
STUDIA MATHEMATICA 201 (2) (2010)

Sharp moment inequalities for
differentially subordinated martingales

by

Adam Osękowski (Warszawa)

Abstract. We determine the optimal constants Cp,q in the moment inequalities

‖g‖p ≤ Cp,q‖f‖q, 1 ≤ p < q <∞,
where f = (fn), g = (gn) are two martingales, adapted to the same filtration, satisfying

|dgn| ≤ |dfn|, n = 0, 1, 2, . . . ,

with probability 1. Furthermore, we establish related sharp estimates

‖g‖1 ≤ sup
n

EΦ(|fn|) + L(Φ),

where Φ is an increasing convex function satisfying certain growth conditions and L(Φ)
depends only on Φ.

1. Introduction. The purpose of this paper is to provide new inter-
esting sharp estimates for martingales under the assumption of differential
subordination. Let (Ω,F ,P) be a probability space, filtered by a nondecreas-
ing family (Fn) of sub-σ-fields of F . Throughout, f = (fn), g = (gn) will
stand for martingales adapted to this filtration, taking values in a certain
separable Hilbert space H. Their difference sequences df = (dfn), dg = (dgn)
are defined by the equations

fn =
n∑
k=0

dfk, gn =
n∑
k=0

dgk, n = 0, 1, 2, . . . .

We assume that g is differentially subordinate to f , that is, for any n =
0, 1, 2, . . . ,

P(|dgn| ≤ |dfn|) = 1.

For example, this is valid for martingale transforms. Suppose that we have
dgn = vndfn for n = 0, 1, 2, . . . , where v = (vn) is a real-valued predictable
sequence bounded by 1 in absolute value. Obviously, g is then differentially
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subordinate to f . In the special case when each term vn is deterministic and
takes values in {−1, 1}, we will say that g is a ±1 transform of f .

The notion of differential subordination was introduced by Burkholder
[Bu2] (though this concept appears in his earlier papers, see e.g. [Bu1]).
He also studied various estimates of g in terms of f . These include the
following weak type (1, 1) and moment estimates. Denote f∗ = supn |fn|
and ‖f‖p = supn ‖fn‖p for p ∈ [1,∞].

Theorem 1.1 (Burkholder). Assume g is differentially subordinate to f .

(i) For any λ > 0,

(1.1) λP(g∗ ≥ λ) ≤ 2‖f‖1
and the constant 2 is the best possible.

(ii) For any 1 < p <∞,

(1.2) ‖g‖p ≤ (p∗ − 1)‖f‖p,
where p∗ = max{p, p/(p− 1)}. The constant p∗ − 1 is the best possible.

The result above has been extended in many directions. For more infor-
mation and connections with harmonic analysis, the reader is referred to the
survey [Bu4]. For more recent results, see [BW1], [BW2] and [Bu3]–[W].

The moment inequality (1.2) fails to hold for p = 1. However, the follow-
ing logarithmic estimate is valid. For K > 0, let L(K) ∈ (0,∞] denote the
smallest constant L such that the inequality

(1.3) ‖g‖1 ≤ K sup
n

E|fn| log |fn|+ L

holds for all f , g with g being differentially subordinate to f .
Here is the main result of [O2].

Theorem 1.2. We have

L(K) =


∞ if 0 < K ≤ 1,

K2

2(K − 1)
exp(−K−1) if 1 < K < 2,

K exp(K−1 − 1) if K ≥ 2.
In this paper we provide another extension of Theorem 1.1. Namely, for

any p, q in [1,∞) with p < q, we will determine the best constants Cp,q such
that for any martingales f , g with g being differentially subordinate to f ,

(1.4) ‖g‖p ≤ Cp,q‖f‖q.
In fact, this estimate will follow from a more general one. We will derive the
best constant Lp,q such that for any f , g as above,

(1.5) ‖g‖pp ≤ ‖f‖qq + Lp,q,

where 1 ≤ p < q < 2 or 2 < p < q <∞.
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The proof of (1.5) depends heavily on the techniques invented by Burk-
holder. As shown in [Bu4], proving an inequality for differentially subordinate
martingales is equivalent to finding a certain special function with convex-
type properties. To be more specific, let us outline the proof of (1.5). This
inequality is equivalent to

EVp,q(fn, gn) ≤ Lp,q, n = 0, 1, 2, . . . ,

where Vp,q : H×H → R is given by Vp,q(x, y) = |y|p−|x|q. We will construct
a function Up,q : H×H → R which satisfies

(i) Up,q ≥ Vp,q on H×H,
(ii) EUp,q(fn, gn) ≤ EUp,q(fn−1, gn−1) for n ≥ 1,
(iii) Up,q(x, y) ≤ Lp,q if |y| ≤ |x|.
This will yield the claim: indeed, if n = 0, 1, 2, . . . , then

EVp,q(fn, gn) ≤ EUp,q(fn, gn) ≤ EUp,q(f0, g0) ≤ Lp,q.
A few words about the organization of the paper. In the next section we

study special solutions to a certain family of differential equations. Then,
in Section 3, we introduce two basic functions, which, integrated against
special kernels, lead to special functions Up,q corresponding to the moment
inequalites (1.5). Section 4 is devoted to the study of the properties of these
functions. In the next two sections we establish the moment inequalities
(1.4) and (1.5) as well as certain extensions of the estimate (1.3) above. The
final section addresses the problem of the strictness and sharpness of these
inequalities.

2. A differential equation. As explained above, the inequality (1.5)
holds if one manages to find an appropriate majorant Up,q of Vp,q. How can
we construct such a special function? We will present the idea of the search
in the case 1 < p < 2.

It is natural to try to look at the limit case p = q in the real-valued
setting: H = R. Unfortunately, in that case (1.5) is not valid with any finite
Lp,p unless p = 2 (this is clear from Theorem 1.1). However, (1.4) does hold
and can be used to gain some insight into the problem. For x, y ∈ R, let
Vp,p(x, y) = |y|p − (p− 1)−p|x|p and

Up,p(x, y) = p2−p(|y| − (p− 1)−1|x|)(|x|+ |y|)p−1.

Then, as shown by Burkholder (see [Bu4]), the functions Up,p and Vp,p
satisfy conditions (i)–(iii) from the end of the previous section and thus
(1.4) holds. Let us take a closer look at the properties of these functions.
First, Vp,p(x, y) = Up,p(x, y) if and only if (|x|, |y|) lies on the half line
{(α, β) ∈ [0,∞)× [0,∞) : β = (p− 1)−1α}. Second, condition (ii) is guaran-
teed by the following geometrical property of Up,p: this function is concave
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along any line of slope a ∈ [−1, 1]. Moreover, if we restrict ourselves to the
first quadrant, we see that extremal lines (along which Up,p is linear) are
those of slope −1. Finally, Up,p is symmetric: Up,p(x, y) = Up,p(|x|, |y|) and
(Up,p)y(x, 0) = 0 for all x.

It is natural to expect that Up,q should have similar properties. Let us
assume that Vp,q(x, y) = Up,q(x, y) if and only if (|x|, |y|) lies on a certain
curve {(α, β) ∈ [0,∞) × [0,∞) : β = h(α)} and suppose that in the first
quadrant Up,q is linear along the lines of slope −1. These two conditions
imply that for x > 0 and t ∈ [−x, h(x)],
Up,q(x+ t, h(x)− t) = Vp,q(x, h(x)) + [(Vp,q)x(x, h(x))− (Vp,q)y(x, h(x))]t

= h(x)q − xp + (qh(x)q−1 − pxp−1)t.

Finally, the condition (Up,q)y(x, 0) = 0 leads to the differential equation

(2.1) p(2− p)h′(x) + p = q(q − 1)xq−2h(x)2−p.

If we manage to find an appropriate solution, we will obtain an explicit
formula for Up,q, at least on the set {(x, y) : |x|+ |y| ≥ h(0)}.

Now we turn to rigorous reasoning. The purpose of this section is to
establish, for certain values of p and q, the existence of an increasing solu-
tion of (2.1) on [0,∞), satisfying h(0) > 0 and h′(x) → 0, h(x) → ∞, as
x → ∞. As we will see below, if 2 lies between p and q, then the constant
Cp,q is one. Therefore, while studying (1.4), two possibilities are of interest:
1 ≤ p < q < 2 or 2 < p < q < ∞. Till the end of Section 4, we assume that
one of them holds.

