (δV +V δ)ψ0 = ψ0 and ∂η0+δη1 =

∂η0 +δV (ψ1−∂η0) = ∂η0 +(I−V δ)(ψ1−∂η0)∂η0 = ψ1−V δ(ψ1−∂η0) = ψ1

since δ(ψ1 − ∂η0) = δψ1 + ∂δη0 = δψ1 + ∂ψ0 = 0.
We prove (3) by induction. Suppose that ∂ηj−1 + δηj = ψj for some

j ≥ 1. Then δ(ψj+1 − ∂ηj) = δψj+1 + ∂δηj = δψj+1 + ∂ψj = 0 by the
induction assumption, and ∂ηj + δηj+1 = ∂ηj + δV (ψj+1 − ∂ηj) = ∂ηj +
(I − V δ)(ψj+1 − ∂ηj) = ψj+1.

(iii) Since (∂ + δ)2 = 0, the statement follows from (ii).

Remark 8. Without any change it is possible to prove the preceding
theorem in a more general form. Let z 7→ A(z) be an analytic function
defined on an open subset G ⊂ Cn such that the values A(z) are Taylor
regular n-tuples of operators on X for all z ∈ G. Let ψ ∈ Λ[s,dz, C∞(G,X)]
satisfy (∂ + δA(z))ψ = 0. Then there exists a form θ ∈ Λ[s,dz, C∞(G,X)]
with supp θ ⊂ suppψ and ψ = (∂ + δA(z))θ.

We interpret the differential form

(4) (2i)−ndz1 ∧ . . . ∧ dzn ∧ dz1 ∧ . . . ∧ dzn

as the Lebesgue measure in Cn = R2n.
Let P be the natural projection P :Λ[s,dz,C∞(G,X)]→Λ[dz,C∞(G,X)]

that annihilates all terms containing at least one of the indeterminates
s1, . . . , sn and leaves invariant all the remaining terms.

The following simple lemma will be used frequently.

Proposition 9. Let η ∈ Λn[s,dz, C∞(G,X)] be a differential form with
a compact support disjoint from σT(A) such that (∂ + δ)η = 0. Then

�

Cn
Pη ∧ dz = 0

where dz stands for dz1 ∧ . . . ∧ dzn.

Proof. We have

Pη = P (∂ + δ)Wη = P∂Wη = ∂PWη
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where PWη has a compact support. By the Stokes theorem, we have
�

Cn
Pη ∧ dz =

�

Cn
∂PWη ∧ dz = 0.

Let U be a neighbourhood of σT(A). It is possible to find a compact
neighbourhood ∆ of σT(A) such that ∆ ⊂ U and the boundary ∂∆ is a
smooth surface. Let f be a function analytic in U . Define the operator f(A)
by

(5) f(A)x =
−1

(2πi)n
�

∂∆

PWf(z)xs ∧ dz (x ∈ X),

where dz stands for dz1 ∧ . . . ∧ dzn and s = s1 ∧ . . . ∧ sn. By the Stokes
formula,

f(A)x =
−1

(2πi)n
�

∆

∂ϕPWf(z)xs ∧ dz

where ϕ is a C∞-function equal to 0 on a neighbourhood of σT(A) and to 1
on Cn \∆ (consequently, ϕ = 1 also on ∂∆).

On Cn \∆ we have

∂ϕPWfxs = P (∂ + δ)Wfxs = Pfxs = 0.

Thus we can write

(6) f(A)x =
−1

(2πi)n
�

Cn
∂ϕPWf(z)xs ∧ dz.

It is clear from the Stokes theorem that the definition of f(A)x does not
depend on the choice of the function ϕ and, by (6), it is independent of ∆.

We show that f(A) does not depend on the choice of the generalized
inverse V which determines W .

Suppose that W1,W2 are two operators satisfying

(∂ + δ)Wif(z)xs = f(z)xs (i = 1, 2).

