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Ba
kward extensions of hyperexpansive operatorsby
Zenon J. Jabłoński (Kraków), Il Bong Jung (Daegu)and Jan Stochel (Kraków)Abstra
t. The 
on
ept of k-step full ba
kward extension for subnormal operators isadapted to the 
ontext of 
ompletely hyperexpansive operators. The question of existen
eof k-step full ba
kward extension is solved within this 
lass of operators with the help ofan operator version of the Levy�Khin
hin formula. Some new phenomena in 
omparisonwith subnormal operators are found and related 
lasses of operators are dis
ussed as well.1. Introdu
tion. In 1976 A. Lambert, using a result of M. Embry [14℄,gave in [25℄ a 
hara
terization of subnormality for an abstra
t operator(bounded and linear) in terms of weighted shifts. It states that an inje
-tive operator T a
ting on a (
omplex) Hilbert spa
e H is subnormal if andonly if for ea
h nonzero ve
tor h in H, the weighted shift WT,h with weightsequen
e {‖Tn+1h‖/‖Tnh‖}∞n=0 is subnormal. In other words, the 
lass of in-je
tive subnormal operators is an instan
e of an abstra
t 
lass C of inje
tiveHilbert spa
e operators possessing the following property:(P) an operator T on H is of 
lass C if and only if for every nonzero ve
tor

h in H, the weighted shift WT,h is of 
lass C.It turns out that the 
lass of inje
tive paranormal operators (1) satis�es(P) as well. Indeed, T is paranormal if and only if for ea
h nonzero ve
tor
h in H, the sequen
e {‖Tn+1h‖/‖Tnh‖}∞n=0 is weakly in
reasing (
f. [15,Addendum℄) or equivalently the weighted shift WT,h is hyponormal. Sin
ean inje
tive weighted shift is hyponormal if and only if it is paranormal, our
laim is proved. A

ording to the above dis
ussion, we see that the 
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(1) Re
all that T is said to be paranormal if ‖Th‖2 ≤ ‖h‖ ‖T 2h‖ for all h ∈ H; noti
ealso that hyponormal operators are paranormal (
f. [18, 15℄).[233℄
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tive hyponormal operators does not have the property (P) be
ausethere are inje
tive paranormal operators whi
h are not hyponormal (if T isan inje
tive hyponormal operator whose square is not hyponormal (
f. [19℄),then by [15, Theorem 1℄, T 2 is the required paranormal operator; see also[15, Theorem 2℄ for the noninje
tive 
ase).Re
ently new 
lasses of Hilbert spa
e operators have attra
ted the at-tention of resear
hers. These are m-isometries [27, 2, 28, 3, 4, 5, 30, 23℄,
m-hyperexpansive operators [27, 26, 7, 30, 29, 23℄ and 
ompletely hyperex-pansive operators [6, 7, 11, 30, 20, 9, 10, 21, 8, 22℄. As shown in [23, Propo-sition 6.7℄, the 
lasses of 2-isometries and 2-hyperexpansive operators haveproperty (P). It turns out that the 
lasses ofm-isometries,m-hyperexpansiveoperators and 
ompletely hyperexpansive operators share the same property(
f. Proposition 2.4 and Corollary 2.5).In [12℄ R. Curto 
hara
terized subnormal weighted shifts whi
h haveba
kward extensions within the 
lass of subnormal weighted shifts. Re
allthat a weighted shift with weights {λn}∞n=0 has a subnormal (one-step) ba
k-ward extension if for some positive s
alar λ−1, the weighted shift with weights
{λn−1}∞n=0 is subnormal. The 
on
ept of ba
kward extension was studied inmore detail in [17, 13℄ and extended to the 
ase of abstra
t subnormal op-erators in [24℄.In the present paper we adapt the 
on
ept of ba
kward extension to 
om-pletely hyperexpansive and 2-hyperexpansive operators (in fa
t, this 
an bedone for other 
lasses of operators mentioned above). The essential part ofour paper deals with (inje
tive and unilateral) weighted shifts. In Se
tion 3we dis
uss the question of existen
e of 
ompletely hyperexpansive ba
kwardextensions. The main result of this se
tion, Theorem 3.2, provides a solu-tion written in terms of measures asso
iated with operators in question viathe Levy�Khin
hin formula. Moreover, the set of all measures asso
iatedwith 
ompletely hyperexpansive ba
kward extensions of the given operatoris expli
itly des
ribed.Se
tion 4 extends the main result of the previous one to the 
ontext of
k-step ba
kward extensions. Moreover, we show that a nonisometri
 