We consider the cases 1 = p < q < 2, 1 < p < q < 2 and 2 < p < q <∞
separately.

2.1. The case 1 = p < q < 2. This is straightforward. There is an
explicit formula for the solutions of (2.1), defined on the whole half line
[0,∞). It reads

h(t) = exp(qtq−1)
[∞�
t

exp(−qsq−1) ds+ α
]
, α ∈ R,

and it is easy to check that the solution h we are interested in corresponds
to the case α = 0.

2.2. Duality. Before we turn to the remaining two cases, let us make
a crucial observation. Suppose p > 1. A deeper look into the equation (2.1)
reveals the following dual structure. Let us write (2.1)p,q to indicate the
dependence on p and q. If h is a solution to (2.1)p,q, then the function G
given by

(2.2) G(x) = βh((αx)1/(q−1))p−1,
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where

α =
(
q

p

)p(q−1)/(p−q)(p− 1
q − 1

)(p−1)(q−1)/(p−q)
,

β =
(
p

q

)q(p−1)/(p−q)(q − 1
p− 1

)(p−1)(q−1)/(p−q)
,

(2.3)

is a solution to (2.1)p′,q′ . Here p′ = p/(p − 1), q′ = q/(q − 1) denote the
harmonic conjugates of p and q. To see this, note that (2.1) implies

p(2− p)h′((αx)1/(q−1)) + p = q(q − 1)(αx)(q−2)/(q−1)h((αx)1/(q−1))2−p.

Dividing through by the right-hand side, we obtain
(2− p)p
(p− 1)q

1
αβ

G′(x)+
p

q(q − 1)
β(2−p)/(p−1)G(x)(p−2)/(p−1) · (αx)(2−q)/(q−1) = 1

and the choice (2.3) of the parameters α, β gives(
2− p

p− 1

)
G′(x) + 1 =

q
q−1 ·

1
q−1x

(2−q)/(q−1)G(x)(p−2)/(p−1)

p/(p− 1)
,

i.e. (2.1)p′,q′ for h = G.

2.3. The case 1 < p < q < 2. We have the following.

Theorem 2.1. There exists an increasing solution ĥ : [0,∞) → [0,∞)
of (2.1)p,q satisfying ĥ(0) > 0 and ĥ′(t)→ 0, ĥ(t)→∞, as t→∞.

Proof. In fact, we do not know if (2.1)p,q has any solutions on the whole
half line [0,∞). Let h be a function, defined on a certain subinterval of
[0,∞) on which it satisfies the differential equation. This function can be
extended to its maximal domain, which is a certain interval I. Note that
since (2 − p)h′(x) + 1 > 0, the interval I contains its left end; therefore,
I = [a, b], [a, b) or [a,∞). Observe that a = 0. Indeed, otherwise we would
have h(a) = 0 (by maximality of the domain) and h′(a+) = −1/(2− p) < 0,
a contradiction.

It is convenient to divide the remaining part of the proof into a few steps.

Step 1. For a fixed z ∈ (0,∞), by Picard–Lindelöf’s theorem, there is
a unique solution h(z) to (2.1)p,q, satisfying the condition

(2.4) q(q − 1)zq−2[h(z)(z)]2−p = p,

or, equivalently, (h(z))′(z) = 0 (again, it is extended to its maximal domain).
We will show that

h(z) is strictly concave,(2.5)

h(z)(0) > 0.(2.6)
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Let us write h instead of h(z). We have the identity

(2.7) h′′(x) =
q(q − 1)
(2− p)p

h(x)1−pxq−3[(2− p)h′(x)x− (2− q)h(x)].

Denote the expression in the square brackets by F (x) and derive

(2.8) F ′(x) = (2− p)h′′(x)x+ (q − p)h′(x).
Suppose that there is S ∈ (0, z) for which h′′(S) = 0. Then by (2.7) we
have h′(S) > 0 and hence F ′(S) > 0. It is easy to see that this implies
F ′(x) > 0 and h′′(x) > 0 for x > S and hence h′ has no zeros larger than S,
a contradiction. Therefore h′′(x) 6= 0 for x < z. However, by (2.7), we have
h′′(z) < 0 and thus h′′(x) < 0 for x ≤ z. On the other hand, (2.8) gives
F ′(z) < 0, and so F ′(x) < 0 and h′′(x) < 0 for x > z. This gives (2.5).

Now note that, by (2.1),[
p(2− p)
p− 1

h(x)p−1 − qxq−1

]′
= p(2− p)h(x)p−2h′(x)− q(q − 1)xq−2(2.9)

= −ph(x)p−2 < 0

and hence
p(2− p)
p− 1

h(0)p−1 >
p(2− p)
p− 1

h(z)p−1 − qzq−1.

However, by (2.4), the right-hand side equals

p(2− p)
p− 1

(
p

q(q − 1)

)(p−1)/(2−p)
z(p−1)(2−q)/(2−p) − qzq−1,

which is nonnegative for small z, as
(p− 1)(2− q)

2− p
< q − 1.

Thus we have proved h(z)(0) > 0 for small z. However, this is sufficient: by
(2.4), the greater z, the greater h(z)(z), and hence, the greater h(z)(0).

Step 2. Now we will provide a uniform bound for h(z), z ∈ (0,∞). Let

w =
(
p(3− q)
q(q − 1)

)1/(q−p)

and denote by hw the unique solution of (2.1) satisfying hw(w) = w (ex-
tended to its maximal domain). It is easy to check that

(2− p)h′w(w)w − (2− q)hw(w) = 0

and hence h′′w(w) = 0, by (2.7). Thus hw 6= h(z) for any z. Furthermore, by
(2.9) applied to h = hw, we have, for any x > 0,

p(2− p)
p− 1

hw(0)p−1 >
p(2− p)
p− 1

hw(x)p−1 − qxq−1,
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and hence the maximal domain of hw equals [0,∞). Now if h > hw is any
solution of (2.1), then h′ > h′w > 0, and therefore h does not coincide with
h(z) for any z. In other words, suph(z) ≤ hw.

Step 3. The function we search for in the theorem is defined by

ĥ(x) = sup{h(z)(x) : z > x} = lim
z→∞

h(z)(x).

Note that ĥ is finite due to Step 3. Clearly, ĥ is a solution to (2.1) and
ĥ(0) > 0. Furthermore, it is nondecreasing, since (h(z))′(x) > 0 for any
x < z. In fact, it is increasing, since otherwise h′(z) = 0 for some z and thus
the function would coincide with h(z), which is impossible. To complete the
proof, note that ĥ′(x) ≤ ĥ′(1) for x > 1 and, by (2.1),

ĥ(x) ≤
(

p

q(q − 1)
((2− p)ĥ′(1) + 1)x2−q

)1/(2−p)
,

which implies ĥ′ → 0 as t → ∞. Combined with (2.1)p,q, this immediately
yields ĥ(t)→∞ as t→∞.

2.4. The case 2 < p < q <∞. Then q ∈ (p,∞). We have the following
fact.

Theorem 2.2. There exists an increasing solution ĥ : [0,∞) → [0,∞)
of (2.1)q,p satisfying ĥ′(t) ↓ 0 as t→∞.

Proof. We use duality. Let h be the solution of (2.1)q′,p′ as in Theorem
2.1 and let ĥ be its dual defined by the transformation (2.2). Then ĥ is
defined on the whole half line [0,∞), ĥ(0) > 0, ĥ(t)→∞ as t→∞, and

ĥ′(x) = βα(q′ − 1)−1(x′)2−q
′
h(x′)p

′−2h′(x′),

where x′ = (αx)1/(q−1). It suffices to note that, by (2.1)q′,p′ ,

(x′)2−q
′
h(x′)p

′−2 ≤ q′(q′ − 1)
p′

,

so h′(x′)→ 0 as x→∞. The proof is complete.

In all the considerations below, we will denote the solution ĥ of (2.1)
by h. We conclude this section by introducing another function to be used
later: let H : [h(0),∞)→ [0,∞) be the inverse to t 7→ t+ h(t). We have the
following trivial equalities:

(2.10) h(H(t)) +H(t) = t,

(2.11) h′(H(t)) + 1 =
1

H ′(t)
.