For those z where ϕ ≡ 1 we have

(∂ + δ)ϕ(W1 −W2)f(z)xs = 0,

and so the form (∂+ δ)ϕ(W1−W2)f(z)xs satisfies the conditions of Propo-
sition 9. Hence

0 =
�

Cn
P (∂ + δ)ϕ(W1 −W2)f(z)xs ∧ dz =

�

Cn
P∂ϕ(W1 −W2)f(z)xs ∧ dz

=
�

Cn
∂ϕPW1f(z)xs ∧ dz −

�

Cn
∂ϕPW2f(z)xs ∧ dz.
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It is possible to express the mapping PW that appears in the definition
of the functional calculus more explicitly. By the definition of W , we have

PWxs = (−1)n−1V (∂V )n−1xs = (−1)n−1V0∂V1∂ . . . ∂Vn−1xs.

Since Λ[s,X] is a direct sum of 2n copies of X, we can express V (z) :
Λ[s,X]→ Λ[s,X] as a matrix whose entries are elements ofH(X) depending
smoothly on z ∈ G.

Clearly we can write PWxs =
∑n
i=1 M

(i)xdz1 ∧ . . . d̂zi . . . ∧ dzn for
certain functions M (i) ∈ C∞(G,H(X)) where the hat denotes the omitted
term.

Thus we can write formulas (5) and (6) also globally:

f(A) =
−1

(2πi)n
�

∂∆

PWf(z)Is ∧ dz =
−1

(2πi)n
�

Cn
∂ϕPWf(z)Is ∧ dz(7)

=
(−1)n

(2πi)n
�

Cn
∂ϕV (∂V )n−1f(z)Is ∧ dz

where I = IX is the identity operator on X. The coefficients of the forms in
(7) are H(X)-valued C∞-functions. Therefore f(A) ∈ H(X).

Lemma 10. f(A) is a bounded linear operator.

Proof. Since f(A) ∈ H(X), it is sufficient to show only the additivity.
Let x, y ∈ X. Let ϕ be a C∞-function equal to 0 on a neighbourhood of
σT(A) such that supp(1− ϕ) is compact. Then

−(2πi)n(f(A)(x+ y)− f(A)x− f(A)y)

=
�

Cn
∂ϕPWf · (x+ y)s ∧ dz −

�

Cn
∂ϕPWfxs ∧ dz −

�

Cn
∂ϕPWfys ∧ dz

=
�

Cn
Pη ∧ dz

where

η = (∂ + δ)ϕWf · (x+ y)s− (∂ + δ)ϕWfxs− (∂ + δ)ϕWfys.

Clearly η has a compact support disjoint from σT(A) and (∂ + δ)η = 0. By
Proposition 9, � Pη ∧ dz = 0 and f(A)(x+ y) = f(A)x+ f(A)y.

Proposition 11. For n = 1 the functional calculus defined by (7) coin-
cides with the classical functional calculus given by the Cauchy formula.

Proof. Let A ∈ B(X) and let f be a function analytic on a neighbour-
hood of σ(A). Then Wxs = V xs = (A− z)−1x. Thus, for a suitable contour
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Σ surrounding σ(A), we have

f(A) =
−1
2πi

�

Σ

PWfIs ∧ dz =
−1
2πi

�

Σ

(A− z)−1f(z)I dz

=
1

2πi

�

Σ

f(z)(z − A)−1 dz,

which is the Cauchy formula.

Proposition 12. Let f be a function analytic on a neighbourhood of
σT(A), 1 ≤ j ≤ n and g(z) = zjf(z). Then g(A) = Ajf(A).

Proof. The statement is well known for n = 1. Suppose that n ≥ 2. Then

−(2πi)n(Ajf(A)− g(A)) = Aj
�

Cn
∂ϕPWfIs ∧ dz −

�

Cn
∂ϕPWzjfIs ∧ dz

=
�

Cn
∂ϕf · (Aj − zj)PWIs ∧ dz.

For F ⊂ {1, . . . , n}, F = {i1, . . . , ip} where i1 < . . . < ip, write sF =
si1 ∧ . . . ∧ sip . Express WIs ∈ Λn−1[s,dz, C∞(G,X)] as

WIs =
∑

F⊂{1,...,n}
sF ∧ ξF

where ξF contains no variable from s1, . . . , sn. Since (∂ + δA−z)WIs = Is,
for each F 6= {1, . . . , n} we have

∂ξF +
∑

k∈F
(−1)card{k′∈F :k′<k}(Ak − zk)ξF\{k} = 0.

