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Operator equations and subscalarity

by

Sungeun Jung and Eungil Ko (Seoul)

Abstract. We consider the system of operator equations ABA = A2 and BAB = B2.
Let (A,B) be a solution to this system. We give several connections among the operators
A, B, AB, and BA. We first prove that A is subscalar of finite order if and only if B is,
which is equivalent to the subscalarity of AB or BA with finite order. As a corollary, if
A is subscalar and its spectrum has nonempty interior, then B has a nontrivial invariant
subspace. We also provide examples of subscalar operator matrices. Moreover, we deal
with algebraicity, power boundedness, and quasitriangularity, using some power properties
obtained from the operator equations.

1. Introduction. Let H be a complex separable Hilbert space and let
L(H) denote the algebra of all bounded linear operators on H. If T ∈ L(H),
we write σ(T ), σp(T ), σap(T ), σe(T ), σle(T ), and σre(T ) for the spectrum,
point spectrum, approximate point spectrum, essential spectrum, left essen-
tial spectrum, and right essential spectrum of T , respectively.

An operator T ∈ L(H) is said to be p-hyponormal if (TT ∗)p ≤ (T ∗T )p,
where 0 < p <∞. When p = 1 (respectively, p = 1/2), T is called hyponor-
mal (resp. semi-hyponormal). By Löwner’s inequality, if 0 < q < p, then
every p-hyponormal operator is q-hyponormal.

An operator S ∈ L(H) is called scalar of order m (0 ≤ m ≤ ∞) if it
has a spectral distribution of order m, i.e., if there is a continuous unital
homomorphism of topological algebras

Φ : Cm0 (C)→ L(H)

such that Φ(z) = S, where as usual z stands for the identical function on C,
and Cm0 (C) for the Fréchet space of all continuously differentiable functions
of order m with compact support. An operator is subscalar of order m if it
is similar to the restriction of a scalar operator of order m to an invariant
subspace. M. Putinar [14] showed that every hyponormal operator is sub-
scalar of order 2, and S. Brown [2] used this result to prove that hyponormal
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operators with thick spectra have nontrivial invariant subspaces. Similarly, a
partial solution of the invariant subspace problem with respect to subscalar
operators is due to J. Eschmeier [6].

I. Vidav [16] showed that A and B are self-adjoint operators satisfying
ABA = A2 and BAB = B2 if and only if FF ∗ = A and F ∗F = B for some
idempotent operator F . We now consider the system of operator equations

(1.1) ABA = A2 and BAB = B2

without self-adjointness.
C. Schmoeger [15] provided a method to get solutions of (1.1): if A := PQ

and B := QP where P and Q are idempotent operators, then (A,B) is a
solution of (1.1). Using this construction, we give the following examples.
Set

P =

(
0 0

a 1

)
and Q =

(
1/2 b

c 1/2

)
where a, b, c ∈ C and bc = 1/4. Then P 2 = P and Q2 = Q. Hence

A := PQ =

(
0 0

a/2 + c ab+ 1/2

)
and B := QP =

(
ab b

a/2 1/2

)
satisfy (1.1). But, in general, neither A nor B are self-adjoint. In this case, if
we assume that a = 2b and a 6= −2c, then it is easy to see that B is normal,
but A is not.

We give another example. Let

P =

(
I 0

−S 0

)
and Q =

(
T S−1

S I − T

)
where T ∈ L(H) is an algebraic operator such that T 2 − T + I = 0 and
S ∈ L(H) is an invertible operator commuting with T . Define

A := PQ =

(
T S−1

−ST −I

)
and B := QP =

(
T 2 0

ST 0

)
.

Since both P and Q are idempotent operators, (A,B) is a solution to (1.1). It
seems to be much easier to characterize B than A. Hence, in order to obtain
some properties of A which are preserved through the operator equations
(1.1), it suffices to deal with B.

In this paper, we consider the operator equations (1.1). Let (A,B) be
a solution to (1.1). We give several connections among the operators A, B,
AB, and BA. We first prove that A is subscalar of finite order if and only if
B is, which is equivalent to the subscalarity of AB or BA with finite order.
As a corollary, if A is subscalar and its spectrum has nonempty interior, then
B has a nontrivial invariant subspace. We also provide examples of subscalar
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operator matrices. Moreover, we deal with algebraicity, power boundedness,
quasitriangularity, using some power properties obtained from the operator
equations.