Now, as explained at the beginning of this section, we are able to provide
a formula for the function Up,q. The next step would be to check conditions
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(i)–(iii) listed at the end of Section 1. However, the verification of (ii) is quite
elaborate; to overcome this difficulty, we will take a different approach.

3. Simple special functions and the integration argument. In
order to prove inequality (1.1), Burkholder invented a special function W1 :
H×H → R given by

W1(x, y) =
{
|y|2 − |x|2 if |x|+ |y| ≤ 1,
1− 2|x| if |x|+ |y| > 1

and showed (cf. [Bu4]) thatW1 has the following property: if x, y, kx, ky ∈ H
satisfy |ky| ≤ |kx|, then the function G : R→ R given by

(3.1) G(t) = Gx,y,kx,ky(t) = W1(x+ tkx, y + tky)

is concave. As explained in [Bu4] (see also the proof of Lemma 3.1 below), this
property implies that W1 satisfies the condition (ii) at the end of Section 1.
More specifically, if f, g are martingales such that for some n ≥ 1 we have
|dgn| ≤ |dfn|, then
(3.2) EW1(fn, gn) ≤ EW1(fn−1, gn−1).

As a consequence, if g is differentially subordinate to f , then the sequence
(EW1(fn, gn)) is nonincreasing. This property is preserved by integration
against positive kernels. To be more precise, let w : R+ → R+ be such that
for all x, y ∈ H,

∞�

0

w(t)|W1(x/t, y/t)| dt <∞.

Now if we take β ∈ R and set

(3.3) U(x, y) =
∞�

0

w(t)W1(x/t, y/t)dt+ β,

then the sequence (EU(fn, gn)) is nonicreasing, provided all the expectations
exist. Furthermore, W1(x, y) ≤ 0 for all x, y satisfying |y| ≤ |x|, which
implies U(x, y) ≤ β for such x, y, and so, for f and g as above,

(3.4) EU(fn, gn) ≤ EU(f0, g0) ≤ β, n = 0, 1, 2, . . . .

Using the function W1 and integration, we will obtain the special functions
corresponding to the moment inequalities in case 1 ≤ p < 2. To cover other
possible choices of the parameter p, we need a dual function to W1. Let us
introduce W∞ : H×H → R by

W∞(x, y) =
{

0 if |x|+ |y| ≤ 1,
(|y| − 1)2 − |x|2 if |x|+ |y| > 1.

The function W∞ has the concavity property described above. More pre-
cisely, we have the following.
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Lemma 3.1. Fix x, y, kx, ky ∈ H such that |ky| ≤ |kx|. The function
G : R→ R given by

(3.5) G(t) = Gx,y,kx,ky(t) = W∞(x+ tkx, y + tky)

is concave.

Proof. For t such that |y+ tky| 6= 0 and |x+ tkx|+ |y+ tky| > 1, we have

G′′(t) = 2(|ky|2 − |kx|2)− 2 · |ky|
2 − ((y + tky)′, ky)2

|y + tk|
≤ 0,

where we have set z′ = z/|z| for z ∈ H\{0}. If |x+ tkx|+ |y+ tky| < 1, then
G′′(t) = 0. For the remaining t we easily check that G′(t+) ≤ G′(t−).

As previously, this implies the following property: if g is differentially
subordinate to f and f ∈ L2, then the sequence (EW∞(fn, gn)) is nonin-
creasing. This property carries over to the function U defined by (3.3) with
W1 replaced by W∞. As W∞(x, y) ≤ 0 for x, y satisfying |y| ≤ |x|, we have,
by the arguments used above,

EU(fn, gn) ≤ EU(f0, g0) ≤ β, n = 0, 1, 2, . . . .

We conclude this section with a result which will be used in the proof of
strictness of our main estimates.

Lemma 3.2. Fix n ≥ 1 and suppose that f , g are martingales such that
g is differentially subordinate to f . Assume further that |fn−1| + |gn−1| < 1
almost surely and P(|fn|+ |gn| > 1) > 0. Then

(3.6) EW1(fn, gn) < EW1(fn−1, gn−1)

and, if f is square integrable,

(3.7) EW∞(fn, gn) < EW∞(fn−1, gn−1).

Proof. Let x, y, kx, ky ∈ H satisfy |x| + |y| < 1 and |ky| ≤ |kx|. The
concavity of the function G given by (3.1) gives G(1) ≤ G(0) +G′(0), or

W1(x+ kx, y + ky) ≤W1(x, y) + (W1x(x, y), h) + (W1y(x, y), k)

= |y|2 − |x|2 − 2(x, kx) + 2(y, ky).

Now, to establish (3.6), it suffices to show that if |x + kx| + |y + ky| > 1,
then the above estimate is strict. Indeed, if we prove this, we plug x = fn−1,
y = gn−1, kx = dfn and ky = dgn, thus obtaining an inequality which is
strict on a set of positive measure. Taking expectation of both sides yields
(3.6). So, assume that |x + kx| + |y + ky| > 1 and observe that the desired
estimate can be rewritten in the form

1− 2|x+ kx| < |y + ky|2 − |x+ kx|2 + |kx|2 − |ky|2,
or

(|x+ kx|+ |y + ky| − 1)(|x+ kx| − |y + ky| − 1) < |kx|2 − |ky|2.
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If |x + kx| < |y + ky| + 1, then this inequality holds: the left-hand side is
negative and the right-hand side is nonnegative. If, conversely, |x + kx| ≥
|y + ky|+ 1, then, using the trivial bounds |kx| ≥

∣∣|x+ kx| − |x|
∣∣ and |ky| ≤

|y + ky|+ |y|, we get

|kx|2 − |ky|2 ≥ (|x+ kx|+ |y + ky| −|x|+|y|)(|x+ kx| − |y + ky| −|x| −|y|)
> (|x+ kx|+ |y − ky| − 1)(|x+ kx| − |y − ky| − 1).

The reasoning forW∞ is similar: we must show that if x, y, kx, ky ∈ H satisfy
|x|+ |y| < 1, |x+ kx|+ |y + ky| > 1 and |ky| ≤ |kx|, then

W∞(x+ kx, y + ky) < W∞(x, y) + (W∞x(x, y), kx) + (W∞y(x, y), ky),

or, equivalently,

(|x+ kx|+ |y + ky| − 1)(−|x+ kx|+ |y + ky| − 1) < 0.

This follows immediately from

−|x+ kx|+ |y + ky| − 1 ≤ |x|+ |y| − 1 + |ky| − |kx| < 0.

4. Special functions. Here we determine the kernels w and numbers β
which give us the special functions Up,q : H ×H → R corresponding to the
moment inequality (1.5). For 1 ≤ p < q < 2, let h be the solution to (2.1)p,q,

(4.1) wp,q(t) =
p(2− p)

2
h(H(t))p−3h′(H(t))H ′(t)t2

and

(4.2) Up,q(x, y) =
∞�

h(0)

wp,q(t)W1(x/t, y/t) dt+
(2− p)h(0)p

2
.

For 2 < p < q <∞, let h be the solution to (2.1)q,p,

wp,q(t) =
q(q − 2)

2
h(H(t))q−3h′(H(t))H ′(t)t2

and

Up,q(x, y) =
∞�

h(0)

wp,q(t)W∞(x/t, y/t) dt(4.3)

+
q

2
h(0)q−2(|y|2 − |x|2) +

q − 2
2

h(0)q.

Note that the formulas for wp,q in the two cases are essentially the same: one
only has to switch the parameters p and q and change the sign.

Let us turn to the explicit formulas for Up,q. It can be verified that the
formulas in the two lemmas below agree with those introduced at the begin-
ning of Section 2. First we deal with the case 1 ≤ p < q < 2.
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Lemma 4.1. Let 1 ≤ p < q < 2. We have

(4.4) Up,q(x, y) = p
|y|2 − |x|2

2h(0)2−p
+

(2− p)h(0)p

2

if |x|+ |y| ≤ h(0), and

Up,q(x, y) = p|y|h(H(|x|+ |y|))p−1 − (p− 1)h(H(|x|+ |y|))p(4.5)
−H(|x|+ |y|)q−qH(|x|+ |y|)q−1(|x|−H(|x|+ |y|))

if |x|+ |y| > h(0).