In particular, for F = {j} we have

(Aj − zj)PWIs = (Aj − zj)ξ∅ = −∂ξ{j}.
Thus

�

Cn
∂ϕf · (Aj − zj)PWIs ∧ dz = −

�

Cn
∂ϕf∂ξ{j} ∧ dz

= −
�

Cn
∂(ϕ∂fξ{j} − ∂ϕfξ{j}) ∧ dz = 0

by the Stokes theorem. Hence g(A) = Ajf(A).

Proposition 13. Let A = (A1, . . . , An) ∈ B(X)n, B = (B1, . . . , Bm) ∈
B(X)m. Suppose that (A,B) = (A1, . . . , An, B1, . . . , Bm) is a commuting
(n + m)-tuple and let f and g be functions analytic on a neighbourhood of
σT(A) and σT(B), respectively. Define a function h by h(z, w) = f(z) ·g(w).
Then h(A,B) = g(B)f(A).
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Proof. Write z = (z1, . . . , zn) and w = (w1, . . . , wm). Denote by ∂z, ∂w
and ∂z,w the ∂ operator corresponding to z, w and (z, w), respectively. We
associate with B another system t = (t1, . . . , tm) of exterior indeterminates
when defining the operator δB−w.

Choose mappings WA, WB and WA,B corresponding to the tuples A, B
and (A,B). Let ∆′ and ∆′′ be compact neighbourhoods of σT(A) and σT(B)
contained in the domains of definition of f and g, respectively. Let ϕ, ψ and
χ be C∞-functions equal to 0 on a neighbourhood of σT(A) (σT(B) and
σT(A,B)), and to 1 on Cn \∆′ (Cm \∆′′ and Cn+m \∆′×∆′′, respectively).

Denote by Ps and Pt the projections which annihilate all terms contain-
ing at least one of the variables s1, . . . , sn (t1, . . . , tm, respectively) and leave
invariant the remaining terms. Set P = PsPt.

Let x ∈ X. We have

f(A)x =
−1

(2πi)n
�

Cn
∂zϕPsWAfxs ∧ dz =

−1
(2πi)n

�

Cn
Psξ ∧ dz

where ξ = (∂z + δA−z)ϕWAfxs − fxs. On Cn \ ∆′ we have ϕ ≡ 1 and so
ξ ≡ 0. Thus supp ξ is compact. Further

g(B)f(A)x =
1

(2πi)n+m

�

Cm
Pt(∂w + δB−w)ψWBg

( �

Cn
Psξ ∧ dz

)
t ∧ dw.

Since WB is not linear, we cannot interchange it with the inner integral.
However, consider the form

η = (∂w + δB−w)ψWBg
( �

Cn
Psξ∧dz

)
t− (∂w + δB−w)ψ

�

Cn
WB(Psgξ∧dz∧ t)

where WB is extended to Λ[dz,dz, t,dw,C∞(Cn× (Cm \σT(B)),X)] in the
obvious way. Clearly (∂w+δB−w)η = 0 and supp η is disjoint from σT(B). On
Cm\∆′′ we have ψ ≡ 1 and η ≡ 0 since suppWB(Psgξ∧dz∧t) ⊂ supp ξ×Cm
and we can interchange ∂w with the second integral. Thus � Cm Ptη∧dw = 0
and we have

(8) (2πi)n+mg(B)f(A)x =
�

Cm
Pt(∂w +δB−w)ψ

�

Cn
WB(Psgξ∧dz∧ t)∧dw.

On the other hand, −(2πi)m+nh(A,B)x = � Pη1 ∧ dz ∧ dw where

η1 = (∂z,w + δA−z,B−w)χWA,Bhxs ∧ t− hxs ∧ t.
Clearly supp η1 is compact.

Set
η2 = (∂z,w + δA−z,B−w)ψWA,Bgξ ∧ t− gξ ∧ t.

