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Sharp maximal functions associated with approximations of
the identity in spaces of homogeneous type and applications

by

José Maŕıa Martell (Madrid)

Abstract. In the context of the spaces of homogeneous type, given a family of op-
erators that look like approximations of the identity, new sharp maximal functions are
considered. We prove a good-λ inequality for Muckenhoupt weights, which leads to an
analog of the Fefferman–Stein estimate for the classical sharp maximal function. As a
consequence, we establish weighted norm estimates for certain singular integrals, defined
on irregular domains, with Hörmander conditions replaced by some estimates which do
not involve the regularity of the kernel. We apply these results to prove the bounded-
ness of holomorphic functional calculi on Lebesgue spaces with Muckenhoupt weights. In
particular, some applications are given to second order elliptic operators with different
boundary conditions.

1. Introduction. Let us consider a space of homogeneous type (X , d, µ)
which is a set X endowed with a distance d and a non-negative Borel measure
µ on X such that the doubling condition

(1) µ(B(x, 2r)) ≤ Cµ(B(x, r)) <∞
holds for all x ∈ X and r > 0, where B(x, r) = {y ∈ X : d(x, y) < r}.
A more general definition and further studies of these spaces can be found
in [CW], [MS1], [MS2].

Throughout this paper we will use the following notation: for every
ball B, xB and rB are respectively its center and its radius, that is, B =
B(xB, rB). Given λ > 0, we will write λB for the λ-dilated ball, which is
the ball with the same center as B and with radius rλB = λrB. By Lp0(X ),
1 ≤ p ≤ ∞, we denote the set of functions in Lp(X ) with bounded support.

If C is the smallest constant for which the measure µ satisfies the dou-
bling condition (1), then D = log2C is called the doubling order of µ and
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we have

(2)
µ(B)

µ(B̃)
≤ Cµ

(
rB
r
B̃

)D
for all balls B̃ ⊂ B ⊂ X .

In particular, it follows that µ(λB) ≤ Cµλ
Dµ(B) for every ball B and for

every λ ≥ 1. Moreover, there exist cµ ≥ 1 and 0 ≤ N ≤ D such that

(3) µ(B(x, r)) ≤ cµ
(

1 +
d(x, y)

r

)N
µ(B(y, r))

uniformly on x, y ∈ X and r > 0. In fact, this estimate with N = D is a
trivial consequence of (2) and the triangular inequality for the distance d.
But, in general, N could be smaller. This is, for example, the case of the
Lebesgue measure on Rd or the case of Lie groups with polynomial growth,
where (3) holds with N = 0. On the other hand, let us point out that the
doubling condition implies that X is bounded if and only if µ(X ) <∞.

We consider the following “approximations of the identity” which previ-
ously appeared in [DM].

Definition 1.1. A family of operators {Dt : t > 0} is said to be an
“approximation of the identity” if, for every t > 0, Dt is represented by the
kernel at(x, y), which is a measurable function defined on X × X , in the
following sense: for every f ∈ Lp(X ), p ≥ 1,

Dtf(x) =
�

X
at(x, y)f(y) dµ(y),

and the following condition holds:

|at(x, y)| ≤ ht(x, y) =
1

µ(B(x, t1/m))
s(d(x, y)mt−1),

(x, y) ∈ X × X , t > 0,

where m is a positive fixed constant and s is a positive, bounded, decreasing
function satisfying

(4) lim
r→∞

rD+ϑs(rm) = 0,

for some ϑ > N (recall that N is the power appearing in (3) and D is the
doubling order of µ).

The idea is that the kernels are controlled by positive decreasing radial
functions which decay to 0 at infinity fast enough. Some examples of these
functions ht are given by Gaussian or Poisson kernels. Associated with an
“approximation of the identity” we next define a new sharp maximal func-
tion.

Definition 1.2. Given f ∈ Lp(X ) for some p ≥ 1, we define the sharp
maximal function associated with the “approximation of the identity” {Dt :
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t > 0} as

M]
Df(x) = sup

B3x

1

µ(B)

�

B

|f(y)−DtBf(y)| dµ(y),

where tB = rmB .

In comparison with the classical Fefferman–Stein sharp maximal func-
tionM], we see that instead of subtracting from f its average on every ball,
we subtract DtBf . We will show that in case Dt1 = 1 a.e., our sharp maxi-

mal functionM]
D is pointwise smaller thanM] but they are not comparable

in general.

After some preliminaries, in Section 3 we state some properties of M]
D.

In Section 4 we prove a good-λ inequality for this new sharp maximal func-
tion and the Hardy–Littlewood maximal operatorM. This estimate implies

that M is controlled by M]
D in the Lp(w) norm for 0 < p < ∞ and for

every Muckenhoupt weight w in the class A∞ (see the definition in the
next section). That is, we obtain an analog of the classical inequality of
Fefferman–Stein in [FS] (for the weighted case see also [CF]) for this new
sharp maximal function. In Section 5 we apply this result to some singular
integrals introduced in [DM]. For these operators the classical Hörmander
type inequalities are replaced by some conditions that involve the “approx-
imations of the identity” defined above. The advantage is that there is no
regularity assumption, and this fact allows us to consider operators defined
on non-smooth domains (see Section 6). We prove that such an operator T
is of strong type (p, p), 1 < p <∞, with respect to w ∈ Ap. Here, the key is

the control ofM byM]
D obtained with the good-λ inequality plus the fact

that

M]
D(Tf)(x) ≤ C(M(|f |s)(x))1/s

holds for every 1 < s < ∞. Let us point out the analogy between this es-
timate and the one holding for classical Calderón–Zygmund operators (see
[GR, Chapter II, Theorem 5.20] for instance). For p = 1, by means of the
Calderón–Zygmund decomposition, we deduce that T is of weak type (1, 1)
with respect to weights in A1. In Section 7 we consider holomorphic func-
tional calculi of elliptic operators, proving that they satisfy weighted esti-
mates for Muckenhoupt weights. As a consequence, weighted estimates are
studied for some second order elliptic operators with different boundary
conditions.

The results contained in this paper are part of the author’s Ph.D. thesis,
written under the supervision of Prof. J. Garćıa-Cuerva (see [Mar]). The
study of weighted estimates for the class of operators considered here was
motivated by [DM], where the unweighted case is treated. During the prepa-
ration of this paper, I became aware of the paper [DY], where the authors
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prove weighted Lp estimates of a different kind for holomorphic functional
calculi of linear elliptic operators. They consider two weights, one on each
side, and study conditions on the weight on one side which guarantee the
existence of another weight on the other side. Their approach is based on
the technique, already used in [GM] and [GR], of proving vector-valued in-
equalities for those operators.

The author would like to thank Prof. J. Garćıa-Cuerva for his encourage-
ment, guidance, and for many useful discussions about the material of this
article. The author would like to express his gratitude to Prof. S. Hofmann
for his comments and suggestions.

2. Preliminaries. The Hardy–Littlewood maximal function is defined
by

Mf(x) = sup
B3x

1

µ(B)

�

B

|f(y)| dµ(y).

We will also consider the centered version of this maximal operator, denoted
by Mc, where the supremum is only taken over all balls centered at x. By
the doubling condition, these maximal operators satisfy

(5) Mcf(x) ≤Mf(x) ≤ Cµ2DMcf(x).

Note that ht in Definition 1.1 might be non-symmetric, however just by
using (3),

ht(x, y)≤ cµ min

{
1

µ(B(x, t1/m))
,

1

µ(B(y, t1/m))

}
s1(d(x, y)mt−1) = h̃t(x, y),

where s1 is a new function satisfying the same properties as s with some

ϑ > 0 and h̃t(x, y) is symmetric. We also have

C−1 ≤
�

X
ht(x, y) dµ(x) ≤ C and C−1 ≤

�

X
ht(y, x) dµ(x) ≤ C

uniformly on y ∈ X , t > 0. On the other hand, as in [DR, p. 97], it is verified

(6) |Dtf(x)| ≤
�

X
ht(x, y)|f(y)| dµ(y)≤

�

X
h̃t(x, y)|f(y)| dµ(y)≤ CMf(x),

for every f ∈ Lp(X ), 1 ≤ p ≤ ∞. We also point out that

(7)
�

X
ht(x, y)|f(x)| dµ(x) ≤

�

X
h̃t(y, x)|f(x)| dµ(x) ≤ CMf(y),

where we have used the symmetry h̃t(x, y). In both cases, these estimates
are uniform on t > 0.
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We consider Muckenhoupt weights. Given 1 < p <∞, a weight w belongs
to Ap if, for every ball B ⊂ X , it verifies

(Ap)
(

1

µ(B)

�

B

w(x) dµ(x)

)(
1

µ(B)

�

B

w(x)1−p′ dµ(x)

)p−1

≤ C.

The class A1 is defined by letting p→ 1, that is,

(A1)

(
1

µ(B)

�

B

w(x) dµ(x)

)
‖w−1‖L∞(B) ≤ C,

where the constant C does not depend on the ball B. Finally, A∞ is the
union of the Ap classes, 1 ≤ p <∞. These classes, in the Euclidean setting,
were introduced by Muckenhoupt in [Muc] and further developed in [CF].
About Muckenhoupt weights in spaces of homogeneous type the reader is
referred to [ST].

For w ∈ A∞ and for every measurable set E ⊂ X we use the standard
notation w(E) = � E w(x) dµ(x). Moreover, if 0 < p < ∞, then Lp(X , w) =
Lp(X , wdµ). In some parts of this work, we will be working in Ω ⊂ X . In
that case, Lp(Ω) = Lp(Ω,µ) and, for w ∈ A∞(X ), we will write Lp(Ω,w) =
Lp(Ω,wdµ). When we consider w ∈ A∞(X ), we mean that w is a Mucken-
houpt weight with respect to the whole space X and not with respect to Ω.
We will simply use the notation w ∈ A∞, omitting X , when it is clear from
the context.

The following result contains the Calderón–Zygmund decomposition on
spaces of homogeneous type.

