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The (sub/super)additivity assertion of Choquet

by

Heinz König (Saarbrücken)

Abstract. The assertion in question comes from the short final section in Theory
of capacities of Choquet (1953/54), in connection with his prototype of the subsequent
Choquet integral. The problem was whether and when this operation is additive. Choquet
had the much more abstract idea that all functionals in a certain wide class must be
subadditive, and similarly for superadditivity. His treatment of this point was more like
an outline, and his proof limited to a rather narrow special case. Thus the proper context
and scope of the assertion has remained open. In this paper we present a counterexample
which shows that the initial context has to be modified, and then in a new context we
prove a comprehensive theorem which fulfils all the needs that have turned up so far.

In Section 48 of his famous Theory of capacities [2] Gustave Choquet
introduced a certain class of functionals with the flavour of an integral, but
invented for another purpose connected with capacities and not at all for the
sake of measure and integration. Yet the concept showed basic qualities in
that other respect too: It was in the initial spirit of Lebesgue [10] to construct
the integral via decomposition into horizontal strips rather than vertical
ones, which had fallen into oblivion in the course of the 20th century, and was
simpler and much more comprehensive than the usual constructions. Thus in
subsequent decades the concept developed into a universal one in measure
and integration, called the Choquet integral . One could even wonder why
the Choquet integral has not become the foundation for all of integration
theory.

But the fact that this did not happen had an immediate reason: The ba-
sic hardship with the Choquet integral is that it is a priori obscure whether
and when it is additive, which one subdivides into subadditive and superaddi-
tive. To this issue Choquet contributed in his final section 54 a spectacular,
because much more abstract idea: On certain lattice cones all submodular
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and positive-homogeneous real-valued functionals must be subadditive, and
the same for super in place of sub. It is this assertion which forms the theme
of the present paper (in what follows the two cases will be united via an ob-
vious sub/super shorthand notation). The treatment of Choquet was more
like an outline, and his proof limited to a rather narrow special case. While
the Choquet integral has been explored in subsequent decades, the abstract
assertion has remained unsettled up to now.

In recent years the present author needed an assertion of this kind to
further develop his extended Daniell–Stone and Riesz representation theo-
rems [7]. In 1998 he obtained an intermediate result which was sufficient for
that purpose [8]. In this paper we present a counterexample which shows
that the initial context for the abstract assertion has to be modified, and
then in a new context we prove a comprehensive theorem which fulfils all
the needs that have turned up so far. For the basic step in the so-called
finite situation there will be two proofs. One of them is a distributional ver-
sion of the initial proof due to Choquet, while the other one furnishes, via a
remarkable fact on convex functions, an essential strengthening in the finite
situation.

1. INTRODUCTION AND FUNDAMENTALS

The Choquet integral. The Choquet integral as evolved in the second
half of the 20th century exists in different versions. The present version is
from the author’s textbook [7, Section 11]. It features two classes of admissi-
ble functions. The reason is that the two variants are in perfect accord with
the two extension theories in measure and integration, the inner and outer
one, developed in [7].

Let X be a nonvoid set and S be a lattice of subsets with ∅ ∈ S in X.
We define UM(S)/LM(S) to consist of the functions f ∈ [0,∞]X such that
[f ≥ t]/[f > t] ∈ S for all 0 < t <∞, called upper/lower measurable S. We
fix an increasing set function ϕ : S → [0,∞] with ϕ(∅) = 0 and define the
Choquet integral

�
f dϕ :=

→∞�
0←

ϕ([f ≥ t]) dt ∈ [0,∞] for f ∈ UM(S),

�
f dϕ :=

→∞�
0←

ϕ([f > t]) dt ∈ [0,∞] for f ∈ LM(S),

both integrals being improper Riemann integrals of a monotone function
with values in [0,∞]. The definition is unambiguous since in case f ∈
UM(S) ∩ LM(S) the two second members are equal. Thus for A ∈ S we
have χA ∈ UM(S) ∩ LM(S) with � χA dϕ = ϕ(A). If S is a σ-algebra then
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UM(S) = LM(S) consists of the functions f ∈ [0,∞]X measurable S in the
usual sense, and if ϕ is a measure then � f dϕ is the usual integral � f dϕ.

The prototype of the Choquet integral was defined in [2] for the lattice
S = Comp(X) of compact subsets in a locally compact Hausdorff topologi-
cal space X and under the assumption ϕ <∞, but restricted to the function
class

CK(X, [0,∞[) ⊂ USCK(X, [0,∞[) ⊂ UM(Comp(X)) ∩ [0,∞[X ,

where the first two classes are defined to consist of the continuous and of the
upper semicontinuous functions X → [0,∞[ with compact support. There-
fore the set functions ϕ had sometimes to be restricted to the downward τ
continuous ones, that is, to the capacities in the sense of [2].

We return to the full Choquet integral. For the basic properties recorded
below we refer to [7, Section 11] and [8, Section 2].

1.1. Remark. For a function f ∈ [0,∞[X with finitely many values the
following are equivalent.

(i) f ∈ UM(S).
(ii) f ∈ LM(S).

(iii) f =
∑r

l=1 tlχA(l) for some real t1, . . . , tr > 0 and A(1), . . . , A(r)∈S.
(iv) The same as (iii) with A(1) ⊃ . . . ⊃ A(r).

We define S(S) to consist of the functions as in (i)–(iv); note from (iii)
that S(S) is stable under addition. For the representations (iv) of f ∈ S(S)
we have � f dϕ =

∑r
l=1 tlϕ(A(l)).

1.2. Properties. (1) UM(S) and LM(S) are positive-homogeneous
(under multiplication with real numbers 0 < t < ∞) with 0 and stable
under pointwise maximum ∨ and pointwise minimum ∧.

(2) If S is stable under countable intersections then UM(S) is stable
under addition and UM(S) ⊃ LM(S). If S is stable under countable unions
then LM(S) is stable under addition and LM(S) ⊃ UM(S).

(3) For an increasing ϕ : S→ [0,∞] with ϕ(∅) = 0 the Choquet integral
I(f) = � f dϕ on UM(S)/LM(S) is positive-homogeneous and increasing
under the pointwise order ≤.

The next point is important enough to be included, although it will
not be needed later: The Beppo Levi theorem carries over to the Choquet
integral, and in fact in most comprehensive sequential and nonsequential
forms, provided that one adopts the integral in the version of [7]. We quote
from [7, 11.17/18] in the obvious old notations.

1.3. Theorem. Let ϕ : S → [0,∞] be increasing with ϕ(∅) = 0 and
I(f) = � f dϕ on UM(S)/LM(S). For • = σ, τ we have:
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(Inn) ϕ is almost downward •-continuous ⇔ I is almost downward •-
continuous on UM(S).

(Out) ϕ is upward •-continuous ⇔ I is upward •-continuous on LM(S).

In the present context the basic question is when the Choquet integral
I(f) = � f dϕ on UM(S)/LM(S) is (sub/super)additive, and also when it
is (sub/super)modular. A functional I : S → [0,∞] on a nonvoid function
system S ⊂ [0,∞]X is defined to be (sub/super)additive if

I(u+ v) ≤/≥ I(u) + I(v) for all u, v ∈ S such that u+ v ∈ S,
so that S need not be stable under addition; if S is stable under ∨∧, we
define I to be (sub/super)modular (under ∨∧, for short ∨∧) if

I(u ∨ v) + I(u ∧ v) ≤/≥ I(u) + I(v) for all u, v ∈ S.
In the case of the Choquet integral I these properties will of course be related
to the behaviour of the set function ϕ. A set function on a lattice is defined
to be (sub/super)modular if

ϕ(A ∪B) + ϕ(A ∩B) ≤/≥ ϕ(A) + ϕ(B) for all A,B ∈ S.

We note two simple observations.

1.4. Remark. The Choquet integral I on UM(S)/LM(S) satisfies:

(A) ϕ (sub/super)modular ⇐ I (sub/super)additive,
(M) ϕ (sub/super)modular ⇔ I (sub/super)modular.