2. Preliminaries. An operator T ∈ L(H) is said to have the single-
valued extension property (or SVEP) if for every open subset G of C, the
only analytic function f : G→ H such that (T −z)f(z) ≡ 0 on G is the zero
function on G. For an operator T ∈ L(H) and x ∈ H, the local resolvent
set ρT (x) of T at x is the union of all open subsets G of C such that there
exists an analytic function f : G → H with (T − z)f(z) ≡ x on G; hence,
every local resolvent set is open in C. We denote the local spectrum of T at
x ∈ H by

σT (x) = C \ ρT (x),

and the local spectral subspace for T is defined by

HT (F ) = {x ∈ H : σT (x) ⊂ F}
where F is a subset of C. From [12, Proposition 1.2.16], we know that T ∈
L(H) has the single-valued extension property if and only if HT (∅) = {0}.
Moreover, if T has the single-valued extension property, then σ(T ) =⋃
{σT (x) : x ∈ H} by [12, Proposition 1.3.2].

An operator T ∈ L(H) is said to have Bishop’s property (β) if for every
open subset G of C and every sequence {fn} of H-valued analytic functions
on G such that (T − z)fn(z) converges to 0 in norm, uniformly on compact
subsets of G, fn(z) also converges to 0 in norm, uniformly on compact
subsets of G. An operator T ∈ L(H) is said to have Dunford’s property (C)
if HT (F ) is closed for each closed subset F of C. We say that T ∈ L(H)
is decomposable if for every open cover {U, V } of C there are T -invariant
subspaces X and Y such that

H = X + Y, σ(T |X ) ⊂ U, σ(T |Y) ⊂ V .
It is well known from [12, Theorem 1.2.7, Proposition 1.2.19] that

Decomposable⇒ Property (β)⇒ Dunford’s property (C)⇒ SVEP.

Let z be the coordinate in C, and let dµ(z), or simply dµ, denote the
planar Lebesgue measure. Let U be a bounded open subset of C. We shall
usually denote by L2(U,H) the Hilbert space of measurable functions f :
U → H such that

‖f‖2,U =
( �
U

‖f(z)‖2 dµ
)1/2

<∞.

We define the Bergman space for U by A2(U,H) = L2(U,H)∩O(U,H) where
O(U,H) is the Fréchet space of analytic H-valued functions on U . Then
A2(U,H) is a closed subspace and A2(U,H) = {f ∈ L2(U,H) : ∂̄f = 0}
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where ∂̄ represents the partial derivative, in the sense of distributions, with
respect to z.

Now, we introduce a special Sobolev type space. Let U be a bounded open
subset of C. For a fixed non-negative integer m, the vector-valued Sobolev
space Wm(U,H) is the space of functions f ∈ L2(U,H) whose derivatives
∂̄f, ∂̄2f, . . . , ∂̄mf in the sense of distributions still belong to L2(U,H). En-
dowed with the norm

‖f‖2Wm =
m∑
i=0

‖∂̄if‖22,U ,

Wm(U,H) becomes a Hilbert space, continuously contained in L2(U,H).
The linear operator M of multiplication by z on Wm(U,H) is continuous
and it has a spectral distribution ΦM of order m defined by ΦM (ϕ)f = ϕf
for ϕ ∈ Cm0 (C) and f ∈Wm(U,H). Hence M is a scalar operator of order m.

3. Main results. In this section, we study several properties preserved
through the operator equations ABA = A2 and BAB = B2. If (A,B) is a
solution to these operator equations, then σ(A) = σ(B) = σ(AB) = σ(BA)
by [15, Proposition 2.6, Corollary 2.7]; set

σ := σ(A) = σ(B) = σ(AB) = σ(BA)

throughout this section. We start with the following lemmas on subscalarity,
obtained by applying Putinar’s method [14].

Lemma 3.1. Let A,B ∈ L(H) satisfy ABA = A2 and BAB = B2.
Suppose that A is subscalar of finite order, and set T = B or T = BA. For
an open disk D in C containing σ and a positive integer m, define the map
Vm : H → H(D) by

Vmh = 1̃⊗ h ≡ 1⊗ h+ (T − z)Wm(D,H),

where H(D) = Wm(D,H)/(T − z)Wm(D,H) and 1⊗h denotes the constant
function sending z ∈ D to h. Then Vm is one-to-one and has closed range
for some positive integer m.

Proof. Let D1 be an open disk in C containing σ with D1 ⊂ D. From [7,
Proposition 3.1], there exist a constant C > 0 and a positive integer k such
that

(3.1) ‖f‖2,D1 ≤ C
k∑
i=0

‖(A− z)∂̄if‖2,D

for f ∈ C∞(C,H), where C∞(C,H) denotes the Fréchet space of all in-
finitely differentiable H-valued functions on C.

(i) For T = B, we will show that Vk+4 is one-to-one and has closed range,
i.e., is bounded below. For this, it is enough to prove that if {hn} ⊂ H and
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{fn} ⊂W k+4(D,H) are sequences such that

(3.2) lim
n→∞

‖(B − z)fn + 1⊗ hn‖Wk+4 = 0,

then limn→∞ ‖hn‖ = 0. Choose an open disk D2 in C containing σ such that
D2 ⊂ D1. By the definition of the norm of Sobolev space, (3.2) implies that

(3.3) lim
n→∞

‖(B − z)∂̄ifn‖2,D = 0 for i = 1, . . . , k + 4.

