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On the Taylor functional calculus
by

V. MULLER (Praha)

Abstract. We give a Martinelli-Vasilescu type formula for the Taylor functional
calculus and a simple proof of its basic properties.

Let A = (Ay,...,A,) be an n-tuple of mutually commuting operators
acting on a Banach space X. The existence of the Taylor functional calculus
[18], [19] (for simpler versions see [10], [8], [3]-[5] and [15]) is one of the
most important results of spectral theory. However, the formula defining
f(A) for a function f analytic on a neighbourhood of the Taylor spectrum
has some drawbacks. The operator f(A) is defined locally, the formula gives
only f(A)z for each x € X. Therefore it is not easy to see that f(A) is
bounded. Moreover, the formula is rather inexplicit and it is quite difficult
to prove even the basic properties of the calculus.

The situation is better for Hilbert space operators. In [20] and [21],
Vasilescu gave an explicit Martinelli-type formula defining f(A) which is
much easier to handle.

The ideas of Vasilescu were used in [9] to prove a similar formula for
Banach space operators. The method works, however, only for functions
analytic on a neighbourhood of the split-spectrum which is in general larger
than the Taylor spectrum. The main tool is the existence of generalized
inverses for operators that appear in the Koszul complex. For similar ideas
see also [1].

In this paper we obtain a similar formula for the general Taylor func-
tional calculus. The main innovation is the use of nonlinear (but continuous)
general inverses. In this way we obtain a formula that defines f(A) globally,
and so the continuity of f(A) and the continuity of the functional calculus
become clear. The formula is more explicit, hence it is possible to avoid some
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technical difficulties in the proof of the basic properties of the calculus. The
cohomological methods are avoided and the proofs are based only on the
Stokes and the Bartle-Graves theorems.

The author wishes to thank to Professor F.-H. Vasilescu for numerous
consultations concerning details of the calculus.

All Banach spaces in this paper are complex. Denote by B(X) the algebra
of all bounded linear operators on a Banach space X.

DEFINITION 1. Let X,Y be Banach spaces. Denote by H(X,Y") the set
of all continuous mappings f : X — Y that are homogeneous (i.e., f(azx) =
af(xz) for all € C and z € X).

If f e H(X,Y) then sup{|[f(z)]| : € X, |z] = 1} < oo. Clearly
H(X,Y) with this norm is a Banach space. Write for short H(X) instead of
H(X, X). Clearly B(X) C H(X).

THEOREM 2 (Bartle-Graves, see [2], Proposition 5.9). Let M be a closed
subspace of a Banach space X and let € > 0. Then there is h € H(X/M, X)
such that ||h]] < 14+¢ and h(x+ M) € x+ M for each class x+ M € X /M.

LEMMA 3. Let X, Y be Banach spaces and let T': X — Y be a bounded
linear operator with closed range. Let f € H(Y) satisfy f(Y) C ImT. Then
there exists g € H(Y, X) such that f =Tg.

Proof. Let h : X/KerT — X be the selection given by the Bartle—
Graves theorem. Let Ty : X/KerT — ImT be the operator induced by T.
Set g = hTO_lf. For y € Y we have Tgy = ThTO_lfy = fy,andsoTg=f. m

PROPOSITION 4. Let Xy, ..., X, be Banach spaces, let 6; : X; — X411
(j =0,...,n—1) be bounded linear operators and suppose that the sequence
0—Xo 2 x, 5. 20 X, -0
is exact. Let g; € H(X;) (j =0,...,n). The following statements are equiv-
alent:

(i) 6;95 = gj+16; (1 =0,...,n —1);
(ii) there exist mappings V; € H(Xj41,X;) (1 =0,...,n — 1) such that

%50 = 9o,
Vidj +0j-1Vici=g;  (G=1,...,n—1),
5n71Vn71 = dn-

Proof. (ii)=(i). Suppose that the mappings V; satisfy (ii). We have
0595 = 05(Vj0; + 0;-1Vj—1) = 9;V;6;,
954105 = (Vita0j41 4 6;V5)0; = 0;V;6;
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(the same relations are true also for j = 0 and j = n—1). Thus 6,9; = g;+16;
for all j.

(i)=-(ii). Since d,,—1 is onto, there exists V;,_1 such that §,_1V,—1 = gp.

We construct mappings V; inductively. Suppose that 1 < j <n —1 and
that V; € H(X;41,X;) satisfies Vj10j41 +0;V; = gj41 (for j =n — 1 set
formally V,, = 0 and §,, = 0). We have

3;(9; — V36;) = gj+16; — 0;V;6; = gj410; — (gj+1 — Vj418;41)0; = 0.
Thus (g; —V;0;)(X;) CKerd; =Imd;_; and there exists V;_; e H(X;, X;_1)
such that 6]’71‘/]‘71 =gj— Vjéj Thus Vjéj + (53',1‘/},1 = gj-

Finally, suppose that V € H(X1, Xo) satisfies g1 = V101 + doVp. Then
00Vodo = (91 — V161)do = g100 = dogo. Since dy is one-to-one, we have
Vodo = go. This finishes the proof. =

We now recall the basic notations of Taylor [18].
Denote by A[s] the complex exterior algebra generated by the indeter-
minates s = (s1,...,5,). Then

Als] = P A71s],

where AP[s] is the set of all elements of degree p in A[s]. Thus the elements
of AP[s] are of the form

