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Schrodinger equation on the Heisenberg group
by

JACEK ZIENKIEWICZ (Wroctaw)

Abstract. Let L be the full laplacian on the Heisenberg group H" of arbitrary di-
mension n. Then for f € L?(H") such that (I — L)S/Qf € L(H") for some s > 1/2 and
for every ¢ € Cc(H™) we have

| 16@)] sup [V E f(@)]? de < Cyllf I3y
Hn 0<t<1

Introduction. Let V; be the Schrédinger unitary group generated by a
self-adjoint, positive differential operator L on R¢. The degree of smoothness
needed for the almost everywhere convergence of Vi f to f as t — 0 has
been extensively studied. In general, the result of Cowling [Cw]| says that if
(14 L)*/?f||z> < oo for some s > 1, then

(+) lm Vif(e) = f(z) ae.

This does not depend on any other properties of L.

For —L being the Laplace operator on R, s > 1/2 suffices for all d, and
for d =2, s > 1/2— 4 is also sufficient. See [B], [Mo]. In our previous paper
[Z] the Laplace operator L on the Heisenberg group H" has been studied
from this point of view, and we have proved that s > 3/4 implies (). In
this paper we simplify the proof of the result in [Z] and decrease the needed
regularity of f to f € W* s> 1/2.

The author would like to express his gratitude to M. Derencz and A. Hu-
lanicki for their help in editing the paper.

0. Preliminaries. We identify R? with C and consequently R?” with
C". Denote by S(z,w) = 25(z - W) the standard symplectic form on R?".
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Form=20,1,2,... let

(M ()
Lin(z) =) (k> o
k=0
be the Laguerre polynomial of degree m and for a # 0 let
ln.a(2) = eI Ly (2la] [2]?)
be the corresponding Laguerre function.
Let m = (mq,...,my,) and z = (21, ..., 2,). We write
qm,a(z) = lml,a(zl)lm2,a(22) cee lmn,a(zn)-

It is well known that the gm 1 form an orthonormal basis of the space of
polyradial functions on C™.

We denote by dz the Lebesgue measure on C” and for a # 0 we define
the twisted convolution

fxag(z) =\ f(z—w)g(w)e 5= dw,  fgeC>(CM).

We have the following orthogonality relation for the Laguerre functions
(cf. [M]):

(01) |a‘an,a Xa Qm,a(z) = (5k,QO,a(Z)-
Fix a real a # 0 and let
(02) Qm,af(z) = |a|an,a Xa f(Z)

It follows from (0.1) that for a fixed a # 0 the operators Qm,q are mutually
orthogonal projectors. Moreover » = Qm, = Id (cf. [M]).

We introduce a separate notation for the operators Qm,, in the case
m=m € N, i.e. n = 1. We then write

Qm,af == Pm,af == ‘a’lm,a Xa f

The Heisenberg group H” is defined as C" x R, with the group product
(z,s)(w,t) = (z+w,s+t+23(z-W)) where z = (21,..., 2,), 2, = = +1iy;.
Then the Lebesgue measure on C™ x R is the Haar measure on H".

Let

Xi =0y, +2y;0y, Y; =0y, —22;0, for1<i<n, T =0,
and let
L= (XE+Y2) 412
i=1

be the elliptic laplacian on H™. The closure of L on C¢°(H") is a self-adjoint

operator (see [NS]). Therefore i L generates a group {V; }+cr of unitary opera-
tors on L2(H"). We will use the following formula for V;, valid for f € S(H")
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(0.3) Vif(z,u) = > [ emaem@Qp, , f9(2) da

m R

where Ajm(a) = (2|lm| 4 n)|a| + o, |m| = my + ... 4+ my and f* denotes
the Fourier transform with respect to the central variable.
Let s > 0. We define a scale of Sobolev spaces by putting

2
1/l = I = L) £l e
Since Qm,, are mutually orthogonal projectors and

Lf(z,u) SZema)\|m| )Qm.of"(2)da

the Plancherel theorem apphed to the variable u implies
(04) 1 15e =D § (14 ANy ()7 | Qa1 2 oy e
m R

For a more detailed exposition of the preliminary facts we refer the reader
to [M] and [Z].