Multiplying both sides of (3.3) by B, we have

(3.4) lim
n→∞

‖(B2 − zB)∂̄ifn‖2,D = 0 for i = 1, . . . , k + 4.

Since BAB = B2, we get

lim
n→∞

‖(BA− z)B∂̄ifn‖2,D = 0 for i = 1, . . . , k + 4,

and so

lim
n→∞

‖(ABA− zA)B∂̄ifn‖2,D = 0 for i = 1, . . . , k + 4.

Since ABA = A2, we infer that

(3.5) lim
n→∞

‖(A− z)AB∂̄ifn‖2,D = 0 for i = 1, . . . , k + 4.

Since C∞(D̄,H) is dense in W k(D,H) (see [14, p. 388]), equation (3.1) holds
for f ∈W k(D,H). Hence (3.5) yields

lim
n→∞

‖AB∂̄ifn‖2,D1 = 0 for i = 1, 2, 3, 4.

Since BAB = B2, it follows from (3.3) that

(3.6) lim
n→∞

‖z2∂̄ifn‖2,D1 = 0 for i = 1, 2, 3, 4.

Due to the hyponormality of the zero operator and [14, Corollary 2.2], we
have

lim
n→∞

‖(I − P )z∂̄ifn‖2,D1 = 0 for i = 0, 1, 2,

where P denotes the orthogonal projection of L2(D1,H) onto A2(D1,H).
This yields

lim
n→∞

‖zP (z∂̄ifn)‖2,D1 = 0 for i = 1, 2.

Since the zero operator has Bishop’s property (β), we infer from [14, Lemma
1.1] that

lim
n→∞

‖P (z∂̄ifn)‖2,D2 = 0 for i = 1, 2.

Thus

(3.7) lim
n→∞

‖z∂̄ifn‖2,D2 = 0 for i = 1, 2.

Hence, again applying [14, Corollary 2.2], we have

(3.8) lim
n→∞

‖(I − P )fn‖2,D2 = 0.
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Combining (3.2) and (3.8), we have

(3.9) lim
n→∞

‖(B − z)Pfn + 1⊗ hn‖2,D2 = 0.

Let Γ be a closed curve in D2 surrounding σ. Since

lim
n→∞

‖(B − z)Pfn(z) + hn‖ = 0

uniformly on compact subsets of D2 (see [14, Lemma 1.1]), applying the
Riesz–Dunford functional calculus, we obtain

lim
n→∞

∥∥∥∥ 1

2πi

�

Γ

Pfn(z) dz + hn

∥∥∥∥ = 0.

But 1
2πi

	
Γ Pfn(z) dz = 0 by Cauchy’s theorem, and so limn→∞ ‖hn‖ = 0.

(ii) If T = BA, consider arbitrary sequences {hn} ⊂ H and {fn} ⊂
W k+2(D,H) such that

lim
n→∞

‖(BA− z)fn + 1⊗ hn‖Wk+2 = 0.

Then

(3.10) lim
n→∞

‖(BA− z)∂̄ifn‖2,D = 0 for i = 1, . . . , k + 2.

Since ABA = A2, we have

lim
n→∞

‖(A− z)A∂̄ifn‖2,D = 0 for i = 1, . . . , k + 2.

We deduce from (3.1) that

lim
n→∞

‖A∂̄ifn‖2,D1 = 0 for i = 1, 2.

This yields

(3.11) lim
n→∞

‖BA∂̄ifn‖2,D1 = 0 for i = 1, 2.

It follows from (3.10) and (3.11) that

lim
n→∞

‖z∂̄ifn‖2,D1 = 0 for i = 1, 2.

Hence limn→∞ ‖hn‖ = 0 by the procedure after equation (3.7) in (i), and so
Vk+2 is bounded below, which completes the proof.

Similarly, we can state the following lemma.

Lemma 3.2. Let A,B ∈ L(H) satisfy ABA = A2 and BAB = B2.
Suppose that AB is subscalar of finite order, and set T = BA or T = A.
For an open disk D in C containing σ and a positive integer m, define the
map Vm : H → H(D) as in Lemma 3.1. Then Vm is one-to-one and has
closed range for some positive integer m.
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Proof. Assume that D1 is an open disk containing σ such that D1 ⊂ D.
From [7], we can find a constant C > 0 and a positive integer ` such that

(3.12) ‖f‖2,D1 ≤ C
∑̀
i=0

‖(AB − z)∂̄if‖2,D for f ∈ C∞(C,H).