Proof. One obtains the two ⇐ implications from (A,B ∈ S)

I(χA + χB) = I(χA∪B + χA∩B) = ϕ(A ∪B) + ϕ(A ∩B),

I(χA ∨ χB) + I(χA ∧ χB) = I(χA∪B) + I(χA∩B) = ϕ(A ∪B) + ϕ(A ∩B),

the first of which follows from 1.1, both combined with I(χA) + I(χB) =
ϕ(A) + ϕ(B). To obtain ⇒ in (M) one notes that for u, v ∈ UM(S),

I(u ∨ v) + I(u ∧ v) =
→∞�
0←

(ϕ([u ∨ v ≥ t]) + ϕ([u ∧ v ≥ t])) dt

=
→∞�
0←

(ϕ([u ≥ t] ∪ [v ≥ t]) + ϕ([u ≥ t]) ∩ [u ≥ t])) dt

≤/≥
→∞�
0←

((ϕ([u ≥ t]) + ϕ([v ≥ t])) dt = I(u) + I(v),

and the same on LM(S).

We note that for the prototype in [2] with its restricted domain the
two ⇐ implications require that ϕ be a capacity . The decisive question is
whether ⇒ holds true in (A). It will be dealt with in what follows.
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The work of Choquet (1953/54). Choquet [2] noted that for his pro-
totype the ⇒ implication in (A) holds true, and hence that the three prop-
erties involved in (A)&(M) are equivalent for capacities ϕ. But what is more
and deserves to be called spectacular , he had the idea that the implication

I (sub/super)modular ⇒ I (sub/super)additive

must be valid for a much wider class of functionals (he also knew that this
cannot be true for the converse implication). His precise formulation 54.1
was as follows.

1.5. Choquet’s Vision. Let E be an ordered vector space with order v
and positive cone E+, and assume that E (or at least E+) is a lattice under
v with lattice operations tu. Let I : E+ → R be positive-homogeneous. If I
is (sub/super)modular under tu then it must be (sub/super)additive.

From 1.5 applied to E = CK(X,R) on the locally compact Hausdorff
X with pointwise order ≤ and lattice operations ∨∧, and to the restricted
Choquet integral I(f) = � f dϕ on E+ = CK(X, [0,∞[) with an arbitrary ϕ,
and combined with ⇒ in (M), it follows indeed that Choquet’s prototype
satisfies the desired implication ⇒ in (A).

However, Choquet did not prove 1.5 in its full extent. His proof was
restricted to the case E = Rn with pointwise order ≤ and lattice opera-
tions ∨∧, and to positive-homogeneous functions I : E+ = [0,∞[n → R
which are continuous on [0,∞[n and C2 on ]0,∞[n. The explanation is that
the entire context was at the end and outside the mainstream of the mem-
oir [2]. Nevertheless Choquet’s proof was so well-founded that after half a
century it is capable, as we shall see, to furnish a proof of the basic step for
the present new main theorem.

The need for reconsideration. We have seen that Choquet’s vision
1.5 furnishes the decisive implication ⇒ in (A) for his prototype. But we
have to note that it does not furnish this implication for the full Choquet
integral. An obvious reason is that the functions f ∈ UM(S)/LM(S) and
the functional I(f) = � f dϕ can attain the value ∞, and another one that
the domains UM(S)/LM(S) need not be stable under addition. But there
is a deeper reason: Let for example X = [0, 1] and S = Comp(X). Then
USC(X, [0,∞[) = UM(S) ∩ [0,∞[X is a convex cone in the vector space
E = B(X,R) of bounded functions, pointed and salient in the usual sense
and hence the positive cone E+ ⊂ E in the so-called intrinsic order v on
E which it produces. We shall prove that this E+ is not a lattice under v.
Thus 1.5 cannot be applied.

1.6. Remark. On X = [0, 1] the convex cone S = USC(X, [0,∞[) ⊂
B(X,R) is not a lattice in its intrinsic order v.
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Proof. We fix 0 < a < b < 1 and form u = χ[0,b] and v = χ[a,1] in S. We
claim that there is no w ∈ S such that

(i) u, v v w, and
(ii) each h ∈ S with u, v v h satisfies w v h.

To see this we form f = 1 + χ{a,b} and g = 1 + χ[a,b] in S. We check three
little facts.

(0) (h ∈ S with u, v v h) ⇒ f ≤ h. In fact, we have u, v ≤ h and
hence need to show that h(a), h(b) ≥ 2. Now for instance h − u ∈ S and
]b, 1] ⊂ [h− u ≥ 1] and hence [b, 1] ⊂ [h− u ≥ 1], so that h(b) ≥ 2.

(1) u, v v f . In fact, for instance f−u = χ]b,1]+χ{a,b} = χ[b,1]+χ{a} ∈ S.
(2) u, v v g. In fact, we have g = u + v and thus for instance g − u =

v ∈ S.

Now assume that w ∈ S satisfies (i)–(ii). Then

• (i) and (0) applied to h = w yield f ≤ w,
• (1) and (ii) applied to h = f yield w v f ,
• (2) and (ii) applied to h = g yield w v g,

which combine to f = w v g. But this is false since g − f = χ]a,b[ 6∈ S.

To be sure, the ⇒ implication in (A) holds true for the full Choquet
integral, even though this does not follow from 1.5. In the second half of
the 20th century the implication was proved a number of times for dif-
ferent versions of the Choquet integral. As far as the author is aware,
the first (1974) proof is due to Topsøe [12]. For other proofs see [1], [6],
[11], [3]. The implication for the present version is in [7, 11.11].

On the other hand Choquet’s vision 1.5 was left open in [2], and in fact
remained open until March 2002, when the present author observed that the
statement is not true as it stands.

1.7. Example. Let E = R2 be equipped with the lexicographical or-
der v, that is, u = (u1, u2) and v = (v1, v2) satisfy u v v iff either u1 < v1,
or u1 = v1 and u2 ≤ v2. The order v is compatible with the standard vec-
tor space structure, and E+ consists of the halfspace {x : x1 > 0} and the
halfline {x : x1 = 0 and x2 ≥ 0}. Moreover v is total and hence a lattice or-
der with trivial lattice operations tu. Thus in particular all positive-homo-
geneous functions I : E+ → R are modular tu. But of course most of
them are not additive. A simple example is I(x) = x+

2 , since u = (u1, u2)
and v = (v1, v2) with u1, v1 > 0 and u2 < 0 < v2 are in E+ and satisfy
I(u+ v) = (u2 + v2)+ < v2 = v+

2 = I(v) = I(u) + I(v).

The same idea works for any real vector space E of dimension > 1, in
that one defines a compatible and total order v on E via the choice of a
basis B of E and of a well-order of B.
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Thus there is some reason for reconsideration. This does not mean to
question the wonderful overall implication

I (sub/super)modular ⇒ I (sub/super)additive,

which will henceforth be called the fundamental implication. In what follows
the author wants to develop what he has observed since 1998. Section 2 will
be devoted to the special case E = Rn with pointwise order ≤ and lattice
operations ∨∧, henceforth called the finite situation, and Section 3 to the
full situation, as we shall see with pointwise order and lattice operations
as well. It will be concluded with an application to the Daniell–Stone and
Riesz representation theorems mentioned in the introduction.

2. THE FINITE SITUATION

The basic step. The basic step is the result which follows. It is due to
Choquet [2] under the assumption that the function I is C2. We first sketch
his proof.

2.1. Proposition. Assume that I : ]0,∞[n → R is positive-homo-
geneous and continuous. Then I satisfies the fundamental implication.

Sketch of proof (in case I is C2). Let X1, . . . ,Xn : ]0,∞[n → ]0,∞[
denote the coordinate functions and D1, . . . ,Dn the partial derivations. One
verifies three facts:

(0) For z = (z1, . . . , zn) ∈ Rn one has the identity
n∑

k,l=1

zkzl(DkDlI) =
n∑

k=1

z2
k

Xk

( n∑

l=1

Xl(DkDlI)
)

− 1
2

n∑

k,l=1

XkXl

(
zk
Xk
− zl
Xl

)2

(DkDlI).

(1) If I is positive-homogeneous then
∑n

l=1Xl(DkDlI) = 0 for 1 ≤ k ≤ n.
(2) If I is (sub/super)modular ∨∧ then DkDlI ≤/≥ 0 for 1 ≤ k 6= l ≤ n.

For I positive-homogeneous and (sub/super)modular ∨∧ these facts com-
bine with Taylor’s formula to furnish that I is convex/concave, hence
(sub/super)additive.

