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H∞ functional calculus for sectorial
and bisectorial operators

by

Giovanni Dore and Alberto Venni (Bologna)

Abstract. We give a concise exposition of the basic theory of H∞ functional calculus
for N -tuples of sectorial or bisectorial operators, with respect to operator-valued functions;
moreover we restate and prove in our setting a result of N. Kalton and L. Weis about
the boundedness of the operator f(T1, . . . , TN ) when f is an R-bounded operator-valued
holomorphic function.

1. Introduction. The H∞ functional calculus for sectorial operators
was introduced by A. McIntosh [10] (in the Hilbert space setting) in the
’80s. The aim was to give a meaning to f(T ) when T is a sectorial operator
and f is a complex-valued holomorphic function on a sector containing the
spectrum of T , with suitable assumptions on the growth of f at 0 and
at ∞. Besides the natural generalization to the Banach space case (see [4]),
it was extended in two directions, either by replacing T with an N -tuple
of operators (T1, . . . , TN ), or by assuming that f is operator-valued (see
[1], [9]). These extensions are not trivial, in the sense that it is much harder
to find sufficient conditions for the boundedness of an operator of the type
f(T1, . . . , TN ) (with f operator-valued). A result in this direction can be
found in the paper [7], where, however, the proof is carried out in the case of a
single sectorial operator; moreover we notice that the definition of functional
calculus there is slightly different from ours.

This result of Kalton and Weis is used in our paper [6], where, how-
ever, the operators are not sectorial, but bisectorial (see the definition in
the next section); moreover we need not only the boundedness of the op-
erator f(T1, . . . , TN ), but also an estimate of ‖f(T1, . . . , TN )‖, which is not
explicitly stated in [7].

The aim of this paper is therefore to restate and prove the result of
Kalton and Weis in the more general situation mentioned above. To this
end we make a concise exposition of the basic theory in the most general
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case; we think that also this part of the paper can be useful, since in the
existing literature it is difficult to find explicit proofs of some of these results.

The paper is organized as follows: in §2 we give some basic definitions; in
§§3 and 4 we introduce and study the functional calculus; in §5 we prove some
technical results; §6 is devoted to the proof of the Kalton–Weis theorem.

2. Sectorial and bisectorial operators. In the whole paper X is a
complex (nontrivial) Banach space. We say that a linear operator T acts in
X if its domain D(T ) and its range R(T ) are subspaces of X; for such an
operator σ(T ) denotes the spectrum and %(T ) the resolvent set. As usual,
L(X) denotes the Banach algebra of bounded linear operators from X to X.

The symbol R+ denotes the set of positive (i.e. > 0) real numbers, and N
the set of positive integers; “arg” denotes the principal argument and takes
values in ]−π, π[.

We shall work with sectors and “double sectors” of the complex plane.
Their definition is the following.

Definition 2.1. (a) For θ∈ ]0, π[ we set Sθ={reiα; r∈R+, α∈ ]−θ, θ[}.
(b) For δ ∈ ]0, π/2[ we set Σδ = {% eiα; % ∈ R\{0}, α ∈ ]π/2−δ, π/2+δ[}.
Thus Sθ is the open sector around R+ with half-opening θ, and Σδ is the

open “double sector” around the imaginary axis, with half-opening δ.

Definition 2.2. Let T be a linear operator acting in X. We say that T
is sectorial if:

(i) D(T ) and R(T ) are dense in X

and there is a θ ∈ ]0, π[ such that

(ii) σ(T ) ⊆ Sθ,
(iii) supλ∈C\Sθ′ ‖λ(λ− T )−1‖ <∞ for all θ′ ∈ ]θ, π[.

The greatest lower bound of the θ’s satisfying (ii) and (iii) will be called the
spectral angle of T .

Definition 2.3. Let T be a linear operator acting in X. We say that T
is bisectorial if

(i) D(T ) and R(T ) are dense in X

and there is a δ ∈ ]0, π/2[ such that

(ii) σ(T ) ⊆ Σδ,
(iii) supλ∈C\Σδ′ ‖λ(λ− T )−1‖ <∞ for all δ′ ∈ ]δ, π/2[.

The greatest lower bound of the δ’s satisfying (ii) and (iii) will be called the
spectral angle of T .
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It is obvious that a bisectorial operator T with spectral angle δ ∈ ]0, π/2[
is also a sectorial operator with spectral angle δ + π/2 (and that in both
cases the operator is closed, since its resolvent set is not empty). The reason
why we want to consider bisectorial operators is that we are going to study
a functional calculus for operators that can be either sectorial or bisectorial;
however, in the bisectorial case we want to use holomorphic functions that
are defined only on a double sector.

Bisectorial operators also appear in the papers [3] and [11].
We will need the following result (for a proof we refer to [8, Ths. 2.1,

3.1] or to [4, Th. 3.8]).

Lemma 2.4. Let T be a linear operator acting in X. Assume that there
is a subset Ω of %(T ) such that 0 and ∞ are accumulation points of Ω and
supλ∈Ω ‖λ(λ− T )−1‖ <∞. Then:

(a) D(T ) = {x ∈ X; limλ→∞, λ∈Ω λ(λ− T )−1x = x};
(b) R(T ) = {x ∈ X; limλ→0, λ∈Ω

(
x+ T (λ− T )−1x

)
= 0};

(c) kerT ∩R(T ) = {0}.

By Lemma 2.4(c) any (bi)sectorial operator is injective; moreover, if
0 6= z ∈ %(T ), then z−1 ∈ %(T−1) and (z−1 − T−1)−1 = −zT (z − T )−1.
Therefore it is easy to prove that T−1 is (bi)sectorial simultaneously with T ,
with the same spectral angle.

The following converse of the triangle inequality will be useful.

Lemma 2.5. Let α, β ∈ R and w, z ∈ C; assume that w = |w|eiα, z =
|z|eiβ. Then

|w + z| ≥ (|w|+ |z|)|cos((α− β)/2)|,
|w − z| ≥ (|w|+ |z|)|sin((α− β)/2)|.

Proof.

|w ± z|2 = |w|2 + |z|2 ± 2|w| |z| cos(α− β)

= (|w| ± |z|)2 cos2((α− β)/2) + (|w| ∓ |z|)2 sin2((α− β)/2).