Z Qiy ... iy Siq FANPAAN Si,,
1< <...<ip<n
where o, ., are complex numbers. The multiplication operation A is anti-
commutative, s; A s; = —s; A s; for all 4, j. In particular s; A s; = 0. Clearly
dim AP[s] = (Z) and dim A[s] = 2™,
Let X be a Banach space. Then we write A[s, X] = X ® A[s] and
AP[s, X] = X ® AP[s]. Thus the elements of AP[s, X] are of the form

E Liy,yipSiy /\~--/\5ip
1< <...<ip<n

where z;, ., € X (the symbol ® is omitted in order to simplify the nota-
tion).
Let A = (A1,...,A,) be an n-tuple of mutually commuting operators
in X. Define the operator d4 : A[s, X|] — Als, X]| by
da(wsiy, Ao Nsi,) = Z(ij)sj Nsiy N Nsiy.
j=1
Write 6% = d4|AP[s, X|. The Koszul complex K(A) is the sequence

n—1

0 1
0 — A%s, X] 22 Al[s, X] 24 .. % An]s, X] — 0.
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Then (64)? =0, i.e., 6?5271 = 0 for all p. It is convenient to set formally
A71s, X] = A™Hs, X] = 0; similarly let 521 and ¢ be the zero operators.

We say that the n-tuple A = (Ai,...,A,) is Taylor regular if the
Koszul complex K(A) is exact (i.e., Imds = Kerda). The Taylor spec-
trum or(A) is the set of all n-tuples A = (A1,...,\,) € C" such that
A—A= (41— \,..., A, — \,) is not Taylor regular. It is well known that
or(A) is a nonempty compact subset of C". Further, the Taylor spectrum
has the projection property (see [18], [16]).

Let A = (A,...,A,) be a Taylor regular n-tuple of operators. By Propo-
sition 4, there are “generalized inverses” V; € H(A7T[s, X], A/[s, X]) such
that (51(1‘/}_1 + ‘/j(SA = I 1i[s,x]- In a simpler form, we have d4V + Vi =
I, x] where V' € H(A[s, X]) is defined by V(Dj_ov;) = @j_; Vi-1¢;
(¥; € Ms, X]).

Our first goal is to show that it is possible to find such generalized
inverses depending smoothly on z € C™ \ o1 (A4).

PROPOSITION 5. Let A = (Ay,...,A,) be an n-tuple of mutually com-
muting operators on a Banach space X. Let G = C" \ or(A). Then there
exists a C®-function V : G — H(A[s, X]) such that §4_,V (z) + V(2)da_-
= I[5,x7, and

V(2)AP[s, X] C AP s, X] (2€G, p=0,...,n).

Proof. Consider the Banach spaces

n—1
My = PHW T s, X], A[s, X]),

j=0
Ms = EBOH(Aj [5’ X])a

n—1
Ms = @ H(‘AJ [87 X]7 ATt [87 X])
§=0
For z € G define mappings @(z) : M1 — My and ¥(z) : My — M3 by

n—1 n—1
) (V) = Vot @ POidh_ + 55V, ) @ T3V
=0 j=1

and »
() (D) = P95~ g51155_.):
j=0 j=0

Clearly ®@(z) and ¥(z) are bounded linear operators depending analytically
on z € G and, by Proposition 4, Im®(z) = Ker¥(z). Further I, x) =
D Laifs,x) € ImP(2) for all z € G.
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Let A € G. By [18], Lemma 2.2 (cf. also [17]), there is a neighbourhood
Uy of A and an analytic function V) : Uy — M; such that @(2)Vy(z) =1
(Z S U)\)

Let {¢;}$2, be a C*°-partition of unity subordinate to the cover {U) :
A € G} of G, i.e. p;’s are C®°-functions, 0 < ¢; < 1, supp p; C Uy, for some
Ai € G, for each A\ € G there exists a neighbourhood U of A such that all
but finitely many of ¢;’s are 0 on U and Y, ¢;(z) = 1 for each z € G.

For z € G set V(z) = Y2, pi(2)Va;(2). Clearly V is a C*°-function
satisfying V (2)AP[s, X] C AP~ 1[s, X] and ®(2)V(z) = for all z € G. =

REMARK 6. (i) The function @ is regular in G (i.e., Im®(z) changes
continuously). The existence of a C*°-function V satisfying @(2)V(z) = [
follows also directly from a deep result of Mantlik [11]. The present argu-
ment, however, is more elementary.

(ii) It is possible to require also that V(2)? = 0 and V(2)64_.V(z) =
V(z) for all z € G. In particular, V(z) is a generalized inverse of §4_.

Indeed, let V' : G — H(A[s, X]) be the function constructed in Proposi-
tion 5, i.e., 4,V (2) + V(2)0a_. = I and V(2)AP[s, X]| C AP~ ![s, X].

Clearly 04—,V (2)0a—r = da—,. Set V'(2) =V (2)da—.V(2). Then

04 V'(2)04_r =04,V (2)04_.V(2)04_, =0a_.

and
V(2)6a_.V'(2) =V (2)04_.V(2)04_.V(2)04_.V(2)

Further
04—V (2) +V'(2)0a-2 = 042V (2)04-.V(2) + V(2)0a-.V(2)0a—.
= 5A,ZV(Z) + V(Z)&A,Z =1

Finally we have
V'(2) = (V'(2)6a_r + 64V ()V'(2) = V'(2) + 54_.V'(2)?,

and 50 4—,V"(2)? = 0. Thus V'(2)? = (V/(2)6a—.+04_.V'(2))V'(2)? = 0.