Below we present two proofs of 2.1. The first proof extends Choquet’s
partial result via distribution theory. This has not been done before, perhaps
because one tried to extend the result via regularization, which does not
work. By contrast we shall follow Choquet’s proof , in that we take the
above steps (0)–(2) in the distributional sense.
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First proof of 2.1. We put U := ]0,∞[n ⊂ Rn. Let as above X1, . . . ,Xn :
U → ]0,∞[ denote the coordinate functions x = (x1, . . . , xn) 7→ x1, . . . , xn,
and D1, . . . ,Dn the partial derivations in both the standard and distribu-
tional sense. Moreover let∇(u, δ) denote the closed ball of radius δ around u.
Assume that I : U → R is continuous.

(1) If I is positive-homogeneous then

Ak :=
n∑

l=1

Xl(DkDlI) = 0 for 1 ≤ k ≤ n.

In fact, for ϕ ∈ CK∞(U) we have in the usual notations

〈Ak, ϕ〉 =
〈
I,

n∑

l=1

DkDl(Xlϕ)
〉

=
〈
I, (n+ 1)Dkϕ+

n∑

l=1

Xl(DlDkϕ)
〉
.

For Sn ⊂ Rn the unit sphere and σn the surface measure on Sn we obtain

〈Ak, ϕ〉 =
�

Sn∩U

→∞�
0←

tn−1I(ts)
(

(n+1)Dkϕ(ts)+
n∑

l=1

tslDlDkϕ(ts)
)
dt dσn(s).

With ϕs ∈ CK∞(]0,∞[) for s ∈ Sn defined by ϕs(t) = Dkϕ(ts) it follows
that

〈Ak, ϕ〉 =
�

Sn∩U
I(s)

(→∞�
0←

((n+ 1)tnϕs(t) + tn+1ϕ′s(t)) dt
)
dσn(s)

=
�

Sn∩U
I(s)

(→∞�
0←

(tn+1ϕs(t))′ dt
)
dσn(s) = 0.

(2) If I is (sub/super)modular ∨∧ then

DkDlI ≤/≥ 0 for 1 ≤ k 6= l ≤ n in the distributional sense,

that is, 〈DkDlI, ϕ〉 ≤/≥ 0 for all 0 ≤ ϕ ∈ CK∞(U). For the proof fix
0 ≤ ϕ ∈ CK∞(U) and real s, t > 0 so small that supp(ϕ) +∇(0, s+ t) ⊂ U .
Then in the usual notations�

U

I(x)(ϕ(x−sek− tel) + ϕ(x)−ϕ(x−sek)−ϕ(x− tel)) dL(x)

=
�
U

(I(x+ sek + tel) + I(x)−I(x+ sek)−I(x+ tel))ϕ(x) dL(x)

=
�
U

(I((x+ sek) ∨ (x+ tel)) + I((x+ sek) ∧ (x+ tel))

− I(x+ sek)− I(x+ tel))ϕ(x) dL(x) ≤/≥ 0.
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After multiplication with 1/s and letting s ↓ 0 we obtain�
U

I(x)(−Dkϕ(x− tel) +Dkϕ(x)) dL(x) ≤/≥ 0,

and then after multiplication with 1/t and letting t ↓ 0 we finally get

〈DkDlI, ϕ〉 =
�
U

I(x)DlDkϕ(x) dL(x) ≤/≥ 0.

(3) The final step uses the Taylor formula of second degree with remain-
der term in integral form, which for f ∈ CK2(U) reads

f(u+ x) = f(u) +
n∑

l=1

xlDlf(u) +
n∑

k,l=1

xkxl

1�
0

DkDlf(u+ tx)(1− t) dt

for u, u+x ∈ U . We fix a, b ∈ U and put u = 1
2(a+ b), so that u−a = z and

u− b = −z with z = 1
2(b−a). Also fix δ > 0 with |a, b|+∇(0, δ) ⊂ U , where

|a, b| denotes the line segment between a and b. Then for 0 ≤ ϕ ∈ CK∞(Rn)
with supp(ϕ) ⊂ ∇(u, δ) consider

A(ϕ) :=
�

∇(u,δ)

(I(a−u+ x) + I(b−u+ x)−2I(x))ϕ(x) dL(x)

=
�
U

I(x)((ϕ(x+ z)− ϕ(x)) + (ϕ(x− z)− ϕ(x))) dL(x)

=
�
U

I(x)
( n∑

k,l=1

zkzl

1�
0

(DkDlϕ(x+ sz) +DkDlϕ(x−sz))(1−s) ds
)
dL(x)

=
1�
0

(1− s)
〈 n∑

k,l=1

zkzl(DkDlI), ϕ(·+ sz) + ϕ(· − sz)
〉
ds.

Now one has as in (0) above the relation
n∑

k,l=1

zkzl(DkDlI) =
n∑

k=1

z2
k

Xk

( n∑

l=1

Xl(DkDlI)
)

− 1
2

n∑

k,l=1

XkXl

(
zk
Xk
− zl
Xl

)2

(DkDlI).

For I positive-homogeneous and (sub/super)modular ∨∧ this relation im-
plies in view of (1)–(2) that

−
n∑

k,l=1

zkzl(DkDlI) ≤/≥ 0 in the distributional sense.
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It follows that −A(ϕ) ≤/≥ 0 for all functions ϕ under consideration. There-
fore 2I(x) ≤/≥ I(a−u+x) + I(b−u+x) for all x ∈ ∇(u, δ), since I is con-
tinuous. In particular for x = u we have I(a+ b) = 2I(u) ≤/≥ I(a)+ I(b).

An important specialization of 2.1 is the case where I is increasing under
≤ (also called isotone), because it is the unique one which will reach the full
situation, but on the other hand will cover all applications known so far.

2.2. Specialization. Assume that I : ]0,∞[n → R is positive-homo-
geneous and increasing. Then I is ≥ 0 and continuous. Thus I satisfies the
fundamental implication.

Proof. (1) For x ∈ ]0,∞[n we have I(x) ≤ I(2x) = 2I(x) and hence
I(x) ≥ 0.

(2) If a ∈ ]0,∞[n and 0 < ε < 1 then {x : (1− ε)a ≤ x ≤ (1 + ε)a} is a
neighbourhood of a on which (1−ε)I(a) = I((1−ε)a) ≤ I(x) ≤ I((1+ε)a) =
(1 + ε)I(a), that is, |I(x)− I(a)| ≤ εI(a).

Results on convex functions. The second proof of the basic step 2.1
will be based on certain facts on convex functions, and will lead to stronger
versions. We state and prove our results for convex functions on convex
subsets of real vector spaces instead of intervals in R, because this requires
no further effort and is the form in which the results will be needed. The
first result is a mild strengthening of [5, Theorem 88], and is included for
the sake of completeness. Note that [5] has a different definition of convex
functions.

2.3. Remark. Let K ⊂ E be a nonvoid convex subset of the real vector
space E and f : K → R. Assume that :

(i) for each pair u, v ∈ K there exists 0 < t < 1 such that

f((1− t)u+ tv) ≤ (1− t)f(u) + tf(v);

(ii) for each pair u, v ∈ K the function t 7→ f((1−t)u+tv) is continuous
on 0 < t < 1.

Then f is convex.

Proof. Assume not. Then there exist u, v ∈ K such that

M := {0 < t < 1 : f((1− t)u+ tv) > (1− t)f(u) + tf(v)} 6= ∅.
It follows from (ii) thatM ⊂ ]0, 1[ is open. Let T ⊂M be one of its connected
components, that is, T = ]α, β[ with 0 ≤ α < β ≤ 1. Then

f((1− α)u+ αv) ≤ (1− α)f(u) + αf(v),

f((1− β)u+ βv) ≤ (1− β)f(u) + βf(v).

In fact, the first assertion is obvious when α = 0, and for 0 < α < 1 as well
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since α 6∈M . Now from (i) we have an 0 < s < 1 such that

f((1− s)((1− α)u+ αv) + s((1− β)u+ βv))

≤ (1− s)f((1− α)u+ αv) + sf((1− β)u+ βv)

≤ (1− s)((1− α)f(u) + αf(v)) + s((1− β)f(u) + βf(v)).

This means that for t := (1−s)α+sβ we have f((1−t)u+tv) ≤ (1−t)f(u)+
tf(v), which contradicts the fact that α < t < β and hence t ∈M .