Theorem 2.1 ([CW]). Let f ≥ 0, f ∈L1
0(X ), and λ> ‖f‖L1(X )(µ(X ))−1.

Then there exists a family of balls {Bi} such that :

(i) f(x) ≤ Cλ for µ-a.e. x ∈ X \⋃iBi.

(ii)
1

µ(Bi)

�

Bi

f(y) dµ(y) ≤ Cλ.

(iii)
∑

i

µ(Bi) ≤
C

λ

�

X
f(y) dµ(y).

(iv) There exists an integer M ≥ 1, independent of f and λ, such that
every point in X belongs to at most M of these balls.

Remark 2.2. The following properties are contained in the proof of the
previous result:

(i) There exists some constant CX , which only depends on the space,
such that

Eλ = {x ∈ X :Mf(x) > λCX } =
⋃

i

Bi.

(ii) There exists ε0 > 1, independent of f and λ, such that (ε0Bi)\Eλ 6= ∅.
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3. A new sharp maximal function. In what follows {Dt : t > 0} will
be an “approximation of the identity”. We will use the following notation: if
B is a ball, tB = rmB . We are going to study some properties of the maximal

operator M]
D (see Definition 1.2).

Let us recall that the Fefferman–Stein sharp maximal function is defined
as

M]f(x) = sup
B3x

1

µ(B)

�

B

|f(y)− fB| dµ(y),

where fB stands for the µ-average of f over B.

Proposition 3.1. Let {Dt : t > 0} be an “approximation of the identity”
such that for every t > 0, Dt1 = 1 a.e. or , what is the same, for every t > 0,

�

X
at(x, y) dµ(y) = 1 for almost all x ∈ X .

Then, for every function f ∈ Lp(X ), p ≥ 1, and x ∈ X we have

(8) M]
Df(x) ≤ CM]f(x).

However , the converse inequality does not hold in general.

Remark 3.2. If the kernels of Dt, t > 0, have bounded support, then
the previous inequality is still true for locally integrable functions since the
operators Dt act over them.

Remark 3.3. The condition Dt1 = 1 a.e. is necessary for (8). This is

obtained by taking f(x) = 1. Then (8) implies thatM]
Df = 0 and thus, for

every t > 0, Dt1 = 1 outside of a zero measure set.

Proof of Proposition 3.1. We fix f ∈ Lp(X ) (p ≥ 1), x0 ∈ X and a ball
B 3 x0. Then

1

µ(B)

�

B

|f(x)−DtBf(x)| dµ(x)

≤ 1

µ(B)

�

B

�

X
htB (x, y)|f(x)− f(y)| dµ(y) dµ(x)

=
1

µ(B)

�

B

�

2B

. . . dµ(y) dµ(x) +
∞∑

k=1

1

µ(B)

�

B

�

2k+1B\2kB
. . . dµ(y) dµ(x)

= I + II.

We estimate I. By (3) we have µ(B) ≤ 2Ncµµ(B(x, rB)) since x ∈ B.
Moreover, for y ∈ 2B we get

htB(x, y) =
s(d(x, y)mt−1

B )

µ(B(x, t
1/m
B ))

≤ s(0)

µ(B(x, rB))
≤ C

µ(B)
≤ C

µ(2B)
,
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where in the first inequality we have used the fact that s is decreasing. In
this way, we obtain:

(9) I ≤ C

µ(B)µ(2B)

�

B

�

2B

|f(x)− f(y)| dµ(y) dµ(x) ≤ CM]f(x0),

since x0 ∈ B ⊂ 2B. Regarding II, if x ∈ B and y ∈ 2k+1B \ 2kB then
d(x, y) ≥ 2k−1rB and, just as before,

htB (x, y) =
s(d(x, y)mr−mB )

µ(B(x, rB))
≤ C s(2(k−1)m)

µ(B)
≤ C s(2(k−1)m)2(k+1)D

µ(2k+1B)
,

where we used (2). Thus,

II ≤ C
∞∑

k=1

2kDs(2(k−1)m)
1

µ(B)µ(2k+1B)

�

B

�

2k+1B

|f(x)− f(y)| dµ(y) dµ(x).

We estimate each term as follows:
1

µ(B)µ(2k+1B)

�

B

�

2k+1B

|f(x)− f(y)| dµ(y) dµ(x)

≤ 1

µ(2k+1B)

�

2k+1B

|f(y)−f2k+1B| dµ(y)+
1

µ(B)

�

B

|f(x)−f2k+1B| dµ(x)

≤M]f(x0)+
1

µ(B)

�

B

|f(x)−fB| dµ(x) + |fB−f2B|+ . . .+ |f2kB−f2k+1B|

≤ CM]f(x0)(k + 1).

Therefore, by (4) we have

II ≤ CM]f(x0)
∞∑

k=1

(k + 1)2kDs(2(k−1)m) ≤ CM]f(x0).

Next we are going to show why the converse inequality does not hold in
general. To do that we consider R with the Lebesgue measure dx and the
“approximation of the identity” {Dt : t > 0} given by the kernels

at(x, y) =
1

|(y − t1/m, y + t1/m)| χ(y−t1/m,y+t1/m)(x)

=
1

2t1/m
χ(x−t1/m,x+t1/m)(y).

As we observed in Remark 3.2, since the supports of these kernels are
bounded sets, the operators Dt act over locally integrable functions. Let
us take the function f(x) = x. Then, for every t > 0, Dtf(x) = x and thus

M]
Df(x) = 0. On the other hand, M]f(x) = ∞, and it is clear that M]

and M]
D are not comparable.



120 J. M. Martell

Next, we are going to show some properties of our sharp maximal func-

tion M]
D to be used later.

Lemma 3.4. For 1 ≤ p ≤ ∞ and f ∈ Lp(X ), it follows that for every
x ∈ X ,

|Dtf(x)| ≤ C

µ(B(x, t1/m))1/p
‖f‖Lp(X ).

Proof. The case p = 1 works because s is a bounded function. For p =∞,
the properties of ht yield

|Dtf(x)| ≤ ‖f‖L∞(X )

�

X
ht(x, y) dµ(y) ≤ C‖f‖L∞(X ).

Finally, if 1 < p <∞, we combine Hölder’s inequality and the former ideas
to get

|Dtf(x)| ≤ ‖f‖Lp(X )

( �

X
ht(x, y)p

′
dµ(y)

)1/p′

= ‖f‖Lp(X )

( �

X
ht(x, y)p

′−1ht(x, y) dµ(y)
)1/p′

≤ ‖f‖Lp(X )
C

µ(B(x, t1/m))(p′−1)/p′

( �

X
ht(x, y) dµ(y)

)1/p′

≤ ‖f‖Lp(X )
C

µ(B(x, t1/m))1/p
.

Lemma 3.5. Consider f ∈ Lp(X ) for some p ≥ 1, a ball B and x ∈ B.
Then there exists C > 0 (independent of f , B, x) such that

1

µ(B)

�

B

|DtBf(y)| dµ(y) ≤ CMf(x).

Proof. First of all,

|DtB(fχ4B)(y)| ≤ sup
z∈4B

htB (y, z)µ(4B)Mf(x),

since x ∈ B ⊂ 4B. By [DR, Proposition 2.5], for ν > 0, there exist C, θ ≥ 1
such that

sup
z∈B(xB ,r)

ht(y, z) ≤ C inf
z∈B(xB ,r)

hθt(y, z),

provided rm ≤ νt. We take ν = 4m, r = 4rB and t = tB = rmB , to get

sup
z∈4B

htB(y, z)µ(4B) ≤ C
�

4B

inf
z∈4B

hθtB(y, z) dµ(ξ)

≤ C
�

X
hθtB(y, ξ) dµ(ξ) ≤ C,
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independently of θ, tB, y. We have eventually obtained

1

µ(B)

�

B

|DtB(fχ4B)(y)| dµ(y) ≤ CMf(x).

On the other hand, we use (5) and (6) to observe

1

µ(B)

�

B

|DtB(fχ(4B)c)(y)| dµ(y) ≤ C 1

µ(B)

�

B

Mc(fχ(4B)c)(y) dµ(y).

For y ∈ B and 0 < r < 3rB we have B(y, r) ⊂ 4B. But, if r ≥ 3rB then
x ∈ B(y, r). These facts yield Mc(fχ(4B)c)(y) ≤ Mf(x) for every y ∈ B
and hence

1

µ(B)

�

B

|DtB(fχ(4B)c)(y)| dµ(y) ≤ CMf(x).

We complete the proof by collecting the estimates obtained.

Corollary 3.6. If f ∈ Lp(X ) for some 1 ≤ p ≤ ∞, then M]
Df(x) ≤

CMf(x).

4. A good-λ inequality. In this section we prove a good-λ inequal-

ity for M]
D and M which allows us to obtain an analog of the classical

Fefferman–Stein estimate (see [FS] and [CF]) for our new sharp maximal
function. For the genesis of the good-λ inequalities the reader is referred to

[BG]. This Fefferman–Stein type estimate for M]
D says that for every A∞

weight w and for every 0 < p < ∞, M]
D controls M in the Lp(w) norm.

In the particular case of the “approximations of the identity” considered in
Proposition 3.1, the inequality that we are going to get improves the one in
[FS] and [CF].

Proposition 4.1. Take λ > 0, f ∈ L1
0(X ) and a ball B0 such that there

exists x0 ∈ B0 with Mf(x0) ≤ λ. Then, for every 0 < η < 1, we can find
γ > 0 (independent of λ,B0, f, x0) in such a way that

µ{x ∈ B0 :Mf(x) > Aλ,M]
Df(x) ≤ γλ} ≤ ηµ(B0),

where A > 1 is a fixed constant which only depends on the space and the “ap-
proximation of the identity” {Dt : t > 0}. Furthermore, for every w ∈ A∞,
there exist Cw, r > 0 (which only depend on w) such that

w{x ∈ B0 :Mf(x) > Aλ,M]
Df(x) ≤ γλ} ≤ Cwηrw(B0).