om-pletely hyperexpansive weighted shift has no 
ompletely hyperexpansive ∞-step ba
kward extension (
f. Corollary 4.6). This is opposite to the 
ase ofnonisometri
 subnormal weighted shifts whi
h allow for subnormal ∞-stepba
kward extensions (
f. [24℄).In Se
tion 5 we turn our attention to abstra
t 
ompletely hyperexpan-sive operators transplanting the notion of k-step full ba
kward extensionfrom subnormal operators to 
ompletely hyperexpansive ones. An operatorversion of the Levy�Khin
hin formula plays a 
ru
ial role in this se
tion. Thenext essential di�eren
e between subnormality and 
omplete hyperexpansiv-ity is emphasized by Proposition 5.8. Namely, it is proved that the prop-
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ompletely hyperexpansive k-step full ba
kward extension ispreserved by in�nite orthogonal sums, whi
h is not the 
ase for subnormaloperators (
f. [24℄).Se
tion 6 deals with s
alar and operator-valued weighted shifts. The thirddi�eren
e between subnormality and 
omplete hyperexpansivity is exhibitedin Example 6.5. It is shown there that the set of all 
ompletely hyperexpan-sive k-step ba
kward extension ve
tors need not be a linear spa
e (
omparewith [17, Corollary 5.4℄). In the �nal se
tion we dis
uss the question of exis-ten
e of k-step full ba
kward extension within the 
lass of 2-hyperexpansiveoperators. This enables us to 
larify the role played by 2-isometries in our
onsiderations.2. Preliminaries. LetH be a (
omplex) Hilbert spa
e. Denote byB(H)the C∗-algebra of all bounded linear operators on H and by IH the identityoperator on H. From now on, all operators taken into 
onsideration in thispaper are assumed to be linear and bounded. Given A,B ∈ B(H), we write
A > B (resp. A ≥ B) in 
ase 〈Ah, h〉 > 〈Bh, h〉 (resp. 〈Ah, h〉 ≥ 〈Bh, h〉) forevery h ∈ H \ {0}; we say that A is positive if A ≥ 0. As usual, ℓ2 stands forthe Hilbert spa
e of all square summable 
omplex sequen
es and {en}∞n=0 forthe 
anoni
al orthonormal basis of ℓ2, i.e. en = (δn,0, δn,1, . . .), where δk,l isthe Krone
ker symbol. Denote by B([0, 1]) the σ-algebra of all Borel subsetsof the 
losed unit segment [0, 1]. For x ∈ [0, 1], δx stands for the probabilityBorel measure on [0, 1] with total mass at x.Given an operator T ∈ B(H) and an integer n ≥ 1, we de�ne the real-valued fun
tion ̺T,n on H by

̺T,n(h) :=
∑

0≤p≤n

(−1)p

(

n

p

)

‖T ph‖2, h ∈ H.