The next result is much harder. The author must admit that he does
not understand in full what is behind it. The special case ϕ = const is
[5, Theorem 111].

2.4. Theorem. Let K ⊂ E be a nonvoid convex subset of the real vector
space E and f : K → R. Assume that :

(i) there exists an affine function ϕ : K → ]0,∞[ such that

f

(√
ϕ(v)u+

√
ϕ(u) v√

ϕ(v) +
√
ϕ(u)

)
≤
√
ϕ(v) f(u) +

√
ϕ(u) f(v)√

ϕ(v) +
√
ϕ(u)

for u, v ∈ K;

(ii) for each pair u, v ∈ K the function t 7→ f((1− t)u + tv) is bounded
above on some nondegenerate subinterval of {t ∈ R : (1− t)u+ tv ∈ K}.

Then f is convex.

We start with a technical lemma.

2.5. Lemma. For t ∈ R define ht : [0, 1]→ R by

ht(s) =

{
s for t = 0,
ets − 1
et − 1

for t 6= 0.

Then:

(1) 1− ht(s) + ht(s)et = ets.
(2) ht is C1 with e−|t| ≤ h′t(s) ≤ e|t| and hence strictly increasing. More-

over ht(0) = 0 and ht(1) = 1, so that ht is a bijection of [0, 1].
(3) For α, β ∈ [0, 1] we have

ht

(
α+ β

2

)
=

etβ/2

etβ/2 + etα/2
ht(α) +

etα/2

etβ/2 + etα/2
ht(β).

Proof of 2.5. (2) ht is C1 with h′t = t
et−1e

ts in case t 6= 0. The estimate
then follows from x ≤ ex − 1 ≤ xex for x ∈ R.

(3) In case t 6= 0 we have

ht

(
α+ β

2

)
(et − 1)(etβ/2 + etα/2) = (etβ/2 + etα/2)(etα/2etβ/2 − 1)

= etβ/2(etα − 1) + etα/2(etβ − 1),

and hence the assertion.
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Now we subdivide the proof of 2.4 into four parts. For each part we fix
u, v ∈ K and put t = log ϕ(v)

ϕ(u) , so that ϕ(v) = etϕ(u), and take ht : [0, 1]
→ [0, 1] as defined in 2.5.

Part 1. Define

M := {s ∈ [0, 1] : f((1− ht(s))u+ ht(s)v)

≤ (1− ht(s))f(u) + ht(s)f(v)} ⊂ [0, 1].

Thus 0, 1 ∈ M . Then α, β ∈ M ⇒ (α + β)/2 ∈ M . Hence M contains all
dyadic rationals s ∈ [0, 1].

Proof. Fix α, β ∈ [0, 1] and put

a = (1− ht(α))u+ ht(α)v,

b = (1− ht(β))u+ ht(β)v,

c =
(

1− ht
(
α+ β

2

))
u+ ht

(
α+ β

2

)
v.

Then 2.5(3) yields

c =
etβ/2

etβ/2 + etα/2
a+

etα/2

etβ/2 + etα/2
b.

On the other hand 2.5(1) implies that ϕ(a) = etαϕ(u) and ϕ(b) = etβϕ(u),
and hence

etβ/2

etβ/2 + etα/2
=

√
ϕ(b)√

ϕ(b) +
√
ϕ(a)

,
etα/2

etβ/2 + etα/2
=

√
ϕ(a)√

ϕ(b) +
√
ϕ(a)

.

Thus by assumption (i) we have

f(c) ≤ etβ/2

etβ/2 + etα/2
f(a) +

etα/2

etβ/2 + etα/2
f(b).

Now assume that α, β ∈M , that is,

f(a) ≤ (1− ht(α))f(u) + ht(α)f(v),

f(b) ≤ (1− ht(β))f(u) + ht(β)f(v).

Then these inequalities combine with 2.5(3) to furnish

f(c) ≤
(

1− ht
(
α+ β

2

))
f(u) + ht

(
α+ β

2

)
f(v),

which means that (α+ β)/2 ∈M .

Part 2. Fix 0 ≤ α < β ≤ 1 and set as before

a = (1− ht(α))u+ ht(α)v, b = (1− ht(β))u+ ht(β)v.

For these a, b ∈ K put τ = log ϕ(b)
ϕ(a) , so that ϕ(b) = eτϕ(a), and take hτ as

in 2.5. Then:
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(1) τ = t(β − α).
(2) For α ≤ s ≤ β we have

(1− ht(s))u+ ht(s)v = (1− hτ (σ))a+ hτ (σ)b with σ =
s− α
β − α.

Proof. (1) follows from ϕ(a) = etαϕ(u) and ϕ(b) = etβϕ(u).
(2) From (1) we have τσ = t(s− α). Then

(1−hτ (σ))a+ hτ (σ)b

= (1−hτ (σ))((1−ht(α))u+ ht(α)v) + hτ (σ)((1−ht(β))u+ ht(β)v)

= (1− ζ)u+ ζv with ζ = (1− hτ (σ))ht(α) + hτ (σ)ht(β).

In case t = 0 (and hence τ = 0) we have

ζ = (1− σ)α+ σβ =
β − s
β − α α+

s− α
β − α β = s,

and in case t 6= 0 (and hence τ 6= 0) we have

(et − 1)(eτ − 1)ζ = (eτ − eτσ)(etα − 1) + (eτσ − 1)(etβ − 1)

= (et(β−α) − et(s−α))(etα − 1) + (et(s−α) − 1)(etβ − 1)

= (ets − 1)(et(β−α) − 1) = (ets − 1)(eτ − 1),

that is, ζ = ht(s).

Part 3. The function λ 7→ f((1 − λ)u + λv) is bounded above for 0 ≤
λ ≤ 1.

Proof. (1) By assumption (ii), for fixed u, v ∈ K we have real α < β
such that

(1− t)u+ tv ∈ K and f((1− t)u+ tv) ≤ c <∞ for α ≤ t ≤ β.
We first reduce the situation to the special case 0 ≤ α < β ≤ 1. In fact,
for ξ := 0 ∧ α and η := 1 ∨ β we have a := (1 − ξ)u + ξv ∈ K and
b := (1− η)u+ ηv ∈ K, and

(1− s)a+ sb = (1− t)u+ tv with t = (1− s)ξ + sη.

It follows that both {(1−t)u+tv : 0 ≤ t ≤ 1} and {(1−t)u+tv : α ≤ t ≤ β}
are contained in {(1 − t)u + tv : ξ ≤ t ≤ η} = {(1 − s)a + sb : 0 ≤ s ≤ 1}.
Thus for a, b ∈ K we are in the special case, and the assertion for a, b implies
that for u, v.

(2) For u, v ∈ K in the special case there are 0 < α < β < 1 such that

f((1− ht(s))u+ ht(s)v) ≤ some real c for α ≤ s ≤ β and for s = 0, 1.

It remains to show that this relation holds for all 0 ≤ s ≤ 1, that is, it
remains true for 0 < s < α and β < s < 1. We shall restrict ourselves to the
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case 0 < s < α, and put x = (1 − ht(s))u + ht(s)v. We choose n ∈ N such
that

2ns
β − α
αβ

= 2n
s

α
− 2n

s

β
> 1.

Then there exists k ∈ Z with 2ns/β < k < 2ns/α, so that 1 ≤ k < 2n. We
put δ := 2ns/k and obtain 0 < s < α < δ < β < 1. Now we apply Part 2 to
the pair 0 < δ with u = (1−ht(0))u+ht(0)v and w := (1−ht(δ))u+ht(δ)v,
and to 0 < s < δ with x = (1 − ht(s))u + ht(s)v. It follows that x =
(1 − hτ (σ))u + hτ (σ)w with σ = s−0

δ−0 = s
δ = k2−n, which thus is dyadic

rational. From f(u), f(v) ≤ c and Part 1 we therefore obtain f(x) ≤ c.
Part 4. We have

f((1− ht(s))u+ ht(s)v) ≤ (1− ht(s))f(u) + ht(s)f(v) for 0 ≤ s ≤ 1.

In view of 2.5(2) this is the final assertion.

Proof. (0) Assume that the assertion is not true. Then there exists 0 <
s < 1 such that

x = (1−ht(s))u+ht(s)v satisfies f(x) > (1−ht(s))f(u)+ht(s)f(v) =: R.