Proof. Using the formula for W1 we see that if |x|+ |y| < h(0), then

Up,q(x, y) = (|y|2 − |x|2)
∞�

h(0)

wp,q(t)
t2

dt+
(2− p)h(0)p

2
.

Now we have, for any s > 0,

(4.6)
∞�

s

wp,q(t)
t2

dt =
p

2

∞�

s

[−h(H(t))p−2]′ dt =
p

2
h(H(s))p−2

and hence (4.4) is valid. Suppose now that |x|+ |y| ≥ h(0). We have

Up,q(x, y) =
|x|+|y|�

h(0)

wp,q(t) dt− 2|x|
|x|+|y|�

h(0)

wp,q(t)
t

dt(4.7)

+ (|y|2 − |x|2)
∞�

|x|+|y|

wp,q(t)
t2

dt+
(2− p)h(0)p

2

and we need to calculate the first and the second integral. First note that as
H is inverse to t 7→ t+ h(t), we have

s�

h(0)

h(H(t))p−2 dt =
s�

h(0)

h(H(t))p−2H ′(t)(1 + h′(H(t))) dt

=
s�

h(0)

h(H(t))p−2H ′(t) dt

+
s�

h(0)

h(H(t))p−2h′(H(t))H ′(t) dt.

The equation (2.1), applied to x = H(t), is equivalent to

h(H(t))p−2H ′(t) =
q(q − 1)H(t)q−2H ′(t)

p
+(p−2)h(H(t))p−2h′(H(t))H ′(t),
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which combined with the previous equality gives

(4.8)
s�

h(0)

h(H(t))p−2 dt

=
s�

h(0)

q(q − 1)H(t)q−2H ′(t)
p

dt+ (p− 1)
s�

h(0)

h(H(t))p−2h′(H(t))H ′(t) dt

=
qH(s)q−1

p
+ h(H(s))p−1 − h(0)p−1.

Therefore, integrating by parts we obtain
s�

h(0)

wp,q(t)
t

dt =
p

2

s�

h(0)

t[−h(H(t))p−2]′ dt(4.9)

= −p
2
sh(H(s))p−2 +

p

2
h(0)p−1 +

p

2

s�

h(0)

h(H(t))p−2 dt

= −p
2
sh(H(s))p−2 +

qH(s)q−1

2
+
p

2
h(H(s))p−1,

where in the last passage we have used (4.8). Finally, integration by parts
gives

s�

h(0)

wp,q(t) dt =
p

2
[−s2h(H(s))p−2 + h(0)p] + p

s�

h(0)

th(H(t))p−2 dt

and
s�

h(0)

th(H(t))p−2dt =
s�

h(0)

[
h(H(t)) +H(t)

]
h(H(t))p−2 dt

=
s�

h(0)

h(H(t))p−1dt+
s�

h(0)

H(t)h(H(t))p−2 dt = I1 + I2.

Again integrating by parts, we obtain

I1 = sh(H(s))p−1 − h(0)p − (p− 1)
s�

h(0)

th(H(t))p−2h′(H(t))H ′(t) dt

and, using the equality t = h(H(t)) +H(t),

−(p− 1)
s�

h(0)

th(H(t))p−2h′(H(t))H ′(t) dt = J1 + J2 + J3,
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where

J1 = −(p−1)
s�

h(0)

h(H(t))p−1h′(H(t))H ′(t) dt =
p−1
p

[−h(H(s))p+h(0)p],

J2 = −
s�

h(0)

h(H(t))p−2h′(H(t))H(t)H ′(t) dt

J3 = (2− p)
s�

h(0)

h(H(t))p−2h′(H(t))H(t)H ′(t) dt.

We find that I2 + J2 equals
s�

h(0)

h(H(t))p−2H(t)[1− h′(H(t))H ′(t)] dt =
s�

h(0)

h(H(t))p−2H(t)H ′(t) dt,

so, by (2.1), I2 + J2 + J3 is given by

1
p

s�

h(0)

q(q − 1)H(t)q−2H(t)H ′(t)dt =
1
p

s�

h(0)

[(q − 1)H(t)q]′ dt

=
(q − 1)H(s)q

p
.

Summarizing, we have shown that
s�

h(0)

wp,q(t) dt =
p

2
[−s2h(H(s))p−2 + h(0)p] + p(sh(H(s))p−1− h(0)p)(4.10)

+ (p− 1)(−h(H(s))p + h(0)p) + (q − 1)H(s)q.

Now insert (4.6), (4.9) and (4.10) in (4.7) to obtain (4.5).

Analogous arguments lead to the following formula for Up,q in the case
2 < p < q <∞.

Lemma 4.2. Let 2 < p < q <∞. We have

(4.11) Up,q(x, y) = q
|y|2 − |x|2

2h(0)2−q
+
q − 2

2
h(0)q

if |x|+ |y| ≤ h(0), and

Up,q(x, y) = H(|x|+ |y|)p + pH(|x|+ |y|)p−1(|y| −H(|x|+ |y|))(4.12)

−h(H(|x|+ |y|))q+qh(H(|x|+ |y|))q−1(|y|−H(|x|+ |y|))

if |x|+ |y| > h(0).
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Proof. If |x|+ |y| ≤ h(0), then the integral term in the definition of Up,q
vanishes and (4.11) is valid. If |x|+ |y| > h(0), then

Up,q(x, y) = (|y|2 − |x|2)
|x|+|y|�

h(0)

wp,q(t)
t2

dt− 2|y|
|x|+|y|�

h(0)

wp,q(t)
t

dt(4.13)

+
|x|+|y|�

h(0)

wp,q(t) dt+ q
|y|2 − |x|2

2h(0)2−q
+
q − 2

2
h(0)q

and the first integral is given by
|x|+|y|�

h(0)

(
q

2
h(H(t))q−2

)′
dt =

q

2
(h(H(|x|+ |y|))q−2 − h(0)q−2).

To compute the remaining two integrals, we recall the similarity of the for-
mulas for wp,q in the cases 1 ≤ p < q < 2, 2 < p < q < ∞ and see that
the arguments leading to (4.9) and (4.10) are still valid (one only needs to
interchange p and q, and change the sign). Now insert the equalities to (4.13)
to obtain (4.12).

Now we turn to the majorization property. Recall that Vp,q : H×H → R
is given by Vp,q(x, y) = |y|p − |x|q.

Lemma 4.3. For any (x, y) ∈ H ×H we have Up,q(x, y) ≥ Vp,q(x, y).

Proof. Clearly, it suffices to prove the lemma for H = R. We will present
all the details in the case 1 ≤ p < q < 2 only; the remaining case can be
established in the same manner. For the convenience of the reader, the proof
is split into a few parts.

Step 1: Reduction to the set |x| + |y| ≥ h(0). If |x| + |y| < h(0), then,
for fixed x, the expression Up,q(x, y) − Vp,q(x, y), considered as a function
of |y|, is nonincreasing (simply calculate the derivative and use the fact that
|y| ≤ h(0)). Hence Up,q(x, y)−Vp,q(x, y) ≥ Up,q(x, z)−Vp,q(x, z), where z ∈ H
satisfies |x| + |z| = h(0). Therefore, it suffices to establish the majorization
on the set |x|+ |y| ≥ h(0).

Step 2: p = 1. The majorization follows from the convexity of the func-
tion t 7→ tq: indeed, the inequality Up,q(x, y) ≥ Vp,q(x, y) is equivalent to

|x|q −H(|x|+ |y|)q − qH(|x|+ |y|)q−1 · (|x| −H(|x|+ |y|)) ≥ 0.

Therefore, till the end of the proof, we assume that p 6= 1.

Step 3: Reduction to the case y= 0. Fix r≥h(0) and suppose |x|+ |y|= r.
Denoting s = |y| we see that Up,q(x, y) ≥ Vp,q(x, y) is equivalent to
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F (s) = psh(H(r))p−1 − (p− 1)h(H(r))p(4.14)
−H(r)q − qH(r)q−1h(H(r))− sp + (r − s)q ≥ 0.

We have F (h(H(r))) = F ′(h(H(r))) = 0. Furthermore, the second derivative
of F , equal to F ′′(s) = −p(p − 1)sp−2 + q(q − 1)(r − s)q−2, is negative on
(0, s0) and positive on (s0, r) for some s0 ∈ (0, r). Therefore, to show (4.14),
it suffices to prove that F (0) ≥ 0, or Up,q(x, 0) ≥ Vp,q(x, 0).