Definition 2.1 ([27, 7, 20, 21℄). Let m ≥ 1 be an integer. We say thatan operator T ∈ B(H) is(a) m-isometri
 if ̺T,m = 0,(b) m-expansive if ̺T,m ≤ 0,(
) m-hyperexpansive if ̺T,n ≤ 0 for all n = 1, . . . ,m,(d) 
ompletely hyperexpansive if ̺T,n ≤ 0 for all n ≥ 1.The 
ase ̺T,n ≥ 0 is 
losely related to subnormal 
ontra
tions (
f. [1℄). Thein
lusion relations among the 
lasses de�ned above are as follows:
2-isometry ⊆ 
ompletely hyperexpansive ⊆ · · · ⊆ (m+ 1)-hyperexpansive

⊆ m-hyperexpansive ⊆ · · · ⊆ 1-hyperexpansive.Moreover, all these in
lusions are proper (
f. [27℄ and [30℄).
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W (ξ0, ξ1, . . .) = (0, λ0ξ0, λ1ξ1, . . .), (ξ0, ξ1, . . .) ∈ ℓ2,where {λn}∞n=0 is a bounded sequen
e of positive real numbers, is 
alleda (unilateral) weighted shift with weight sequen
e {λn}∞n=0. Set βn(W ) =

‖Wne0‖2 for n ≥ 0, i.e. β0(W ) = 1 and βn(W ) = λ2
0 · · ·λ2

n−1 for n ≥ 1.It is evident that the weights λn of W 
an be re
overed from the sequen
e
{βm(W )}∞m=0 as follows:

λn =

√

βn+1(W )

βn(W )
, n ≥ 0.(2.1)This means that the formula (2.1) establishes one-to-one 
orresponden
ebetween weighted shifts W and sequen
es {βm(W )}∞m=0. In 
ase λn = 1 forall n ≥ 0, W is 
alled the isometri
 unilateral shift.The following result 
hara
terizes 
ompletely hyperexpansive weightedshifts (see [7, Proposition 3℄, [20, Lemma 4.1℄ and [23, Lemma 6.1℄).Proposition 2.2. A weighted shift W with weight sequen
e {λn}∞n=0 is
ompletely hyperexpansive if and only if there exists a �nite positive Borelmeasure µ on [0, 1] su
h that

βn(W ) = 1 +
\

[0,1]

(1 + x+ · · · + xn−1) dµ(x), n ≥ 1.(2.2)
The 
orresponden
e W ↔ µ is one-to-one (in parti
ular , the measure µ in(2.2) is unique). Moreover , the weighted shift W is a 2-isometry if and onlyif the 
orresponding measure µ is of the form αδ1, where α is a nonnegativereal number.Definition 2.3. If (2.2) holds, then we say that the measure µ is asso-
iated with the weighted shift W or that W is asso
iated with µ.Let us re
all that if T ∈ B(H) is inje
tive and h ∈ H \ {0}, then WT,hstands for the weighted shift with weight sequen
e {‖Tn+1h‖/‖Tnh‖}∞n=0(the operatorWT,h is bounded be
ause the sequen
e of its weights is boundedabove by ‖T‖). Now we show that the 
lasses of (hyper-) expansive operatorsde�ned above have the property (P) mentioned in Se
tion 1 (for the 
ase of
2-hyperexpansive and 2-isometri
 operators see [23, Proposition 6.7℄).Proposition 2.4. If T ∈ B(H) and m ≥ 1 is an integer , then thefollowing 
onditions are equivalent :(i) T is m-isometri
 (resp. m-expansive, m-hyperexpansive),(ii) T is inje
tive and WT,h is m-isometri
 (resp. m-expansive, m-hyper-expansive) for every nonzero ve
tor h ∈ H.
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‖h‖2 = ̺T,m(h) ≤ 0,whi
h yields the inje
tivity of T . It is easily seen that a weighted shift W is

m-isometri
 (resp. m-expansive) if and only if ̺W,m(en) = 0 (resp. ̺W,m(en)
≤ 0) for every integer n ≥ 0. This and the equality

̺W
T,h

,m(en) =
̺T,m(Tnh)

‖Tnh‖2
, h ∈ H \ {0}, n ≥ 0,
omplete the proof.Corollary 2.5. An operator T ∈ B(H) is 
ompletely hyperexpansive ifand only if T is inje
tive and the weighted shift WT,h is 
ompletely hyperex-pansive for every h ∈ H\{0}. If this is the 
ase, then for every h ∈ H\{0},there exists a unique �nite positive Borel measure µT,h on [0, 1] su
h that

βn(WT,h) =
‖Tnh‖2

‖h‖2
= 1 +

\
[0,1]

(1 + x+ · · · + xn−1) dµT,h(x), n ≥ 1.