(1) In view of Part 1, s is not dyadic rational. Thus for each n ∈ N there
exists p(n) ∈ Z such that 0 ≤ 2−n(p(n) − 1) < s < 2−np(n) ≤ 1; hence
1 ≤ p(n) ≤ 2n. We put αn = 2−n(p(n)− 1), so that

0 ≤ αn < s < αn + 2−n ≤ 1 and hence 0 < s− αn < 2−n.

Then let an := (1− ht(αn))u+ ht(αn)v. From Part 1 we have

f(an) ≤ (1− ht(αn))f(u) + ht(αn)f(v).

(2) From s < 1 we see that (1−αn)/(s−αn) > 1. Now (1−αn)/(s−αn)
cannot be 2q for q ∈ N, because then

2qs = 1 + (2q − 1)αn = 1 + 2−n(2q − 1)(p(n)− 1) and hence 2n+qs ∈ N,
so that s would be dyadic rational. Thus there exists an integer q(n) ≥ 0
such that 2q(n) < (1− αn)/(s− αn) < 2q(n)+1. From (1) it follows that

2q(n)+1 >
1− s
s− αn

> 2n(1− s) and hence 2q(n) > 2n−1(1− s).

Now we put βn = αn + 2q(n)(s− αn), so that

2q(n)s = βn + (2q(n) − 1)αn or s = (1− 2−q(n))αn + 2−q(n)βn.

It follows that 0 ≤ αn < s ≤ βn < 1. We also set bn := (1 − ht(βn))u +
ht(βn)v.

(3) Now we apply Part 2 to the pair αn < βn with an and bn, and to
αn < s ≤ βn with x. It follows that

x = (1− hτ(n)(σ(n)))an + hτ(n)(σ(n))bn,



Additivity assertion of Choquet 185

where τ(n) = t(βn−αn) and hence |τ(n)| ≤ |t|, and σ(n) = (s−αn)/(βn−αn)
= 2−q(n). Thus from Part 1 we obtain

f(x) ≤ (1− hτ(n)(σ(n)))f(an) + hτ(n)(σ(n))f(bn).

(4) For the final step we recall the last formulas of (0), (1) and (3) above.
Moreover we see from 2.5(2) combined with (1)–(3) that

0 < ht(s)− ht(αn) ≤ e|t|(s− αn) < 2−ne|t|,

0 < hτ(n)(σ(n)) ≤ e|τ(n)|σ(n) ≤ 2−q(n)e|t| < 2−n
2

1− s e
|t|.

It follows that

(1− hτ(n)(σ(n)))(f(x)−R)

= f(x)− hτ(n)(σ(n))f(x)− (1− hτ(n)(σ(n)))(R− f(an))

− (1− hτ(n)(σ(n)))f(an)

≤ hτ(n)(σ(n))f(bn)− hτ(n)(σ(n))f(x)

− (1− hτ(n)(σ(n)))(ht(s)− ht(αn))(f(v)− f(u))

≤ hτ(n)(σ(n))c+ hτ(n)(σ(n))|f(x)|+ (ht(s)− ht(αn))|f(v)−f(u)|

≤ 2−ne|t|
(

2
1− s (c+ |f(x)|) + |f(v)− f(u)|

)

with 0 < c < ∞ from Part 3. For n → ∞ we obtain f(x) ≤ R, which
contradicts the assumption. This completes the proof of 2.4.

The strengthened basic step and the second proof. The strength-
ened versions of the basic step 2.1 which result from 2.3 and 2.4 read as
follows.

2.6. Proposition. Assume that I : ]0,∞[n → R is positive-homo-
geneous. Further assumptions are:

(1) for each pair u, v ∈ ]0,∞[n the function t 7→ I((1 − t)u + tv) is
continuous on 0 < t < 1;

(2) for each pair u, v ∈ ]0,∞[n the function t 7→ I((1−t)u+tv) is bounded
(above/below) on some nondegenerate subinterval of {t ∈ R : (1 − t)u + tv
> 0}.

Of course (1)⇒(2). Each of these assumptions implies that I satisfies
the fundamental implication.

The point is that the efforts in order to obtain the fundamental impli-
cation from the two assumptions (1) and (2) are so different: Under (1) we
shall use 2.3, while under (2) we have to invoke 2.4. This time the proof is
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by induction. The case n = 1 is obvious. The induction step will be based
on the lemma which follows.

2.7. Lemma. Assume that I : ]0,∞[n+1 → R is positive-homogeneous
and (sub/super)modular ∨∧, and that for each 0 < c < ∞ the function
]0,∞[n → R : x 7→ I(cx1, x) is (sub/super)additive. Then the function
f : ]0,∞[n → R defined by f(x) = I(1, x) satisfies

f

(√
v1 u+

√
u1 v√

v1 +
√
u1

)
≤/≥

√
v1 f(u) +

√
u1 f(v)√

v1 +
√
u1

for u, v ∈ ]0,∞[n.

Proof of 2.7. We shall represent the points x = (x0, x1, . . . , xn) ∈ Rn+1

in the form x = (x0, x
′) with x′ = (x1, . . . , xn) ∈ Rn. Fix u, v ∈ ]0,∞[n and

define a, b ∈ ]0,∞[n+1 by

a =
√
v1 (1, u) ∨√u1 (1, v), b =

√
v1 (1, u) ∧ √u1 (1, v).

Then

a0 =
√
v1 ∨

√
u1, a1 =

√
u1v1 (

√
u1 ∨

√
v1) =

√
u1v1 a0,

b0 =
√
v1 ∧

√
u1, b1 =

√
u1v1 (

√
u1 ∧

√
v1) =

√
u1v1 b0.

Thus a0/a1 = b0/b1 =: c. Thus the assumption furnishes on the one hand

I(a+ b) = I(ca1 + cb1, a
′ + b′) = I((ca1, a

′) + (cb1, b′))

≤/≥ I(ca1, a
′) + I(cb1, b′) = I(a) + I(b),

and on the other hand

I(a) + I(b) ≤/≥ I(
√
v1 (1, u)) + I(

√
u1 (1, v)) =

√
v1 f(u) +

√
u1 f(v).

Moreover we have

a+ b =
√
v1 (1, u) +

√
u1 (1, v) = (

√
v1 +

√
u1)
(

1,
√
v1 u+

√
u1 v√

v1 +
√
u1

)
,

I(a+ b) = (
√
v1 +

√
u1)f

(√
v1 u+

√
u1 v√

v1 +
√
u1

)
.

These formulas combine to give the assertion.

Proof of the induction step in 2.6. Let I : ]0,∞[n+1 be as assumed in 2.6
and (sub/super)modular ∨∧. For fixed 0 < c <∞ define J : ]0,∞[n → R by
J(x) = I(cx1, x). It is obvious that J inherits all assumptions from I, and
hence by the induction hypothesis it is (sub/super)additive. Thus 2.7 ensures
that 2.3 and 2.4 can be applied, in the respective cases, to the function ±f
for f : ]0,∞[n → R defined f(x) = I(1, x). Therefore f is convex/concave.
Then we see that for u, v ∈ ]0,∞[n+1,
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I(u+ v) = (u0 + v0)I
(

1,
u′ + v′

u0 + v0

)

= (u0 + v0)f
(

u0

u0 + v0

(
u′

u0

)
+

v0

u0 + v0

(
v′

v0

))

≤/≥ u0f

(
u′

u0

)
+ v0f

(
v′

v0

)
= u0I

(
1,
u′

u0

)
+ v0I

(
1,
v′

v0

)

= I(u) + I(v).

This is the assertion.

Final results in the finite situation. The basic step 2.1 was for the
open positive cone ]0,∞[n, but it implies at once the identical result for the
full positive cone [0,∞[n of Rn.

2.8. Remark. Assume that I : [0,∞[n → R is positive-homogeneous
and continuous. Then it satisfies the fundamental implication.

However, this assertion is kind of a dead end, because it carries an un-
natural restriction: For I : [0,∞[n → R positive-homogeneous the properties
(sub/super)additive mean convex/concave, and it is well known that such
functions need not be continuous at the boundaries of their domains. An
example is the function

I : [0,∞[2 → [0,∞[ with I(x) = x1 for x2 > 0 and I(x) = 0 for x2 = 0,

which is positive-homogeneous, supermodular and superadditive, and more-
over increasing. Thus we continue to extend the specialization 2.2 and the
strengthened version 2.6, which will not produce such restrictions but will
require a bit more work. Moreover we want to allow the function I to attain
the value ∞.