Let us introduce now a useful family of functions.

Definition 2.6. (a) For each positive integer n we let ψn be the function

on C \ {−n,−n−1} to C defined by

ψn(z) =
n2z

(1 + nz)(n+ z)
.

We denote ψ1 by ψ.
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(b) If n and N are positive integers, we set

Ψn,N : (C \ {−n, −n−1})N → C, Ψn,N (z1, . . . , zN) =
N∏

k=1

ψn(zk).

If N is understood, we shall write Ψ instead of Ψ1,N .

Note that

Ψ(z) =
N∏

k=1

zk
(1 + zk)2 .

Lemma 2.7. Let n ∈ N and θ ∈ ]0, π[. Then for all z ∈ Sθ we have

|ψn(z)| ≤ (cos(θ/2))−2 min{1, n|z|, n|z|−1}.
Proof. If z ∈ Sθ, then z = |z|eiα with α ∈ ]−θ, θ[. Therefore, taking into

account Lemma 2.5, we obtain

|ψn(z)| = n2|z|
|1 + nz| |n+ z| ≤

n2|z|
cos2(α/2)(1 + n|z|)(n+ |z|)

≤ 1
cos2(θ/2)

n|z|
1 + n|z|

n

n+ |z|
and the desired inequality follows easily.

In the next sections, we are going to define and study operators that we
shall call f(T ), in the following two situations:

(i) T is a sectorial operator with spectral angle θ ∈ [0, π[ and f is a
holomorphic function defined on a sector Sθ′ with θ < θ′ < π;

(ii) T is a bisectorial operator with spectral angle θ ∈ [0, π/2[ and f is
a holomorphic function defined on a bisector Σθ′ with θ < θ′ < π/2.

We shall also deal with operators f(T1, . . . , TN ), where each Tk is sectorial or
bisectorial, and f is a (possibly operator-valued) holomorphic function of N
variables defined on the cartesian product of N sectors (or double sectors).
In order to handle this situation we need another definition.

Definition 2.8. Let ϕ ∈ ]0, π[. We define Γϕ to be the curve parametr-
ized by

R \ {0} 3 % 7→ |%|e−iϕ sgn %

and oriented according to the increasing values of % (i.e. according to the
decreasing imaginary parts). If 0 < θ < ϕ, we will also say that Γϕ is an
admissible curve for Sθ.

Remark 2.9. Let ϕ ∈ ]0, π[. It is obvious that, as a set, Γπ−ϕ = −Γϕ.
However, when we write “−Γϕ” it is understood that the orientation of the
curve is opposite to the one provided by Definition 2.8, i.e. −Γϕ is oriented
according to the increasing imaginary parts.
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Definition 2.10. Let θ ∈ ]0, π/2[. An admissible curve for Σθ is any
curve of the type

Γϕ ∪ (−Γϕ), where θ + π/2 < ϕ < π.

3. H∞0 functional calculus. In what follows, it is understood that:

(i) each of the operators T1, . . . , TN is either sectorial or bisectorial
and Tk has spectral angle ≤ θk, where θk belongs to ]0, π[ or ]0, π/2[
according to the case;

(ii) for all j, k ∈ {1, . . . , N} the resolvent operators of Tj and Tk com-
mute;

(iii) Gk = Sθk if Tk is treated as a sectorial operator; Gk = Σθk if Tk is
treated as a bisectorial operator; G :=

∏N
k=1Gk;

(iv) Ωk is a set of the same type as Gk, with an angle greater than θk,
and we set Ω =

∏N
k=1Ωk;

(v) Γ k is an admissible curve for Gk contained in Ωk, and we set Γ =∏N
k=1 Γ

k.

We write T instead of (T1, . . . , TN ), whenever convenient, and we let B =
B(T) be the commutator of the set

⋃N
k=1{(λ−Tk)−1; λ ∈ %(Tk)}, that is, the

closed subalgebra of the Banach algebra L(X) consisting of the operators
that commute with the resolvent operators of T1, . . . , TN . Note that B ⊇
{λIX ; λ ∈ C}; functions with values in {λIX ; λ ∈ C} will be naturally
identified with complex-valued functions.

Definition 3.1. Let Y be a complex Banach space. We denote by

• H(Ω,Y ) the vector space of Y -valued holomorphic functions on Ω;
• H∞(Ω,Y ) the Banach space of Y -valued bounded holomorphic func-

tions on Ω, with the norm ‖f‖∞ := supz∈Ω ‖f(z)‖Y ;
• H∞0 (Ω,Y ) the space of holomorphic functions f : Ω → Y satis-

fying the following condition: there are s, C > 0 such that for all
z = (z1, . . . , zN ) ∈ Ω,

‖f(z)‖Y ≤ C
N∏

j=1

(min{|zj|, |zj|−1})s;

• HP(Ω,Y ) the space of holomorphic functions f : Ω → Y with polyno-
mial growth at 0 and at ∞, that is, satisfying the following condition:
there are s ∈ R and C > 0 such that for all z = (z1, . . . , zN) ∈ Ω,

‖f(z)‖Y ≤ C
N∏

j=1

(max{|zj|, |zj|−1})s.

The mention of Y will be omitted when Y = C.
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Remarks 3.2. (a) It follows from Definition 3.1 that

H∞0 (Ω,Y ) ⊆ H∞(Ω,Y ) ⊆ HP(Ω,Y ) ⊆ H(Ω,Y ).

(b) If Y is a Banach algebra, then so is H∞(Ω,Y ), and H∞0 (Ω,Y ) is a
two-sided ideal of H∞(Ω,Y ). Moreover HP(Ω,Y ) is an algebra.

(c) If f ∈ HP(Ω,Y ), then it follows from Lemma 2.7 that there is m ∈ N
such that Ψmn,Nf ∈ H∞0 (Ω,Y ) for all n ∈ N.

Theorem 3.3. Let f ∈ H∞0 (Ω,B). Then the integral

�

Γ

f(z)
N∏

k=1

(zk − Tk)−1 dz

converges in the norm of L(X) and does not depend on Γ .