These additional properties of the generalized inverse V', however, are
not essential for our purpose and we are not going to use them in what
follows.

In the following we fix a commuting n-tuple A = (A4,..., A,,) of bounded
linear operators on a Banach space X, the set G = C™ \ o7(A) and a C*°-
function V' : G — H(A[s, X]) with the properties of Proposition 5.

Consider the space C*°(G, As, X]). Clearly this space can be identified
with the set A[s, C®(G, X)].
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The function V : G — H(A[s, X]) induces naturally the operator (de-
noted by the same symbol) V : C*°(G, Als, X]|) — C*(G, Als, X]) by
(Vy)(2) =V(2)y(z) (2 € G, yeCF(G, Als, X])).
Similarly we define the operator d4_, (or 0 for short if no ambiguity can
arise) acting in C*°(G, A[s, X]) by
(0y)(2) =0a-zy(2) (2 €G, ye CF(G, As, X])).
Clearly 62 = 0, V§ + 6V = I(s,c=(a,x)) and both V' and § are “graded”,

l.e.

VAP[s,C>(G, X)] C AP~ 1[s,C>(G, X)],
§AP[s,C™ (G, X)] C AP s, C*(G, X)).
Consider now other indeterminates dz = (dzy,...,dz,) and the space
Als,dz,C>°(G, X)]. Define the linear operator
0: Als,dz,C™(G, X)] — Als,dz, O (G, X)]
by

dfsiyA...Nsi, ANdZj, A . AdZ;, = Z By LERAS A sy, AdZj A A,

=2
Clearly 9" = 0.

The operators V and ¢ can be lifted from A[s, C*(G, X)] to Als,dz,

C>*(G, X)] by

V(@ AdZi, A AdZ) = (V) AdZ, AL AdE,,

S(p AdZy, A AdZ) = (69) AdZi, A ... AdZ,,
for all ¢ € A[s, C*°(G, X)]. Clearly the properties of V' and d are preserved:
6% = 0, V6+6V = I and both V and ¢ are graded. Note also that 60 = —9¢
and (0 +6)2 =0.

Let W : A[s,dz,C*(G, X)] — Als,dz,C>*(G, X)] be the mapping de-
fined in the following way: if ¥ € A[s,dz,C*(G,X)], » = o + ... + ¥y,
where 1; is the part of ¥ of degree j in dz, then set W1 =19 + ... + 1y
where

(1) no =V, m=V@1—08m), ..., tn=VWn — Onn_1).
Note that n; is the part of W1 of degree j in dz.

LEMMA 7. Let W : Als,dz,C>*(G,X)] — Als,dz,C*(G,X)] be the
mapping defined above. Then:

(i) supp W) C supp ¥ for all 9,
(ii) if G’ is an open subset of G and ¢ € Als,dz, C*(G, X)] satisfies

i)
(O+0) =0 on G, then (0 + §)Wep =1 on G';
(iii) (8+5)W(5+5) =0+6.
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Proof. (i) Clear.
(ii) Let v = 9o + ... + ¢, where 1; is the part of ¢ of degree j in dZ.
The condition (0 + 0)y = 0 on G’ can be rewritten as

(2) 6¢0 - 07 5¢0 + 57/11 — Oa DRI 577[)7171 + 6¢n =0

(0, = 0 automatically).

Let Wi = ng + ... + n, where the n; are defined by (1). The required
condition (0 4 §)W1 = 1) then becomes
(3) ono =vo, Ino+dm =1, ..., Opo1+0Nn = Pn
on G’ (again, dn,, = 0 automatically).
_ By(1) and (2), we have 6ng = 6V1bg = (6V +V6)1o = 1o and Eﬂo—i—ém =
Ono+06V (11 —0no) = Ono+ (I =V 8)(1p1—09n0)0no = 1 — V(11 —0no) =
since d(1p1 — Ono) = Y1 + 00y = oY1 + Oy = 0.

We prove (3) by induction. Suppose that dn;_1 + dn; = 1; for some
J > 1. Then 5(¢j+1 — aT]j)_: 5¢j+1 + 8(5171 = 5¢j+1 + 8¢J_ =0 bl the
induction assumption, and 9n; + on;41 = In; + SV (Yj4+1 — On;) = On; +
(L = Vo)(¥j41 — Onj) = Yjtr.

(iii) Since (9 + §)? = 0, the statement follows from (ii). m

REMARK 8. Without any change it is possible to prove the preceding
theorem in a more general form. Let z — A(z) be an analytic function
defined on an open subset G C C" such that the values A(z) are Taylor
regular n-tuples of operators on X for all z € G. Let ¢ € A[s,dz, C*(G, X)]
satisfy (9 + 64(,))¥ = 0. Then there exists a form 6 € A[s,dz, C>=(G, X)]
with supp @ C supp and ¢ = (0 + da(2))0-

We interpret the differential form
(4) (20)7"dZ; A ... AdZ, Adzi AL Adz,

as the Lebesgue measure in C* = R?",

Let P be the natural projection P: A[s,dz,C>*(G, X)]| — A[dz,C>(G, X)]
that annihilates all terms containing at least one of the indeterminates
S1,-..,Sn and leaves invariant all the remaining terms.

The following simple lemma will be used frequently.