2.9. Theorem. Assume that I : [0,∞[n → [0,∞] is positive-homo-
geneous and increasing. Then I satisfies the fundamental implication.

2.10. Theorem. Assume that I : [0,∞[n → ]−∞,∞] is positive-homo-
geneous, and for u ≤ v in [0,∞[n satisfies I(u) = ∞⇒ I(v) =∞. Further
assumptions are:

(1) for all u, v ∈ [0,∞[n with I(u+ v) <∞ the function t 7→ I((1− t)u
+ tv) is continuous on 0 < t < 1;

(2) for all u, v ∈ [0,∞[n with I(u + v) < ∞ the function t 7→
I((1 − t)u + tv) is bounded (above/below) on some nondegenerate subin-
terval of {t ∈ R : (1− t)u+ tv ≥ 0}.

Of course (1)⇒(2). Each of these assumptions implies that I satisfies
the fundamental implication.
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Theorem 2.9 will be the foundation for the treatment of the full situation
in Section 3, while Theorem 2.10 is our final result in the finite situation.
We want to obtain the two theorems with a simultaneous proof.

Proof of 2.9 and 2.10. First of all I(0) = I(t0) = tI(0) for 0 < t < ∞
implies that I(0) = 0 or I(0) = ∞, and from I(0) = ∞ we have I ≡ ∞.
Thus we can assume that I(0) = 0. This in particular settles the case n = 1:
We have I(x) = cx for x ∈ ]0,∞[ with c = I(1) ∈ ]−∞,∞], and hence I is
additive. Thus it remains to perform the induction step.

For this purpose we assume I : [0,∞[n+1 → ]−∞,∞] to be positive-
homogeneous with I(0) = 0 and to satisfy the further assumptions of
one fixed situation out of the three under consideration, and moreover to be
(sub/super)modular ∨∧. We define J : [0,∞[n → ]−∞,∞] by J(x) =
I(0, x). It is obvious that J inherits all assumptions from I, and hence by
the induction hypothesis it is (sub/super)additive.

Then in all situations we have the alternative between

(?) I <∞ and (??) I|]0,∞[n+1 ≡ ∞.
In fact, if I(a) <∞ for some a ∈ ]0,∞[n+1 then for each x ∈ [0,∞[n+1 the
relation x ≤ ta with some 0 < t < ∞ forces I(x) < ∞. Thus we have to
prove that I is (sub/super)additive both under (?) and (??).

First assume (?). In case 2.9 it follows from 2.2 that I|]0,∞[n+1 is
(sub/super)additive. In case 2.10 the same follows from 2.6. It remains to
consider u, v ∈ [0,∞[n+1 not both in ]0,∞[n+1. We can assume that u0 = 0,
and use the notation x = (x0, x

′) as in the proof of 2.7 above. We have

u+ v = (0, u′ + v′) ∨ v and (0, v′) = (0, u′ + v′) ∧ v,
which implies that

I(u+ v) + I(0, v′) ≤/≥ I(0, u′ + v′) + I(v) = J(u′ + v′) + I(v)

≤/≥ J(u′) + J(v′) + I(v) = I(0, u′) + I(0, v′) + I(v) = I(u) + I(v) + I(0, v′),

and hence I(u+ v) ≤/≥ I(u) + I(v) since I(0, v′) <∞.
Now assume (??) and fix u, v ∈ [0,∞[n+1. There are two cases to con-

sider:

(i) there exists l ∈ {0, 1, . . . , n} with ul = vl = 0,
(ii) for all l ∈ {0, 1, . . . , n} we have ul + vl ≥ ul ∨ vl > 0.

In case (i) we can assume that u0 = v0 = 0. Then I(u+v) = J(u′+v′) ≤/≥
J(u′) +J(v′) = I(u) + I(v). In case (ii) we have u+ v, u∨ v ∈ ]0,∞[n+1 and
hence I(u + v) = I(u ∨ v) = ∞. The relation I(u ∨ v) = ∞ settles the sub
case because it forces I(u) + I(v) =∞, and I(u+ v) =∞ settles the super
case.
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Finally, we transfer the results into the versions which follow. Let X
be a nonvoid set, and define F (X) ⊂ [0,∞[X to consist of the functions
f ∈ [0,∞[X with finitely many values. Then F (X) is a convex cone with
0 ∈ F (X) and stable under the pointwise lattice operations ∨∧.

2.11. Theorem. Assume that I : F (X) → [0,∞] is positive-homo-
geneous and increasing. Then I satisfies the fundamental implication.

2.12. Theorem. Assume that I : F (X) → ]−∞,∞] is positive-homo-
geneous, and for u ≤ v in F (X) satisfies I(u) = ∞ ⇒ I(v) = ∞. Further
assumptions are:

(1) for all u, v ∈ F (X) with I(u+v) <∞ the function t 7→ I((1−t)u+tv)
is continuous on 0 < t < 1;

(2) for all u, v ∈ F (X) with I(u+v) <∞ the function t 7→ I((1−t)u+tv)
is bounded (above/below) on some nondegenerate subinterval of {t ∈ R :
(1− t)u+ tv ≥ 0}.

Of course (1)⇒(2). Each of these assumptions implies that I satisfies
the fundamental implication.

Proof of 2.11 and 2.12. Assume I : F (X) → ]−∞,∞] to be positive-
homogeneous and to satisfy the further assumptions of one of our three
situations, and moreover to be (sub/super)modular ∨∧. Fix u, v ∈ F (X)
and let X = X(1)∪. . .∪X(n) be a decomposition of X such that u|X(l) = al
and v|X(l) = bl for 1 ≤ l ≤ n, and set a = (a1, . . . , an) and b = (b1, . . . , bn)
in [0,∞[n. Define ϑ : [0,∞[n → F (X) by

x = (x1, . . . , xn) 7→ ϑ(x) =
n∑

l=1

xlχX(l),

so that ϑ(a) = u and ϑ(b) = v. The map ϑ is positive-linear and increasing
under ≤, and commutes with the pointwise ∨∧. Then define J = I ◦ ϑ :
[0,∞[n → ]−∞,∞]. It is obvious that J inherits all assumptions from I,
and hence is (sub/super)additive by 2.9 and 2.10. It follows that I(u+ v) =
I(ϑ(a+ b)) = J(a+ b) ≤/≥ J(a) +J(b) = I(ϑ(a)) + I(ϑ(b)) = I(u) + I(v).

3. THE FULL SITUATION

Return to the Choquet integral. We follow the model of the Cho-
quet integral and have to recall some further of its properties. As above we
refer to [7, Section 11] and [8, Section 2].

We need a few terms on nonvoid function systems S ⊂ [0,∞]X and
functionals I : S → [0,∞]. We define S to be Stonean if f ∈ S ⇒
f ∧ t, (f − t)+ ∈ S for 0 < t < ∞; note that f = f ∧ t + (f − t)+. In
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this case I is called Stonean if

I(f) = I(f ∧ t) + I((f − t)+) for all f ∈ S and 0 < t <∞.
Moreover an increasing I is called truncable if

I(f) = sup{I((f − a)+ ∧ (b− a)) : 0 < a < b <∞} for all f ∈ S.
We note that this holds when f on [f > 0] satisfies α ≤ f ≤ β for some
constants 0 < α < β <∞, because then f ≤ (α/α− a)((f − a)+ ∧ (b− a))
for 0 < a < α < β < b < ∞. Thus to be truncable is a mild continuity
condition on I.

Next assume that 0 ∈ S and that I is increasing with I(0) = 0. Then we
define the envelopes I?, I? : [0,∞]X → [0,∞] by

I?(f) = inf{I(u) : u ∈ S with u ≥ f} with inf ∅ :=∞,
I?(f) = sup{I(u) : u ∈ S with u ≤ f}.

Thus I? ≤ I? and I?|S = I?|S = I. Moreover I? and I? are increasing. If S
is stable under ∨∧ then to be submodular ∨∧ carries over from I to I?, and
to be supermodular ∨∧ carries over from I to I?.

One then notes the properties which follow. The subsequent representa-
tion theorem is in essence due to Greco [4]. Let S be a lattice of subsets in
X with ∅ ∈ S.