(i) Consider the case of T = BA. Let {hn} ⊂ H and {fn} ⊂W `+2(D,H)
be sequences such that

lim
n→∞

‖(BA− z)fn + 1⊗ hn‖W `+2 = 0.

By the definition of the norm on W `+2(D,H), we have

(3.13) lim
n→∞

‖(BA− z)∂̄ifn‖2,D = 0 for i = 1, . . . , `+ 2.

Multiplying (3.13) by A, we obtain

(3.14) lim
n→∞

‖(AB − z)A∂̄ifn‖2,D = 0 for i = 1, . . . , `+ 2.

Then it follows from (3.12) that

(3.15) lim
n→∞

‖A∂̄ifn‖2,D1 = 0 for i = 1, 2.

Combining (3.15) with (3.13), we get

lim
n→∞

‖z∂̄ifn‖2,D1 = 0 for i = 1, 2.

Hence, as in the proof of Lemma 3.1, we can show that V`+2 is one-to-one
and has closed range.

(ii) Set T = A, and let {hn} ⊂ H and {fn} ⊂W `+2(D,H) be sequences
such that

lim
n→∞

‖(A− z)fn + 1⊗ hn‖W `+2 = 0.

Since

(3.16) lim
n→∞

‖(A− z)∂̄ifn‖2,D = 0 for i = 1, . . . , `+ 2

and ABA = A2, multiplying (3.16) by A, we have

lim
n→∞

‖(AB − z)A∂̄ifn‖2,D = 0 for i = 1, . . . , `+ 2.

By the same process as in (3.14), the map V`+2 is one-to-one and has closed
range.

Lemma 3.3. Let T ∈ L(H). For an open disk D in C containing σ(T )
and a positive integer m, define Vm : H → H(D) as in Lemmas 3.1 and 3.2.
If Vm is one-to-one and has closed range for some positive integer m, then
T is subscalar of order m.
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Proof. We write f̃ for the class of a vector f ∈ Wm(D,H) on the

quotient space H(D) := Wm(D,H)/(T − z)Wm(D,H), that is, f̃ = f +

(T − z)Wm(D,H). Similarly, S̃ stands for the operator, induced by an op-
erator S ∈ L(H), on H(D) given by

S̃f̃ = Sf + (T − z)Wm(D,H).

Let M be the operator of multiplication by z on Wm(D,H). As noted at the
end of Section 2, M is a scalar operator of order m with spectral distribution
ΦM : Cm0 (C)→ L(Wm(D,H)) defined by ΦM (ϕ)f = ϕf for ϕ ∈ Cm0 (C) and
f ∈Wm(D,H). Since the range of T − z is invariant under M , the operator

M̃ is well-defined. Moreover, the spectral distribution ΦM of M commutes
with T−z, and so M̃ is also scalar of order m with spectral distribution Φ̃M .
Since

VmTh = 1̃⊗ Th = z̃ ⊗ h = M̃(1̃⊗ h) = M̃Vmh

for all h ∈ H, we have VmT = M̃Vm. In particular, ran(Vm) is an invariant

subspace for M̃ . Since T is similar to the restriction M̃ |ran(Vm) and M̃ is
scalar of order m, we conclude that T is subscalar of order m.

As an application of Lemmas 3.1–3.3, we get the following theorem.

Theorem 3.4. Let A,B ∈ L(H) satisfy ABA = A2 and BAB = B2.
Then the following statements are equivalent:

(i) A is subscalar of finite order.
(ii) B is subscalar of finite order.

(iii) AB is subscalar of finite order.
(iv) BA is subscalar of finite order.

Proof. If A is subscalar of finite order, then it follows from Lemmas 3.1
and 3.3 that B and BA are subscalar of finite order. Hence we have (i)⇒(ii)
and (i)⇒(iv). Similarly, combining Lemma 3.3 with Lemma 3.2, we find
that (iii)⇒(iv) and (iii)⇒(i). By symmetry, the implications (ii)⇒(iii) and
(vi)⇒(iii) also hold.

Remark 3.5. Let A and B be operators in L(H) satisfying the operator
equations ABA = A2 and BAB = B2. Since the pair (A∗, B∗) is also a
solution to these equations, the following statements are obviously equivalent
from Theorem 3.4:

(i) A∗ is subscalar of finite order.
(ii) B∗ is subscalar of finite order.

(iii) A∗B∗ is subscalar of finite order.
(iv) B∗A∗ is subscalar of finite order.