Clearly supp η2 ⊂ supp ξ×Cm. Moreover, if ψ ≡ 1 then η2 ≡ 0, so supp η2 is
compact. On a neighbourhood of σT(A,B) we have η2 = −gξ∧t = fgxs∧t =
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−η1. By Proposition 9, we have � P (η1 + η2) ∧ dz ∧ dw = 0 and so

(2πi)m+nh(A,B)x =
�

Cn+m

Pη2 ∧ dz ∧ dw

= (−1)mn
�

Cm

( �

Cn
Pt(∂z,w + δB−w)ψPsWA,Bgξ ∧ t ∧ dz

)
∧ dw

by the Fubini theorem (the factor (−1)mn is caused by convention (4) defin-
ing the Lebesgue measures in Cn, Cm and Cm+n, respectively). By the
Stokes theorem we have

(2πi)m+nh(A,B)x =
�

Cm
Pt(∂w + δB−w)ψ

( �

Cn
PsWA,Bgξ ∧ dz ∧ t

)
∧ dw.

Consider the form

η3 = (∂w+δB−w)ψ
�

Cn
PsWA,Bgξ∧dz∧t−(∂w+δB−w)ψ

�

Cn
WB(Psgξ∧dz∧t).

Clearly supp η3 ∩ σT(B) = ∅ and (∂w + δB−w)η3 = 0. If ψ ≡ 1 then, by the
Stokes theorem,

η3 =
�

Cn
Ps(∂z,w + δA−z,B−w)WA,Bgξ ∧ dz ∧ t−

�

Cn
∂zPsWA,Bgξ ∧ dz ∧ t

−
�

Cn
Psgξ ∧ dz ∧ t

=
�

Cn
Psgξ ∧ dz ∧ t−

�

Cn
Psgξ ∧ dz ∧ t = 0.

Thus � Ptη3 ∧ dw = 0 and

(2πi)n+mh(A,B)x =
�

Cm
Pt(∂w + δB−w)ψ

�

Cn
WB(Psgξdz ∧ t) ∧ dw

= (2πi)m+ng(B)f(A)x

by (8). Hence h(A,B) = g(B)f(A).

We shall use the following simple lemma:

Lemma 14. Let K be a compact subset of Cn and let f be a function
analytic on an open neighbourhood of K. Then there are functions hj (j =
1, . . . , n) analytic on a neighbourhood of the set D = {(z, z) : z ∈ K} such
that

f(z)− f(w) =
n∑

j=1

(zj − wj) · hj(z, w).

Proof. For j = 1, . . . , n define gj by

gj(z1, . . . , zn, w1, . . . , wn)
= f(z1, . . . , zj , wj+1, . . . , wn)− f(z1, . . . , zj−1, wj , . . . , wn).

It is easy to see that gj is defined and analytic on a neighbourhood of D.
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Let hj(z, w) = gj(z, w)/(zj − wj). Clearly hj is analytic at each point
(z, w) with zj 6= wj . By the Weierstrass division theorem (see [7], p. 70), hj
can be defined and is analytic also on a neighbourhood of each point (z, w)
with zj = wj . Thus hj is analytic on a neighbourhood of D. Clearly

n∑

j=1

(zj − wj) · hj(z, w) =
n∑

j=1

gj(z, w) = f(z)− f(w).

Denote byAK the algebra of all functions analytic on a neighbourhood of
a compact set K ⊂ Cn (more precisely, the algebra of all germs of functions
analytic on a neighbourhood of K).

Theorem 15. Let A = (A1, . . . , An) be an n-tuple of mutually commut-
ing operators on X. Then:

(i) the mapping f 7→ f(A) is linear and multiplicative, i.e., the Taylor
functional calculus is a homomorphism from AσT(A) to B(X);

(ii) if p is a polynomial , p(z) =
∑
α∈Zn+ cαz

α, then p(A) =
∑
α∈Zn+ cαA

α;
(iii) if fn → f uniformly on a compact neighbourhood of σT(A) then

fn(A)→ f(A) in the norm topology ;
(iv) f(A) ∈ (A)′′ for each f ∈ AσT(A).