PROPOSITION 9. Let ) € A"[s,dz, C*(G, X)] be a differential form with
a compact support disjoint from or(A) such that (0 + §)n = 0. Then

S PnAndz=0
Cn
where dz stands for dzy N ... Adzy,.

Proof. We have
Pn = P(0+ §)Wn=PoWn=0PWn



86 V. Miiller

where PWn has a compact support. By the Stokes theorem, we have

| Pnadz= | 0PWnAdz=0. =
Cn Cn
Let U be a neighbourhood of o1(A). It is possible to find a compact
neighbourhood A of op(A) such that A C U and the boundary 0A is a

smooth surface. Let f be a function analytic in U. Define the operator f(A)
by

(5) T —

2mi)n

S PWf(z)xsndz (x € X),
oA

where dz stands for dz; A ... Adz, and s = s1 A ... A s,. By the Stokes
formula,

—~

1 .-
f(A)zx = @) i@g@PWf(z)xs Ndz

where ¢ is a C*°-function equal to 0 on a neighbourhood of o1 (A4) and to 1
on C™\ A (consequently, ¢ =1 also on 0A).
On C™ \ A we have

OpPW frs = P(0+0)W fxs = Pfxs = 0.
Thus we can write

(6) f(A)zx = ﬁ S OpPW f(2)xzs A dz.
(CTL

It is clear from the Stokes theorem that the definition of f(A)z does not
depend on the choice of the function ¢ and, by (6), it is independent of A.

We show that f(A) does not depend on the choice of the generalized
inverse V which determines W.

Suppose that W7, W5 are two operators satisfying

O+ OWif(2)ws = f(2)xs  (i=1,2).
For those z where ¢ = 1 we have
(04 8)p(Wy — Wa) f(2)xs = 0,

and so the form (0 + 6)(Wy — Wy) f(2)xs satisfies the conditions of Propo-
sition 9. Hence

0= S PO+ 8)p(Wy — W) f(2)zs ANdz = S POo(Wy — Wa) f(2)zs A dz
Cr Cn

= S OpPW, f(2)xs Adz — S OpPWyf(2)xs A dz.
cn cn
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It is possible to express the mapping PW that appears in the definition
of the functional calculus more explicitly. By the definition of W, we have

PWzxs = (—=1)""'V(OV)" s = (=1)""'V,0V10. .. 0V, _1xs.

Since A[s, X] is a direct sum of 2™ copies of X, we can express V(z) :
Als, X] — Als, X] as a matrix whose entries are elements of H(X') depending
smoothly on z € G.

Clearly we can write PWzs = Z?:l M®xdzy A ...dzZ;... A dz, for
certain functions M) € C°°(G,H(X)) where the hat denotes the omitted
term.

Thus we can write formulas (5) and (6) also globally:

(1) f(A

PWf(z)IsNdz = — SE@PWf(z)Is/\dz

2m) o (27i) cn
"

T
_ (=

S OV (OV)" "L f(2)Is A dz
Cn

—

2"

where I = Ix is the identity operator on X. The coeflicients of the forms in
(7) are H(X)-valued C*°-functions. Therefore f(A) € H(X).

LEMMA 10. f(A) is a bounded linear operator.

Proof. Since f(A) € H(X), it is sufficient to show only the additivity.
Let z,y € X. Let ¢ be a C°°-function equal to 0 on a neighbourhood of
or(A) such that supp(l — ¢) is compact. Then

—@2mi)"(f(A)(z +y) — f(A)z — f(A)y)
= S OpPW f - (z+y)s Adz — X 0pPW frs Adz — S 0pPW fys A dz
cn cn cn
= S PnAdz
Cn
where
n=0+8)eWf-(x+y)s—(0+08)pW frs—(0+0)pW fys.
Clearly 1 has a compact support disjoint from o (A) and (0 + &§)n = 0. By
Proposition 9, { Pp Adz =0 and f(A)(z+y) = f(A)z+ f(A)y. =

PROPOSITION 11. For n =1 the functional calculus defined by (7) coin-
cides with the classical functional calculus given by the Cauchy formula.

Proof. Let A € B(X) and let f be a function analytic on a neighbour-
hood of o(A). Then Wzs = Vas = (A—z)~x. Thus, for a suitable contour
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X surrounding o(A), we have

-1 -1 _
F(A) = o— gPWfIs/\ dz = — ;(A —2) " f(2)Idz
1 _
:%éﬂz)(»Z—A) 1d2,

which is the Cauchy formula. =
PROPOSITION 12. Let f be a function analytic on a meighbourhood of
or(A), 1< j <n and g(=) = /(). Then g(A) = A; f(A).
Proof. The statement is well known for n = 1. Suppose that n > 2. Then
—(2mi)"(A; f(A) — g(A) = A; | 9poPW fIs Adz — | 9pPWz;f1s A dz
Cn Cn
= S Opf - (Aj — z;)PWIs Adz.
(Cn
For FF C {1,...,n}, F = {i1,...,ip} where i1 < ... < ip, write sp =
Siy N...As; . Express WIs € A" ts, dz,C>(G, X)] as