In addition, the equivalence statements hold when we replace subscalar-
ity of finite order with Bishop’s property (β). Indeed, if A has Bishop’s
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property (β), assume that {fn} is a sequence of analytic functions on an
open set G in C such that limn→∞ ‖(B − z)fn(z)‖ = 0 uniformly on com-
pact subsets of G. Applying the procedure from (3.3) to (3.5) in the proof
of Lemma 3.1, we find that limn→∞ ‖(A − z)ABfn(z)‖ = 0 uniformly on
compact subsets of G. Since A has Bishop’s property (β), it follows that
limn→∞ ‖ABfn(z)‖ = 0 uniformly on compact subsets of G. Since BAB
= B2 and limn→∞ ‖(B − z)fn(z)‖ = 0 uniformly on compact subsets of G,
we have limn→∞ ‖z2fn(z)‖ = 0 uniformly on compact subsets of G, which
implies that limn→∞ ‖fn(z)‖ = 0 uniformly on compact subsets of G since
every zero operator has Bishop’s property (β). Hence, if A has Bishop’s prop-
erty (β), then so does B, and vice versa. Similarly, the remaining equivalence
statements are obtained by applying the methods in Lemmas 3.1 and 3.2
(see [5, Theorem 2.9] for more details).

Recall that an operator T ∈ L(H) is said to be a class A operator if the
absolute value condition |T 2| ≥ |T |2 holds where |T | := (T ∗T )1/2.

Corollary 3.6. Let A,B ∈ L(H) satisfy ABA = A2 and BAB = B2.
If A is a class A operator, then B is subscalar of finite order.

Proof. Since every class A operator is subscalar of finite order by [9,
Theorem 3.2], the assertion follows from Theorem 3.4.

Corollary 3.7. Let A,B ∈ L(H) satisfy ABA = A2 and BAB = B2.
If A is subscalar of finite order and σ(A) has nonempty interior, then B,
AB, and BA each have nontrivial invariant subspaces.

Proof. Since σ(A) = σ(B) = σ(AB) = σ(BA) from [15, Proposition 2.6,
Corollary 2.7], the conclusion follows from Theorem 3.4 and [6].

For an operator T ∈ L(H), a vector x ∈ H is said to be cyclic if the
linear span of the orbit O(x, T ) := {Tnx : n = 0, 1, 2, . . .} is dense in H,
i.e.,

∨
O(x, T ) = H. If there is a cyclic vector x for T , then we say that

T is a cyclic operator. We denote the local spectral radius of T at x by
rT (x) := lim supn→∞ ‖Tnx‖1/n, while r(T ) := sup{|λ| : λ ∈ σ(T )} is the
spectral radius of T . For an operator T ∈ L(H), a T -invariant subspace M
is said to be a spectral maximal space of T if M contains any T -invariant
subspace N satisfying σ(T |N ) ⊂ σ(T |M).

Corollary 3.8. Let A,B ∈ L(H) satisfy ABA = A2 and BAB = B2,
and suppose A is subscalar of finite order. Then:

(i) B, AB, and BA have Bishop’s property (β), Dunford’s property
(C), and the single-valued extension property.

(ii) σB(x) = σ(B) and rB(x) = r(B) whenever x ∈ H is any cyclic
vector for B. Moreover, rB(x) = limn→∞ ‖Bnx‖1/n for all x ∈ H.
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(iii) For each closed subset F of C, HB(F ) is a spectral maximal space
of B, σ(B|HB(F )) ⊂ σ(B) ∩ F , and σB(x) = σB|HB(F )

(x) for all

x ∈ HB(F ).
(iv) If f : D → C is an analytic function on an open neighborhood D of

σ(A), then σf(B)(x) = f(σB(x)).

Proof. (i) It suffices to prove that B, AB, and BA have Bishop’s prop-
erty (β). Since Bishop’s property (β) is transmitted from an operator to its
restrictions to closed invariant subspaces, we are reduced by Theorem 3.4
to the case of a scalar operator. Since every scalar operator has Bishop’s
property (β) (see [14, p. 394, Remarks 4]), it follows that B, AB, and BA
have Bishop’s property (β).

(ii) By (i), B has Bishop’s property (β), and the results follow from [12,
p. 238].

(iii) This follows from [12, Proposition 1.2.20].

(iv) SinceB has the single-valued extension property from (i) and σ(A) =
σ(B), the assertion follows from [12, Theorem 3.3.8].

Corollary 3.9. If A,B ∈ L(H) satisfy ABA = A2 and BAB = B2,
then the following statements are equivalent:

(i) A is decomposable.
(ii) B is decomposable.

(iii) AB is decomposable.
(iv) BA is decomposable.

In particular, if A is decomposable, then HB(F ) is a spectral maximal space
of B for any closed subset F of C.

Proof. This follows immediately from Remark 3.5 and [3, Chapter 2,
Proposition 3.8].

It is not easy to show that a given 2×2 operator matrix is subscalar. But
if we use the operator equations, we have some advantages. In the following
theorem, we prove that some 2×2 operator matrices have scalar extensions.

Theorem 3.10.