Proof. (i) The linearity of the mapping f 7→ f(A) is clear. Let f and
g be functions analytic on a neighbourhood of σT(A). Consider the (2n)-
tuple (A,A). It is easy to see that σT(A,A) = {(z, z) : z ∈ σT(A)}. De-
fine functions h1(z, w) = f(z)g(w) and h2(z, w) = f(z)g(z). By Lemma
14, we can write g(z) − g(w) =

∑n
i=1(zi − wi)qi(z, w) for some functions

q1, . . . , qn analytic on a neighbourhood of σT(A,A). By Proposition 13, we
have h1(A,A) = f(A)g(A) and h2(A,A) = (fg)(A). Thus, by Proposition
12,

(fg)(A)− f(A)g(A) = h2(A,A)− h1(A,A) =
n∑

i=1

(Ai − Ai)(fqi)(A,A) = 0.

Hence (fg)(A) = f(A)g(A).
(ii) The statement follows from Propositions 11 and 13.
(iii) follows from the definition.
(iv) Let S ∈ B(X) be an operator commuting with A1, . . . , An. By

Proposition 13, it is possible to consider f(A) to be a function of the (n+1)-
tuple (A1, . . . , An, S). Therefore f(A) commutes with its argument S. Hence
f(A) ∈ (A)′′.

It follows from the general theory [23] that the Taylor spectrum satisfies
the spectral mapping property for all polynomials (and consequently, for all
functions that can be approximated by polynomials uniformly on a neigh-
bourhood of the Taylor spectrum). In fact the spectral mapping property is
true for all analytic functions. To show this, we need the following lemma:
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Lemma 16. Let A = (A1, . . . , An) be a commuting n-tuple of operators
on X, let c = (c1, . . . , cn) ∈ σT(A) and let f be a function analytic on a
neighbourhood of σT(A). Consider exterior indeterminates t = (t1, . . . , tn)
and define δA−c,t : Λ[t,X] → Λ[t,X] by δA−c,tψ =

∑n
j=1(Aj − cj)tj ∧ ψ

(ψ ∈ Λ[t,X]). Let η0 ∈ Ker δA−c,t. Then (f(A)− f(c))η0 ∈ δA−c,tΛ[t,X].

Proof. Without loss of generality we can assume that η0 is homogeneous
of degree p, 0 ≤ p ≤ n.

To define f(A), consider exterior indeterminates s = (s1, . . . , sn), the
mapping δA−z acting on Λ[s,dz, C∞(Cn \ σT(A),X)] defined by δA−zψ =∑n
j=1(Aj − zj)sj ∧ψ and the mapping WA corresponding to A. We can lift

δA−z and WA to the space Λ[s, t,dz, C∞(Cn\σT(A),X)] in the natural way.
Note that δA−z and WA are connected with variables s; the mapping δA−c,t
is related to the variables t.

Set η = fη0 ∧ s and ξ1 =
∑n
k=0(−1)kWA(δA−c,tWA)kη. We show by

induction that (∂+δA−z)(δA−c,tWA)kη = 0 for all k. This is clear for k = 0;
for k ≥ 1 we have

(∂ + δA−z)(δA−c,tWA)kη = −δA−c,t(∂ + δA−z)WA(δA−c,tWA)k−1η

= −δA−c,t(δA−c,tWA)k−1η = 0.

Hence

(∂ + δA−z + δA−c,t)ξ1 = (∂ + δA−z)ξ1 + δA−c,tξ1

=
n∑

k=0

(−1)k(δA−c,tWA)kη +
n∑

k=0

(−1)k(δA−c,tWA)k+1η = η

since (δA−c,tWA)n+1 = 0. Let ϕ be a C∞-function equal to 0 on a neighbour-
hood of σT(A) such that supp(1− ϕ) is compact. Let Ps be the projection
annihilating all terms that contain at least one of the variables s1, . . . , sn
and leaving all other terms invariant.

Consider the integral
�
(∂+δA−c,t)Psϕξ1∧dz =

�
(∂+δA−c,t)Psϕ(WAη−WAδA−c,tWAη+. . .)∧dz.

Since WA(δA−c,tWA)kη has degree p + k in t and n − k − 1 in (s,dz), the
only relevant term in the integral above is WAη. Thus

�
(∂ + δA−c,t)Psϕξ1 ∧ dz =

�
(∂ + δA−c,t)PsϕWAη ∧ dz

=
�
∂PsϕWAη ∧ dz = −(2πi)nf(A)η0.

Consider now the n-tuple B = (c1I, . . . , cnI) ∈ B(X)n. Since f can be
approximated by polynomials uniformly on a neighbourhood of c, we note
that f(B) = f(c) · I.