Proof. For suitable C, s ∈ R+ we have
∥∥∥f(z)

N∏

k=1

(zk − Tk)−1
∥∥∥ ≤ C

N∏

k=1

|zk|−1
N∏

k=1

(min{|zk|, |zk|−1})s

= C

N∏

k=1

min{|zk|s−1, |zk|−s−1}.

This proves the integrability. The same estimate yields the independence of
the integral from the system of curves, by means of standard arguments of
holomorphic function theory.

Definition 3.4. Let f ∈ H∞0 (Ω,B). We set

f(T) = (2πi)−N
�

Γ

f(z)
N∏

k=1

(zk − Tk)−1 dz.

Theorem 3.5. f 7→ f(T) is an algebra homomorphism from H∞0 (Ω,B)
to B.

Proof. The only nontrivial thing to check is that (fg)(T) = f(T)g(T)
whenever f, g ∈ H∞0 (Ω,B). We choose two systems of admissible curves
Γ =

∏n
k=1 Γ

k and Γ̃ =
∏n
k=1 Γ̃

k with the property that Γ̃ k “lies outside Γ k”,
in the sense that every point of Γ k belongs to the boundary of a (double)
sector with respect to which Γ̃ k is admissible. Then

f(T)g(T) = (2πi)−2N
�

Γ

�

Γ̃

f(z)g(w)
N∏

k=1

(zk − Tk)−1(wk − Tk)−1 dw dz

= (2πi)−2N
�

Γ

�

Γ̃

f(z)g(w)
N∏

k=1

(wk − zk)−1((zk − Tk)−1 − (wk − Tk)−1) dw dz.
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By developing the product one gets 2N summands, so that we have 2N

integrals, each in 2N variables, and in each integral we can exchange the
order of integration as we like. But it follows from Cauchy’s theorem that
for all k ∈ {1, . . . , N} and w ∈ Γ̃ ,

�

Γ k

f(z)(wk − zk)−1 dzk = 0,

since the function of zk is holomorphic “inside Γ k”. Therefore the 2N − 1
integrals in which not all the resolvents are of kind (zk − Tk)−1 are 0; hence

f(T)g(T) = (2πi)−2N
�

Γ

�

Γ̃

f(z)g(w)
N∏

k=1

(wk − zk)−1(zk − Tk)−1 dw dz

= (2πi)−N
�

Γ

f(z)g(z)
N∏

k=1

(zk − Tk)−1 dz

(by an iterated application of the residue theorem)
= (fg)(T).

Corollary 3.6. If f, g ∈ H∞0 (Ω,B) and f(z) commutes with g(z) for
all z ∈ Ω, then f(T) commutes with g(T).

Proof. Indeed, f(T)g(T) = (fg)(T) = (gf)(T) = g(T)f(T).

In the following we shall only meet products of the type f(T)g(T) when
f or g is scalar-valued, and so Corollary 3.6 applies.

Theorem 3.7. Assume that N = 1, f ∈ H∞0 (Ω,B), and α ∈ C \Ω. Set
rα(z) = (α− z)−1. Then rαf ∈ H∞0 (Ω,B) and (rαf)(T ) = f(T )(α− T )−1.

Proof. By the resolvent equation
�

Γ

f(z)(z− T )−1 dz (α− T )−1 =
�

Γ

f(z)
α− z (z− T )−1 dz−

�

Γ

f(z)
α− z dz (α− T )−1

and the last integral vanishes by Cauchy’s theorem.

Theorem 3.8. For positive integers n and N ,

Ψn,N (T) =
N∏

k=1

(nTk(n−1 + Tk)−1(n+ Tk)−1).

Proof. By Fubini’s theorem we have Ψn,N (T) =
∏N
k=1 ψn(Tk); therefore

it is not restrictive to take N = 1, and hence we only prove that

ψn(T ) = nT (n−1 + T )−1(n+ T )−1.
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When n = 1, by the residue theorem we get

ψ(T ) =
1

2πi

�

Γ

z

(1 + z)2 (z − T )−1 dz = − d

dz
(z(z − T )−1)

∣∣∣∣
z=−1

= (1 + T )−1 − (1 + T )−2 = T (1 + T )−2.

When n ≥ 2,

ψn(T ) =
1

2πi

�

Γ

n z

(n−1 + z)(n+ z)
(z − T )−1 dz

=
n2

n−1 − n (−n− T )−1 +
1

n− n−1 (−n−1 − T )−1

=
n

1− n2 (n2(−n−1 − T )− (−n− T ))(−n− T )−1(−n−1 − T )−1

= nT (n−1 + T )−1(n+ T )−1.

Remark 3.9. As the operators T1, . . . , TN are (bi)sectorial we obtain

sup
n≥1
‖Ψn,N (T)‖ <∞

and Ψn,N (T) is injective. Moreover Lemma 2.4 implies that Ψn,N (T)mx→ x
as n→∞ for all x ∈ X and m ∈ N.

Theorem 3.10. For all m ∈ N the range of Ψn,N (T)m is independent
of n, and is dense in X.

Proof. Let p, n be positive integers. Then

ψp(Tk) = pTk(p−1 + Tk)−1(p+ Tk)−1

= nTk(n−1 + Tk)−1(n+ Tk)−1pn−1(n−1 + Tk)

× (p−1 + Tk)−1(n+ Tk)(p+ Tk)−1

= ψn(Tk)pn−1((n−1 − p−1)(p−1 + Tk)−1 + 1)((n− p)(p+ Tk)−1 + 1)

and hence, by the commutativity of the resolvent operators of T1, . . . , TN ,
we get R(Ψp,N (T)m) ⊆ R(Ψn,N (T)m), and by symmetry R(Ψp,N (T)m) =
R(Ψn,N (T)m). Now Remark 3.9 implies immediately that this common range
is dense in X.

In particular, in the case N = 1, we have

Theorem 3.11. R(ψ(T )m) = D(Tm) ∩ R(Tm).

Proof. For all x ∈ X we have

ψ(T )mx = Tm(1 + T )−2mx = (1 + T )−mTm(1 + T )−mx,

hence ψ(T )mx ∈ D(Tm) ∩ R(Tm). Conversely, assume that y ∈ D(Tm) ∩
R(Tm). Then y = Tmz with z ∈ D(T 2m); therefore there is an x ∈ X such
that z = (1 + T )−2mx, and y = Tm(1 + T )−2mx = ψ(T )mx.
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Remark 3.12. Let f ∈ H∞0 (Ω,B). By Corollary 3.6, the operators f(T)
and Ψn,N (T) commute; therefore it is well known that for all m ∈ N,

f(T)Ψn,N (T)−m ⊆ Ψn,N (T)−mf(T).