(i) If T ∈ L(H) is an operator such that T 2 − γT + δI is hyponormal
for some γ, δ ∈ C \ {0}, then(

γT 2 γ2T

(δI − γT )T γ(δI − γT )

)
is subscalar of finite order.
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(ii) If S, T,R ∈ L(H) satisfy that RS is hyponormal and ST = TS =
1
4I, then (

SR S
1
2R

1
2I

)
is subscalar of finite order.

(iii) Suppose that S, T,R ∈ L(H) are mutually commuting operators such
that T 2 +RS = T . If T is hyponormal, then(

T S

−RT −RS

)
is subscalar of finite order.

Proof. (i) Let

P =

( γ
δT

γ
δT

I − γ
δT I − γ

δT

)
and Q =

(
0 0
1
γT I

)
.

Define

A := PQ =
1

γδ

(
γT 2 γ2T

(δI − γT )T γ(δI − γT )

)
,

B := QP =
1

δ

(
0 0

T 2 − γT + δI T 2 − γT + δI

)
.

Since P 2 = P and Q2 = Q, we have ABA = A2 and BAB = B2. For the
unitary operator U =

(
0 I
I 0

)
, we have

U∗BU =

(
T 2 − γT + δI T 2 − γT + δI

0 0

)
.

Since T 2 − γT + δI is hyponormal, U∗BU is subscalar of finite order from
[10, Theorem 4.5], and so is B. Thus A is also subscalar of finite order by
Theorem 3.4.

(ii) Set

P =

(1
2I S

T 1
2I

)
and Q =

(
0 0

R I

)
.

Define

A := PQ =

(
SR S
1
2R

1
2I

)
and B := QP =

(
0 0

1
2R+ T RS + 1

2I

)
.

Since P 2 = P and Q2 = Q, we see that ABA = A2 and BAB = B2.
Furthermore, since RS + 1

2I is hyponormal, B is subscalar of finite order
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by [10, Theorem 4.5]. Therefore, Theorem 3.4 shows that A is subscalar of
finite order.

(iii) Set

P =

(
I 0

−R 0

)
and Q =

(
T S

R I − T

)
.

By the hypotheses, P 2 = P and Q2 = Q. Define

A := PQ =

(
T S

−RT −RS

)
and B := QP =

(
T 2 0

TR 0

)
.

Since T is hyponormal, T 2 is subscalar of finite order from [14, Proposition
2.5(d), Remarks 2], and so is B. Thus, we conclude from Theorem 3.4 that
A is subscalar of finite order.

Recall that an operator T ∈ L(H) is said to be algebraic if there exists
a nonzero polynomial p such that p(T ) = 0.

Theorem 3.11. If A,B ∈ L(H) satisfy ABA = A2 and BAB = B2,
then the following statements are equivalent:

(i) A is algebraic.
(ii) B is algebraic.

(iii) AB is algebraic.
(iv) BA is algebraic.

Proof. Note that
B
( n∑
j=0

ajA
j
)
B = a0B

2 +
n∑
j=1

ajBA
jB,

A
( n∑
j=0

ajB
j
)
A = a0A

2 +

n∑
j=1

ajAB
jA,

where a0, a1, . . . , an ∈ C and n is any positive integer. Thus, we can obtain
the equivalence (i)⇔(ii) if the following identities hold:

(3.17) BAjB = Bj+1 and ABjA = Aj+1

for any positive integer j. If j = 1, then (3.17) holds clearly. If (3.17) holds
for some positive integer j, we get

BAj+1B=B(ABjA)B=(BAB)Bj−1AB=Bj+1AB=Bj(BAB)=Bj+2.

Similarly, ABj+1A = Aj+2. Thus the equalities in (3.17) are true for all
positive integers j, and so (i)⇔(ii).

We next prove that

(3.18) (BA)j = B2Aj−1 and (AB)j = A2Bj−1
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for every positive integer j ≥ 2. We first note that (BA)2 = (BAB)A =
B2A. If (BA)j = B2Aj−1 for some positive integer j ≥ 2, then

(BA)j+1 = B2Aj−1BA = B2Aj−2(ABA) = B2Aj .

By induction on j, the identity (BA)j = B2Aj−1 is true for every integer
j ≥ 2. We obtain the identity (AB)j = A2Bj−1 for each integer j ≥ 2,
using a similar method. If p(A) = 0 for some nonzero polynomial p(z) =∑n

j=0 ajz
j , then it follows from (3.18) that

0 = B2p(A)A =
n∑
j=0

ajB
2Aj+1 =

n∑
j=0

aj(BA)j+2,

which shows that BA is algebraic. Hence (i)⇒(iv). Applying the second
equality in (3.18), we have (ii)⇒(iii).