Proof. Let us observe that the second part arises as a consequence of
the first one, since it is well known (see [ST] for instance) that for every
w ∈ A∞, there exist Cw, r > 0 such that

w(E)

w(B)
≤ Cw

(
µ(E)

µ(B)

)r
for every ball B and every E ⊂ B.
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Taking E = {x ∈ B0 :Mf(x) > Aλ, M]
Df(x) ≤ γλ} and B = B0, we can

use the estimate for µ in order to obtain w(E) ≤ Cwηrw(B0).
We only work with the unweighted case. Take γ̃ > 0 and

E = {x ∈ B0 :Mf(x) > Aλ,M]
Df(x) ≤ γ̃λ}.

Assume that we have xE ∈ E (otherwise, there is nothing to prove). By (5),

for x ∈ E we have Ãλ < Mcf(x), where Ã = (Cµ2D)−1A > 1 is to be
chosen later. Then there exists B(x, rx) such that

1

µ(B(x, rx))

�

B(x,rx)

|f(y)| dµ(y) > Ãλ.

Since Ã > 1, necessarily x0 6∈ B(x, rx), which implies rx < 2rB0 and
B(x, rx) ⊂ 4B0. Hence

Ãλ <
1

µ(B(x, rx))

�

B(x,rx)

|f(y)| dµ(y) ≤M(fχ4B0)(x),

and M(fχ4B0)(x) > Ãλ for every x ∈ E. Take t0 = (16rB0)m = t16B0 .
We are going to show that there exist C0 (depending on the space and
{Dt : t > 0}, but not on t0) such that M((Dt0f)χ4B0)(x) ≤ C0λ for every
x ∈ E. To do this we use the ideas of Lemma 3.5. As there, we observe that

|Dt0(fχ16B0)(y)| ≤ CMf(x0) ≤ Cλ
and

(10) M(Dt0(fχ16B0)χ4B0)(x) ≤ Cλ.
On the other hand, if y ∈ 4B0, then

|Dt0(fχ(16B0)c)(y)| ≤ Cµ2DMc(fχ(16B0)c)(y)

≤ Cµ2D sup
r≥12rB0

1

µ(B(y, r))

�

B(y,r)

|f(y)|χ(16B0)c(y) dµ(y)

≤ Cµ2DMf(x0) ≤ Cµ2Dλ.

Observe that in the first inequality we used (5) and (6); for the second we
took into account that the integral vanishes for every r < 12rB0 because
B(y, r) ⊂ 16B0; and the third one holds since x0 ∈ B(y, r) for all r ≥ 12rB0 .
Then

M(Dt0(fχ(16B0)c)χ4B0)(x) ≤ Cλ.
This estimate and (10) provide M((Dt0f)χ4B0)(x) ≤ C0λ, where C0 is a
constant that only depends on the space and the “approximation of the
identity” {Dt : t > 0}. Thereby, we have proved that for all x ∈ E,

M(fχ4B0)(x) > Ãλ and M((Dt0f)χ4B0)(x) ≤ C0λ.
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Choose Ã = C0 + 1 > 1. If x ∈ E, we have

(C0 + 1)λ <M(fχ4B0)(x) ≤M((f −Dt0f)χ4B0)(x) +M((Dt0f)χ4B0)(x)

≤M((f −Dt0f)χ4B0)(x) + C0λ,

and so M((f −Dt0f)χ4B0)(x) > λ. This proves that

E ⊂ {x ∈ B0 :M((f −Dt0f)χ4B0)(x) > λ}
and by weak type (1, 1) inequality for the Hardy–Littlewood maximal func-
tion:

µ(E) ≤ C

λ

�

X
|f(y)−Dt0f(y)|χ4B0(y) dµ(y) ≤ C

λ
µ(16B0)M]

Df(xE)

≤ Cγ̃µ(B0),

since t0 = t16B0 , xE ∈ E ⊂ B0 and M]
Df(xE) ≤ γ̃λ. Let us point out

that this estimate holds for every γ̃ > 0. In this way, given 0 < η < 1, we
take γ such that γ = η/C (which is clearly independent of λ,B0, f, x0). The
inequality above for this value γ turns out to be the one we indeed want to
get.

Now we can prove the analog of the classical Fefferman–Stein inequality.
For the moment, we state the result just for locally integrable functions.
Afterwards, we will extend it to a wider class of functions.

Theorem 4.2. Let 0 < p <∞ and w ∈ A∞. For every f ∈ L1
0(X ) with

Mf ∈ Lp(X , w) it follows that :

(i) ‖Mf‖Lp(X ,w) ≤ C‖M]
Df‖Lp(X ,w) if X is unbounded.

(ii) ‖Mf‖Lp(X ,w) ≤ C‖M]
Df‖Lp(X ,w) + C‖f‖L1(X ) if X is bounded.

We point out that the assumption Mf ∈ Lp(X , w) guarantees that the
left-hand sides of these inequalities are finite.

Proof. Set Ẽλ = {x ∈ X :Mf(x) > λ}. Note that in the notation of the

Calderón–Zygmund decomposition (Theorem 2.1), Ẽλ = Eλ/CX . Fix τ =

CX ‖f‖L1(X )(µ(X ))−1—if X is unbounded, then τ = 0—and let us consider
λ > τ . We can perform the Calderón–Zygmund decomposition: there exists

a collection {Bi} of balls such that Ẽλ =
⋃
iBi. We write B̃i = ε0Bi where

ε0 > 1 is the constant that appears in Remark 2.2(ii). Then, there exists

x̃i ∈ B̃i \ Ẽλ, that is, Mf(x̃i) ≤ λ. Let us use Proposition 4.1: there are
Cw, r > 0 (which only depend on w) and A > 1 (which depends on X ,
{Dt : t > 0}) such that, if 0 < η < 1 (to be chosen later), we can find γ > 0

(independent of λ, f, B̃i) in such a way that

w{x ∈ B̃i :Mf(x) > Aλ,M]
Df(x) ≤ γλ} ≤ Cwηrw(B̃i).
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Set Uλ = {x ∈ X : Mf(x) > Aλ,M]
Df(x) ≤ γλ} and so Uλ ⊂ Ẽλ =⋃

iBi ⊂
⋃
i B̃i since A > 1. Then, for any λ > τ ,

w(Uλ) ≤
∑

i

w{x ∈ B̃i :Mf(x) > Aλ,M]
Df(x) ≤ γλ}(11)

≤ Cwηr
∑

i

w(B̃i)

≤ CwηrCw,ε0
∑

i

w(Bi) ≤ CηrMw
(⋃

i

Bi

)
= Cηrw(Ẽλ)

= Cηrw{x ∈ X :Mf(x) > λ},
where we used the fact that A∞ weights are doubling measures, M is the
constant in (iv) of Theorem 2.1, and C is a constant that only depends on
the space and the weight.

We first handle the case where X is unbounded. Then τ = 0 and the
previous inequality holds for every λ > 0. Because of the fact that 0 < p
<∞, and by (11), one can prove that

‖Mf‖pLp(X ,w) = Ap
∞�

0

pλp−1w{x ∈ X :Mf(x) > Aλ} dλ

≤ Ap
∞�

0

pλp−1
(
w(Uλ) + w{x ∈ X :M]

Df(x) > γλ}
)
dλ

≤ (C + 1)Apηr‖Mf‖pLp(X ,w) +
Ap

γp
‖M]

Df‖
p
Lp(X ,w).

Observe that both terms are finite since by hypothesisMf ∈ Lp(X , w) and

by Corollary 3.6,M]
Df also belongs to this space. Let us choose η such that

(C+1)Apηr = 1/2 (it is clear that 0 < η < 1 and that η only depends on X ,
w and {Dt : t > 0}). The former inequality turns out to be

‖Mf‖p
Lp(X ,w)

≤ 2
Ap

γp
‖M]

Df‖
p
Lp(X ,w)

.

When X is bounded we have X = B(x0, r0) and, since w ∈ L1
loc(X ) (be-

cause w ∈ A∞) it follows that w(X ) <∞. Now we can only use Calderón–
Zygmund decomposition and (11) for λ > τ . Thereby,

‖Mf‖pLp(X ,w) = Ap
∞�

0

pλp−1w{x ∈ X :Mf(x) > Aλ} dλ

= Ap
( τ�

0

. . . dλ+

∞�

τ

. . . dλ
)

≤ Apτpw(X ) + Ap(C + 1)ηr‖Mf‖p
Lp(X ,w)

+
Ap

γp
‖M]

Df‖
p
Lp(X ,w)

,



Sharp maximal functions 125

where the estimate for the first term is trivial and for the second one we
employ (11) as in the former case. Use the fact that each term is finite, take
η such that Ap(C + 1)ηr = 1/2, and plug the value of τ into the inequality
above to get

‖Mf‖Lp(X ,w) ≤ C‖M]
Df‖Lp(X ,w) + Cτ = C‖M]

Df‖Lp(X ,w) + C‖f‖L1(X ).

Now we can extend the previous result to a wider class of functions. The
only interesting case is when X is unbounded because otherwise the set of
functions that belong to some Lq(X ) is just L1(X ) = L1

0(X ).

Corollary 4.3. Assume that X is unbounded. Let 0 < p <∞, w ∈ A∞
and f ∈ Lq(X ) for some 1 ≤ q ≤ ∞. If Mf ∈ Lp(X , w), then

�

X
(Mf(x))pw(x) dµ(x) ≤ C

�

X
(M]

Df(x))pw(x) dµ(x).