Hence by Theorem 3.10, the domain of Ψn,N (T)−m f(T) is dense in X.
Moreover Ψn,N (T)−m f(T) is closed, as f(T) is bounded and Ψn,N (T)−m is
closed.

4. H∞ functional calculus. We are interested in building a functional
calculus defined on H∞(Ω,B) for N -tuples of (bi)sectorial operators; how-
ever, technical reasons suggest defining the functional calculus on the larger
space HP(Ω,B).

Definition 4.1. Let f ∈ HP(Ω,B), and let m ∈ N be such that Ψmf ∈
H∞0 (Ω,B). We set

f(T) = Ψ(T)−m(Ψmf)(T).

Remarks 4.2. (a) Definition 4.1 is meaningful, as Ψ(T)−m(Ψmf)(T)
does not depend on m. Indeed, by Theorem 3.5 we have

(Ψm+1f)(T) = Ψ(T)(Ψmf)(T),

and by applying Ψ(T)−m−1 to both sides we obtain

Ψ(T)−m−1(Ψm+1f)(T) = Ψ(T)−m(Ψmf)(T).

Moreover, this argument, with m = 0, proves that Definition 4.1
extends Definition 3.4.

(b) By Remark 3.12, for every f ∈ HP(Ω,B), f(T) is a closed operator
with dense domain.

Theorem 4.3. If f ∈ HP(Ω,B) and λ ∈ C\{0}, then λf(T) = (λf)(T).

Proof. Trivial.

Theorem 4.4. If f : Ω → B is constant , and S ∈ B is its unique value,
then f(T) = S.

Proof. Indeed, taking into account that S commutes with the resolvent
operators of the Tj ’s, one can check easily that (Ψf)(T) = Ψ(T)S.

Theorem 4.5. Let f, g ∈ HP(Ω,B). Then f(T) + g(T) ⊆ (f + g)(T)
and f(T)g(T) ⊆ (fg)(T).

Proof. For a suitably large m ∈ N we have f(T) = Ψ(T)−m(Ψmf)(T)
and g(T) = Ψ(T)−m(Ψmg)(T).

Let x ∈ D(f(T) + g(T)) = D(f(T)) ∩ D(g(T)). Then (Ψmf)(T)x and
(Ψmg)(T)x belong to D(Ψ(T)−m), so that

(Ψmf)(T)x+ (Ψmg)(T)x ∈ D(Ψ(T)−m).
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But, by Theorem 3.5, we have (Ψmf)(T) + (Ψmg)(T) = (Ψm(f + g))(T).
Therefore (Ψm(f + g))(T)x ∈ D(Ψ(T)−m), i.e. x ∈ D((f + g)(T)), and

(f + g)(T)x = Ψ(T)−m((Ψmf)(T)x+ (Ψmg)(T)x) = f(T)x+ g(T)x.

This proves that f(T) + g(T) ⊆ (f + g)(T).
Let x ∈ D(f(T)g(T)). Then (Ψmg)(T)x ∈ D(Ψ(T)−m) and

(Ψmf)(T)Ψ(T)−m(Ψmg)(T)x ∈ D(Ψ(T)−m).

From Remark 3.12 we get Ψ(T)−m(Ψmf)(T)(Ψmg)(T)x ∈ D(Ψ(T)−m), that
is (by Theorem 3.5),

(Ψ2mfg)(T)x = (Ψmf)(T)(Ψmg)(T)x ∈ D(Ψ(T)−2m).

Therefore x ∈ D((fg)(T)) and

(fg)(T)x = Ψ(T)−2m(Ψ2mfg)(T)x

= Ψ(T)−m(Ψmf)(T)Ψ(T)−m(Ψmg)(T)x = f(T)g(T)x.

Corollary 4.6. Let f, g ∈ HP(Ω,B).

(a) If g(T) ∈ L(X), then (f + g)(T) = f(T) + g(T).
(b) If g(T) ∈ L(X), then (fg)(T) = f(T)g(T).

Proof. (a) By Theorem 4.5, f(T) = (f + g− g)(T) ⊇ (f + g)(T)− g(T).
Since g(T) ∈ L(X), we have D((f + g)(T)− g(T)) = D((f + g)(T)). Hence
f(T) + g(T) ⊇ (f + g)(T).

(b) For a suitably large m ∈ N the operators (Ψmfg)(T) and (Ψmf)(T)
are bounded together with g(T); therefore as a consequence of Theorem 4.5
we obtain (Ψmf)(T)g(T) = (Ψmfg)(T). Hence

f(T)g(T) = Ψ(T )−m(Ψmf)(T)g(T) = Ψ(T )−m(Ψmfg)(T) = (fg)(T).

Theorem 4.7. Let f ∈ H∞(Ω,B). A necessary and sufficient condition
for f(T) to be a bounded operator is that supn∈N ‖(Ψn,Nf)(T)‖ <∞. In this
case f(T)x = limn→∞(Ψn,N f)(T)x for all x ∈ X.

Proof. If f(T) ∈ L(X), then

sup
n∈N
‖(Ψn,Nf)(T)‖ ≤ (sup

n∈N
‖Ψn,N (T)‖)‖f(T)‖ <∞

by Remark 3.9. Moreover, by Corollary 4.6 (and Remark 3.9), we have

(Ψn,N f)(T)x = Ψn,N (T)f(T)x −→
n→∞

f(T)x.

Conversely, assume that supn∈N ‖(Ψn,Nf)(T)‖ = M < ∞. If x ∈ D(f(T)),
then, by Theorem 4.5 and Remark 3.9,

(Ψn,N f)(T)x = Ψn,N (T)f(T)x −→
n→∞

f(T)x.