As above, consider the mappings δB−z and WB connected with the vari-
ables s.
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Let ξ2 =
∑n
k=0(−1)kWB(δA−c,tWB)kη. As above, we have (∂ + δB−z +

δA−c,t)ξ2 = η and
�
(∂ + δA−c,t)Psϕξ2 ∧ dz =

�
(∂ + δA−c,t)PsϕWBη ∧ dz

=
�
∂PsϕWBη ∧ dz = −(2πi)nf(B)η0 = −(2πi)nf(c)η0.

To show that (f(A)− f(c))η0 ∈ δA−c,tΛ[t,X], consider the linear mapping
U acting on Λ[s, t,dz, C∞(Cn \ σT(A),X)] defined by

U(ti1 ∧ . . . ∧ tim ∧ ψ) = (ti1 − si1) ∧ . . . ∧ (tim − sim) ∧ ψ
for all i1, . . . , im and ψ ∈ Λ[s,dz, C∞(Cn \ σT(A),X)]. Clearly PsU = Ps
and, for each ψ ∈ Λ[s, t,dz, C∞(Cn \ σT(A),X)],

U(∂ + δA−z + δA−c,t)ψ

= ∂Uψ +
∑

(Aj − zj)sj ∧ Uψ +
∑

(Aj − cj)(tj − sj) ∧ Uψ

= (∂ + δB−z + δA−c,t)Uψ.

We have

−(2πi)nf(A)η0 =
�
(∂ + δA−c,t)Psϕξ1 ∧ dz

=
�
Ps(∂ + δA−z + δA−c,t)ϕξ1 ∧ dz

=
�
PsU(∂ + δA−z + δA−c,t)ϕξ1 ∧ dz

=
�
Ps(∂ + δB−z + δA−c,t)ϕUξ1 ∧ dz.

Thus

−(2πi)n(f(A)−f(c))η0 =
�
Ps(∂+δB−z+δA−c,t)ϕ(Uξ1−ξ2)∧dz =

�
Psθ∧dz

where θ = (∂ + δB−z + δA−c,t)ϕ(Uξ1 − ξ2). If ϕ ≡ 1 then θ = (∂ + δB−z +
δA−c,t)Uξ1 − η = U(∂ + δA−z + δA−c,t)ξ1 − η = Uη − η = 0; so supp θ
is compact. Furthermore, θ can be written as θ = (∂ + δB−z + δA−c,t)ψ
for some form ψ ∈ Λ[s, t,dz, C∞(Cn,X)] with compact support. Indeed, by
Remark 8, there exists a form ϑ ∈ Λ[s, t,dz,dw,C∞(C2n,X)] with suppϑ ⊂
supp θ × Cn such that (∂z,w + δB−z + δA−c,t)ϑ = θ.

Set ψ(z) = ϑ0(z, c) where ϑ0 is the part of ϑ containing none of the
variables dwj . Then suppψ ⊂ supp θ and (∂z + δB−z + δA−c,t)ψ = θ. By the
Stokes theorem,

�
Psθ ∧ dz =

�
Ps(∂z + δB−z + δA−c,t)ψ ∧ s ∧ dz

=
�
∂zPsψ ∧ dc+

�
PsδA−c,tψ ∧ dz

= δA−c,t
�
Psψ ∧ dz ∈ δA−c,tΛ[t,X].

Proposition 17. Let A = (A1, . . . , An) be a commuting n-tuple of op-
erators on X, c = (c1, . . . , cn) ∈ σT(A) and let f be a function analytic on a
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neighbourhood of σT(A). Then the (n+1)-tuple (A1−c1, . . . , An−cn, f(A))
is Taylor regular if and only if f(c) 6= 0.

Proof. To the (n + 1)-tuple (A − c, f(A)) we relate exterior variables
s1, . . . , sn+1. Write for short s = (s1, . . . , sn). Let δA−c : Λ[s,X] → Λ[s,X]
be defined by δA−cψ =

∑
(Aj−cj)sj∧ψ (ψ ∈ Λ[s,X]). Clearly Λ[s, sn+1,X]

= Λ[s,X] ⊕ sn+1 ∧ Λ[s,X]. The operator δA−c,f(A) corresponding to the
(n + 1)-tuple (A − c, f(A)) can be written in this decomposition in the
matrix form

δA−c,f(A) =
(
δA−c 0
f(A) −δA−c

)
.