Proof. Take such a function f . By Corollary 3.6,M]
Df(x) ≤ CMf(x) ∈

Lp(X , w) and the right-hand side of the inequality we want to prove is
finite as well. Since X is unbounded µ(X ) =∞ and standard computations
show that w(X ) = ∞ for w ∈ A∞. Let us take x0 ∈ X and we are going
to prove that for all x ∈ X , M(fχB(x0,R)c)(x) → 0 as R → ∞. Let us
observe that M(fχB(x0,R)c)(x) decreases as R increases because χB(x0,R)c

does and the previous limit always exists. Assume that we find x1 ∈ X such
that this limit is C0 > 0. In particular, M(fχB(x0,R)c)(x1) ≥ C0 for every
R > 0. For x ∈ X , we define R(x) = max{d(x1, x0), d(x, x0)} + 1 and so
x, x1 ∈ B(x0, R(x)). If R ≥ 4R(x),

M(fχB(x0,R)c)(x1)

≤ Cµ2D sup
r≥3R(x)

1

µ(B(x1, r))

�

B(x1,r)

|f(y)|χB(x0,R)c(y) dµ(y)

≤ Cµ2DM(fχB(x0,R)c)(x),

because if r < 3R(x), then B(x1, r) ⊂ B(x0, R) and the integral vanishes.
On the other hand, the last inequality holds because x ∈ B(x0, R(x)) ⊂
B(x1, r). Then, for R ≥ 4R(x), we have

C0 ≤M(fχB(x0,R)c)(x1) ≤ Cµ2DM(fχB(x0,R)c)(x) ≤ Cµ2DMf(x),

and so �

X
(Mf(x))pw(x) dµ(x) ≥

(
C0

Cµ2D

)p
w(X ) =∞,

which contradictsMf ∈ Lp(X , w). So, for all x ∈ X ,M(fχB(x0,R)c)(x)→ 0
as R→∞. On the other hand, since Mf ∈ Lp(X , w), the dominated con-
vergence theorem shows that that ‖M(fχB(x0,R0)c)‖Lp(X ,w) → 0 as R→∞.
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Then, for any ε > 0, there exists R0 > 0 such that ‖M(fχB(x0,R0)c)‖Lp(X ,w)

< ε. In this way,

‖Mf‖Lp(X ,w) < ε+ ‖M(fχB(x0,R0))‖Lp(X ,w).

Since f ∈ Lq(X ), q ≥ 1, it follows that fχB(x0,R0) ∈ L1
0(X ). On the other

hand, M(fχB(x0,R0)) ∈ Lp(X , w), because Mf belongs to the same space.
We can now use Theorem 4.2 to prove that

‖M(fχB(x0,R0))‖Lp(X ,w) ≤ C‖M]
D(fχB(x0,R0))‖Lp(X ,w)

≤ C‖M]
Df‖Lp(X ,w) +C‖M]

D(fχB(x0,R0)c)‖Lp(X ,w).

Because of the fact that fχB(x0,R0)c ∈ Lq(X ), Corollary 3.6 leads to

‖M]
D(fχB(x0,R0)c)‖Lp(X ,w) ≤ C‖M(fχB(x0,R)c)‖Lp(X ,w) ≤ Cε.

By collecting all these estimates and by using the fact that ε can be taken
arbitrarily small we get the desired estimate.

5. Weighted norm inequalities for singular integral operators
with non-smooth kernels. The operators we are going to consider hence-
forth were introduced in [DM]. They are defined in the following way:

(a) T is a bounded linear operator on L2(X ) with kernel K(x, y) such
that for f ∈ L∞0 (X ),

Tf(x) =
�

X
K(x, y)f(y) dµ(y) for µ-almost every x 6∈ supp f.

(b) There exists an “approximation of the identity” {At : t > 0} such
that TAt has associated kernel kt(x, y) and there exist c1, c2 > 0 so that

�

d(x,y)≥c1t1/m
|K(x, y)− kt(x, y)| dµ(x) ≤ c2 for all y ∈ X .

(c) There exists an “approximation of the identity” {Dt : t > 0} such
that DtT has kernel Kt(x, y) which satisfies

(c1) |Kt(x, y)| ≤ c4
1

µ(B(x, t1/m))
when d(x, y) ≤ c3t

1/m,

(c2) |Kt(x, y)−K(x, y)| ≤ c4
1

µ(B(x, d(x, y)))

tα/m

d(x, y)α

when d(x, y) ≥ c3t
1/m,

for some c3, c4, α > 0 (in fact, without loss of generality in what follows we
will assume that c3 = 1).
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We assume that T is an operator satisfying (a), (b) and (c). The maximal
operator T? is the supremum of the truncated integrals, namely,

T?f(x) = sup
ε>0
|Tεf(x)| = sup

ε>0

∣∣∣
�

d(x,y)≥ε
K(x, y)f(y) dµ(y)

∣∣∣.

Remark 5.1. In [DM], it is proved that if T satisfies (a) and (b), then
it is of weak type (1, 1) and of strong type (p, p) for 1 < p ≤ 2. In addition,
if (c) is also assumed, then T is bounded on Lp(X ), 1 < p < ∞. Fur-
thermore, [DM, Theorem 3] says that T? is a bounded operator on Lp(X ),
1 < p <∞. Indeed, implicitly in the proof we can find the following Cotlar
type inequality:

(12) T?f(x) ≤ CM(Tf)(x) + CMf(x).

Then the boundedness of T and M provides the corresponding estimates
for T?.

Remark 5.2. In comparison with the classical Calderón–Zygmund op-
erators, the Hörmander conditions are replaced by (b) and (c) which involve
the “approximations of the identity”. Let us note that there is no regular-
ity assumption on the space variables. In fact, Duong and McIntosh prove
that, for suitable “approximations of the identity”, conditions (b) and (c)
are weaker than the usual imposed to Calderón–Zygmund operators. The
reader is referred to [DM] for more details.

5.1. Weighted strong type inequalities. The goal of this section is to
prove that the operators we are working with satisfy weighted strong type
inequalities. The main tool will be the Fefferman–Stein type inequality for

M]
D obtained before.

Theorem 5.3. Let 1 < p < ∞ and w ∈ Ap. If T is an operator satis-
fying (a), (b) and (c), then T is bounded on Lp(X , w).

For the proof of this result, most of the work is already done. We are going

to show thatM]
D(Tf) is pointwise controlled by the Hardy–Littlewood max-

imal function with some power strictly bigger than 1. Let us point out that

M]
D is the ad hoc operator for this property and it plays the same role as the

Fefferman–Stein sharp maximal function with respect to Calderón–Zygmund
operators. Then Theorem 4.2, Corollary 4.3, and a technical lemma will al-
low us to obtain the weighted norm estimates.

Proposition 5.4. Let 1 < s <∞ and f ∈ L∞0 (X ). If T is an operator
as above then

M]
D(Tf)(x) ≤ C(M(|f |s)(x))1/s.
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Proof. Let us note that, if f ∈ L∞0 (X ), then f ∈ Lp(X ) for every 1 ≤
p ≤ ∞ and M(|f |s) makes sense. Moreover, because of the boundedness
of T obtained in [DM] (see Remark 5.1), it follows that Tf ∈ Lp(X ) for

1 < p <∞ andM]
D(Tf) also makes sense. For every ball B 3 x, we split f

as f = f1 + f2 = fχ2B + fχ(2B)c. Since 1 < s <∞, T is bounded on Ls(X )
and

1

µ(B)

�

B

|Tf1(y)| dµ(y) ≤ C
(

1

µ(B)

�

X
|f1(y)|s dµ(y)

)1/s

≤ C(M(|f |s)(x))1/s

because x ∈ B ⊂ 2B. On the other hand, (6) and the boundedness ofM on
Ls(X ) provide in the same manner

1

µ(B)

�

B

|DtB(Tf1)(y)| dµ(y) ≤ C 1

µ(B)

�

B

|M(Tf1)(y)| dµ(y)

≤ C(M(|f |s)(x))1/s.

Let us see what happens with f2. We know that this function is boundedly
supported, because f ∈ L∞0 (X ) is, and the support is contained in (2B)c.

Let y ∈ B. If z ∈ (2B)c, then d(z, y) ≥ rB = t
1/m
B . By (c2), we obtain

|Tf2(y)−DtB(Tf2)(y)|
≤

�

d(z,y)≥t1/mB

|K(y, z)−KtB (y, z)| |f(z)| dµ(z)

≤ C
∞∑

k=0

�

2krB≤d(z,y)<2k+1rB

1

µ(B(y, d(y, z)))

rαB
d(y, z)α

|f(z)| dµ(z)

≤ C
∞∑

k=0

1

2kα
1

µ(B(y, 2krB))

�

d(z,y)<2k+1rB

|f(z)| dµ(z)

≤ CMf(x),

since x ∈ B ⊂ B(y, 2k+1rB). Then, as s > 1,

1

µ(B)

�

B

|Tf2(y)−DtB(Tf2)(y)| dµ(y) ≤ CMf(x) ≤ C(M(|f |s)(x))1/s.

To complete the proof we just need to paste these three estimates.

Before proving the weighted norm inequalities we need a technical lemma
to be proved later. We see, for good functions f , that Tf belongs to Lp(X , w).
That is, we obtain an a priori estimate which says that the left-hand side of
the weighted inequality is finite. This fact will allow us to use Theorem 4.2
and Corollary 4.3.
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Lemma 5.5. Let 1 < p < ∞, w ∈ Ap and f ∈ L∞0 (X ). Then Tf ∈
Lp(X , w).

Proof of Theorem 5.3. It is enough to prove the desired estimate for
f ∈ L∞0 (X ), since this space is densely contained in Lp(X , w). For w ∈ Ap,
there exists s > 1 such that w ∈ Ap/s with p/s > 1. On the other hand,
f ∈ Lq(X ) for q ≥ 1 and the estimates on T ensure that Tf ∈ Lq(X ) for
1 < q < ∞. By Lebesgue’s differentiation theorem Tf(x) ≤ M(Tf)(x) for
µ-almost every x ∈ X .