3. Completely hyperexpansive ba
kward extensionsDefinition 3.1. We say that a weighted shift W with weight sequen
e
{λn}∞n=0 has a 
ompletely hyperexpansive (one-step) ba
kward extension iffor some positive s
alar λ−1, the weighted shift W ′ with weight sequen
e
{λn−1}∞n=0 is 
ompletely hyperexpansive; the weighted shiftW ′ will be 
alleda 
ompletely hyperexpansive ba
kward extension of W .Regarding De�nition 3.1, we see that the operator W may be identi-�ed (up to unitary equivalen
e) with the restri
tion W ′|∨∞

n=1{en} of W ′ to
∨∞

n=1{en}, the 
losed linear span of {en}∞n=1. This means that W itself is
ompletely hyperexpansive.The following result 
hara
terizes those weighted shifts whi
h have 
om-pletely hyperexpansive ba
kward extensions.Theorem 3.2. Let W be a 
ompletely hyperexpansive weighted shift withweight sequen
e {λn}∞n=0 and with asso
iated measure µ. Then W has a
ompletely hyperexpansive ba
kward extension if and only if (2)\
[0,1]

1

x
dµ(x) < 1.(3.1)

If this is the 
ase, then the measures ν asso
iated with 
ompletely hyperex-pansive ba
kward extensions of W are in one-to-one 
orresponden
e with the
(2) In the formula (3.1), we adhere to the 
onvention that 1

0
= ∞. In parti
ular, (3.1)implies µ({0}) = 0.



238 Z. J. Jabªo«ski et al.nonnegative real numbers t via
ν(σ) =

1 + t

1 −
T
[0,1]

1
x dµ(x)

\
σ

1

x
dµ(x) + tδ0(σ), σ ∈ B([0, 1]).(3.2)Proof. Let W ′ be a 
ompletely hyperexpansive ba
kward extension of

W and let ν be a measure asso
iated with W ′. It is easily seen that (
f.De�nition 3.1)
βn+1(W

′) = λ2
−1βn(W ), n ≥ 0.(3.3)This and De�nition 2.3 imply\

[0,1]

xnx dν(x) = βn+2(W
′) − βn+1(W

′) = λ2
−1(βn+1(W ) − βn(W ))

=
\

[0,1]

xnλ2
−1 dµ(x), n ≥ 0,

whi
h, by the uniqueness of the solution of the Hausdor� moment problem,yields
λ2
−1µ(σ) =

\
σ

x dν(x), σ ∈ B([0, 1]).In 
onsequen
e, we have µ({0}) = 0 and
ν(σ) = λ2

−1

\
σ

1

x
dµ(x) + ν({0})δ0(σ), σ ∈ B([0, 1]).(3.4)Applying (2.2) (to W ′ and ν in pla
e of W and µ) and (3.4), we get

λ2
−1 = β1(W

′) = 1 + ν([0, 1]) = 1 + ν({0}) + λ2
−1

\
[0,1]

1

x
dµ(x).

This leads to
λ2
−1

(

1 −
\

[0,1]

1

x
dµ(x)

)

= 1 + ν({0}).(3.5)
From (3.5) and λ−1 > 0 we infer that (3.1) holds. Computing λ2

−1 from (3.5)and then substituting it into (3.4) we 
ome to (3.2) with t = ν({0}).Suppose now that (3.1) holds. Let W ′ be the weighted shift with asso
i-ated measure ν given by (3.2). Then we have
β1(W

′) = 1 + ν([0, 1]) =
1 + t

1 −
T
[0,1]

1
x dµ(x)