Therefore ‖f(T)x‖ ≤ M‖x‖ for all x ∈ D(f(T)). Since f(T) is closed and
densely defined, this proves that f(T) ∈ L(X).
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Theorem 4.8. Let A be a closed subalgebra of B, and let H∞T (Ω,A)
denote the set of bounded holomorphic functions f : Ω → A such that
f(T) ∈ L(X). Then:

(a) H∞T (Ω,A) is a subalgebra of H∞(Ω,A) containing H∞0 (Ω,A);
(b) the operator H∞T (Ω,A) 3 f 7→ f(T) ∈ L(X) is closed in the norm

of H∞(Ω,A)× L(X).

Proof. (a) Trivial (see Corollary 4.6).
(b) Let (fn)n∈N be a sequence in H∞T (Ω,A) convergent to f in H∞(Ω,A)

such that fn(T)→ S in L(X) as n →∞; we have to show that S = f(T).
We have

‖(Ψfn)(T)− (Ψ f)(T)‖

≤ (2π)−N
�

Γ

|Ψ(z)| ‖fn(z)− f(z)‖
N∏

k=1

‖(zk − Tk)−1‖ d|z|

≤ (2π)−N‖fn − f‖∞
�

Γ

|Ψ(z)|
N∏

k=1

‖(zk − Tk)−1‖ d|z| −→
n→∞

0.

Then for all x ∈ X we have

Ψ(T)fn(T)x = (Ψfn)(T)x −→
n→∞

(Ψf)(T)x,

Ψ(T)−1Ψ(T)fn(T)x = fn(T)x −→
n→∞

Sx.

Since Ψ(T)−1 is closed, this proves that Sx = Ψ(T)−1(Ψf)(T)x = f(T)x.

Theorem 4.9. Let A be a closed subalgebra of B. The following state-
ments are equivalent :

(a) f(T) ∈ L(X) for all f ∈ H∞(Ω,A);
(b) there exists C∈R+ such that ‖f(T)‖≤C‖f‖∞ for all f ∈H∞0 (Ω,A).

Proof. (a)⇒(b). This follows immediately from Theorem 4.8 and the
closed graph theorem.

(b)⇒(a). Let f ∈ H∞(Ω,A). Then Ψn,Nf ∈ H∞0 (Ω,A), and so

‖(Ψn,N f)(T)‖ ≤ C‖Ψn,Nf‖∞ ≤ C ′‖f‖∞
(see Lemma 2.7). Hence, by Theorem 4.7, we have f(T) ∈ L(X).

Remark 4.10. If T is an operator in X and α ∈ C \ {0}, then it is
obvious that D(αT ) = D(T ), R(αT ) = R(T ), and %(αT ) = α%(T ) with

(αλ− αT )−1 = α−1(λ− T )−1.

Hence, if α ∈ R+ and T is (bi)sectorial with spectral angle θ, then the same
is true for αT . More precisely, if ‖λ(λ − T )−1‖ ≤ M in a certain domain
which is invariant under multiplication by positive real numbers, then in
the same domain we also have ‖λ(λ − αT )−1‖ = ‖α−1λ(α−1 λ − T )−1‖
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≤ M . In particular, if α1, . . . , αN ∈ R+, then α1T1, . . . , αNTN have the
same properties as T1, . . . , TN , and their resolvent operators commute.

Theorem 4.11. Let α1, . . . , αN ∈ R+. If f ∈ HP(Ω,B) and g is the
function defined by g(ζ1, . . . , ζN ) = f(α1ζ1, . . . , αNζN ), then

f(α1T1, . . . , αNTN ) = g(T1, . . . , TN ).

Proof. If f ∈ H∞0 the equality is obtained by a change of variables
in the integral that defines f(α1T1, . . . , αNTN ). In the general case we set
µ(z1, . . . , zN ) = (α1z1, . . . , αNzN ), so that g = f ◦µ. We also write αT for
(α1T1, . . . , αNTN ). Then

f(αT) = Ψ(αT)−m((Ψ ◦µ)mg)(T).

However,

Ψ(T)m((Ψ ◦µ)mg)(T) = (Ψmg(Ψ ◦µ)m)(T) = (Ψ ◦µ)(T)m(Ψmg)(T).

Hence
f(αT) = Ψ(T)−m(Ψmg)(T) = g(T).

Theorem 4.12. Let f ∈ HP(Ωj ,B), and let g : Ω → B be defined by
g(z) = f(zj). Then g ∈ HP(Ω,B) and g(T) = f(Tj).

Proof. Since the first statement is trivial, we prove that g(T) = f(Tj).
Let m be a suitably large integer. From Fubini’s theorem it follows that

(Ψmg)(T) =
(∏

k 6=j
ψ(Tk)m

)
(ψmf)(Tj) = Ψ(T)mψ(Tj)−m(ψmf)(Tj).

Hence

g(T) = Ψ(T)−m(Ψmg)(T) = ψ(Tj)−m(ψmf)(Tj) = f(Tj).

5. Some results in the case of a single operator. The results of this
section concern the case N = 1, so that we will write T instead of T or Tj .
Note that, by means of Theorem 4.12, these results can be easily extended
to the case of several operators when the function f actually depends on
one variable only.

Definition 5.1. For w ∈ C we denote by pw the function defined on
C \ ]−∞, 0] by pw(z) = zw = ew(log |z|+i arg z).

Lemma 5.2. If f and p1f belong to H∞0 (Ω), then (p1f)(T ) = Tf(T ).

Proof. From the assumptions it follows that f is integrable along Γ , with�
Γ f = 0. As T (z − T )−1 is bounded along Γ and T is closed we get

Tf(T ) =
1

2πi

�

Γ

f(z)T (z − T )−1 dz =
1

2πi

�

Γ

zf(z)(z − T )−1 dz.
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Theorem 5.3. If k ∈ Z, then pk(T ) = T k.

Proof. The case k = 0 follows immediately from Theorem 4.4. Assume
that k > 0. Take m ∈ N with m > k so that pk ψm ∈ H∞0 . By an iterated
application of Lemma 5.2 we have (ψmpk)(T ) = T kψ(T )m, hence

pk(T ) = ψ(T )−mT kψ(T )m = (1 + T )2mT−mT kTm(1 + T )−2m = T k.

If k < 0 and m > |k|, then from the equality ψ(T )m = (p−kpkψm)(T ) =
T−k(pkψm)(T ) we obtain (pkψm)(T ) = T kψ(T )m. Hence

pk(T ) = ψ(T )−m(pkψm)(T ) = ψ(T )−mT kψ(T )m.