Let us consider first the case where X is unbounded. Lemma 5.5 says
that Tf ∈ Lp(X , w). Since w ∈ Ap, we see that M is bounded on Lp(X , w)
and consequently M(Tf) also belongs to this space. We use these facts,
Corollary 4.3 and Proposition 5.4 with our choice of s to obtain

�

X
|Tf(x)|pw(x) dµ(x) ≤

�

X
(M(Tf)(x))pw(x) dµ(x)

≤ C
�

X
(M]

D(Tf)(x))pw(x) dµ(x)

≤ C
�

X
(M(|f |s)(x))p/sw(x) dµ(x)

≤ C
�

X
|f(x)|pw(x) dµ(x).

In the last inequality we used the fact that M is bounded on Lp/s(X , w)
since w ∈ Ap/s and p/s > 1.

When X is a bounded set we proceed as follows. Since Tf ∈ Lq(X ) for
q > 1 and µ(X ) <∞, it follows that Tf ∈ L1(X ). Moreover, since the space
is bounded, in particular the support of Tf is also a bounded set. Apply
Lemma 5.5 to get Tf ∈ Lp(X , w), and hence M(Tf) belongs to this space.
As before, we can use Theorem 4.2 and Proposition 5.4 to obtain

‖Tf‖Lp(X ,w) ≤ ‖M(Tf)‖Lp(X ,w) ≤ C‖M]
D(Tf)‖Lp(X ,w) + C‖Tf‖L1(X )

≤ C‖f‖Lp(X ,w) + C‖Tf‖L1(X ).

For the second term, Hölder’s inequality with s > 1 and the boundedness of

T in Ls(X ) yield ‖Tf‖L1(X ) ≤ µ(X )1/s′‖Tf‖Ls(X ) ≤ C‖f‖Ls(X ). We again
apply Hölder’s inequality with exponent r = p/s > 1 to observe that

‖f‖Ls(X ) ≤
( �

X
|f(x)|pw(x) dµ(x)

)1/p( �

X
w(x)1−r′dµ(x)

)(r−1)/p
.

As w ∈ Ap/s = Ar, we know that w1−r′ ∈ Ar′ . In particular w1−r′ ∈
L1

loc(X ) and then the second factor of the previous inequality is finite (let us
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recall that X is bounded). To finish, it is enough to collect all the estimates
obtained.

For the proof of Lemma 5.5 we will use the following:

Remark 5.6. Let 1 < q < ∞ and w ∈ Aq. Then, for any x0 ∈ X and
R > 0, we have

∞∑

k=0

�

2kR≤d(x,x0)<2k+1R

1

µ(B(x, 2kR))q
w(x) dµ(x) <∞.

We prove this fact in a very easy way. Take g = χB(x0,R). Since w ∈ Aq,
�

X
(Mg(x))qw(x) dµ(x) ≤ C

�

X
|g(x)|qw(x) dµ(x) = Cw(B(x0, R)) <∞.

For k = 0, 1, . . . and x ∈ X such that 2kR ≤ d(x, x0) < 2k+1R, we observe
that B(x0, R) ⊂ B(x, 2k+2R) and thus

Mg(x) ≥ 1

µ(B(x, 2k+2R))

�

B(x,2k+2R)

|g(y)| dµ(y) =
µ(B(x0, R))

µ(B(x, 2kR))
.

Finally,

∞ >
�

X
(Mg(x))qw(x) dµ(x) ≥

∞∑

k=0

�

2kR≤d(x,x0)<2k+1R

(Mg(x))q w(x) dµ(x)

≥ C
∞∑

k=0

�

2kR≤d(x,x0)<2k+1R

1

µ(B(x, 2kR))q
w(x) dµ(x).

Proof of Lemma 5.5. We know that supp f ⊂ B(x0, R) for some x0 ∈ X
and R > 0. Reverse Hölder’s inequality (see [ST]) provides ε > 0 such that

(
1

µ(B)

�

B

w(x)1+ε dµ(x)

)1/(1+ε)

≤ C

µ(B)

�

B

w(x) dµ(x),

holds for every ball B. By Hölder’s inequality with 1 + ε, we obtain

(13)
�

B(x0,2R)

|Tf(x)|pw(x) dµ(x)

≤
( �

B(x0,2R)

w(x)1+ε dµ(x)
)1/(1+ε)

‖Tf‖p
Lp(1+ε)′ (X )

≤ C w(B(x0, 2R))

µ(B(x0, 2R))ε/(1+ε)
‖f‖p

Lp(1+ε)′ (X )
<∞,
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because f ∈ L∞0 (X ) and T is bounded on Lp(1+ε)′(X ) (see [DM] or Re-
mark 5.1). Take tk = (2k−1R)m and it follows that

�

B(x0,2R)c

|Tf(x)|pw(x) dµ(x)

=
∞∑

k=1

�

2kR≤d(x,x0)<2k+1R

|Tf(x)|pw(x) dµ(x)

≤ Cp
( ∞∑

k=1

�

2kR≤d(x,x0)<2k+1R

|Tf(x)−DtkTf(x)|pw(x) dµ(x)

+
∞∑

k=1

�

2kR≤d(x,x0)<2k+1R

|DtkTf(x)|pw(x) dµ(x)
)

= Cp(I + II).

For the first term, if 2kR ≤ d(x, x0) < 2k+1R and y ∈ B(x0, R), we have

d(x, y) ≥ t1/mk . Then (c2) provides

|Tf(x)−DtkTf(x)|

≤ C
�

d(x,y)≥t1/mk

1

µ(B(x, d(x, y)))

t
α/m
k

d(x, y)α
|f(y)| dµ(y)

≤ C
∞∑

j=0

1

2jα
1

µ(B(x, 2j+1t
1/m
k ))

�

2jt
1/m
k ≤d(x,y)<2j+1t

1/m
k

|f(y)| dµ(y)

≤ CMf(x),

since α > 0. As w ∈ Ap, we have

I ≤ C
∞∑

k=1

�

2kR≤d(x,x0)<2k+1R

(Mf(x))pw(x) dµ(x)

≤ C
�

X
(Mf(x))pw(x) dµ(x)

≤ C
�

X
|f(x)|pw(x) dµ(x) ≤ C‖f‖pL∞(X )w(B(x0, R)) <∞.

Let us estimate II. First, we use again the openness property of the Mucken-
houpt classes, and the fact that there exists 1 < s <∞ such that w ∈ Ap/s
with p/s > 1. Since f ∈ L∞0 (X ), we have f ∈ Ls(X ) and consequently
Tf ∈ Ls(X ). We use Lemma 3.4 to obtain
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II ≤ C‖Tf‖pLs(X )

∞∑

k=1

�

2kR≤d(x,x0)<2k+1R

1

µ(B(x, t
1/m
k ))p/s

w(x) dµ(x)

≤ C‖f‖pLs(X )

∞∑

k=1

�

2kR≤d(x,x0)<2k+1R

1

µ(B(x, 2kR))p/s
w(x) dµ(x) <∞

because of Remark 5.6 with q = p/s. Thus we have shown that outside of
B(x0, 2R) the integral is also finite.

Corollary 5.7. If T is an operator satisfying (a), (b), and (c) then
T? is bounded on Lp(X , w) for 1 < p <∞ and w ∈ Ap.

Proof. Use the Cotlar type inequality (12) proved in [DM], Theorem 5.3,
and the boundedness of M on Lp(X , w) for w ∈ Ap, 1 < p <∞.

5.2. Weighted weak type (1, 1) inequality. By means of the Calderón–
Zygmund decomposition and the strong type estimates we have just proved,
we can now obtain the corresponding weak type (1, 1) inequality for A1

weights.

Theorem 5.8. Let T be an operator satisfying (a) and (c). Assume
that , instead of (b), T satisfies the following stronger condition:

(b)′ There exists an “approximation of the identity” {At : t > 0} such
that TAt has associated kernel kt(x, y) and there are some c1, c2, β > 0 such
that

|K(x, y)− kt(x, y)| ≤ c2
1

µ(B(y, d(x, y)))

tβ/m

d(x, y)β

for x, y ∈ X with d(x, y) ≥ c1t
1/m.

Then, for every w ∈ A1, T maps L1(X , w) into L1,∞(X , w).

Remark 5.9. Hypothesis (b)′ implies that if g ∈ L1
loc(X ), then

�

d(x,y)≥c1t1/m
|K(x, y)− kt(x, y)| |g(x)| dµ(x) ≤ CMg(y) for any y ∈ X .

In particular, by taking g(x) = 1, it follows that (b)′ implies (b).

The idea consists in decomposing the integral into dyadic annuli:
�

d(x,y)≥c1t1/m
|K(x, y)− kt(x, y)| |g(x)| dµ(x)

≤ C
∞∑

k=0

1

2kβ
1

µ(B(y, 2kc1t1/m))

�

2kc1t1/m≤d(x,y)<2k+1c1t1/m

|g(x)| dµ(x)

≤ CMg(y).
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Proof of Theorem 5.8. We know that w ∈ A1 ⊂ Ap for every 1 < p <∞
and, by the remark above, T satisfies the hypotheses of Theorem 5.3. Then T
is bounded on Lp(X , w). On the other hand, it is enough to prove the desired
inequality for f ∈ L∞0 (X ). If λ > ‖f‖L1(X )(µ(X ))−1, by Theorem 2.1, we can
perform the Calderón–Zygmund decomposition (for |f |) and so there exists
a collection of balls {Bi} such that {x ∈ X : Mf(x) > λCX } =

⋃
iBi. As

in [CW] we decompose f as f = g + b = g +
∑

i bi, where

g(x) = f(x)χX\⋃i Bi +
∑

i

(
1

µ(Bi)

�

Bi

f(y)%i(y) dµ(y)

)
χBi(x),

bi(x) = f(x)%i(x)−
(

1

µ(Bi)

�

Bi

f(y)%i(y) dµ(y)

)
χBi(x),

%i(x) =
χBi(x)∑
j χBj(x)

χ⋃
j Bj

.

Let us note that by (iv) of Theorem 2.1, in each of the series above there
are at most M non-zero terms. This result and Remark 2.2 produce the
following:

(A) If x ∈ Bi, then M−1 ≤ %i(x) ≤ 1. Moreover,
∑

i

%i(x) = χ⋃
i Bi

(x).