3.1. Properties. (i) UM(S) and LM(S) are Stonean.
(ii) For ϕ : S → [0,∞] increasing with ϕ(∅) = 0 the Choquet integral

I(f) = � f dϕ on UM(S)/LM(S) is Stonean and truncable.

3.2. Theorem. Assume that S ⊂ UM(S)/LM(S) is positive-homo-
geneous with 0 ∈ S and Stonean, and that I : S → [0,∞] with I(0) = 0 is
increasing. Then

there exist increasing set functions ϕ : S → [0,∞] with ϕ(∅) = 0
which represent I, that is, I(f) = � f dϕ for all f ∈ S

iff I is Stonean and truncable. In this case an increasing ϕ : S → [0,∞]
with ϕ(∅) = 0 represents I iff I?(χA) ≤ ϕ(A) ≤ I?(χA) for all A ∈ S.

At this point we return to the final aim of the present enterprise. We
observe that the above representation theorem 3.2 allows us to formulate
the crucial additivity property of the Choquet integral I(f) = � f dϕ, that
is, the implication⇒ in (A), exclusively in terms of the functional I without
reference to the set function ϕ.

3.3. Remark. On a nonvoid set X the following are equivalent.

(i) For each lattice S in X with ∅ ∈ S and each increasing ϕ : S →
[0,∞] with ϕ(∅) = 0 one has the ⇒ implication in (A).
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(ii) For each positive-homogeneous S ⊂ [0,∞]X with 0 ∈ S which is
stable under ∨∧ and Stonean, and for each positive-homogeneous I : S →
[0,∞] with I(0) = 0 which is increasing , Stonean and truncable, one has the
fundamental implication.

Proof. One obtains (ii)⇒(i) as an immediate consequence of 1.2 and 3.1
combined with⇒ in (M). To see (i)⇒(ii) one applies 3.2 to I and S = P(X),
and takes

ϕ(A) = I?(χA) for A ⊂ X when I is submodular ∨∧,
ϕ(A) = I?(χA) for A ⊂ X when I is supermodular ∨∧.

Then ϕ : P(X)→ [0,∞] represents I, and is (sub/super)modular in view of
the properties of the envelopes noted above. Thus (i) asserts that f 7→ � f dϕ
on [0,∞]X is (sub/super)additive, and hence that I is (sub/super)additive
in the sense of our definition.

The new formulation 3.3(ii) of the⇒ implication in (A) looks in fact like
the theorem on the fundamental implication we are searching for. However,
there are several additional conditions: Besides the almost familiar condi-
tion that I be increasing there are the conditions that I be Stonean and
truncable (with the prerequisite that S be Stonean). The condition to be
truncable can be dismissed as a mild continuity assumption. However, the
condition that I be Stonean is a critical one, because it expresses that I
is additive in a certain partial sense, and thus collides with the conclusion.
In fact, there are situations where the prospective theorem will be invoked
in order to conclude that I is Stonean. A case in point will be described
below. Therefore it is imperative that in a comprehensive version of the
theorem like the desired one the assumption that I be Stonean does not
occur.

Now the fundamental fact is that the above reformulation 3.3(ii) holds
true without the assumption that I be Stonean. This will be the main and
final result of the present work. It is much more comprehensive than 3.3(ii).

The main theorem

3.4. Theorem. Assume that the positive-homogeneous S ⊂ [0,∞]X with
0 ∈ S is stable under ∨∧ and Stonean, and that the positive-homogeneous
I : S → [0,∞] with I(0) = 0 is increasing and truncable. Then I satisfies
the fundamental implication.

The proof starts from the result 2.11 in the finite situation and proceeds
via certain approximations which make essential use of the assumption that
I is increasing. An important intermediate step is the specialization S =
[0,∞]X .
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3.5. Specialization. Assume that the positive-homogeneous I : [0,∞]X

→ [0,∞] with I(0) = 0 is increasing and truncable. Then I satisfies the
fundamental implication.

The above specialization is the first 1998 result of the author in the
present context [8, Theorem 1.1]. It is, aside from the theories of measure and
integration developed in [7], the basic pillar which carries the comprehensive
Daniell–Stone and Riesz type representation theorems [8, 5.3] = [9, 6.3] and
[8, 5.8] = [9, 6.6]. These theorems are the other important application of
the new (sub/super)additivity theorem. They will be described in the final
subsection below. We note that the applications of [8, 1.1] which served to
obtain these theorems were in the proof of [8, 3.10] and had in fact the
aim to prove that the functionals under consideration were Stonean. For the
details we have to refer to that paper.

Proof of 3.5. (0) We first recall the basic estimate 11.6 from the author’s
textbook [7]. We use the ≥ version, but the > version would do as well. For
f : X → R and real a = t(0) < t(1) < . . . < t(r) = b the estimate reads
r∑

l=1

(t(l)−t(l−1))χ[f≥t(l)] ≤ (f−a)+∧(b−a) ≤
r∑

l=1

(t(l)−t(l−1))χ[f≥t(l−1)].

We also note for δ := max{t(l)− t(l − 1) : 1 ≤ l ≤ r} the estimate
r∑

l=1

(t(l)− t(l−1))χ[f≥t(l−1)] =
r∑

l=1

(t(l)− t(l−1))(χ[f≥t(l)] + χ[t(l−1)≤f<t(l)])

≤
r∑

l=1

(t(l)− t(l − 1))χ[f≥t(l)] + δχ[a≤f<b].

(1) We prove the sub implication. Assume that I is submodular ∨∧ and
fix u, v ∈ [0,∞]X . We can assume that I(u), I(v) <∞. For 0 < a, c <∞ let
b = a+ c. For a = t(0) < t(1) < . . . < t(r) = b we see from (0) that

((u+v)−2a)+∧ c = ((u− a) + (v − a))+ ∧ c
≤ ((u−a)+ + (v−a)+) ∧ c ≤ (u−a)+ ∧ c+ (v−a)+∧ c

≤
r∑

l=1

(t(l)− t(l − 1))χ[u≥t(l)] + δχ[a≤u<b]

+
r∑

l=1

(t(l)− t(l − 1))χ[v≥t(l)] + δχ[a≤v<b].

We know from 2.11 that I|F (X) is subadditive. From this fact and once
more from the first estimate in (0) we obtain
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I(((u+ v)− 2a)+ ∧ c) ≤ I
( r∑

l=1

(t(l)− t(l − 1))χ[u≥t(l)]
)

+ δI(χ[a≤u<b])

+ I
( r∑

l=1

(t(l)− t(l − 1))χ[v≥t(l)]
)

+ δI(χ[a≤v<b])

≤
(

1 +
δ

a

)
I(u) +

(
1 +

δ

a

)
I(v).

It follows that

I(((u+ v)− 2a)+ ∧ c) ≤ I(u) + I(v) for all 0 < a, c <∞,
and hence I(u+ v) ≤ I(u) + I(v) since I is truncable.

(2) We prove the super implication. Assume that I is supermodular ∨∧
and fix u, v ∈ [0,∞]X . We can assume that I(u+v) <∞. For 0 < a < b <∞
and a = t(0) < t(1) < . . . < t(r) = b we see from (0) that

(1 + δ/a)(u+ v) ≥ (u− a)+ ∧ (b− a) + δχ[a≤u<b]
+ (v − a)+ ∧ (b− a) + δχ[a≤v<b]

≥
r∑

l=1

(t(l)− t(l − 1))χ[u≥t(l−1)]

+
r∑

l=1

(t(l)− t(l − 1))χ[v≥t(l−1)].

As before we know from 2.11 that I|F (X) is superadditive. From this fact
and once more from the first estimate in (0) we obtain

(1 + δ/a)I(u+ v) ≥ I
( r∑

l=1

(t(l)− t(l − 1))χ[u≥t(l−1)]

)

+ I
( r∑

l=1

(t(l)− t(l − 1))χ[v≥t(l−1)]

)

≥ I((u− a)+ ∧ (b− a)) + I((v − a)+ ∧ (b− a)).

It follows that

I(u+ v) ≥ I((u− a)+ ∧ (b− a)) + I((v − a)+ ∧ (b− a))

for all 0 < a < b <∞, and hence I(u+v) ≥ I(u)+I(v) since I is truncable.