.(3.6)One 
an dedu
e from De�nition 2.3, (3.2) and (3.6) that for every n ≥ 1,
βn+1(W

′) = 1 + ν([0, 1]) + β1(W
′)
\

[0,1]

x+ · · · + xn

x
dµ(x) = β1(W

′)βn(W ),
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h implies (3.3) with λ−1 :=
√

β1(W ′). This and (2.1) show that W ′ isa 
ompletely hyperexpansive ba
kward extension of W .That the 
orresponden
e t ↔ W ′ is one-to-one follows from Proposi-tion 2.2 and the equality ν({0}) = t, whi
h in turn is a 
onsequen
e of (3.2).This 
ompletes the proof.The following 
orollary may be thought of as the 
omplete hyperexpan-sive 
ounterpart of [12, Proposition 8℄.Corollary 3.3. Let W be a weighted shift with weight sequen
e {λn}∞n=0.Suppose that the restri
tion of W to ∨∞
n=1{en} is 
ompletely hyperexpan-sive (3) with asso
iated measure µ. Then W is 
ompletely hyperexpansive ifand only if the following two 
onditions hold :(i) T[0,1]

1
x dµ(x) < 1,(ii) λ2

0 ≥
(

1 −
T
[0,1]

1
x dµ(x)

)−1.Proof. Applying Theorem 3.2 and (3.6), we see that W is 
ompletelyhyperexpansive (4) if and only if (i) is valid and
λ2

0 = β1(W ) =
1 + t

1 −
T
[0,1]

1
x dµ(x)

for some t ≥ 0.(3.7)Sin
e (3.7) is equivalent to (ii), the proof is 
omplete.Corollary 3.4. The restri
tion of any 
ompletely hyperexpansiveweighted shift to ∨∞
n=1{en} has in�nitely many 
ompletely hyperexpansiveba
kward extensions.4. Completely hyperexpansive k-step ba
kward extensionsDefinition 4.1. Given an integer k ≥ 1, we say that a weighted shift

W with weight sequen
e {λn}∞n=0 has a 
ompletely hyperexpansive k-stepba
kward extension if for some positive s
alars λ−k, . . . , λ−1, the weightedshift V with weight sequen
e {λn−k}∞n=0 is 
ompletely hyperexpansive; theweighted shift V will be 
alled a 
ompletely hyperexpansive k-step ba
kwardextension of W .Regarding De�nition 4.1, we see that the operator W may be identi�ed(up to unitary equivalen
e) with V |∨∞
n=k{en}. Hen
e W itself is 
ompletelyhyperexpansive. It is a matter of routine to show that a weighted shiftW hasa 
ompletely hyperexpansive k-step ba
kward extension if and only if it has a

(3) This is the same as saying that the weighted shift with weight sequen
e {λn+1}
∞
n=0is 
ompletely hyperexpansive.

(4) Note that W 
an be thought of as a 
ompletely hyperexpansive ba
kward extensionof W |∨∞

n=1
{en}.
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ompletely hyperexpansive (k−1)-step ba
kward extension V ′ whi
h in turnhas a 
ompletely hyperexpansive (one-step) ba
kward extension (k ≥ 2).Theorem 4.2. Let k ≥ 1 be an integer and W be a 
ompletely hyper-expansive weighted shift with weight sequen
e {λn}∞n=0 and with asso
iatedmeasure µ. Then1o W has a 
ompletely hyperexpansive k-step ba
kward extension if andonly if
(4.1)

\
[0,1]

(1

x
+ · · · + 1

xk

)

dµ(x) < 1,

2o if (4.1) holds, then the measures ζ asso
iated with 
ompletely hyper-expansive k-step ba
kward extensions of W are in one-to-one 
orre-sponden
e with the nonnegative real numbers t via
(4.2) ζ(σ) =

1 + t

1 −
T
[0,1]

(

1
x + · · · + 1

xk

)

dµ(x)