If AB is algebraic, then p(AB) = 0 where p(z) =
∑n

j=0 ajz
j is some

nonzero polynomial. Combining (3.17) and (3.18), we obtain

(3.19) (AB)jA = Aj+1 and (BA)jB = Bj+1

for any integer j ≥ 0. The first identity of (3.19) yields

0 = p(AB)A =
n∑
j=0

aj(AB)jA =
n∑
j=0

ajA
j+1,

which means that A is algebraic. Therefore (iii)⇒(i). By symmetry, we ob-
tain (iv)⇒(ii).

An operator T ∈ L(H) is called power bounded if there exists a constant
M > 0 such that ‖Tn‖ ≤M for every positive integer n.

Theorem 3.12. If A,B ∈ L(H) satisfy ABA = A2 and BAB = B2,
then the following statements are equivalent:

(i) A is power bounded.
(ii) B is power bounded.
(iii) AB is power bounded.
(iv) BA is power bounded.

Proof. We see from (3.17) that

‖Bn‖ ≤ ‖B‖2‖An−1‖
for all integers n ≥ 2, which ensures that (i)⇒(ii). Applying (3.18), we get

‖(BA)n‖ ≤ ‖B‖2‖An−1‖
for all n ≥ 2, and so (i)⇒(iv). Furthermore, (3.19) implies that

‖An‖ ≤ ‖A‖‖(AB)n−1‖
for all n ≥ 1. Therefore (iii)⇒(i). By symmetry, we have the implications
(ii)⇒(i), (ii)⇒(iii), and (iv)⇒(ii).
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Corollary 3.13. Let A,B ∈ L(H) satisfy ABA = A2 and BAB = B2.
If A is power bounded, then so is B⊗U for every contraction U ∈ L(H).

Proof. Since ‖(B⊗U)n‖ = ‖Bn‖ ‖Un‖ ≤ ‖Bn‖ for all n and B is power
bounded from Theorem 3.12, the proof is complete.

An operator T in L(H) is called quasitriangular if it can be written as
a sum T = T0 + K, where T0 is a triangular operator (i.e., there exists an
orthonormal basis for H with respect to which the matrix for T0 is upper
triangular) and K is a compact operator in L(H). We say that T is biqua-
sitriangular if both T and T ∗ are quasitriangular (see [13] for more details).
For T ∈ L(H), a hole in σe(T ) is a bounded component of C\σe(T ). A pseu-
dohole in σe(T ) is a component of σe(T ) \ σle(T ) or σe(T ) \ σre(T ). The
spectral picture of T ∈ L(H) (notation: SP(T )) is the structure consisting
of the set σe(T ), the collection of holes and pseudoholes in σe(T ), and the
indices associated with these holes and pseudoholes (see [13] for more de-
tails). According to Apostol–Foiaş–Voiculescu (see [13, Theorem 1.31]), an
operator T ∈ L(H) is quasitriangular if and only if SP(T ) contains no hole
or pseudohole with a negative index. Using this result, we show the following
theorem.

Theorem 3.14. If A,B ∈ L(H) satisfy ABA = A2 and BAB = B2,
then the following statements are equivalent:

(i) A is quasitriangular.
(ii) B is quasitriangular.
(iii) AB is quasitriangular.
(iv) BA is quasitriangular.

Proof. From [5, Theorem 2.5], we know that

(3.20)


σe(A) = σe(B) = σe(AB) = σe(BA),

σle(A) = σle(B) = σle(AB) = σle(BA),

σre(A) = σre(B) = σre(AB) = σre(BA).

Moreover, if λ belongs to a hole or pseudohole in σe(A), then all the indices
of A−λ, B−λ, AB−λ, and BA−λ are equal by [15, Corollary 2.12]. Thus,
all of A, B, AB, and BA have the same spectral picture, which completes
the proof by [13, Theorem 1.31].

Corollary 3.15. Let A,B ∈ L(H) satisfy ABA = A2 and BAB = B2.
Then A is biquasitriangular if and only if B is biquasitriangular. In partic-
ular, if σ(A) is countable, then B is biquasitriangular. Moreover, if A is not
biquasitriangular, then B has a nontrivial hyperinvariant subspace.

Proof. Since A∗B∗A∗ = A∗2 and B∗A∗B∗ = B∗2, the first assertion
holds by Theorem 3.14. If σ(A) is countable, then A is biquasitriangular
from [8, p. 862, Corollary], and so is B by the first statement. Moreover,
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if A is not biquasitriangular, then neither is B. Hence B has a nontrivial
hyperinvariant subspace by [1].

Finally, we consider local spectra of operators A and B such that ABA =
A2 and BAB = B2.

Proposition 3.16. If A,B ∈ L(H) satisfy ABA = A2 and BAB = B2,
then:

(i) σA(ABx) ⊂ σB(x) and σB(BAx) ⊂ σA(x) for all x ∈ H.
(ii) AB(HB(F )) ⊂ HA(F ) and BA(HA(F )) ⊂ HB(F ) for any closed

set F in C.
(iii) AHA(F ) ⊂ HAB(F ) and BHB(F ) ⊂ HBA(F ) for any closed set F

in C.