Now we remark that T−1 has the same properties as T , and that ψ(T−1) =
ψ(T ); therefore pk(T ) = ψ(T−1)−m(T−1)−kψ(T−1)m = T k by the same
argument as above.

As pw ∈ HP(Ω) we can give the following

Definition 5.4. For w ∈ C we set Tw := pw(T ).

Observe that by Theorem 5.3 this definition extends the case of the
integer exponents.

As in Theorem 3.7 we denote by rλ the function z 7→ (λ− z)−1.

Theorem 5.5. Let λ ∈ C \ G. Then Tw(λ − T )−1 = (pw rλ)(T ) for all
w ∈ C. In particular , if 0 < Rew < 1 and λ 6∈ Ω, then Tw(λ−T )−1 ∈ L(X)
and

‖Tw(λ− T )−1‖ ≤ Cw,Ω|λ|Rew−1.

Proof. We fix w ∈ C and m ∈ N with m > |Rew|. Then

(pw rλ)(T ) = ψ(T )−m(pw rλψm)(T )

= ψ(T )−m(pw ψm)(T )(λ− T )−1

(by Theorem 3.7)
= Tw(λ− T )−1.

This proves the first statement. Now we assume that 0 < Rew < 1. Then

‖Tw(λ− T )−1‖ = ‖(pw rλ)(T )‖ =

∥∥∥∥
1

2πi

�

Γ

zw

(λ− z)
(z − T )−1 dz

∥∥∥∥

≤ C
�

Γ

|z|Rew−1

|λ− z| d|z| ≤ CC
−1
0

�

Γ

|z|Rew−1

|λ|+ |z| d|z|

= CC−1
0 |λ|Rew−1

�

Γ

|ζ|Rew−1

1 + |ζ| d|ζ|

(where Lemma 2.5 yields the constant C0 = C0(Ω) when λ 6∈ Ω).
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Remark 5.6. The constant Cw,Ω that appears in Theorem 5.5 obviously
depends also on the operator T . However, looking at the proof of that the-
orem, one can see that this dependence concerns only the supremum of
‖z(z − T )−1‖ on Γ . In particular (see Remark 4.10) the constant does not
change if one replaces T with αT (α ∈ R+).

6. The Kalton–Weis theorem. In this section we go back to the
general situation described at the beginning of Section 3.

Lemma 6.1. If t, s ∈ R+, then

∑

k∈Z
(min{(2kt)s, (2kt)−s}) ≤ 2s+1

2s − 1
.

Proof. We set kt = min{k ∈ Z; 2kt ≥ 1}. Then
∑

k∈Z
(min{(2kt)s, (2k t)−s}) =

∑

k<kt

(2kt)s +
∑

k≥kt
(2kt)−s

= (2kt−1t)s
∞∑

j=0

2−js + (2kt t)−s
∞∑

j=0

2−js ≤ 2
∞∑

j=0

2−js =
2

1− 2−s
=

2s+1

2s − 1
.

Lemma 6.2. Let s ∈ ]0, 1[ and λ ∈ C \ R, λ = |λ|eiβ, with 0 < |β| < π.

(a) If 0 < ε < |β|, then there exists g ∈ H∞0 (S|β|−ε) such that

g(z)2 = zs(z − λ)−1 for all z ∈ S|β|−ε.
(b) If |β| 6= π/2 and 0 < ε < | |β| − π/2|, then there exists g ∈

H∞0 (Σ||β|−π/2|−ε) such that

g(z)2 = zs(z − λ)−1 for all z ∈ Σ||β|−π/2|−ε.

Proof. From g(z)2 = zs(z − λ)−1 one gets |g(z)| = |zs(z − λ)−1|1/2 in
both cases; since z does not approach λ, if g is holomorphic then g ∈ H∞0 .

(a) If r ∈ R+, then

|arg(λ− r)| = arg(|λ|ei|β| − r) = arccot
|λ| cos |β| − r
|λ| sin |β| > |β|

so that λ− r 6∈ S|β|. Therefore for all z ∈ S|β|−ε one has z, z − λ 6∈ ]−∞, 0],
and we can set g(z) = zs/2(z − λ)−1/2.

(b) If |β| > π/2, the assertion follows from (a), as Σ|β|−π/2−ε ⊆ S|β|−ε.
If |β| < π/2, then in a way similar to (a) it can be proved that for all
z ∈ Σπ/2−|β|−ε we have z, λ− z 6∈ ]−∞, 0], and therefore we can set g(z) =
izs/2(λ− z)−1/2.
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Theorem 6.3. Let f ∈ H∞0 (Ω,B) and r ∈ ]0, 1[. Then

f(T) = (2πi)−N
�

Γ

f(z)
N∏

j=1

z−rj T rj (zj − Tj)−1 dz,

and the integral converges in the norm of L(X).

Proof. First, we remark that the operators T rj (zj − Tj)−1 commute (by
Theorem 5.5 and Corollary 3.6). Next, for m ∈ {0, . . . , N} we set

Sm = (2πi)−N
�

Γ

f(z)
m∏

j=1

z−rj T rj (zj − Tj)−1
N∏

k=m+1

(zk − Tk)−1 dz.

This integral is convergent in the norm of L(X) because, by Theorem 5.5,
we have (for z ∈ Γ )

∥∥∥f(z)
m∏

j=1

z−rj T rj (zj − Tj)−1
N∏

k=m+1

(zk − Tk)−1
∥∥∥

≤ C
N∏

j=1

(min{|zj|, |zj|−1})s
N∏

j=1

|zj|−1 = C

N∏

j=1

min{|zj|s−1, |zj|−s−1}

and this is an integrable function on Γ . Since S0 = f(T) and SN is the
right-hand side of the equality to be proved, it is sufficient to show that
Sm = Sm−1 when 1 ≤ m ≤ N .