1. Basic lemmas. Let 0 < a < 1. The fractional derivative of order o
is defined by

o f(s) = | (fF(s =) = f(s)[t] " dt.
R
LEMMA 1 (Sobolev). Let~y > 0 be a Schwartz function and 1/2 < o < 1.
Then

sup (1) < Ca(§ 107 £ Pr(0) dt + {1 (1) P () ).
R

—1<t<1 R

For a function ¢, let M, denote the operator of multiplication by ¢. Set
B(r)={z:]z| <r}.
Fix ¢ € C°(C) with supp¢ C B(1) and |¢(z)| < 1, and define
Tim.af(2) = MyProf(2) = ¢(2)lallm.a Xa f(2)-
Since P, is an orthogonal projector we have || T}, o||z2— 2 < 1. The fol-
lowing two lemmas have been proved in [Z].

LEMMA 2. For 4 < |a| < m+ 1 we have

1/2
I Tmale 2 < C ol )" .
s L2—-[2 = m+1

LEMMA 3. For |a| < 4 we have

2 |al 1z
||Tm7a|| <C|—— .
m—+1
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For the reader’s convenience we include the proofs of Lemmas 2 and 3.
To do this we need a number of consequences of the classical estimates for
Laguerre functions, collected below.

LEMMA 4.
m

(1.1) L) =" <7:> Li(z)AE(1 = N,

k=0
LEMMA 5. Let 1 < |z| < (m +1)Y2. Then
[lm,1(2)] < C(m+ 1)~ H/2,

Proof. Let 0 < e < ¢ < 7/2—¢(m+1)"/2. Then by a theorem of Szegd
[Sz], for © = (4m + 2) cos? ¢, we have

e 2Ly (z) = (=1)™(msin ) "2 (sin((m + 1/2)(sin 2¢ — 2) + 37/4)
x (x(m+ 1)) "V + (2(m +1))7120(1)).
LEMMA 6. Let |z| < 1. Then
I (2) = Jo(2Y2|2|(m + 1/2)Y2) + O((m + 1) 73/%),
where Jy is the zero Bessel function.
Proof. Follows from an asymptotic formula for the Laguerre polynomials
(cf. [Sz]):
e 2Ly (2) = Jo((2z(m + 1/2))/2) + O((m + 1) 73/).
LEMMA 7. There is a constant C such that for A > 1 we have
Vlim1 (2)Pe™#54% 4z < CA(m + 1) 712,
Proof. By Lemma 5, we obtain
| 1 (2)|2e 71217 /4% 4
1<]z]<(m+1)1/2

1 —12]2/42 -
Also
| 1 (2)Pe™ /A dz < eI A |1, 1 ()P dz < CA(m+1)7V2,

|22 (m+1)1/2
On the other hand, by Lemma, 6, using the estimate |Jo(z)| < C(1+]|z|)~/?
for the Bessel function (see [Sz]) we obtain
1 ()] < C(L+ |22 (m + 1)V
Hence .
Vb (2)Pe P4 dz < C(m 4+ 1) 712,
|z|<1
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Proof of Lemma 2. Since P, , is an orthogonal projector, Ty, o T3, , =
My Py, o My. Hence, the kernel K of T}, ,T, m.a 18 given by the formula

(1.1) K(z1,2) = ¢(21)|a|lm.a(21 — 22)e 1 @5E122) ().
We write

_ 7\217z2|2 |z1722\2 _ 7\z17zz\2 Qa1 =03 =0y
l1=e e =e Ca?| 212929 .
@

Thus
(12) K(Zl,ZQ)

= 3 oz 2020 )e 7 (21 — z)e S g (20) 2525
(%

Consequently, the operator T}, Ty, , is the sum over « of operators
CaM¢Mz1a1 2;’43 TK1 Mz;mig‘l M¢,
where
.2
Tr, = f %o K1,  Ki(2) = e a0 (2).

Since ¢, converges to zero faster than exponentially, it suffices to estimate
the norm of Tk, . Dilating we see that the norm of T, is the same as the
norm of the 1-twisted convolution operator by

K(z) = e l=Flal™y 1(2).