(B) |g(x)| ≤ Cλ for µ-almost all x ∈ X .

(C) supp bi ⊂ Bi and
1

µ(Bi)

�

Bi

|bi(x)| dµ(x) ≤ Cλ.

Then

w{x ∈ X : |Tf(x)| > λ}

≤ w
{
x ∈ X : |Tg(x)| > λ

2

}
+ w

{
x ∈ X : |Tb(x)| > λ

2

}
.

Since w ∈ A1 ⊂ A2, it follows that T is a bounded operator on L2(X , w).
Then (B) yields

(14) w

{
x ∈ X : |Tg(x)| > λ

2

}

≤ C

λ2

�

X
|g(x)|2w(x) dµ(x) ≤ C

λ

�

X
|g(x)|w(x) dµ(x)

≤ C

λ

(
‖f‖L1(X ,w) +

�
⋃
i Bi

|g(x)|w(x) dµ(x)
)

≤ C

λ
‖f‖L1(X ,w),

where for the latter estimate we have used the fact that w ∈ A1 and (A):
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�
⋃
i Bi

|g(x)|w(x) dµ(x) ≤
∑

i

�

Bi

|f(y)|%i(y)
w(Bi)

µ(Bi)
dµ(y) ≤ C‖f‖L1(X ,w).

Let us show what to do with Tb. Set ti = rmBi and write

b(x) =
∑

i

bi(x) =
∑

i

(Atibi(x) + (bi(x)−Atibi(x))).

We want to split this series in two terms, so we need to study its convergence.
By using the ideas of [DM, Theorem 1], and by (C), it follows that

|Atibi(x)| ≤ sup
y∈Bi

hti(x, y)
�

Bi

|bi(y)| dµ(y) ≤ Cλµ(Bi) inf
y∈Bi

hθti(x, y)

≤ Cλ
�

X
hθti(x, ξ)χBi(ξ) dµ(ξ).

If 0 ≤ u ∈ Lp(X ) for some p ≥ 1, it can be shown that

(15)
�

X

(∑

i

|Atibi(x)|
)
u(x) dµ(x) ≤ CMλ

�

X
Mu(y)χ⋃

i Bi
(y) dµ(y),

where we have used (7) and Theorem 2.1. If we take u ∈ L2(X ) with
‖u‖L2(X ) = 1, then

�

X

(∑

i

|Atibi(x)|
)
u(x) dµ(x) ≤ Cλ‖Mu‖L2(X )‖χ⋃i Bi‖L2(X )

≤ Cλ1/2‖f‖1/2
L1(X )

,

by Theorem 2.1(iii). By taking the supremum over all these functions u, it
follows that

∑
i |Atibi| ∈ L2(X ) and

∑
iAtibi is a Cauchy series in this space.

It follows that
∑

i(bi−Atibi) also converges in L2(X ). Since T is continuous
T (
∑

i(bi − Atibi)) =
∑

i T (bi − Atibi) in L2(X ) and consequently,

(16)
∣∣∣T
(∑

i

(bi −Atibi)
)

(x)
∣∣∣ ≤

∑

i

|T (bi − Atibi)(x)|

for µ-almost every x ∈ X . Then it is clear that

w

{
x ∈ X : |Tb(x)| > λ

2

}
≤ w

{
x ∈ X :

∣∣∣T
(∑

i

Atibi

)
(x)
∣∣∣ > λ

4

}

+ w

{
x ∈ X :

∣∣∣T
(∑

i

(bi − Atibi)
)

(x)
∣∣∣ > λ

4

}
.

We again use the fact that T is bounded on L2(w):

w

{
x ∈ X :

∣∣∣T
(∑

i

Atibi

)
(x)
∣∣∣ > λ

4

}

≤ 4

λ2

�

X

∣∣∣T
(∑

i

Atibi

)
(x)
∣∣∣
2
w(x) dµ(x) ≤ C

λ2

∥∥∥
∑

i

|Atibi| · w1/2
∥∥∥

2

L2(X )
.
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We consider 0 ≤ u ∈ L∞0 (X ) with ‖u‖L2(X ) = 1. We apply (15) to u · w1/2

(which belongs to L2(X ), since w is a locally integrable function) and we
get

�

X

(∑

i

|Atibi(x)| · w(x)1/2
)
u(x) dµ(x)

≤ Cλ
�

X
M(u · w1/2)(y)χ⋃

i Bi
(y) dµ(y)

≤ Cλ‖M(u · w1/2)‖L2(X ,w−1)‖χ⋃i Bi‖L2(X ,w).

Remark 2.2(i) and the fact that w ∈ A1 imply

(17) ‖χ⋃
i Bi
‖2L2(X ,w) = w{x ∈ X :Mf(x) > λCX } ≤

C

λ
‖f‖L1(X ,w).

Moreover, since w ∈ A1, we have w ∈ A2 and thus w−1 ∈ A2, which implies
that M is bounded on L2(X , w−1). Consequently,

�

X

(∑

i

|Atibi(x)| ·w(x)1/2
)
u(x) dµ(x) ≤ Cλ1/2‖f‖1/2

L1(X ,w)

for every 0 ≤ u ∈ L∞0 (X ) with ‖u‖L2(X ) = 1. By taking the supremum over
all these functions we eventually get

(18) w

{
x ∈ X :

∣∣∣T
(∑

i

Atibi

)
(x)
∣∣∣ > λ

4

}
≤ C

λ
‖f‖L1(X ,w).

On the other hand, set B̃i = (1 + c1)Bi where c1 is the constant in (b)′.
Then, by using (16) and the fact that w ∈ A1 is a doubling measure we
obtain

w

{
x ∈ X :

∣∣∣T
(∑

i

(bi −Atibi)
)

(x)
∣∣∣ > λ

4

}

≤ w
(⋃

i

B̃i

)
+ w

{
x 6∈

⋃

i

B̃i :
∣∣∣T
(∑

i

(bi −Atibi)
)

(x)
∣∣∣ > λ

4

}

≤ C
∑

i

w(Bi) +
4

λ

∑

i

�

X\B̃i

|T (bi − Atibi)(x)|w(x) dµ(x).

For the first term we use Theorem 2.1 and, as we did in (17), we obtain
∑

i

w(Bi) =
�

X

∑

i

χBi(x)w(x) dµ(x)(19)

≤Mw
(⋃

i

Bi

)
≤ C

λ
‖f‖L1(X ,w).
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On the other hand, by Remark 5.9 with g = w ∈ L1
loc(X ),

�

X\B̃i

|T (bi − Atibi)(x)|w(x) dµ(x)

=
�

X\B̃i

|(T − TAti)bi(x)|w(x) dµ(x)

≤ C
�

Bi

|bi(y)|
�

d(x,y)≥c1t1/mi

|K(x, y)− kti(x, y)|w(x) dµ(x) dµ(y)

≤ C
�

Bi

|bi(y)|Mw(y) dµ(y) ≤ C
�

Bi

|bi(y)|w(y) dµ(y)

≤ C
�

Bi

|f(y)|w(y) dµ(y) + Cλw(Bi),

where we used the fact that w ∈ A1 and Theorem 2.1. In this way, by (iv)
of Theorem 2.1 and (19),

∑

i

�

X\B̃i

|T (bi − Atibi)(x)|w(x) dµ(x)

≤ C
∑

i

�

Bi

|f(y)|w(y) dµ(y) + Cλ
∑

i

w(Bi) ≤ C‖f‖L1(X ,w),

which allows us to get

w

{
x ∈ X :

∣∣∣T
(∑

i

(bi − Atibi)
)

(x)
∣∣∣ > λ

4

}
≤ C

λ
‖f‖L1(X ,w).

For every λ > ‖f‖L1(X )(µ(X ))−1, this estimate, (14), and (18) lead to

w{x ∈ X : |Tf(x)| > λ} ≤ C

λ
‖f‖L1(X ,w).

If X is unbounded, the proof is complete because the former inequality
holds for every λ > 0. Otherwise, we have to consider what happens for
0 < λ ≤ ‖f‖L1(X )(µ(X ))−1. Since X is bounded we can write X = B(x0, r0).
Then, as w ∈ A1, we conclude

w{x ∈ X : |Tf(x)| > λ} ≤ w(X ) ≤ 1

λ

�

X
|f(x)| w(X )

µ(X )
dµ(x)

≤ C

λ
‖f‖L1(X ,w).

6. Singular integral operators on irregular domains. In what
follows, Ω will be a measurable subset of the space of homogeneous type
(X , d, µ). It is well known that under certain regularity assumptions on Ω,
for instance Lipschitz boundary, Ω with the restriction of µ is itself a space
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of homogeneous type. Thus, the previous results can be applied directly to
get boundedness of singular operators with Muckenhoupt weights defined in
Ω. However, there are interesting problems where the natural domains are
not smooth, for example open subsets of the Euclidean space Rd. This is the
case of boundary value problems for partial differential equations. In those
problems, the restriction of the measure might fail to satisfy the doubling
property and therefore Ω would not be a space of homogeneous type.

We are interested in dealing with weighted norm estimates in those con-
texts. As pointed out in [DM], one can extend the singular operators de-
fined in Ω to the space X . Since there is no assumption on the regular-
ity of the kernels in the space variables, the extension of the kernel still
satisfies similar conditions. Given T , a bounded linear operator on Lp(Ω),

1 < p <∞, the extension of T to X is defined as T̃ f(x) = T (fχΩ)(x)χΩ(x)

for f ∈ Lp(X ). Then T is bounded on Lp(Ω) if and only if T̃ is bounded
on Lp(X ). In a similar way, there is an equivalence between weak type es-

timates. If K is the kernel of T , then the associated kernel of T̃ is given by

K̃(x, y) = K(x, y)χΩ×Ω(x, y). As observed in [DM], it is easy to see that a
Hörmander condition for K would not necessarily imply such a condition

for K̃ because this kernel is even discontinuous. Nevertheless, since the con-
ditions assumed on the kernels do not involve their regularity, they imply
similar properties of the kernels of the extended operators.