Step 4: Up,q(x, 0) > Vp,q(x, 0) for large |x|. As q < 2, we have, for
large s,

sq − (H(s))q − q(H(s))q−1h(H(s))
h(H(s))p

>
q(q − 1)

2
sq−2h(H(s))2−p

=
q(q − 1)

2
H(s)q−2h(H(s))2−p ·

(
s

H(s)

)q−2

.

But, by (2.1),
q(q − 1)

2
H(s)q−2h(H(s))2−p ≥ p

2
and, by (2.10) and Theorem 2.1,

s

H(s)
= 1 +

h(H(s))
H(s)

→ 1 as s→∞.

Since p/2 > p− 1, we see that

sq −H(s)q − qH(s)q−1h(H(s))
h(H(s))p

> p− 1

for large s. This is equivalent to Up,q(x, 0) > Vp,q(x, 0) with |x| = s.

Step 5: Up,q(x, 0) ≥ Vp,q(x, 0): the general case. Suppose the inequality
does not hold for some x. Let T denote the largest t satisfying Up,q(t, 0) =
Vp,q(t, 0) (its existence is guaranteed by the continuity of Up,q and Vp,q and
the previous step). By the considerations above, Up,q ≥ Vp,q on the set
|x| + |y| ≥ T . Consider the processes f = (f0, f1, f2), g = (g0, g1, g2) on
a probability space ([0, 1],B([0, 1]), | · |) such that (f0, g0) ≡ (T, 0) and

df1 = dg1 = δχ[0,t0] − h(H(T ))χ(t0,1],

df2 = −dg2 = δχ[0,t1] − (h(H(T ))− δ)χ(t1,t0],

where

t0 =
h(H(T ))

h(H(T )) + δ
, t1 = t0 ·

h(H(T ))− δ
h(H(T ))

=
h(H(T ))− δ
h(H(T )) + δ

.

It is straightforward to check that f and g are martingales and g is differ-
entially subordinate to f . Note that Up,q(f2, g2) ≥ Vp,q(f2, g2) almost surely,
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as |f2|+ |g2| ≥ T with probability 1. By (3.2) with W replaced by Up,q,

−T q = Up,q(T, 0) = EUp,q(f0, g0) ≥ EUp,q(f2, g2) ≥ EVp,q(f2, g2)

=
2δ

h(H(T )) + δ
(h(H(T ))p −H(T )q)− h(H(T ))− δ

h(H(T )) + δ
(T + 2δ)q,

which is equivalent to
(T + 2δ)q − T q

2δ
− (T + 2δ)q

h(H(T )) + δ
+

H(T )q

h(H(T )) + δ
≥ h(H(T ))p

h(H(T )) + δ
.

Letting δ → 0 and multiplying through by h(H(T )) yields

(4.15) h(H(T ))p ≤ H(T )q − T q − qT q−1h(H(T )).

But

(4.16) H(T )q − T q − qT q−1h(H(T )) ≤ T q −H(T )q − qH(T )q−1h(H(T )).

To see this, substitute H(T ) = a > 0, T −H(T ) = b > 0 and observe that
(4.16) becomes

2[(a+ b)q − aq]− [qaq−1 + q(a+ b)q−1]b ≥ 0.

Now calculate the derivative of the left-hand side with respect to b: it is
equal to

q(a+ b)q−1 − qaq−1 − q(q − 1)(a+ b)q−2b ≥ 0,

due to the mean value theorem. Thus (4.16) follows.
To conclude the proof, observe that (4.15) and (4.16) give

h(H(T ))p ≤ T q −H(T )q − qH(T )q−1h(H(T )),

and since p < 2, this implies

(p− 1)h(H(T ))p < T q −H(T )q − qH(T )q−1h(H(T )),

a contradiction: this inequality is equivalent to Up,q(T, 0) < Vp,q(T, 0).

Remark 4.4. A careful inspection of the proof shows that Up,q(x, y) =
Vp,q(x, y) if and only if |y| = h(|x|).

5. Proofs of moment inequalities. Now we are ready to establish the
inequalities announced in the introduction. Suppose 1 ≤ p < q <∞ and let

(5.1) Lp,q =

{
1
2(2− p)h(0)p if 1 ≤ p < q < 2,
1
2(q − 2)h(0)q if 2 < p < q <∞

and

(5.2) Cp,q =


L(q−p)/pq
p,q

(
q − p
p

)1/q( q

q − p

)1/p

if 1 ≤ p < q < 2,

or 2 < p < q <∞,
1 otherwise.
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Theorem 5.1. Assume g is differentially subordinate to f .

(i) If 1 ≤ p < q < 2 or 2 < p < q <∞, then (1.5) holds.
(ii) If 1 ≤ p < q <∞, then the inequality (1.4) holds.

Remark 5.2. (i) If p = 1, then there are explicit formulas for the con-
stants Cp,q, given by

C1,q =


[
q

2
Γ

(
q

q − 1

)](q−1)/q

if q ∈ (1, 2),

1 if q ≥ 2.
(ii) It is easy to check that Cp,q = Cq′,p′ for 1 < p < q <∞.
Proof of Theorem 5.1. With no loss of generality we may assume 0 <

‖f‖q<∞, which, by Burkholder’s inequality (1.2), implies ‖g‖p≤‖g‖q<∞.
Since H(s) ≤ s and h(H(s)) ≤ s, it follows that the variables Up,q(fn, gn),
n = 0, 1, 2, . . . , are integrable and, by Lemma 4.3 and (3.4), for any n =
0, 1, 2, . . . ,

EVp,q(fn, gn) ≤ EUp,q(fn, gn) ≤ EUp,q(f0, g0) ≤ Lp,q.
It suffices to let n→∞ to obtain (1.5). Now we turn to (1.4). If p ≤ 2 ≤ q,
the inequality is clear: we have ‖g‖p ≤ ‖g‖2 ≤ ‖f‖2 ≤ ‖f‖q. Suppose that
1 ≤ p < q < 2. As already proved, we have

‖g‖pp ≤ ‖f‖qq + Lp,q.

Since for λ > 0, g · λ1/(q−p) is differentially subordinate to f · λ1/(q−p), we
obtain

(5.3) ‖g‖pp ≤ λ‖f‖qq +
Lp,q

λp/(q−p)
.

It can be easily checked that the right-hand side, as a function of λ, attains
its minimum for

λ =
(

p

q − p
· Lp,q
‖f‖qq

)(q−p)/q

and the minimum is equal to[
L(q−p)/pq
p,q ·

(
q − p
p

)1/q( q

q − p

)1/p

‖f‖q
]p
.

The case 2 < p < q <∞ is dealt with in exactly the same manner.

Theorem 5.3. Let 1 < p <∞. Then

lim
p′,q′→p

Cp′,q′ = p∗ − 1.

Proof. The inequalities (1.2) and (1.4) are sharp even if H = R, f is
simple and g is a ±1 transform of f (see [Bu2] and Theorem 7.2 below).
Recall that f is simple if for any n the variable fn takes only a finite number
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of values and there is a deterministic N such that fN = fN+1 = fN+2 = · · ·
with probability 1. Note that if f is simple, then so is its ±1 transform g.

Fix 1 < p < ∞ and a pair (f, g) as above. Let 1 ≤ pn < qn < ∞,
n = 0, 1, 2, . . . , satisfy limn→∞ pn = limn→∞ qn = p. Observe that we have
‖g‖pn ≤ Cpn,qn‖f‖qn , limn→∞ ‖g‖pn = ‖g‖p and limn→∞ ‖f‖qn = ‖f‖p
(there are no problems with integrability, as the martingales are simple).
Consequently, ‖g‖p ≤ lim infn→∞Cpn,qn‖f‖p and hence

p∗ − 1 ≤ lim inf
n→∞

Cpn,qn .

On the other hand, for any n we have ‖g‖pn ≤ ‖g‖qn ≤ (q∗n− 1)‖f‖qn , which
implies Cpn,qn ≤ q∗n − 1 and

lim sup
n→∞

Cpn,qn ≤ p∗ − 1.