Let m ∈ {1, . . . , N} be fixed, and let ∆ be a curve of the same type
as Γm, lying “inside Γm”. Then (by Theorem 5.5, which also enables us to
change the order of integration)

1
2πi

�

Γm

f(z)z−rm T rm(zm − Tm)−1 dzm

=
1

2πi

�

Γm

f(z)z−rm
1

2πi

�

∆

ζr

(zm − ζ)−1 (ζ − Tm)−1 dζ dzm

=
1

2πi

�

∆

ζr
1

2πi

�

Γm

f(z)
z−rm

(zm − ζ)−1 dzm (ζ − Tm)−1 dζ

=
1

2πi

�

∆

f(z1, . . . , zm−1, ζ, zm+1, . . . , zN )(ζ − Tm)−1 dζ

=
1

2πi

�

Γm

f(z)(zm − Tm)−1 dzm.

This proves that Sm = Sm−1.
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Lemma 6.4. Assume that f(T) ∈ L(X) for all f ∈ H∞(Ω). Then for
every f ∈ H∞0 (Ω) there is a C > 0 such that if (αk)k∈ZN is a family of
complex numbers with {k ∈ ZN ; αk 6= 0} finite, and (t1, . . . , tN ) ∈ (R+)N ,
then ∥∥∥

∑

k∈ZN
αkf(2k1t1T1, . . . , 2kN tNTN )

∥∥∥ ≤ C max
k∈ZN

|αk|.

Proof. It is not restrictive to assume that maxk∈ZN |αk| = 1. By Theo-
rem 4.11, if f ∈ H∞0 (Ω) then

∑

k∈ZN
αkf(2k1t1T1, . . . , 2kN tNTN ) = g(T),

where g(z) =
∑

k∈ZN αkf(2k1t1z1, . . . , 2kN tNzN ). Therefore by Theorem 4.9
(with A = C)

∥∥∥
∑

k∈ZN
αkf(2k1t1T1, . . . , 2kN tNTN )

∥∥∥ = ‖g(T)‖ ≤ C0‖g‖∞,

where C0 does not depend on (αk)k∈ZN , (t1, . . . , tN ) and f . Now, by the
geometric properties of Ω,

‖g‖∞ = sup
z∈Ω
|g(z)| = sup

z∈Ω

∣∣∣
∑

k∈ZN
αkf(2k1z1, . . . , 2kN zN )

∣∣∣

≤ sup
z∈Ω

∑

k∈ZN
|f(2k1z1, . . . , 2kN zN )|

≤ Cf sup
z∈Ω

∑

k∈ZN

N∏

j=1

min{(2kj |zj|)s, (2kj |zj|)−s}

= Cf sup
z∈Ω

N∏

j=1

∑

k∈Z
min{(2k|zj |)s, (2k|zj|)−s}

≤ Cf
(

2s+1

2s − 1

)N

(by Lemma 6.1).

Now we are going to state and prove the theorem of Kalton and Weis
that we mentioned in the introduction. In their paper [7] the main tool is
a property called U-boundedness. We use a slightly stronger one, which is
more common in the literature.

A subset U of L(X) is said to be R-bounded if there is a C > 0 such that
for any positive integer N and for arbitrary T1, . . . , TN ∈ U and x1, . . . , xN
∈ X,
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( ∑

ε∈{−1,1}N

∥∥∥
N∑

k=1

εkTk xk

∥∥∥
2)1/2

≤ C
( ∑

ε∈{−1,1}N

∥∥∥
N∑

k=1

εk xk

∥∥∥
2)1/2

(6.5)

(and it is known that the exponent 2 can be replaced by any other exponent
p > 0 with a suitable modification of the constant C). The best constant
that can be put in (6.5) is called the R2-bound of U , and is denoted by
R2(U). It is easy to see that any R-bounded set of operators is bounded,
and that the elementary operations on sets preserve the R-boundedness.
Moreover the “contraction principle” says that (6.5) holds when Tk = λkIX ,
with C = 2 max1≤k≤N |λk|. Hence for any R-bounded subset of L(X) and
M ∈ R+,

R2({λT ; λ ∈ C, |λ| ≤M, T ∈ U}) ≤ 2MR2(U).(6.6)

For details about R-boundedness we refer to the papers [2], [5], [12].

Theorem 6.7 (Kalton–Weis). Let H∞R (Ω,B) be the vector space of holo-
morphic functions g : Ω → B with R-bounded range. Assume that for some
open set Ω′ of the same type as Ω, but smaller , f(T) ∈ L(X) for all
f ∈ H∞(Ω′). Then g(T) ∈ L(X) for all g ∈ H∞R (Ω,B). Moreover there
exists C(T) > 0 such that ‖g(T)‖ ≤ C(T)R2(g(Ω)) for all g ∈ H∞R (Ω,B).

Proof. We fix g ∈ H∞R (Ω,B) and set gn = Ψn,Ng. We will show that
supn∈N ‖gn(T)‖ ≤ CR2(g(Ω)); by Theorem 4.7 that will prove the theorem.
Since g ∈ H∞(Ω,B), and hence gn ∈ H∞0 (Ω,B), by Theorem 6.3 we can
write (with r ∈ ]0, 1[)

gn(T) = (2πi)−N
�

Γ

gn(z)
N∏

j=1

z−rj T rj (zj − Tj)−1 dz,

where Γ is a curve lying in Ω \ Ω′. Notice that the integral with respect
to zj is performed on Γ j , which is the union of two or four half-lines with
origin at 0; therefore we obtain the sum of a finite number of terms of the
form

(2πi)−N
�

Γ̃ 1

· · ·
�

Γ̃N

gn(z1, . . . , zN)
N∏

j=1

z−rj T rj (zj − Tj)−1dzN · · · dz1,

where Γ̃ j is one of the (two or four) branches of Γ j . Thus it is enough to
estimate each of these integrals.

Let us introduce the abbreviation 2kteiβ for (2k1t1e
iβ1 , . . . , 2kN tNeiβN ).