We are going to use the following notation: BX and BΩ denote respec-
tively balls in X and Ω. The “approximations of the identity” {Dt : t > 0}
in this context are given by

Dtf(x) =
�

X
at(x, y)f(y) dµ(y), f ∈ Lp(Ω) for some p ≥ 1.

The kernels are assumed to satisfy |at(x, y)| ≤ ht(x, y) for every x, y ∈ Ω,
where ht(x, y) is defined in X × X as

(20) ht(x, y) =
1

µ(BX (x, t1/m))
s(d(x, y)mt−1).

Again, m is a positive constant and s is a positive, bounded, decreasing
function satisfying (4). The hypotheses on the operators are:

(a)Ω T is a bounded linear operator from L2(Ω) to L2(Ω) with kernel
K such that, for every f ∈ L∞0 (Ω),

Tf(x) =
�

X
K(x, y)f(y) dµ(y) for µ-almost all x 6∈ supp f.

(b)Ω There exists an “approximation of the identity”{At : t > 0} such
that TAt has associated kernel kt(x, y) and there are c1, c2 > 0 such that

�

d(x,y)≥c1t1/m
|K(x, y)− kt(x, y)| dµ(x) ≤ c2 for all y ∈ Ω.
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(c)Ω There exists an “approximation of the identity” {Dt : t > 0} such
that DtT has kernel Kt(x, y) and, for some constants c3, c4, α > 0,

(c1)Ω |Kt(x, y)| ≤ c4
1

µ(BX (x, t1/m))
for x, y ∈ Ω with d(x, y) ≤ c3t

1/m,

(c2)Ω |Kt(x, y)−K(x, y)| ≤ c4
1

µ(BX (x, d(x, y)))

tα/m

d(x, y)α

for x, y ∈ Ω with d(x, y) ≥ c3t
1/m.

In [DM] it is proved that if T satisfies (a)Ω and (b)Ω, then it is of weak
type (1, 1) in Ω and bounded on Lp(Ω) for 1 < p ≤ 2. Assuming additionally
(c)Ω, the authors obtain the complete range 1 < p < ∞ and the fact that
the associated maximal operator T? is also continuous on Lp(Ω), 1 < p <∞.
The way of proving these estimates is based on extending all the operators

involved to X . That is, they consider T̃ , Ãt and D̃t and they prove that

(a)Ω, (b)Ω and (c)Ω imply that T̃ satisfies (a), (b) and (c). Then they just
apply the obtained results in X to get the desired estimates.

By using those ideas, we can now state that these operators also sat-
isfy weighted norm inequalities. We just need to apply Theorem 5.3, Corol-

lary 5.7, and Theorem 5.8 to the extended operator T̃ to find that T and T?
satisfy weighted estimates for Muckenhoupt weights defined in X . We use
the notation Ap(X ) to make it clear that the Muckenhoupt weights are
considered in the whole space X .

Theorem 6.1. Let T be an operator satisfying (a)Ω , (b)Ω and (c)Ω.

(i) If w ∈ Ap(X ), 1 < p <∞, then T and T? are bounded on Lp(Ω,w).
(ii) Replace (b)Ω by the following stronger condition:

(b)′Ω There exists an “approximation of the identity” {At : t > 0}
such that the operators TAt have associated kernels kt(x, y) and there exist
c1, c2, β > 0 such that

|K(x, y)− kt(x, y)| ≤ c2
1

µ(BX (y, d(x, y)))

tβ/m

d(x, y)β

for all x, y ∈ Ω with d(x, y) ≥ c1t
1/m.

Then, for every w ∈ A1(X ), T maps L1(Ω,w) into L1,∞(Ω,w).

7. Holomorphic functional calculi of elliptic operators. We are
going to review some of the necessary background. For a complete account
the reader is referred to [ADM] or also to [DM]. Given θ and ν with 0 <
θ < ν < π we define

Sθ = {ζ ∈ C : |arg(ζ)| ≤ θ} ∪ {0}.
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and its interior is denoted by S0
θ . Let H(S0

ν) be the space of holomorphic
functions defined in S0

ν . We are going to consider the following subspaces of
H(S0

ν):

H∞(S0
ν) = {f ∈H(S0

ν) : ‖f‖∞<∞}, where ‖f‖∞= sup{|f(ζ)| : ζ ∈ S0
ν},

Ψ(S0
ν) = {ψ ∈ H(S0

ν) : ∃s > 0, |ψ(ζ)| ≤ C|ζ|s(1 + |ζ|2s)−1},
F (S0

ν) = {f ∈ H(S0
ν) : ∃s > 0, |f(ζ)| ≤ C(|ζ|−s + |ζ|s)}.

It is clear that Ψ(S0
ν) ⊂ H∞(S0

ν) ⊂ F (S0
ν). A closed operator L in some

Banach space A is said to be of type θ, 0 ≤ θ < π, if its spectrum σ(L) ⊂ Sθ
and for every ν > θ, there exists Cν such that

‖(L− ζI)−1‖ ≤ Cν |ζ|−1, ζ 6∈ Sν .
By the Hille–Yosida theorem, such an operator with θ < π/2 is the generator

of a bounded holomorphic semigroup e−zL in the sector S0
ν with ν = π/2−θ.

Let us assume that L is a one-one operator of type θ with dense domain
and dense range on A. We can define a holomorphic calculus in the following
way: if ψ ∈ Ψ(S0

ν), then

ψ(L) =
1

2πi

�

γ

(L− ζI)−1ψ(ζ) dζ,

where, for θ < η < ν, γ is the contour {ζ = re±iη : r ≥ 0} parameter-
ized clockwise around Sθ. This integral is absolutely convergent in L(A).
Moreover, by the Cauchy theorem this definition does not depend on the
contour, that is, is independent of the choice of η ∈ (θ, ν). If f ∈ F (S0

ν) with
|f(ζ)| ≤ C(|ζ|k + |ζ|−k) for ζ ∈ S0

ν , we take

ψ(ζ) =

(
ζ

(1 + ζ)2

)k+1

.

Then ψ,ψf ∈ Ψ(S0
ν) and ψ(L) is one-one. In this way, the operator (fψ)(L)

is bounded and ψ(L)−1 is a closed operator in A. Then we define f(L) =
ψ(L)−1(fψ)(L).

A very useful result about holomorphic functional calculi is the following
convergence lemma obtained by McIntosh in [McI]; for a proof the reader is
also referred to [ADM, Theorem D].

Lemma 7.1 ([McI]). Let 0 ≤ θ < ν ≤ π. Let L be an operator of
type θ which is one-one with dense domain and range on A. Let {fα} be a

uniformly bounded net in H∞(S0
ν) which converges to f ∈ H∞(S0

ν) uniformly
on compact subsets of S0

ν , such that {fα(L)} is a uniformly bounded net
in L(A). Then f(L) ∈ L(A), fα(L)u→ f(L)u for all u ∈ A, and ‖f(L)‖ ≤
supα ‖fα(L)‖.
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Coming back to our setting, let us suppose that Ω is a measurable subset
of a space of homogeneous type (X , d, µ). Let L be an operator of type
θ < π/2 on L2(Ω) so that −L generates a holomorphic semigroup e−zL,
|arg(z)| < π/2− θ.

Theorem 7.2 ([DM, Theorem 6]). Assume the following conditions:

(a) The holomorphic semigroup e−zL, |arg(z)| < π/2− θ, is represented
by the kernels az(x, y) which satisfy , for all ν > θ, an estimate

|az(x, y)| ≤ Cνh|z|(x, y) for x, y ∈ Ω and |arg(z)| < π/2− ν,
where ht is defined on X × X as in (20).

(b) The operator L has a bounded functional calculus in L2(Ω). That is,
for any ν>θ and f ∈H∞(S0

ν), the operator f(L) satisfies ‖f(L)‖L2(Ω)→L2(Ω)

≤ Cν‖f‖∞.

Then the operator L has a bounded functional calculus in Lp(Ω),
1 < p < ∞, that is, for all f ∈ H∞(S0

ν), we have ‖f(L)‖Lp(Ω)→Lp(Ω) ≤
Cp,ν‖f‖∞. When p = 1, the operator f(L) is of weak type (1, 1). Further-
more, if we define T = f(L), then the maximal truncated operator T? is
bounded on Lp(Ω) for all p, 1 < p <∞.

The proof of this result goes as follows. First, the authors consider the
case T = f(L) with f ∈ Ψ(S0

ν), ν > θ. For such an operator, (a)Ω, (b)Ω and
(c)Ω are obtained by taking as “approximations of the identity” At = Dt

= e−tL. Then McIntosh’s convergence lemma (Lemma 7.1 above) allows
them to extend the result to H∞(S0

ν).
Taking into account that proof and the fact that the required conditions

for the weighted inequalities are the same as those assumed in [DM], we can
state the following result just by using Theorem 6.1. Let us note that in
part (ii) we added a stronger condition (b)′Ω which can be checked easily:
the commutation property of the functional calculus and the fact that At =
Dt = e−tL yield Kt = kt. Moreover, by (3), we see that µ(BX (y, d(x, y)))
and µ(BX (x, d(x, y))) are comparable and hence (b)′Ω arises from (c2)Ω by
taking β = α.

Theorem 7.3. Under the conditions of the previous theorem, for any
1 < p < ∞ and w ∈ Ap(X ), the operator L has a bounded holomorphic
functional calculus in Lp(Ω,w). That is, if ν > θ and f ∈ H∞(S0

ν), then

‖f(L)‖Lp(Ω,w)→Lp(Ω,w) ≤ Cp,w,ν‖f‖∞.
Furthermore, when p = 1, f(L) is bounded from L1(Ω,w) to L1,∞(Ω,w) for
every w ∈ A1(X ). In addition, if we write T = f(L), then T? is bounded
from Lp(Ω,w) to Lp(Ω,w) for any 1 < p <∞ and w ∈ Ap(X ).
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We are going to present some applications for this result. We work with
some operators taken from [AE] which correspond to second order elliptic
operators with different boundary conditions. In what follows, our setting
will be Rd with the Euclidean distance and the Lebesgue measure. Besides,
Ω will be an open subset of this space of homogeneous type. For 1 ≤ p ≤ ∞,
the Sobolev space W 1,p(Ω) consists of all functions in Lp(Ω) with first order
distributional partial derivatives in the same space. As usual, when p = 2,
we write H1(Ω) instead of W 1,2(Ω). Finally, H1

0 (Ω) is the closure in H1(Ω)
of C∞0 (Ω).