6. Related estimates for the first moment. The method above can
be extended to establish some related inequalities. Suppose Φ : [0,∞) →
[0,∞) is a function satisfying the following conditions: Φ is an increasing
convex C2 function such that Φ(0) = Φ′(0+) = 0,

(6.1) Φ′′(t) ↓ 0 as t→∞
and

(6.2)
∞�

0

exp(−Φ′(s)) ds <∞.

For example, one can take Φ(t) = tq, q ∈ (1, 2), or Φ(t) = t log(1 + t). Note
that the above conditions imply that Φ is strictly convex.

The purpose of this section is to establish the inequality

(6.3) ‖g‖1 ≤ sup
n

EΦ(|fn|) + L(Φ)

for any pair (f, g) of H-valued martingales such that g is differentially sub-
ordinate to f . Here L(Φ) is a constant which depends only on Φ. Let

(6.4) h(t) = exp(Φ′(t))
∞�

t

exp(−Φ′(s)) ds

and let H be an inverse function to t 7→ t+ h(t). The special function U1,Φ :
H ×H → R corresponding to (6.3) is defined as follows: if |x| + |y| ≤ h(0),
then

(6.5) U1,Φ(x, y) =
|y|2 − |x|2

2h(0)
+
h(0)

2
,

while for |x|+ |y| > h(0) and |y| ≤ h(|x|), set
(6.6) U1,Φ(x, y) = |y|−Φ(H(|x|+ |y|))−Φ′(H(|x|+ |y|))(|x|−H(|x|+ |y|)).
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Finally, if |y| > h(|x|) (then |x|+ |y| > h(0)), define

(6.7) U1,Φ(x, y) = |y| − Φ(|x|).
If one takes Φ(t) = tq, 1 < q < 2, one obtains an alternative special function
for the moment inequalities. One can check (arguing as in the proof of Lemma
4.1) that we have the following integral identity: for |y| ≤ h(|x|),

(6.8) U1,Φ(x, y) =
∞�

h(0)

w1,Φ(t)W1(x/t, y/t) dt,

where
w1,Φ(t) =

1
2
h(H(t))−2h′(H(t))H ′(t)t2.

The reason for which we modify the function on the set |y| > h(|x|) (and use
the formula (6.7) instead of (6.6)) is to avoid the problem of integrability of
the variables U1,Φ(fn, gn), n = 0, 1, 2, . . . .

The key properties of the function U1,Φ are gathered in the lemma below.
The function V1,Φ : H×H → R is given by V1,Φ(x, y) = |y| − Φ(|x|).

Lemma 6.1.

(i) For any (x, y) ∈ H × H we have U1,Φ(x, y) ≥ V1,Φ(x, y). Equality
holds if and only if |y| ≥ h(|x|).

(ii) Assume that x, y, kx, ky ∈ H satisfy |ky| ≤ |kx|. Then the function
G : R→ R given by G(t) = U1,Φ(x+ tkx, y + tky) is concave.

Proof. (i) Arguing as in the proof of Lemma 4.3, we see that it suffices
to establish the majorization for |x| + |y| > h(0). If |y| ≥ h(|x|), then we
have equality: U1,Φ(x, y) = V1,Φ(x, y). For remaining x, y, the estimate is
equivalent to

Φ(|x|)− Φ(H(|x|+ |y|))− Φ′(H(|x|+ |y|))(|x| −H(|x|+ |y|)) ≥ 0,

which follows from the convexity of Φ. In fact, the latter inequality is strict,
since Φ is strictly convex.

(ii) By (6.8), the function G is concave on the set of those t for which
|y + tky| < h(|x + tkx|). Let us prove G′′(t) < 0 for t such that |y + tky| >
h(|x+ tkx|), |x+ tkx| > 0. By translation, we may assume t = 0. We have

G′′(0) =
|ky|2 − (y′, ky)2

|y|
− Φ′′(|x|)(x′, kx)2 − Φ′(|x|)

|kx|2 − (x′, kx)2

|x|
,

which, as Φ′(|x|) ≥ Φ′′(|x|)|x|, can be bounded from above by

|ky|2

|y|
− Φ′′(|x|)|kx|2 ≤

|ky|2

h(|x|)
− Φ′′(|x|)|kx|2

=
|ky|2 − |kx|2

h(|x|)
+

(1− Φ′′(|x|)h(|x|))|kx|2

h(|x|)
.
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It suffices to show that both summands appearing in the last expression are
nonpositive. This is clear for the first one, as |ky| ≤ |kx|. To deal with the
second one, note that by concavity of Φ′, for any s > t we have

(6.9) Φ′(s) ≤ Φ′(t) + Φ′′(t)(s− t)

and hence, for any t,

h(t) =
∞�

t

exp(Φ′(t)− Φ′(s)) ds ≥
∞�

t

exp(−Φ′′(t)(s− t)) ds =
1

Φ′′(t)
.

The final observation is that G′(t+) ≤ G′(t−) if |y + tky| = h(|x + tkx|) or
|x+ tkx| = 0; hence G is concave.

Now we can prove the following result.

Theorem 6.2. Assume g is differentially subordinate to f . Then the
inequality (6.3) holds with

(6.10) L(Φ) =
h(0)

2
=

1
2

∞�

0

exp(−Φ′(s)) ds.

Proof. We proceed as previously. With no loss of generality we may
assume that supn EΦ(|fn|) < ∞, which guarantees the integrability of
U1,Φ(fn, gn), n = 0, 1, 2, . . . , and we have

EV1,Φ(fn, gn) ≤ EU1,Φ(fn, gn) ≤ EU1,Φ(f0, g0) ≤ L(Φ)

for all n. Let n→∞ to complete the proof.

As an example, we will establish a family of log log-estimates for the first
moment of the martingale g. As a motivation, note that the inequality (1.3)
holds with some finite L if and only if K > 1. Therefore, there is a natural
question what happens in the limit case K = 1. The (partial) answer is
contained in the following theorem.

Theorem 6.3. If g is differentially subordinate to f , then, for any K>1,

(6.11) ‖g‖1 ≤ sup
n

[E|fn| log(|fn|+ 1) +KE log log(|fn|+ e)]

+
1
2

∞�

0

1
(s+ 1)(log(s+ e))K

exp
(
− s

s+ 1
− Ks

(s+ e) log(s+ e)

)
ds.

To prove this, let Φ be given by Φ(t) = t log(t+1)+Kt log log(t+e). Then
the assertion follows from Theorem 6.2, once we check that this function has
all the properties given at the beginning of this section. Clearly, Φ is convex,
C2 and Φ(0) = Φ′(0+) = 0. Furthermore,

Lemma 6.4. For any K > 0 the condition (6.1) is valid.
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Proof. It is easy to see that Φ′′(t) → 0 as t → ∞. Hence it suffices to
show that Φ′′′ < 0. Let ψ1 = t log(t+1) and ψ2(t) = t log log(t+e). We have

ψ′′′1 (t) = − 2
(t+ 1)3

− 1
(t+ 1)2

< 0

and

ψ′′′2 (t) =
−3e log(t+ e)− 3e log2(t+ e)− t log2(t+ e) + 2t

((t+ e) log(t+ e))3
.

If t ∈ (0, 3e], then 2t ≤ 6e ≤ 3e log(t+ e) + 3e log2(t+ e), which implies that
the derivative is negative. This is also true for t > 3e, which follows from the
estimate 2t < t log2(4e) < t log2(t+ e).

The last property we need is the following.

Lemma 6.5. If K > 1, then the condition (6.2) holds.

Proof. We have

Φ′(t) = log(t+ 1) +K log log(t+ e) +
t

t+ 1
+K

t

(t+ e) log(t+ e)
(6.12)

≥ log(t+ 1) +K log log(t+ e).

Therefore
∞�

0

exp(−Φ′(s)) ds <
∞�

0

ds

(s+ 1)(log(s+ e))K
<∞.

Therefore we may apply Theorem 6.2 to the function Φ. One easily checks
that the constant L(Φ) is given by the expression appearing on the right-hand
side of (6.11).

7. Strictness and sharpness. In this final section of the paper, we
address the strictness of the estimates studied above as well as the optimality
of the constants Lp,q, Cp,q and L(Φ). First we establish the following result.