)

The radial function IC(z) has a decomposition

IC(Z) = Z Ck,m,alk,l(’z)a
k=0

where
2 —1
(%) Ch,ma :S e~ l#l%lal lea (2)lm 1 (2) dz.
So
o
K(Z) X1 f(Z) = ch,m,aPm,lf(z)‘
k=0
Since P, 1, m = 0,1,..., are mutually orthogonal projectors the norm of
the operator f — K x; f is equal to
Sup |Ck m,al-
k

By the Schwarz inequality, we obtain

2 2
lermal < Il 2100 1 () 2 le /2100 1 (2)]] 2
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Now, by Lemma 7, if 10k > m, then

m,a SC SC .
[k am.al <m+1 k+1 m+ 1

It remains to estimate the coefficients cy y, o for 10k < m. Observe that by
the definition of l,, 1(z), for A = (1 + (2|a])™) ™!, (*) turns into

Ck,m,a = C S eik_lem(Z’)Lk(l‘) dx.
0
Then
Chmia = CA | €77 Ly (2 M) Li(z)) da,
0

whence, in virtue of (1.1), because the Lj form an orthonormal basis with
the weight e™*, we obtain

Ck,m,a = =CA Z Z < ) < ))\(31+sz)(1 _ )\)m+k7(31+32)

S1= 082 0
o0

x | €Ly, (2) Ly, (x) dz
0

= CA zk: (Zl) (i) AZS (1 — A2,

Now, if |a| > 4 then 2/3 < X < 1 so for 10k < m we have

k
[Chm,al < D 52728 (1 = AR < gamokgmmk
s=0

2 m+k
S k<§> S 276m S 275m’a|

for some positive constant .

Proof of Lemma 3. In order to estimate the norm of T}, ,T};, , we use (1.1)
and the asymptotic formula for the Laguerre functions given in Lemma 6.
Let |a] < 4. By the Taylor series expansion for e!*%(*1:22) we have

K (21, 22) sz” 12 0(z1) allm,a(21 — 22)$(22) 2525 aaa]'*/2

= Zaala“ |/2Ka(zl, 22).

Since the a,’s decay faster than exponentially, and the norms of the opera-
tors My M.« grow at most exponentially, it suffices to estimate the norm of
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the operator K given by the kernel
A(z1,22) = Y(21)|allm,a(21 — 22)9(22), where
Y € C° with ¢(z) =1 on supp ¢.
Now using Lemma 6 we obtain

(21 allm,a(z1 = 22)1(22) = Cb(z1)|al Jo(2la]"/? |21 — 2] (2m +1)/%)¢h(22)
+1(21)8(22)O([a|(m + 1) 7%/).
Observe that the error term in the last formula gives an operator with norm
of order |a|(m + 1)73/4, so it is negligible.
Hence, for a function ¢ € S(C) with ¢ = 1 on supp — supp ¢ we write
b(z1)lalJo(lal'? |21 — 22| (2m + 1)/2)e(2)
= ¢(z1 — 22)P(z1)]alJo(|a]'/? 21 — 2a](2m + 1)) ().

Thus we may drop 1(21), ¥ (22) and we estimate the norm of the convolution
operator by the function

R = ¢(2)lalJo(|al/2|z|(2m + 1)1/?).

By definition, Jj is the Fourier transform of the normalized Lebesgue mea-
sure supported on the unit circle. Hence

R = ¢xlalu,

where p is the normalized Lebesgue measure supported by the circle of
radius |a(2m + 1)|'/2. We write (using a smooth resolution of identity 1 =

> jeze k(z — j) with suppk C B(2))
;Z Za]d)]a
J

where > |oj| < 00, [|¢j[|L < 1 and the support of ¢; is contained in the
disc of radius two. A trivial geometric argument shows that for |(2m + 1)al
> 1, ||¢j * pljz~ < C|(2m + 1)a|~'/2. These imply that the L> norm of R
is bounded by C|a|/2|(m +1)|7Y2. If |(2m + 1)a| < 1 then ||¢; * | =~ < C
and consequently |[R| .~ < Cla| < C|(m + 1)|7/2|a|*/2. This proves the
lemma.