Wlis = Z SpNEp
FC{1,...,n}

where £p contains no variable from sy, ..., s,. Since (0 + 64_,)WIs = Is,
for each F' # {1,...,n} we have

ng + Z(_l)card{k’eF:k'<k}(Ak o Zk)é-F\{k} —0.
keF

In particular, for F' = {j} we have

(Aj — 2z))PWIs = (A; — zj)& = -9y

Thus
\ dof - (A — 2)PWIs ndz = — | DpfdE;y Adz
Cn Cn
=— { 9(pdregy —dofey) ndz =0
(Cn

by the Stokes theorem. Hence g(A) = A; f(A). m

PROPOSITION 13. Let A= (A1,...,A,) € B(X)", B= (B1,...,Bn) €
B(X)™. Suppose that (A,B) = (A1,...,An, B1,...,By) is a commuting
(n + m)-tuple and let f and g be functions analytic on a neighbourhood of
or(A) and or(B), respectively. Define a function h by h(z,w) = f(z)-g(w).
Then h(A, B) = g(B) f(A).
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Proof. Write z = (21,...,2,) and w = (wy,...,wy,). Denote by 0., 0y,
and Ew the 0 operator corresponding to z,w and (z,w), respectively. We
associate with B another system ¢ = (t1,...,t,,) of exterior indeterminates
when defining the operator dg_,,.

Choose mappings W4, W and W4 g corresponding to the tuples A, B
and (A, B). Let A’ and A” be compact neighbourhoods of o1 (A) and o (B)
contained in the domains of definition of f and g, respectively. Let ¢, ¢ and
X be C*>-functions equal to 0 on a neighbourhood of o1 (A) (or(B) and
o1(A, B)), and to 1 on C"\ A" (C™\ A” and C"*™\ A’ x A" respectively).

Denote by Ps and P; the projections which annihilate all terms contain-
ing at least one of the variables s1, ..., s, (t1,...,tn, respectively) and leave
invariant the remaining terms. Set P = P, P;.

Let x € X. We have

1 _ _
f(A)x = Gl S 0,pPWafrs Ndz = Gri) S P Ndz
cr cr

where & = (0, +64_.)oWafrs — fxs. On C" \ A’ we have ¢ = 1 and so
¢ = 0. Thus supp€ is compact. Further

9(B)f(A)z =

e ) PG o3-0)Wag( | P& ndz)tndw.
Cm Cn
Since Wp is not linear, we cannot interchange it with the inner integral.

However, consider the form

1= (y +5B,w)¢WBg( | Pe Adz)t — @ +05—0)¥ | Wa(PgtndzAt)
cn cn

where W is extended to A[dz,dz,t,dw, C*>°(C™ x (C™\ or(B)), X)] in the

obvious way. Clearly (0., +05_.,)n = 0 and supp7 is disjoint from o1 (B). On

C™\ A” we have p = 1 and n = 0 since supp W (PsgéAdzAt) C supp{xC™

and we can interchange d,, with the second integral. Thus S(Cm PipAdw =0

and we have

®)  @ri)""g(B)f(A)x = | Pi0w+065-w)t | Wa(PegéAdzAt) Adw.
cm cn

On the other hand, —(2mi)™*"h(A, B)xz = { Pn A dz A dw where
M = Oz + 64—z B-w)XWa,phxs Nt — hxs A t.
Clearly suppn; is compact.
Set

T2 = (az,w + 5A7z,B7w)¢WA,Bg§ ANt — 95 AT.

Clearly supp 2 C supp & x C™. Moreover, if 1) = 1 then 1y = 0, so supp 7s is
compact. On a neighbourhood of o1 (A, B) we have ny = —g{At = fgasAt =
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—11. By Proposition 9, we have { P(11 + 12) Adz A dw = 0 and so
2mi)" (A, Bz = | PppAdzAdw

(C n+m

B ( | PL@ew + 65 0) P, Wa g€ A LA dz) A dw
cm ocn
by the Fubini theorem (the factor (—1)™" is caused by convention (4) defin-
ing the Lebesgue measures in C", C™ and C™*", respectively). By the
Stokes theorem we have
(2mi)™ " (A, B)z = | Pi(D. + 5B_w)¢( | PaWa g Adzn t) A dw.
Cm Cn
Consider the form
N3 = (Ouw+0-w)y) | PsWa pgéAdent—(0uw+6p-w)t | Wa(Pagéndznt).
(Cn (Cn
Clearly suppnz Nor(B) = 0 and (0, + 6p_w)n3 = 0. If ) = 1 then, by the
Stokes theorem,

n3 = S PS(EZ,’LU + 5A72,B7M)WA,B95 ANdz At — S EZPSWA,BQS Ndz At

cr Cn
— S P,gé Adz At
n
= | Pg¢ndznt— | Pggndznt=o.
Cn Cn

Thus { Pin3 A dw =0 and
(27i)" (A, B)z = | Pe(0u + 0p-w)¥ | Wa(Pog€dz At) A dw
cm cn
= (2mi)™"g(B) f(A)x

by (8). Hence h(A, B) = g(B)f(A). =

We shall use the following simple lemma:

LEMMA 14. Let K be a compact subset of C"™ and let f be a function
analytic on an open neighbourhood of K. Then there are functions h; (j =

1,...,n) analytic on a neighbourhood of the set D = {(z,z) : z € K} such
that

n

F2) = fw) = (25 —wj) - hj(z,w).

j=1
Proof. For j =1,...,n define g; by
9 (21, ... Zn, w1, ..., W)
= f(z1,.- 0, 2, Wig1, - W) — f(21, ..., Zj—1, W), ..., Wy).
It is easy to see that g; is defined and analytic on a neighbourhood of D.
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Let hj(z,w) = gj(2,w)/(z; —wj). Clearly h; is analytic at each point
(z,w) with z; # w;. By the Weierstrass division theorem (see [7], p. 70), h;
can be defined and is analytic also on a neighbourhood of each point (z, w)
with z; = w;. Thus h; is analytic on a neighbourhood of D. Clearly

n n
> (2 —wy) - hi(zw) =Y gi(zw) = f(2) = f(w). =
j=1 j=1
Denote by A the algebra of all functions analytic on a neighbourhood of
a compact set K C C™ (more precisely, the algebra of all germs of functions
analytic on a neighbourhood of K).