Theorem 7.1. The inequality (1.5) is strict for all 1 ≤ p < q < 2 and
2 < p < q < ∞, unless both sides are infinite. The inequality (1.4) is strict
for 1 ≤ p < q < 2 and 2 < p < q <∞, unless both sides are infinite or equal
to 0. If 2 ∈ [p, q], then both sides of (1.4) may be equal for some nontrivial
f and g. The inequality (6.3) is strict unless both sides are infinite.

Proof. We start by showing that equality in (1.5) cannot be attained.
First we consider the case 1 ≤ p < q < 2. Let h be the corresponding
solution to (2.1)p,q and fix martingales f , g such that ‖f‖q < ∞ and g is
differentially subordinate to f . Our goal is to prove that ‖g‖p < ‖f‖q +
Lp,q. We may assume that (f0, g0) ≡ (0, 0), which can be shown by the
following standard argument. Take a Rademacher variable ε, independent of
σ(
⋃∞
n=1Fn) (enlarging the probability space, if necessary) and replace (f, g)
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by the pair (f̂ , ĝ) given by (f̂0, ĝ0) = (0, 0) and f̂n = εfn−1, ĝn = εgn−1,
relative to the filtration {∅, Ω} ⊂ σ(F0, ε) ⊂ σ(F1, ε) ⊂ · · · . Then f̂ , ĝ have
the required initial property and ‖f̂‖q = ‖f‖q, ‖ĝ‖p = ‖g‖p.

We will consider two cases: first, assume that that there is an integer N
such that P(|fN |+ |gN | > h(0)) > 0 and pick the smallest such N . Note that
N ≥ 1, since f and g start from 0. Then, for t in some interval of the form
(h(0), T ), we have |fN−1/t| + |gN−1/t| < 1 almost surely and P(|fN/t| +
|gN/t| > 1) > 0. By Lemma 3.1, for these t,

EW1(fN/t, gN/t) < EW1(fN−1/t, gN−1/t).

Since the kernel wp,q defined in (4.1) is positive, we obtain, by (4.2),

EUp,q(fN , gN ) < EUp,q(fN−1, gN−1).

This implies the strictness:

‖g‖pp − ‖f‖qq = lim
n→∞

EVp,q(fn, gn) ≤ EUp,q(fN , gN ) < EUp,q(f0, g0) = Lp,q.

We turn to the second case when for all n we have |fn| + |gn| ≤ h(0)
almost surely. Then the martingales f , g are bounded, so in particular they
converge in L2 to, say, f∞ and g∞. We have |f∞|+ |g∞| ≤ h(0) almost surely
and, by (1.2), ‖g∞‖22 ≤ ‖f∞‖22, so
(7.1) P(|f∞| > 0) > 0 or |f∞| = |g∞| = 0.

This implies

‖g‖pp − ‖f‖qq = ‖g∞‖pp − ‖f∞‖qq = EVp,q(f∞, g∞) < EUp,q(f∞, g∞) ≤ Lp,q,
where the strict inequality comes from Remark 4.4 and (7.1): the only x, y
satisfying |x|+ |y| ≤ h(0) and |y| = h(|x|) are given by x = 0 and |y| = h(0).
This shows that there are no f , g with ‖f‖q < ∞ for which both sides of
(1.5) are equal. The case 2 < p < q <∞ can be studied in the same manner,
using the second inequality from Lemma 3.1. Clearly, this implies that (1.4)
is strict for 1 ≤ p < q < 2 and 2 < p < q < ∞, unless ‖f‖q = ‖g‖p = 0 or
‖f‖q = ‖g‖p =∞. On the other hand, if 2 ∈ [p, q], then equality in (1.4) can
be attained: take, for example, f = g ≡ 1.

We conclude by observing that (6.3) is also strict unless both sides are
infinite. Although U1,Φ is not defined using an integral representation, it
majorizes the integral on the right of (6.8), with equality for |y| ≤ h(|x|)
and hence also for |x| + |y| ≤ h(0). This is all we need to apply the above
argument with the function W1. The strictness follows.

Now we turn to the optimality of the constants.

Theorem 7.2.

(i) The constants Lp,q, Cp,q given by (5.1) and (5.2) are the best possible
even in the case H = R and when g is a ±1 transform of f .
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(ii) If

(7.2) lim
t→∞

Φ(t+ h(t))− Φ(t)− Φ′(t)h(t)
exp(Φ′(t))

= 0,

then the constant L(Φ) defined by (6.10) is the best possible even in
the case H = R and when g is a ±1 transform of f .

The proof will be based on the construction of an appropriate example,
which will work for (i) in the case 1 ≤ p < q < 2, and for (ii) simultaneously.
Suppose h is the solution to (2.1)p,q for some 1 ≤ p < q < 2 or is given by
(6.4). Let U , V denote Up,q, Vp,q or U1,Φ, V1,Φ, respectively. Furthermore, in
the first case, assume that Φ(t) = tq, t ∈ [0,∞), and observe that (7.2) is
valid, which is a consequence of h(t)/t → 0 as t → ∞ (the latter being due
to h′(t)→ 0 as t→∞).

We start with the following auxiliary result.

Lemma 7.3. Assume H = R and let x > h(0) and δ ∈ (0, h(0)). Then

U(x+ δ, δ) =
δ

x+ 2δ−H(x+ 2δ)
U(H(x+ 2δ), x+ 2δ−H(x+ 2δ))(7.3)

+
x+ δ −H(x+ 2δ)
x+ 2δ −H(x+ 2δ)

U(x+ 2δ, 0)

and

U(x, 0) =
δ

x−H(x) + δ
U(H(x), x−H(x))(7.4)

+
x−H(x)

x−H(x) + δ
U(x+ δ, δ) +R(x, δ),

with R(x, δ) satisfying

(7.5) lim
δ→0

sup
h(0)≤x≤T

R(x, δ)
δ

= 0

for any T > h(0).

Proof. The first equality follows immediately from the fact that for any
x ≥ h(0), the function t 7→ U(x − t, t), t ∈ [0, x − H(x)], is linear. This
property is also needed in the second part: we may write

R(x, δ)
δ

=
−U(H(x), x−H(x)) + U(x, 0)

x−H(x) + δ

+
x−H(x)

x−H(x) + δ
· U(x, 0)− U(x+ δ, δ)

δ
,

and since Uy(x, 0) = 0, we have

U(H(x), x−H(x))− U(x, 0) = (H(x)− x)Ux(x, 0).
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Therefore,

R(x, δ)
δ

=
x−H(x)

x−H(x) + δ

(
Ux(x, 0)− U(x+ δ, δ)− U(x, 0)

δ

)
and, by the mean value property,∣∣∣∣R(x, δ)

δ

∣∣∣∣ ≤ ∣∣∣∣Ux(x, 0)− U(x+ δ, 0)− U(x, 0)
δ

− U(x+ δ, δ)− U(x+ δ, 0)
δ

∣∣∣∣
≤ |Ux(x, 0)− Ux(ξ, 0)|+ |Uy(x+ δ, η)|

for some ξ ∈ (x, x+ δ), η ∈ (0, δ). Now it is easy to see that (7.5) is valid for
any T : this follows from the uniform continuity of Ux(·, 0) on [h(0), T + 1]
and the uniform continuity of Uy on [h(0), T + 1]× [0, h(0)].

Now let us study the following example. Let T > h(0) be a fixed (large)
positive number. Let N be an integer and δ be a positive number such that
T = h(0) + 2Nδ. Eventually we will let δ go to 0 (and hence N to ∞).

Consider a Markov martingale (f, g), determined uniquely by the follow-
ing conditions.

(i) It starts from (h(0)/2, h(0)/2) almost surely.
(ii) From (h(0)/2, h(0)/2) it moves either to (h(0), 0), or to (0, h(0)).
(iii) For h(0) ≤ x < T , the state (x, 0) leads to (H(x), h(H(x))) or to

(x+ δ,−δ).
(iv) For h(0) ≤ x < T , the state (x + δ,−δ) leads to (H(x + 2δ),

−h(H(x+ 2δ))) or to (x+ 2δ, 0).
(v) For x ≥ T , the states (x, 0) are absorbing.
(vi) All the states lying on the curves y = ±h(x) are absorbing.

Note that in (ii)–(iv) we do not need to specify the transity probabilities,
as they are determined by the martingale property. Note that g is a ±1
transform of f .