We distinguish two cases:

(a) f(c) = 0. Since c ∈ σT(A), there is a ψ ∈ Λ[s,X] such that δA−cψ
= 0 and ψ 6∈ δA−cΛ[s,X]. By the preceding lemma, there is an η ∈ Λ[s,X]
such that f(A)ψ = δA−cη. Then δA−c,f(A)(ψ + sn+1 ∧ η) = 0 and ψ +
sn+1 ∧ η 6∈ δA−c,f(A)Λ[s, sn+1,X] since ψ 6∈ δA−cΛ[s,X]. Thus the (n + 1)-
tuple (A− c, f(A)) is Taylor singular.

(b) f(c) 6= 0. Without loss of generality we can assume that f(c) = 1.
Let ψ, ξ ∈ Λ[s,X], δA−c,f(A)(ψ + sn+1 ∧ ξ) = 0. Then δA−cψ = 0 and
f(A)ψ − δA−cξ = 0. By the preceding lemma, f(A)ψ − ψ ∈ δA−cΛ[s,X].
Since f(A)ψ ∈ δA−cΛ[s,X], we have ψ = δA−cη for some η ∈ Λ[s,X].

Further δA−c(f(A)η − ξ) = f(A)ψ − δA−cξ = 0. Thus there is an θ ∈
Λ[s,X] with f(A)(f(A)η−ξ)−(f(A)η−ξ) = δA−cθ. Set η′ = η−(f(A)η−ξ).
Then δA−cη′ = δA−cη = ψ and

f(A)η′ − δA−cθ = f(A)η − f(A)(f(A)η − ξ) + δA−cθ

= f(A)η − (f(A)η − ξ) = ξ.

It follows that δA−c,f(A)(η′− sn+1 ∧ θ) = ψ+ sn+1 ∧ ξ and the (n+ 1)-tuple
(A− c, f(A)) is Taylor regular.

Theorem 18 (Spectral mapping property). Let A = (A1, . . . , An) be a
commuting n-tuple of operators on X and let f = (f1, . . . , fm) be an m-
tuple of functions analytic on a neighbourhood of σT(A). Then σT(f(A)) =
fσT(A).

Proof. Let A be the commutative Banach algebra generated by A1, . . . ,
An, I and f1(A), . . . , fm(A). Since the restriction of σT to A has the pro-
jection property, by [23] there is a compact subset K of the maximal ideal
space of A such that σT(B) = {ϕ(B) : ϕ ∈ K} for each B = (B1, . . . , Bk)
⊂ A.

Fix ϕ ∈ K and i, 1 ≤ i ≤ m. Let cj = ϕ(Aj) (j = 1, . . . , n) and
c = (c1, . . . , cn) ∈ σT(A). Then the (n+1)-tuple (A1−c1, . . . , An−cn, fi(A)−
ϕ(fi(A))) is Taylor singular. By Proposition 17, fi(c) − ϕ(fi(A)) = 0, i.e.,
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ϕ(fi(A)) = fi(ϕ(A)). Then
σT(f(A)) = {(ϕ(f1(A), . . . ϕ(fm(A))) : ϕ ∈ K}

= {(f1(ϕ(A)), . . . , fm(ϕ(A))) : ϕ ∈ K}
= {f(c) : c ∈ σT(A)} = fσT(A).

Theorem 19 (Superposition property [13], [6]). Let A = (A1, . . . , Am)
be a commuting n-tuple of operators on X, let f = (f1, . . . , fm) be an m-
tuple of functions analytic on a neighbourhood of σT(A), let B = f(A),
let g be a function analytic on a neighbourhood of σT(B) and let h(z) =
g(f1(z), . . . , fm(z)). Then h(A) = g(B).