2. Main theorem. For a fixed ¢ € C°(H"™) we define the local maximal
function of the group V; by

Mf(z,u) = ¢(z,u) sup |V;f(z,u)l.
0<t<1

We have
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THEOREM 1. Let s > 1/2 and f € W*. Then
M fllrz < Clfllw-

Proof. Let f € L*(H"). To estimate || M f|| 2~y we introduce a family
of projections P,. Then we write

1M fll 2@y <D (1M Pofl 2@

and we estimate each |[M P, f||z2(un) separately.
We will use the abbreviation

s~ 28 iff 2F <5 < 2R
For k,l € N let
Pouf(zou)= Y | €"Qm.af*(z)da,
{m: |m|~2F} {|a|~=2!}

Pyf(z,u) = Z S e Qm.of"(2) da.

m {|a|<1}
Then obviously

P +ZPM =1d.
k,l

The maximal function of the theorem splits into the maximal functions
Skif(z,u) = sup [(z)p(u) PV f(z,u)l,
0<t<1

Sof(z,u) = sup [(z)PoVif(z,u)l,
0<t<1

(2.2)

where ¢ € C°(C"), 6 e C&(R), supp ¢ C B(1).

We are going to estimate the norms ||Sk ;|| yw1/2+-— 2 and ||So|yy1/24¢ p2-
Then we sum up the estimates. With no loss of generality we may consider
only the m’s in I} = {m : m; = max(mq,...,my)}.

Let A = {(m,r) : may =719,...,my, =71, myr € I;}. We fix a and we
note that /m| = |r| and (m,r) € A imply m = r. By the orthogonality
relations (0.1) for P, , we have

SQm,af(Z) md22 ... dzy,
= Sthasz,a e Pmn,af(z) Pm,aPTz,a o Prn,af(z) d2’2 . dZn =0

if (mg,...,my) # (72,...,7,). In the formula above P,,, , acts on the vari-
able z;.
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We begin by estimating the norm of Sy, making use of the Sobolev
lemma. We have

1Sof (2, u) 2 < C(§ 10,2 ViPo f (2 w) Py (8) di+] [ViPof (2, w) P2(2) ) (2).
R R

In what follows we assume that 7 is supported in the interval [—1,1].
Integrating with respect to dzdu, by the Plancherel theorem applied to the
Fourier transform in the central variable, we have

{150 (2, u)? dz du < {[8,"*° PoVi f (2, w) [P (2)7(t) dz dudt + C| f]|3.»
=Cff} ‘ > o<ja<1} () Qun o f* (2)0; /2 Mm@t " dary(t) dt () dz
+O| fl72

<cff} ‘ > Lic/imi<lal<13 (@) Am(a)) /2 F

% Qua f (@) @O dan(t) dtp(z) da+ | |-

In the last inequality we have used the fact that for |a| < C|m|~!, we have
Ajm|(a) < C.

In the above sum the multiindices m belong to I;. We enlarge the last
expression by replacing the 1 (z) by (z1), ¥ € C°(C). Thus

m‘Zf{cmmsmgl}(a)(hm(a))l/“ng,af“(z)e“‘ml<“>t Qdafy(t) dt1(z) dz

=157 " [eimi<ialcty (@ T (e e <lar <1y (@) A (@) Mg (a)) /2
mel; rel;

X Qm,af"(2) Qr,a f*(2) Y(Ajm|(a) — Apj(a)) darp(z1) dz.

By orthogonality of P, , the last expression is equal to

S Z I16 max{jm|~1 e~ 1< a1} (@) Ny (@) Ao (@) /2T
(m,r)eA

X SQm,afa<Z> Qr,afY2) V(21) dzy(Ajm|(a) — Apj(a)) da

= > Icmaxim-t 1)< laic1) (@) A m) (@) e (@) /2T
(m,r)cA

X SQmjaf“(z) Qr,af4(z) Y(21) dz7(2m1|a] — 2r1|al) da
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<V > Iemaxtimi-tr-13<iai<13 (@) Ay (@) e (@) /2
(m,r)eA

y ( ol lal )1/4
lm|+1 |r|+1
< N|Qm.af 1 1Qr.af* [7(2(m1 = 1)a]) da.