From the proof of (1.5) we know that the sequence (EU(fn, gn)) is non-
increasing. The lemma below states that it is almost constant.

Lemma 7.4. We have

EU(f2N , g2N ) ≥ U(h(0)/2, h(0)/2)−N sup
h(0)≤x≤T

|R(x, δ)|.

Proof. We start from the observation that, by Lemma 7.3,

EU(f2n, g2n) = EU(f2n+1, g2n+1)

for n = 0, 1, . . . , N , and

EU(f2n+1, g2n+1) = EU(f2n+2, g2n+2) +R(x2n+1, δ)
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for n = 0, 1, . . . , N − 1, where we have set xn = h(0) + (n− 1)δ. This gives

U(h(0)/2, h(0)/2) = EU(f0, g0) = EU(f2N , g2N ) +
N−1∑
n=0

R(x2n+1, δ),

and the estimate follows.

It is easy to see from conditions (iii) and (iv) that the process (fn, gn)
moves from (x, 0) to (x+ 2δ, 0) in two steps with probability(

1− δ

x−H(x) + δ

)(
1− δ

x+ 2δ −H(x+ 2δ)

)
.

Hence the probability pδ that (fn, gn) ever reaches (T, 0) equals

1
2

N−1∏
n=0

(
1− δ

x2n+1 −H(x2n+1) + δ

)(
1− δ

x2n+1 + 2δ −H(x2n+1 + 2δ)

)
.

In the next lemma we study the limit behavior of pδ as δ → 0.

Lemma 7.5. We have

lim
δ→0

pδ =
1
2

exp(−Φ′(H(T ))).

Proof. We find that

1
2

exp
[N−1∑
n=0

(
δ

x2n+1 −H(x2n+1) + δ
+

δ

x2n+1 + 2δ −H(x2n+1 + 2δ)

)]
· p−1
δ

converges to 1 as δ → 0, and the Riemann sum
N−1∑
n=0

(
δ

x2n+1 −H(x2n+1) + δ
+

δ

x2n+1 + 2δ −H(x2n+1 + 2δ)

)
converges, as δ → 0, to

−
T�

h(0)

1
x−H(x)

dx = −
T�

h(0)

1
h(H(x))

dx.

Substitution y = H(x) (so x = y + h(y)) transforms the integral into

−
H(T )�

0

1 + h′(y)
h(y)

dy = −
H(T )�

0

Φ′′(y) dy = −Φ′(H(T )).

This yields the claim.

Proof of Theorem 7.2. For convenience, let us divide the proof into a few
steps.

Step 1: Sharpness of (1.5) for 1 ≤ p < q < 2 and sharpness of (6.3).
Note that on the set {(x, y) : y = ±h(x)} the functions U and V coincide.
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The variable (f2N , g2N ) belongs to this set unless (f2N , g2N ) = (T, 0), which
occurs with probability pδ. Hence we may write

EV (f2N , g2N ) = EU(f2N , g2N ) + (V (T, 0)− U(T, 0))pδ
≥ U(h(0)/2, h(0)/2)−N sup

h(0)≤x≤T
|R(x, δ)|+ (V (T, 0)− U(T, 0))pδ,

where we have used Lemma 7.4. Now let δ → 0. By (7.5) and the equality
T = h(0) + 2Nδ, we have

(7.6) N sup
h(0)≤x≤T

|R(x, δ)| = T − h(0)
2δ

sup
h(0)≤x≤T

|R(x, δ)| → 0.

Furthermore, by Lemmas 4.3 and 7.5, we have

(7.7) 0 ≤ (V (T, 0)− U(T, 0))pδ

→ −Φ(T )− Φ(H(T ))− Φ′(H(T ))(T −H(T ))
2 exp(Φ′(H(T )))

.

Now we proceed as follows. By (7.2), for a fixed ε > 0 we may choose T such
that the expression appearing on the right is greater than −ε. Keeping this
T fixed, we use (7.6) and (7.7) to choose δ > 0 for which

E|g2N | − EΦ(|f2N |) = EV (f2N , g2N ) ≥ U(h(0)/2, h(0)/2)− 3ε.

However, U(h(0)/2, h(0)/2) equals Lp,q or L(Φ), depending on the choice of
h in the example; hence, as ε is arbitrary, these constants are best possible.

Step 2: Optimality of Cp,q, 1 ≤ p < q <∞. If 1 ≤ p ≤ 2 ≤ q <∞, then,
obviously, Cp,q = 1 is the best possible (take f = g ≡ 1). Now, by duality
and Remark 5.2(ii), it suffices to deal with the case 1 ≤ p < q < 2. For fixed
ε > 0, let f ε, gε be real martingales such that gε is a ±1 transform of f ε and

(7.8) ‖gε‖pp > ‖f ε‖qq + Lp,q − ε.
Let

λ =
(

p

q − p
· Lp,q − ε
‖f‖qq

)(q−p)/q
.

The martingale g̃ = gε · λ1/(q−p) is a ±1 transform of f̃ = f ε · λ1/(q−p).
Multiply both sides of (7.8) by λp/(q−p) to obtain

‖g̃‖pp >
[
(Lp,q − ε)(q−p)/pq ·

(
q − p
p

)1/q( q

q − p

)1/p]p
‖f̃‖pq .

It is clear that the expression in the square brackets can be made arbitrarily
close to Cp,q. This implies Cp,q cannot be replaced by a smaller constant
in (1.4).

Step 3: Sharpness of (1.5) for 2 < p < q < ∞. This is an immediate
consequence of Step 2. If Lp,q were not optimal for some p, q, then Cp,q
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would not be the best either, as can be easily seen by examining the proof
of Theorem 5.1.

We conclude the paper by proving that the log log inequality established
in the previous section is sharp. Let Φ(t) = t log(t + 1) + Kt log log(t + e)
and let h be given by (6.4).

Lemma 7.6. If K > 1, then the condition (7.2) is valid.

Proof. By de l’Hospital’s rule, it suffices to show that

lim
t→∞

Φ′(t+ h(t))(1 + h′(t))− Φ′(t)(1 + h′(t))− Φ′′(t)h(t)
exp(Φ′(t))Φ′′(t)

= 0.

Since 1 + h′(t) = h(t)Φ′′(t), this can be rewritten in the form

lim
t→∞

[Φ′(t+ h(t))− Φ′(t)− 1]h(t)
exp(Φ′(t))

= 0.

As h(t)/exp(Φ′(t)) =
	∞
t exp(−Φ′(s)) ds tends to 0, we must show that

(7.9) lim
t→∞

(Φ′(t+ h(t))− Φ′(t))
∞�

t

exp(−Φ′(s)) ds = 0.

We have, by (6.12),
∞�

t

exp(−Φ′(s)) ds ≤
∞�

t

ds

(s+ 1)(log(s+ e))K
(7.10)

≤
∞�

t

e ds

(s+ e)(log(s+ e))K
=
e(log(t+ e))1−K

K − 1
.

Furthermore, as

Φ′(t) ≤ log(t+ 1) +K log log(t+ e) +K + 1,

we have

h(t) ≤ exp(Φ′(t)) · e(log(t+ e))1−K

K − 1
(7.11)

≤ eK+1(t+ 1)(log(t+ e))K · e(log(t+ e))1−K

K − 1

=
eK+2

K − 1
(t+ 1) log(t+ e).

Therefore, by (6.12),

0 ≤ Φ′(t+ h(t))− Φ′(t) ≤ K log log(t+ h(t) + e)−K log log(t+ e)
+ log(t+ h(t) + 1)− log(t+ 1) + (K + 1).
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Now, by (7.10) and (7.11),

(log(t+ h(t) + 1)− log(t+ 1))
∞�

t

exp(−Φ′(s)) ds

≤ log
(
eK+2

K − 1
log(t+ e) + 1

)
e(log(t+ e))1−K

K − 1
→ 0

as t→∞. Furthermore, again by (7.11), we may write

log log(t+ h(t) + e)− log log(t+ e)

= log
(

1 +
log(t+ h(t) + e)− log(t+ e)

log(t+ e)

)
≤ log

(
1 +

log
(
eK+2

K−1 log(t+ e)
)

log(t+ e)

)
→ 0

as t→ 0. This yields (7.9) and hence (7.2).
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