If Γ̃ j is the half-line through eiβj with |βj| < π, we get



238 G. Dore and A. Venni

�

Γ̃ 1

· · ·
�

Γ̃N

gn(z1, . . . , zN )
N∏

j=1

z−rj T rj (zj − Tj)−1 dzN · · · dz1

=
∞�

0

· · ·
∞�

0

gn(teiβ)
N∏

j=1

t−1
j ei(1−r)βj(t−1

j Tj)r(eiβj − t−1
j Tj)−1 dtN · · · dt1

=
∑

k1∈Z
· · ·

∑

kN∈Z

21+k1�

2k1

· · ·
21+kN�

2kN

gn(teiβ)

·
N∏

j=1

t−1
j ei(1−r)βj(t−1

j Tj)r(eiβj − t−1
j Tj)−1 dtN · · · dt1

=
�

[1,2]N

∑

k1∈Z
· · ·

∑

kN∈Z
gn(2kteiβ)

·
N∏

j=1

t−1
j ei(1−r)βj (2−kj t−1

j Tj)r(eiβj − 2−kj t−1
j Tj)−1 dtN · · · dt1.

Here we have carried the sums inside the integrals: this is allowed by the in-
equalities that follow. We have also applied Theorem 4.11 which implies that
t−rj T rj = (t−1

j Tj)r. Now, taking into account Theorem 5.5 and Remark 5.6
we get

sup
t∈[1,2]N

sup
k∈ZN

∥∥∥
N∏

j=1

t−1
j ei(1−r)βj(2−kj t−1

j Tj)r(eiβj − 2−kj t−1
j Tj)−1

∥∥∥

= C(T) <∞
while (as gn ∈ H∞0 (Ω,B)), for a suitable s ∈ R+ and all t ∈ [1, 2]N ,

‖gn(2kteiβ)‖ ≤ C(gn)
N∏

j=1

min{(2kj tj)s, (2kj tj)−s}

so that, by Lemma 6.1, we get

sup
t∈[1,2]N

∑

k∈ZN

∥∥∥gn(2k t eiβ)
N∏

j=1

t−1
j ei(1−r)βj(2−kj t−1

j Tj)r(eiβj − 2−kj t−1
j Tj)−1

∥∥∥

≤ C(gn)C(T)
(

2s+1

2s − 1

)N
.

The proof will be concluded if we show that on the right-hand side of the
last inequality we can put CR2(g(Ω)). By Fatou’s lemma it is enough to
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estimate in the same way the norm of

Mn,E(t) :=
∑

k∈E
gn(2kteiβ)

N∏

j=1

t−1
j ei(1−r)βj(2−kj t−1

j Tj)r(eiβj − 2−kj t−1
j Tj)−1

for any finite subset E of ZN . Therefore we fix n ∈ N, t ∈ [1, 2]N , a finite
subset E of ZN , and moreover x ∈ X with ‖x‖ ≤ 1 and x∗ ∈ X∗ with
‖x∗‖ ≤ 1. By Lemma 6.2 and Theorem 5.5 we can write

(2−kj t−1
j Tj)r(eiβj − 2−kj t−1

j Tj)−1 = hj(2−kj t−1
j Tj)2,

where hj ∈ H∞0 (Ω′j). Therefore

N∏

j=1

(2−kj t−1
j Tj)r(eiβj − 2−kj t−1

j Tj)−1 = h(2−k1t−1
1 T1, . . . , 2−kN t−1

N TN )2

with h ∈ H∞0 (Ω′). The operator h(2−k1 t−1
1 T1, . . . , 2−kN t−1

N TN ) belongs to
the closed subalgebra of L(X) spanned by the resolvents of the operators
Tj , hence commutes with the values of gn since the range of gn is contained
in B. Hence

Mn,E(t) =
∑

k∈E

( N∏

j=1

t−1
j ei(1−r)βj

)
h(2−k1t−1

1 T1, . . . , 2−kN t−1
N TN )

· gn(2kteiβ)h(2−k1t−1
1 T1, . . . , 2−kN t−1

N TN ).

Thus, if q is the cardinality of E, as
∑

ε∈{−1,1}E εkεl = 2qδk,l we get

|〈Mn,E(t)x, x∗〉|

=
( N∏

j=1

t−1
j

)∣∣∣
∑

k∈E
〈gn(2kteiβ)h(2−k1t−1

1 T1, . . . , 2−kN t−1
N TN )x,

h(2−k1t−1
1 T1, . . . , 2−kN t−1

N TN )∗x∗〉
∣∣∣

≤ 2−q
∣∣∣

∑

ε∈{−1,1}E

∑

k,l∈E
〈εk gn(2kteiβ)h(2−k1 t−1

1 T1, . . . , 2−kN t−1
N TN )x,

εlh(2−l1t−1
1 T1, . . . , 2−lN t−1

N TN )∗x∗〉
∣∣∣

≤ 2−q
( ∑

ε∈{−1,1}E

∥∥∥
∑

k∈E
εkgn(2kteiβ)h(2−k1t−1

1 T1, . . . , 2−kN t−1
N TN )x

∥∥∥
2)1/2

·
( ∑

ε∈{−1,1}E

∥∥∥
∑

l∈E
εlh(2−l1t−1

1 T1, . . . , 2−lN t−1
N TN )∗x∗

∥∥∥
2)1/2

.
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From Lemma 2.7 and (6.6), it follows that R2(gn(Ω)) ≤ CR2(g(Ω)),
where C only depends on Ω. Therefore

|〈Mn,E(t)x, x∗〉|

≤ 2−qCR2(g(Ω))
( ∑

ε∈{−1,1}E

∥∥∥
∑

k∈E
εkh(2−k1t−1

1 T1, . . . , 2−kN t−1
N TN )x

∥∥∥
2)1/2

·
( ∑

ε∈{−1,1}E

∥∥∥
∑

k∈E
εk h(2−k1 t−1

1 T1, . . . , 2−kN t−1
N TN )∗x∗

∥∥∥
2)1/2

≤ 2−qCR2(g(Ω))
∑

ε∈{−1,1}E

∥∥∥
∑

k∈E
εkh(2−k1t−1

1 T1, . . . , 2−kN t−1
N TN )

∥∥∥
2
.

Finally, we apply Lemma 6.4, which is possible by the assumption that
f(T) ∈ L(X) for all f ∈ H∞(Ω′). By that lemma,

∥∥∥
∑

k∈E
εkh(2−k1t−1

1 T1, . . . , 2−kN t−1
N TN )

∥∥∥

is bounded above by a constant that depends only on h, and therefore only
on Ω′. Thus

|〈Mn,E(t)x, x∗〉| ≤ 2−q
∑

ε∈{−1,1}E
CR2(g) = CR2(g).

This concludes the proof.
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