To verify the last inequality we use Lemma 3. The last expression is bounded
by

S=C\ > Icmax(im-1r-11<lai<1} (@) Am) (@) Ay (@) /2

(m,r)eA
lal 1/2 ) la 1/2 ,
m.af* raf” ~(2 — .
() 1@mal P+ () 1@ 122t = rla) da
For fixed r we have
(23) Z I{Cmax{lmkl,|r|71}§|a‘§1}(a)()\‘m‘(a))\‘rl(a))l/}‘rs

{m:(m,r)eA}

|a’ 1/2/\ 1 E
" <|r| + 1) A((my = r1)lal) < COy (a)) 1272,

In order to verify (2.3) we observe that for m, r, and a as in (2.3) one can
write
Ajm|(@) < (Jm] + 1]a] < CXjmi(a),  cApi(a) < (Jr] +1)]a] < CAi(a),
c¢m| < |r| < C|ml].
To show the last inequality we observe that the conditions 7((m; — r1)|al)
# 0, (m,r) € A and Cmax{|m|™*,[r|7*} < |a| < 1 imply that |[m|— |r||
< Cmin{|r|, |m|}. Also
H{m : (m.r) € A, |r1 — my||a| € suppA} < C/lal.

Now (2.3) follows by an easy calculation.
By (2.3), S is dominated by

2§D Iior-1<iai<ny (@A ()29 Qra f NP da < (1 F Fy /21

We are going to estimate ||Sy,;f(z,u)| . in a similar way. Without loss of
generality, we can consider only

Siaf(z,u) = sup [(z1)¢(u) Py Vif (2, u)l,

0<t<1

where

P fzu)= > [ e"Qmasf(2)da.

{mé€l; : \m|=2F} {|a|=2!}
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Again by the Sobolev lemma, the norm [|S ; f(z,u)||7. is controlled by

IS [ ettt m @ON R (0) Qo (2) da

{mel; : [m|~2*) {|a|~2'}

2

X (1) (u) dz duy(t) dt

- SSS Z SS eiu(al_a2)+“(>‘\ml(al)—)\m(zm))

{m,r: |m|,|r|~2F rel,}
X I{jaj~aty (@) {jajmary (@2) (Ajm) (a1) A (a2)) /212
x Qm,al fal (Z)Qr,az fa2 (Z)"L/J(Zl) dz (Z)(U) du ’Y(t) dt dCL1 da2
= > 11 Fjalman (1) grapmery (a2) Nm (1) A (02)) /22

{m,r:|r|~2%, mrel}

X Qm,al fal (Z)Qr,az fa2 (Z)¢(zl) dZ
x ¢(a1 — a2)7(Njm|(a1) — Ajpj(az)) das das

= Z SXI{|a|z2l}(a1)-[{|a\%21}(a2)

{(m,r)€A:m,r€ly, |m|,|r|~2k}

X (M) (01) A (@2)) 27 | Qun,a f(2) Q.0 f* (2)1)(21) dz
X &5(&1 — ag)‘?()\‘m‘(al) — /\|r|(a2)) da1 da2

< QS Z S Z Ifjajx21y (@1) I fjaja2y (a2)

{r€l; :|r|=2*k} {m:(m,r)€A, |m|~2+}
x (A‘m‘(al))\‘r‘(@))l/?% (Ajmj(a1) — A|r|(az))$(a1 — az) day
5§ 1Qr.an f2 (@)W (21) dz das = J.

For fixed r and as we have
(24) | > I{jajmaty (@1) I{jajxaty (a2)
{m:(m,r)€A, m|~2F}
X (Mmi(a1) ey (a2)) 2T d(a1 — a2)7(Ajmj(a1) — Apj(a2)) day
< (Qk + 2l)(1+25)22l5.
To see (2.4) we observe that < )\|m|(a1) ((2|m|+n)+2|ai|)sgn(ai). So the

measure of {a : Ajm|(a1) — )\m(ag) € supp7} is dominated by C/(2% + 21).
Hence

(2.5) V3(Ajm(a1) = Aj(az)) day < S
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Also
(2.6) j:t{m ~ 2k . (m, I') € A and Elalz2l)\\m|(al) — )\M(ag) S suppﬁ
and a; — ay € supp ¢} < C max{1, |r|/2'}.

Combining (2.5) and (2.6) gives (2.4).
Hence by Lemma 2 and (2.4) we obtain the desired estimate for J:

2[ 1/2
J< X Z 22la< > (2k +2l)1+25HQr,afaHi2 da

Y
{rel : |r|=2F} 27 +2
<| D @22 Qraf 2da < C| £y jogse 27 ETDE
{rel : |r|~2k}
Summing up the estimates for Sy and Sk,; we get the theorem.

REMARK. The above theorem combined with the estimates obtained in
[Z] allows one to state a slightly sharper result. This requires a different
definition of the scale of Sobolev spaces. We do not go into details here.
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