Proof of 3.4. (1) The super implication is a simple application of 3.5.
Assume that I is supermodular ∨∧.

(1.1) We know that the envelope I? : [0,∞]X → [0,∞] is positive-homo-
geneous, increasing and supermodular ∨∧. We claim that I? is truncable as
well. To see this fix f ∈ [0,∞]X and c < I?(f), and then u ∈ S with u ≤ f
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and c < I(u). Since S is Stonean and I is truncable there exist 0<a< b<∞
such that c < I((u−a)+∧ (b−a)). It follows that c < I?((f −a)+∧ (b−a)),
which proves the claim.

(1.2) We conclude from 3.5 that I? is superadditive. In view of our defi-
nition therefore I?|S = I is superadditive as well.

(2) The sub implication is more involved. Assume that I is submodu-
lar ∨∧.

(2.1) We know that the envelope I? : [0,∞]X → [0,∞] is positive-homo-
geneous, increasing and submodular ∨∧. But we cannot assert that I? is
truncable.

(2.2) In order to proceed we consider for fixed 0 < a < b < ∞ the
map [0,∞] → [0,∞] defined by x 7→ xba := (x − a)+ ∧ (b − a). Its relevant
properties are as follows.

(i) (tx)tbta = t(xba) for 0 < t <∞.
(ii) The map x 7→ xba is increasing.

(iii) xba is decreasing in a and increasing in b.
(iv) (u ∨ v)ba = uba ∨ vba and (u ∧ v)ba = uba ∧ vba.
(v) For 0 < s < a < b <∞ we have xba = (xbs)

b−s
a−s.

Here (i)–(iii) are obvious, and (iv) is an immediate consequence of (ii). To
see (v) one distinguishes three cases: x ∈ [0, a], [a, b], [b,∞].

(2.3) Then we define the functional J : [0,∞]X → [0,∞] by

J(f) = sup{I?(f ba) : 0 < a < b <∞} with f ba := (f − a)+ ∧ (b− a).

Then first of all J |S = I, because S is Stonean, I?|S = I and I is truncable.
Next one concludes from (i) that J is positive-homogeneous, from (ii) that J
is increasing, and from (iii)–(iv) that J is submodular ∨∧. We claim that J is
truncable as well. To see this fix f ∈ [0,∞]X , c < J(f), and 0 < a < b <∞
such that c < I?(f ba). For 0 < s < a < b < ∞ we deduce from (v) that
c < I?((f bs )b−sa−s) ≤ J(f bs ), which proves the claim.

(2.4) We conclude from 3.5 that J is subadditive. In view of our def-
inition, J |S = I is therefore subadditive as well. This finishes the proof
of 3.4.

Another example. We want to add one more example, in order to
show what can happen when the functional I is not increasing.

3.6. Example. Let X ⊂ R be an interval with supX = ∞. Define
P ⊂ [0,∞[X to consist of the functions f : X → [0,∞[ which are con-
stant near ∞, that is, on some upward unbounded subinterval of X, and
Q ⊂ [0,∞[X to consist of the functions f : X → [0,∞[ which are strictly de-
creasing near∞. Then P∩Q = ∅, and S := P∪Q ⊂ [0,∞[X is a convex cone
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with 0 ∈ S which is stable under ∨∧. Define I : S → [0,∞[ by I(f) = 0 for
f ∈ P and I(f) = limt→∞ f(t) for f ∈ Q. Then I is positive-homogeneous
with I(0) = 0, but of course not increasing. One verifies that I is modular
∨∧. But I is not additive, since for u ∈ P with u = c > 0 near ∞ and
v ∈ Q one has u+ v ∈ Q with I(u+ v) = c+ I(v) > I(v) = I(u) + I(v). We
note that I has certain continuity properties. Thus S is Stonean, and I is
truncable in the sense that

I((f − a)+ ∧ (b− a)) ↑ I(f) as a ↓ 0 and b ↑ ∞ for all f ∈ S.
Also for each pair u, v ∈ S the function t 7→ I((1 − t)u + tv) is continuous
on 0 < t < 1 (but need not be continuous on 0 ≤ t ≤ 1).

The Daniell–Stone–Riesz representation theorems. The representation
theorems of the present subsection are quite different from the former rep-
resentation theorem 3.2: The aim is to represent particular classes of func-
tionals in terms of certain classes of distinguished set functions, as in the
classical Riesz representation theorem, but in a much more extended setting.
The basis is the extension theories in measure and integration developed in
the author’s textbook [7] and in subsequent articles like [8], and summarized
in [9]. We recall that there are parallel inner and outer extension theories,
and also parallel sequential and nonsequential versions (as usual labelled as
σ and τ versions). We also recall the most basic notions: For an increasing
set function ϕ : S→ [0,∞] on a set system S with ∅ ∈ S and ϕ(∅) = 0 and
for • = σ, τ one forms the envelopes

ϕ•, ϕ• : P(X)→ [0,∞] with the satellites ϕB• : P(X)→ [0,∞[ with B ∈S,

and on a lattice S with ∅ ∈ S one defines the inner and outer •-premea-
sures ϕ. Likewise for an increasing functional I : S → [0,∞] on a function
class S ⊂ [0,∞]X with 0 ∈ S and I(0) = 0 and for • = σ, τ one forms the
envelopes

I•, I• : [0,∞]X→ [0,∞] with the satellites Iv• : [0,∞]X→ [0,∞] with v ∈ S;

the notions of inner and outer •-preintegrals I will appear below.
From now on, we fix a positive-homogeneous function class

S ⊂ [0,∞[X in the inner situation,

S ⊂ [0,∞]X in the outer situation,

with 0 ∈ S which is stable under ∨∧ and Stonean, and a functional

I : S → [0,∞[ in the inner situation,

I : S → [0,∞] in the outer situation,

with I(0) = 0 which is increasing. These are the assumptions made in [8], [9],
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while those in [7] were much narrower. We form the set systems

um(S) = {[f ≥ t] : f ∈ S and 0 < t <∞} for the inner situation,

lm(S) = {[f > t] : f ∈ S and 0 < t <∞} for the outer situation,

which are lattices with ∅. Then we define

— the inner sources of I to be those increasing set functions
ϕ : um(S)→ [0,∞[,

— the outer sources of I to be those increasing set functions
ϕ : lm(S)→ [0,∞],

which have ϕ(∅) = 0 and which represent I, I(f) = � f dϕ for all f ∈ S.
The representation Theorem 3.2 tells us that such inner/outer sources of
I exist iff I is Stonean and truncable. In this case their characterization is
I?(χA) ≤ ϕ(A) ≤ I?(χA) for all A ∈ um(S)/lm(S), so that as a rule one
must expect a lot of inner and outer sources of I.

Next we define for • = σ, τ the functional I to be an inner/outer
•-preintegral if it admits at least one inner/outer source which is an in-
ner/outer •-premeasure. Then the fundamental results quoted above are
the theorems on the inner and outer • preintegrals which follow.

3.7. Inner Theorem (• = σ, τ). The functional I is an inner •-prein-
tegral iff

(1) I is supermodular , Stonean and downward •-continuous at ∅,
(2) I(v) ≤ I(u) + Iv• (v − u) for all u ≤ v in S.

In this case ϕ := I?(χ.)|um(S) is the unique inner source of I which is an
inner •-premeasure. It satisfies I•(f) = � f dϕ• for all f ∈ [0,∞]X .

3.8. Outer Theorem (• = σ, τ). The functional I is an outer •-prein-
tegral iff

(1) I is submodular , Stonean and upward •-continuous,
(2) I(v) ≥ I(u) + I•(v − u) for all u ≤ v in S with u <∞,
(3) moreover for • = τ (while this is automatic for • = σ)

I•(f) = sup{I•(f ∧ u) : u ∈ [I <∞]} for all f ∈ [I• <∞].

In this case ϕ := I?(χ.)|lm(S) is the unique outer source of I which is an
outer •-premeasure. It satisfies I•(f) = � f dϕ• for all f ∈ [0,∞]X .

We refer to the cited papers for the collection of more or less familiar
special cases. Thus the classical Riesz representation theorem and its exten-
sion to arbitrary Hausdorff topological spaces are immediate consequences of
the inner τ -theorem, whereas the conventional Daniell–Stone theorem falls
under the outer σ-theorem.
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