We are going to consider second order elliptic operators with the follow-
ing boundary conditions (for more details see [AE]):

(A) Dirichlet boundary conditions. Let aij ∈W 1,∞(Ω) be real functions
for i, j = 1, . . . , d; let bi, ci ∈ W 1,∞(Ω), i = 1, . . . , d (complex) and let
c0 ∈ L∞(Ω). We consider the sesquilinear form a : H1

0 (Ω) × H1
0 (Ω) → C

defined by

a(u, v) =
d∑

i,j=1

�

Ω

aijDiuDjv +
d∑

i=1

�

Ω

biDiuv +
d∑

i=1

�

Ω

ciuDiv +
�

Ω

c0uv.

Suppose that there exists δ > 0 such that the following ellipticity condition
holds:

(21)

d∑

i,j=1

aij(x)ξiξj ≥ δ|ξ|2 for all ξ ∈ Rd and almost all x ∈ Ω.

Then A is the operator associated with a and generates a semigroup
(e−tA)t>0.

(B) General boundary conditions. We consider operators as before but
now the coercive form is defined in a certain domain V ×V . Some conditions
are imposed on this domain in order to obtain Gaussian estimates for the
kernel of the semigroup. Now, all functions are real-valued, so we only work
in the real field. Assume that V satisfies:

(i) V is a closed subset of H1(Ω) and H1
0 (Ω) ⊂ V .

(ii) V has the L1-H1 extension property, that is, there exists a continuous
linear operator E : V → H1(Rd), called an extension operator , such that
(Eϕ)|Ω = ϕ for all ϕ ∈ V , and

‖Eϕ‖L1(Rd) ≤ C‖ϕ‖L1(Ω) for all ϕ ∈ V ∩ L1(Ω).

For instance, if V = H1
0 (Ω), this operator extends functions on Ω by 0 on

Rd \Ω (see [AE] for more examples).
(iii) If v ∈ V then |v|,min{|v|, 1} ∈ V .
(iv) If v ∈ V , u ∈ H1(Ω) with |u| ≤ v, then u ∈ V (V is an ideal in

H1(Ω)).
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Let us consider the bilinear form a : V × V → R given by

a(u, v) =

d∑

i,j=1

�

Ω

aijDiuDjv +

d∑

i=1

�

Ω

biDiuv +

d∑

i=1

�

Ω

ciuDiv +
�

Ω

c0uv,

and assume the ellipticity condition (21). Now, all coefficients are real-valued
and it is supposed that aij ∈ L∞(Ω), bi, ci ∈ W 1,∞(Ω), c0 ∈ L∞(Ω). The
first order coefficients are required to satisfy:

(22) If v ∈ V, then biv, civ ∈ H1
0 (Ω) for all i = 1, . . . , d.

Under these hypotheses A is the operator associated to the coercive form a
and generates a positive semigroup (e−tA)t>0. For example, if V = H1

0 (Ω),
we are considering an elliptic operator with Dirichlet boundary conditions
and if bi, ci ∈W 1,∞(Ω), then (22) holds. On the other hand, by taking V =
H1(Ω) with ∂Ω minimally smooth, the problem has Neumann boundary

conditions. In this case, (22) holds provided that bi, ci ∈ W 1,∞
0 (Ω). If Ω is

bounded, then bi, ci ∈ H1
0 (Ω) is a necessary condition for (22), since 1 ∈ V .

(C) Robin boundary conditions. Again we work in the real field and
Ω is a bounded open set in Rd with Lipschitz boundary Γ = ∂Ω. We
write dγ for the restriction of the Lebesgue measure to Γ . There exists
a unique linear bounded operator tr : H1(Ω) → L2(Γ, dγ) such that tru =
u|Γ for all u ∈ H1(Ω) ∩ C(Ω ). This operator is called the trace operator .

Assume that the domain V satisfies conditions (i)–(iv) above. We consider
the same form a defined in the previous example with domain V × V . We
also assume (21), (22). Consider a bilinear form b : V × V → R given by

b(u, v) =
�

Γ

β(x)(tru)(x)(tr v)(x) dγ(x),

where β ∈ L∞(Γ ) is a positive function. Let us consider the coercive form
q = a + b with domain V . Then A is the operator associated to q and A
generates a positive semigroup (e−tA)t>0. Let us note that Robin boundary
conditions coincide with Dirichlet boundary conditions if V = H1

0 (Ω) and
with Neumann boundary conditions if V = H1(Ω) and β = 0.

We consider a second order elliptic operator A as in (A), (B) or (C). Let
(e−tA)t>0 be the generated semigroup. As in [AE], there exist b, c > 0, ν ∈ R
such that (e−tA)t>0 is given by the kernels at ∈ L∞(Ω × Ω) which satisfy
the following Gaussian estimate:

|at(x, y)| ≤ ct−d/2e−b|x−y|2t−1
eνt for a.e. (x, y) ∈ Ω ×Ω.

In cases (B) and (C), the kernels also satisfy at(x, y) ≥ 0 for almost all
(x, y) ∈ Ω × Ω. We complexify the domain V and the coercive form a in
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those cases. Set

θa =
π

2
− inf

{
θ > 0 :

d∑

i,j=1

aij(x)ξiξj ∈ S0
θ for all ξ ∈ Cd and a.e. x ∈ Ω

}
.

Note that θa = π/2 if (aij)ij is a symmetric matrix for almost every x ∈ Ω.
Hence, e−zA is a holomorphic semigroup in L2(Ω) with holomorphy sector
which contains at least S0

θa
. Moreover, let θ ∈ [0, θa) and let λ0 ∈ R be such

that

‖e−zA‖L2(Ω)→L2(Ω) ≤ eλ0|z| for all z ∈ Sθ;
then, for all λ > λ0, there exist b, c > 0 such that the kernel of the semigroup

satisfies |az(x, y)| ≤ c|z|−d/2e−b|x−y|2|z|−1
eλ|z|, for almost all (x, y) ∈ Ω ×Ω,

uniformly on z ∈ Sθ (see [AE, Theorem 5.6]).

Theorem 7.4 ([AE, Theorem 5.9, Corollary 5.10]). Let us adopt the
notation and the hypotheses of examples (A), (B) or (C). Let π/2 − θa <
ν < π/2 and λ0 ∈ R be such that

‖e−zA‖L2(Ω)→L2(Ω) ≤ eλ0|z| for all z ∈ Sπ/2−ν .
Then for all λ > λ0, the operator A+λI has a bounded holomorphic calculus
in Lp(Ω) for every 1 < p <∞. In particular ,

‖(A+ λI)is‖Lp(Ω)→Lp(Ω) ≤ Ceν|s|

uniformly for all s ∈ R and 1 < p <∞. Moreover , for every f ∈ H∞(S0
ν),

the operator f(A+ λI) is of weak type (1, 1).

The proof consists in showing that |âz(x, y)| ≤ c|z|−d/2e−b|x−y|2|z|−1
for

z ∈ S0
ν , where âz is the kernel of the semigroup e−(A+λI)z, and then using

[AE, Theorem 5.7]. This result is known under the hypothesis that either
∂Ω is a null set in Rd or Ω = Rd. In general, for Ω an arbitrary open set, the
authors point out that the proof in [DR] can be modified in order to cover
this case. On the other hand, this result arises from Theorem 7.2 proved
in [DM]. Let us remark that |âz(x, y)| ≤ h|z|(x, y) where, for t > 0 and

(x, y) ∈ Rd × Rd,

ht(x, y) = c|t|−d/2e−b|x−y|2|t|−1
=

1

|B(x, t1/2)| s(|x− y|
2t−1)

and s(r) = ce−br is a positive, bounded, decreasing function. With respect to
the notation in (20), m = 2 and it is clear that (4) holds for every ϑ > 0. In
other words, we are under the assumptions of Theorem 7.2 with L = A+λI.
As a consequence and simply by Theorem 7.3, we can prove weighted esti-
mates and that L has a bounded holomorphic calculus in weighted Lebesgue
spaces.
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Corollary 7.5. Let us adopt the notation and the hypotheses of exam-
ples (A), (B) or (C). Let π/2− θa < ν < π/2 and λ0 ∈ R be such that

‖e−zA‖L2(Ω)→L2(Ω) ≤ eλ0|z| for all z ∈ Sπ/2−ν .
Then, for all λ > λ0, we have:

(i) For any 1 < p < ∞ and w ∈ Ap(X ), the operator A + λI has a
bounded holomorphic calculus in Lp(Ω,w), that is,

‖f(A+ λI)‖Lp(Ω,w)→Lp(Ω,w) ≤ Cp,w,ν‖f‖∞ for all f ∈ H∞(S0
ν).

(ii) For any w ∈ A1(X ) and f ∈ H∞(S0
ν) the operator f(A + λI) is

bounded from L1(Ω,w) to L1,∞(Ω,w).
(iii) If we write T = f(A + λI), where f ∈ H∞(S0

ν), then T? maps
Lp(Ω,w) into Lp(Ω,w) for every 1 < p <∞ and w ∈ Ap(X ).

By taking f(z) = zis with s ∈ R, T = (A + λI)is satisfies all these
estimates and , in particular , for 1 < p <∞, w ∈ Ap(X ) and s ∈ R,

‖(A+ λI)is‖Lp(Ω,w)→Lp(Ω,w) ≤ Ceν|s|.
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