THEOREM 15. Let A = (Ay,...,A,) be an n-tuple of mutually commut-
ing operators on X. Then:

(i) the mapping f — f(A) is linear and multiplicative, i.e., the Taylor
functional calculus is a homomorphism from Ay () to B(X);
(ii) if p is a polynomial, p(z) = Zaem caz®, then p(A) = Zaem CaA%;
(iii) iof fn — f wniformly on a compact neighbourhood of or(A) then
fn(A) — f(A) in the norm topology;
(iv) f(A) € (A)" for each f € Ay (a).

Proof. (i) The linearity of the mapping f — f(A) is clear. Let f and
g be functions analytic on a neighbourhood of or(A). Consider the (2n)-
tuple (A, A). It is easy to see that op(A,A) = {(2,2) : 2 € or(A)}. De-
fine functions hq(z,w) = f(2)g(w) and ha(z,w) = f(2)g(z). By Lemma
14, we can write g(z) — g(w) = Y. | (2i — w;)gi(z,w) for some functions
q1,---,qn analytic on a neighbourhood of or(A, A). By Proposition 13, we
have hy(A, A) = f(A)g(A) and ha(A, A) = (fg)(A). Thus, by Proposition
12,

n

(f9)(A) = F(A)g(A) = ha(A, A) — ha(A, A) =) (Ai — Ai)(fai)(A, A) = 0.

i=1
Hence (f9)(4) = £(4)g(4).

(ii) The statement follows from Propositions 11 and 13.

(iii) follows from the definition.

(iv) Let S € B(X) be an operator commuting with A;,..., A,. By
Proposition 13, it is possible to consider f(A) to be a function of the (n+1)-
tuple (Ay, ..., A, S). Therefore f(A) commutes with its argument S. Hence
f(A) e (A)". n

It follows from the general theory [23] that the Taylor spectrum satisfies
the spectral mapping property for all polynomials (and consequently, for all
functions that can be approximated by polynomials uniformly on a neigh-
bourhood of the Taylor spectrum). In fact the spectral mapping property is
true for all analytic functions. To show this, we need the following lemma;:
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LEMMA 16. Let A = (A1,...,A,) be a commuting n-tuple of operators
on X, let ¢ = (c1,...,¢,) € or(A) and let [ be a function analytic on a
neighbourhood of or(A). Consider exterior indeterminates t = (t1,...,t,)
and define da_cy : Alt, X] — A[t,X] by da_c ¥ = Z;L:l(Aj — )ty N
(b € Alt, X]). Let no € Kerda_ey. Then (F(A) — £(c))m0 € 0acAlt, X].

Proof. Without loss of generality we can assume that 7g is homogeneous
of degree p, 0 < p < n.

To define f(A), consider exterior indeterminates s = (si,...,$,), the
mapping 04—, acting on Afs,dz, C>(C™ \ op(A), X)] defined by d4_,9 =
z;bzl(Aj — 2;j)s; A1) and the mapping W4 corresponding to A. We can lift
04—, and Wy to the space A[s, t,dz, C>(C™\ o1 (A), X)] in the natural way.
Note that 4, and Wy are connected with variables s; the mapping d4—. ¢
is related to the variables t.

Set 7 = fno A s and & = ZZZO(—l)kWA(éA_QtWA)kn. We show by
induction that (5+5A,Z)(5A,c,tWA)kn = 0 for all k. This is clear for & = 0;
for £ > 1 we have

(0+6a-2)(6a—ctWa)"n = —=0a—cs(D+6a-2)Wa(ba—csWa)*'n
= _6Afc,t(5Afc,tWA)k_177 =0.
Hence

(5 + 5Afz + 5Afc,t)§1 = (5 + 5Afz)£1 + 6Afc7t§1

= (“D¥(Ga-caWa)'n+ > (1)} (6a—csWa)"n=1n
k=0 k=0
since (§4—c¢Wa)" ! = 0. Let ¢ be a C>°-function equal to 0 on a neighbour-
hood of o1(A) such that supp(1l — ¢) is compact. Let Ps be the projection
annihilating all terms that contain at least one of the variables sq,..., s,
and leaving all other terms invariant.
Consider the integral

V(0+64-ct)Poptindz =\ (0404 ct) Peao(Wan—Wada—csWan+...) Adz.

Since W4 (64—ctWa)kn has degree p + k in t and n — k — 1 in (s,dz), the
only relevant term in the integral above is W 7. Thus

S (0 + da—ct)Pspéy Ndz = S (0 + da—ct)PspWan Ndz
={0P,oWan A dz = —(2mi)" f(A)no.

Consider now the n-tuple B = (¢11,...,¢c,I) € B(X)™. Since f can be
approximated by polynomials uniformly on a neighbourhood of ¢, we note
that f(B) = f(c)-I.