Proof. (i) It suffices to show the first inclusion. Let x ∈ H and λ ∈ ρB(x).
We can choose a neighborhood D of λ and an analytic function f : D → H
such that (B − z)f(z) = x for all z ∈ D. Since

(A− z)ABf(z) = (AB − z)ABf(z) = AB(B − z)f(z) = ABx

for all z ∈ D, we infer that λ ∈ ρA(ABx), and so ρB(x) ⊂ ρA(ABx), i.e.
σB(x) ⊃ σA(ABx).

(ii) Let F be any closed set in C. If x ∈ HB(F ), then it follows from (i)
that σA(ABx) ⊂ σB(x) ⊂ F . Thus ABx ∈ HA(F ), and so AB(HB(F )) ⊂
HA(F ). By symmetry, BA(HA(F )) ⊂ HB(F ).

(iii) To obtain the inclusion AHA(F ) ⊂ HAB(F ), it is enough to prove
that σAB(Ax) ⊂ σA(x), or equivalently ρA(x) ⊂ ρAB(Ax) for all x ∈ H;
indeed, whenever x ∈ HA(F ), we have σAB(Ax) ⊂ σA(x) ⊂ F , i.e., Ax ∈
HAB(F ). Let x ∈ H. If λ ∈ ρA(x), then there exists an H-valued analytic
function f on some neighborhood D of λ such that (A− z)f(z) = x for all
z ∈ D. Since A2 = ABA, we have

(AB − z)Af(z) = A(A− z)f(z) = Ax

for all z ∈ D, which means that λ ∈ ρAB(Ax). Therefore ρA(x) ⊂ ρAB(Ax).
We obtain the second inclusion in (iii) by symmetry.

Corollary 3.17. Let A,B ∈ L(H) satisfy ABA = A2 and BAB = B2.
If F is any closed subset of C with 0 ∈ F , then HA(F ) is closed if and only
if HB(F ) is closed.

Proof. Let F be any closed subset of C with 0 ∈ F , and suppose that
HA(F ) is closed. Let {xn} be a sequence in HB(F ) such that xn → x in
norm for some x ∈ H. From Proposition 3.16, we have

ABxn ∈ AB(HB(F )) ⊂ HA(F )
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for all n. SinceHA(F ) is closed, we see that ABx = limn→∞ABxn ∈ HA(F ).
Since BA2B = B3 by (3.17), it follows from Proposition 3.16 that

(3.21) B3x = BA2Bx ∈ BA(HA(F )) ⊂ HB(F ).

We note that if T ∈ L(H) and (T − λ)x ∈ HT (F ) for some λ ∈ F , then x ∈
HT (F ) (see [12, Proposition 1.2.16]). Since (B−0)B2x ∈ HB(F ) from (3.21)
and 0 ∈ F , we have B2x ∈ HB(F ). Repeating this process, we conclude
that x ∈ HB(F ). Hence HB(F ) is closed. The converse statement holds by
symmetry.

For A,B ∈ L(H), define the commutator C(A,B) : L(H) → L(H) by
C(A,B)T = AT −TB. It is easy to see that C(A,B) is a bounded linear op-
erator and Cn(A,B) =

∑n
k=0(−1)k

(
n
k

)
An−kTBk for each positive integer n,

where Cn(A,B), usually called a higher order commutator, stands for the
nth power of C(A,B) (see [3] and [12] for more details). As an application of
Proposition 3.16, we give some local spectral properties of the commutators
C(A,B) and C(B,A) when (A,B) is a solution of the system ABA = A2

and BAB = B2.

Corollary 3.18. Let A,B ∈ L(H) satisfy ABA = A2 and BAB = B2.
If A is decomposable, then C(A,B) has the single-valued extension prop-
erty and limn→∞ ‖Cn(A,B)(AB)‖1/n = 0. Moreover, σC(A,B)(AB) = {0} if
AB 6= 0, and σC(A,B)(AB) = ∅ if AB is the zero operator on H.

Proof. If A is decomposable, then B is also decomposable from Corol-
lary 3.9. Hence C(A,B) has the single-valued extension property by [12,
Proposition 3.4.6] and we deduce that limn→∞ ‖Cn(A,B)(AB)‖1/n = 0 by
combining Proposition 3.16 with [3, p. 48, Theorem 3.3]. Since C(A,B) has
the single-valued extension property, we know from [12, Proposition 1.2.16]
that the only operator T ∈ L(H) such that σC(A,B)(T ) = ∅ is T ≡ 0 on H,
and thus the results on the local spectral radii follow from [12, Proposition
3.3.13].
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