Proof. By Lemma 14, g(v) − g(w) =
∑m
j=1(vj − wj)rj(v, w) for some

functions r1, . . . , rm analytic on a neighbourhood of the set {(v, v) : v ∈
σT(B)}. Thus

g(f(z))− g(w) =
m∑

j=1

(fj(z)− wj)r′j(z, w)

where r′j(z, w) = rj(f(z), w)) and the functions r′j are analytic on a neigh-
bourhood of the set {(z, f(z)) : z ∈ σT(A)} = σT(A, f(A)). Thus h(A) −
g(B) =

∑m
j=1(fj(A)−Bj)r′j(A,B) = 0. Hence h(A) = g(B).

Concluding remarks

1. There are many variants of formulas (5), (6) defining the Taylor func-
tional calculus that differ from each other in the sign in front of the integral.
There are several sources of differences:

(a) Instead of the n-tuple A− z = (A1− z1, . . . , An− zn) it is possible to
consider the n-tuple z−A (which appears naturally in the Cauchy formula).
In this approach an additional factor (−1)n in front of the integral (5) would
appear.

(b) Instead of (4) it is possible to use the convention that the Lebesgue
measure in Cn is (2i)−ndz1 ∧ dz1 ∧ . . . ∧ dzn ∧ dzn. With this convention
the Fubini theorem becomes more natural. In formula (5), however, an ad-

ditional factor (−1)(
n
2) would appear.

(c) It is also possible to modify the definition of the mappings δpA in the
Koszul complex as in [10]: δpAxsi1 ∧ . . . ∧ sip =

∑
j Ajxsi1 ∧ . . . ∧ sip ∧ sj .

This convention results also in an additional factor (−1)(
n
2) in formula (5).

2. For Hilbert space operators it is possible to choose V = (δA−z +
δ∗A−z)

−1 (see [20]–[22]). Formula (7) is then quite explicit.
3. The split-spectrum σS(A) of the n-tuple A = (A1, . . . , An) ∈ B(X)n

is defined as the set of all λ ∈ Cn such that either Im δA−λ 6= Ker δA−λ or
Im δA−λ is not complemented in Λ[s,X]. In general σS(A) is bigger than
σT(A) (see [12]; in Hilbert spaces these two spectra coincide).
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On the complement of σS(A) it is possible to find bounded linear general-
ized inverses V (z) (see [9]). Thus for functions analytic on a neighbourhood
of the split-spectrum the proof of basic properties of the Taylor functional
calculus becomes simpler. The linearity of f(A) is clear and also the proofs
of multiplicativity of the functional calculus and the spectral mapping prop-
erty are simpler.

4. As in Theorem 18, it is possible to prove the spectral mapping property
for functions analytic on a neighbourhood of the Taylor spectrum for each
spectral system which is contained in the Taylor spectrum. In particular,
this applies to the spectra of Słodkowski and the essential Taylor spectrum
(see [14]).

5. An interesting problem is to generalize the Taylor spectrum to Banach
algebras.

Let a = (a1, . . . , an) be a commuting n-tuple of elements of a Banach
algebra. Denote by La = (La1 , . . . , Lan) the n-tuple of left multiplication
operators acting on A. A natural idea is to define the Taylor spectrum of a
as σT(La). However, if A = B(X) is the algebra of operators on a Banach
space X and A ∈ B(X)n a commuting n-tuple, then σT(LA) = σS(A). Thus
this simple way does not produce the Taylor spectrum in B(X).

In fact in this situation A can be considered also as a commuting n-tuple
of elements of H(X) where H(X) satisfies all axioms of Banach algebras
except one of the distributive laws; let us call such objects semi-distributive
algebras. Define L′A = (L′A1

, . . . , L′An) ∈ B(H(X))n by L′Aiϕ = Aiϕ (ϕ ∈
H(X)); clearly L′Ai is an extension of LAi . It is easy to check now that
σT(L′A) = σT(A).

It seems that the natural setting for the Taylor spectrum in algebras
is to define it for commuting n-tuples a = (a1, . . . , an) of elements of a
semi-distributive algebra A that lie in the “distributive center” of A (more
precisely, ai(b + c) = aib + aic for all b, c ∈ A, 1 ≤ i ≤ n). For such an
n-tuple, Lai : A → A defined by Laib = aib (b ∈ A) is a linear operator
and we can define the Taylor spectrum of a as the Taylor spectrum of La =
(La1 , . . . , Lan) ∈ B(A)n.
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