As above, consider the mappings dg_, and Wp connected with the vari-
ables s.
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Let & = Y 1 _o(=1)*Wp5(64—c:Wg)* 1. As above, we have (0 + 65—, +
6a-c)2 =n and

S (0 + da—ct)Pspba Ndz = S (0 + da—ct)PspWpn Adz

= 0P pWan A dz = —(2mi)" f(B)ng = —(2mi)" f(c)no.

To show that (f(A) — f(c))no € da—c+AJt, X], consider the linear mapping
U acting on Als,t,dz, C>(C" \ op(A), X)] defined by

U(til VAN /\tim /\Iﬂ) = (til — Sil) VANA (tim — Sim) /\w

for all 41,...,4y, and ¢ € A[s,dz,C>®(C™ \ or(A), X)]. Clearly P,U = P,
and, for each ¢ € A[s,t,dz, C>(C" \ or(A), X)],

U(Q+ 04—z +0a—ct)th
=0Ud+ Y (Aj—2)s; NUY+ > (Aj = ¢;)(t; — s;) NUY
= @+ 05z +0a_ct)UP.

We have
—(@2mi)" f(A)no = (D + 6a—ct) Poply A d2
IS (O+0a—z+0a—ct)pbi Ndz
:SPU8+5A 2+ 0a—ct)péi Adz
= P04 052+ 6a-ca)pUé Nz,
Thus

—(2mi)" (f(A) = f()mo = | Pa(0+0-2+0a-ca)p(Us —&2) Adz = | P.OAdz

where 0 = (0 + 6p—» + 0a—ct)p(Ués — &). If o =1 then 6 = (0 + 6p_. +
da—et)U& —n = U(Q+ 04—z +0a—ct)é1 —n = Un—mn = 0; so suppd
is compact. Furthermore, 6 can be written as 0 = (0 + dp_, + da_c)¢
for some form ¢ € A[s,t,dz, C>°(C", X )] with compact support. Indeed, by
Remark 8, there exists a form 9 € A[s, t, dz, dw, C°°(C?", X)] with supp 9 C
supp 0 x C" such that (9, +0p_» +64_ct)d = 0.

Set ¥ (z) = Yo(z,c) where ¢ is the part of ¢ containing none of the
variables dw;. Then supp ) C supp 6 and (0,405 _>+0a_ct)Y = 6. By the
Stokes theorem,

SPH/\dZ—S (D, + 052 +0a )b AsAdz
={0.Pap Ade+ | Puda_csto Adz
= 0act | P Adz € ba_csAlt, X]. m

PROPOSITION 17. Let A = (A4,...,A,) be a commuting n-tuple of op-
erators on X, ¢ = (¢1,...,¢,) € or(A) and let f be a function analytic on a
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neighbourhood of o1 (A). Then the (n+1)-tuple (A1 —c1,...,Ap—cn, f(A))
is Taylor regular if and only if f(c) # 0.

Proof. To the (n 4 1)-tuple (A — ¢, f(A)) we relate exterior variables
S1y.++ySnt1. Write for short s = (s1,...,8,). Let d4_. : A[s, X]| — A[s, X]
be defined by 04—c1 = > (Aj—c;)s; A (¢ € Als, X]). Clearly Als, spy1, X]
= Als, X] @ sny1 A Als, X|. The operator d4_. s(a) corresponding to the
(n + 1)-tuple (A — ¢, f(A)) can be written in this decomposition in the

matrix form
5 OA—c 0
ATID T FA) —bae )

We distinguish two cases:

(a) f(c) = 0. Since ¢ € op(A), there is a ¢ € A[s, X]| such that §4_.0
=0and ¥ & da_.A[s, X]. By the preceding lemma, there is an n € A[s, X]
such that f(A)y = 6a—cn. Then 04— ra)(¥ + Snp1 Am) = 0 and ¥ +
Spp1 AN & Oa—c f(a)A[S, Sns1, X] since ¥ € 64_.A[s, X]. Thus the (n + 1)-
tuple (A — ¢, f(A)) is Taylor singular.

(b) f(c) # 0. Without loss of generality we can assume that f(c) = 1.
Let ¢, € Als, X], 6a—c fa)(¥ + spy1 AE) = 0. Then 4y = 0 and
f(A)Y — da_.& = 0. By the preceding lemma, f(A)Y — 1) € da_.Als, X].
Since f(A)Y € da_.A[s, X], we have 1) = §4_.n for some n € A[s, X].

Further d4_.(f(A)n — &) = f(A)Y — da_c§ = 0. Thus there is an 6 €
Als, X] with f(A)(f(A)n—&) = (f(A)n—&) = da—c0. Set ' = n—(f(A)n—9).
Then 64—’ =da_cn =1 and

FAN —ba-ct = f(A)n — F(A)(f(A)n — &) +da-c0
= f(A)n—(f(An—-¢) =¢
It follows that 64—¢ f(a)(n" — Sngp1 A0) = ¥ + 8,41 A& and the (n+ 1)-tuple
(A—c, f(A)) is Taylor regular. m

THEOREM 18 (Spectral mapping property). Let A = (A1,...,A,) be a
commuting n-tuple of operators on X and let f = (f1,...,fm) be an m-
tuple of functions analytic on a neighbourhood of or(A). Then op(f(A)) =

for(4).

Proof. Let A be the commutative Banach algebra generated by A4, ...,
A, I and f1(A),..., fm(A). Since the restriction of o1 to A has the pro-
jection property, by [23] there is a compact subset K of the maximal ideal
space of A such that op(B) = {¢(B) : ¢ € K} for each B = (By,..., By)
Cc A

Fix p € K and i, 1 < i < m. Let ¢; = ¢(4;) (j = 1,...,n) and
c=(c1,...,cn) € or(A). Then the (n+1)-tuple (A1 —c1,..., An—cn, fi(4)—
©(fi(A))) is Taylor singular. By Proposition 17, fi(c) — ¢(fi(A)) =0, i.e.,
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¢(fi(A)) = fi(p(A)). Then
or(f(A)) = {(e(f1(4),...o(fm(A))) : p € K}
={(f1(e(A)), ..., fm(p(A4))) : ¢ € K}
={f(c):c€or(A)} = for(A). =
THEOREM 19 (Superposition property [13], [6]). Let A = (A1,...,An)
be a commuting n-tuple of operators on X, let f = (f1,..., fm) be an m-

tuple of functions analytic on a neighbourhood of or(A), let B = f(A),
let g be a function analytic on a neighbourhood of or(B) and let h(z) =

9(f1(2), ..., fm(2)). Then h(A) = g(B).

Proof. By Lemma 14, g(v) — g(w) = 377" (v; — w;)r;(v,w) for some
functions rq,...,r, analytic on a neighbourhood of the set {(v,v) : v €
or(B)}. Thus

9(f(2) = g(w) = Y (fi(2) — wy)r}(z,w)
7=1
where 7} (2, w) = r;(f(2),w)) and the functions r} are analytic on a neigh-
bourhood of the set {(z, f(2)) : z € or(A)} = o1(A, f(A)). Thus h(A) —

9(B) = >_711(fi(A) = Bj)rj(A, B) = 0. Hence h(A) = g(B). =

Concluding remarks

1. There are many variants of formulas (5), (6) defining the Taylor func-
tional calculus that differ from each other in the sign in front of the integral.
There are several sources of differences:

(a) Instead of the n-tuple A—z = (A1 — z1,..., A, — 2,,) it is possible to
consider the n-tuple z— A (which appears naturally in the Cauchy formula).
In this approach an additional factor (—1)™ in front of the integral (5) would
appear.

(b) Instead of (4) it is possible to use the convention that the Lebesgue
measure in C" is (2¢)7"dz; Adz; A ... AdZ, A dz,. With this convention
the Fubini theorem becomes more natural. In formula (5), however, an ad-

ditional factor (—1)(2) would appear.
(c) It is also possible to modify the definition of the mappings 4%} in the
Koszul complex as in [10]: 0%asi, A ... A sy, = D00 Ajwsiy Ao Asi, A s;.

This convention results also in an additional factor (—1)(3) in formula (5).

2. For Hilbert space operators it is possible to choose V = (d4_, +
8% )71 (see [20]-[22]). Formula (7) is then quite explicit.

3. The split-spectrum og(A) of the n-tuple A = (A4,...,4,) € B(X)"
is defined as the set of all A € C™ such that either Imd ) # Kerda_» or
Imda_y is not complemented in A[s, X]. In general og(A) is bigger than
or(A) (see [12]; in Hilbert spaces these two spectra coincide).
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On the complement of og(A) it is possible to find bounded linear general-
ized inverses V' (z) (see [9]). Thus for functions analytic on a neighbourhood
of the split-spectrum the proof of basic properties of the Taylor functional
calculus becomes simpler. The linearity of f(A) is clear and also the proofs
of multiplicativity of the functional calculus and the spectral mapping prop-
erty are simpler.

4. Asin Theorem 18, it is possible to prove the spectral mapping property
for functions analytic on a neighbourhood of the Taylor spectrum for each
spectral system which is contained in the Taylor spectrum. In particular,
this applies to the spectra of Stodkowski and the essential Taylor spectrum
(see [14]).

5. An interesting problem is to generalize the Taylor spectrum to Banach
algebras.

Let a = (a1,...,a,) be a commuting n-tuple of elements of a Banach
algebra. Denote by L, = (Lg,,...,Lqs,) the n-tuple of left multiplication
operators acting on A. A natural idea is to define the Taylor spectrum of a
as op(L,). However, if A = B(X) is the algebra of operators on a Banach
space X and A € B(X)" a commuting n-tuple, then op(L4) = os(A). Thus
this simple way does not produce the Taylor spectrum in B(X).

In fact in this situation A can be considered also as a commuting n-tuple
of elements of H(X) where H(X) satisfies all axioms of Banach algebras
except one of the distributive laws; let us call such objects semi-distributive
algebras. Define L'y = (Ll ,..., L ) € B(H(X))" by L'y ¢ = Aip (¢ €
H(X)); clearly L) is an extension of La,. It is easy to check now that
UT(LA) = O'T(A).

It seems that the natural setting for the Taylor spectrum in algebras
is to define it for commuting n-tuples a = (ay,...,a,) of elements of a
semi-distributive algebra A that lie in the “distributive center” of A (more
precisely, a;(b + ¢) = a;b + a;c for all b,c € A, 1 < i < n). For such an
n-tuple, L,, : A — A defined by L,,b = a;b (b € A) is a linear operator
and we can define the Taylor spectrum of a as the Taylor spectrum of L, =

(Lay, ... La,) € B(A)".
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