\
σ

1

xk
dµ(x) + tδ0(σ),

σ ∈ B([0, 1]),3o if (4.1) holds, then there exists at most one 
ompletely hyperexpansive
k-step ba
kward extension V of W whi
h has a 
ompletely hyperex-pansive ba
kward extension; the weighted shift V is asso
iated withthe measure ζ given by (4.2) with t = 0.Proof. 3o 
an be inferred from 2o via Theorem 3.2 (see also footnote (2)).To prove 1o and 2o, we pro
eed by indu
tion on k. The 
ase k = 1 is 
overedby Theorem 3.2. We show how to pass from k to k + 1. A

ording to Theo-rem 3.2, the weighted shift with asso
iated measure ζ given by (4.2) has a
ompletely hyperexpansive ba
kward extension if and only if t = ζ({0}) = 0and

1

1 −
T
[0,1]

(

1
x + · · · + 1

xk

)

dµ(x)

\
[0,1]

1

xk+1
dµ(x) =

\
[0,1]

1

x
dζ(x) < 1,(4.3)

whi
h in turn is equivalent to the 
onjun
tion of t = 0 and\
[0,1]

(

1

x
+ · · · + 1

xk+1

)

dµ(x) < 1.(4.4)
This implies 1o with k + 1 in pla
e of k. If (4.4) holds, then in view of 3o,(4.3) and Theorem 3.2 there exists exa
tly one 
ompletely hyperexpansive
k-step ba
kward extension V of W whi
h has a 
ompletely hyperexpansiveba
kward extension; the weighted shift V is asso
iated with the measure ζgiven by (4.2) with t = 0. Applying Theorem 3.2 to this parti
ular mea-sure and employing (4.3), we 
on
lude that all measures ξ asso
iated with
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ompletely hyperexpansive (k+1)-step ba
kward extensions of W are of theform
ξ(σ) =

1 + t

1 −
T
[0,1]

1
x dζ(x)

\
σ

1

x
dζ(x) + tδ0(σ)

=
(1 + t)

T
σ

1
xk+1 dµ(x)

(

1 −
T
[0,1]

1
xk+1 dµ(x)

1 −
T
[0,1]

(

1
x + · · · + 1

xk

)

dµ(x)

)

(

1 −
T
[0,1]

(

1
x + · · · + 1

xk

)

dµ(x)
)

+ tδ0(σ)

=
1 + t

1 −
T
[0,1]

(

1
x + · · · + 1

xk+1

)

dµ(x)

\
σ

1

xk+1
dµ(x) + tδ0(σ), σ ∈ B([0, 1]),where t runs over the segment [0,∞). This 
ompletes the proof.Remark 4.3. The reader 
an verify that the probability measures ζasso
iated with subnormal k-step ba
kward extensions of a �xed subnormalweighted shift W are in one-to-one 
orresponden
e with the real numbers

t ∈ [0, 1) via
ζ(σ) =

1 − tT
[0,∞)

1
xk dµ(x)

\
σ

1

xk
dµ(x) + tδ0(σ)for any Borel subset σ of [0,∞),where µ is the Stieltjes moment measure asso
iated with the weighted shift

W (for de�nitions and related results, see [12℄).Corollary 4.4 below is related to Corollary 3.5 of [17℄. It deals with �niteperturbations of weights of 
ompletely hyperexpansive weighted shifts, whileits 
ounterpart in [17℄ with one-point perturbations of weights of subnormalweighted shifts.Corollary 4.4. Let W1 and W2 be 
ompletely hyperexpansive weightedshifts with weight sequen
es {λ(1)
n }∞n=0 and {λ(2)

n }∞n=0, respe
tively. If thereexists N ≥ 1 su
h that λ(1)
n = λ

(2)
n for all n ≥ N , then λ

(1)
n = λ

(2)
n for all

n ≥ 1.Proof. It su�
es to 
onsider the 
ase N ≥ 2. Sin
e the weighted shifts V1and V2 with weight sequen
es {λ(1)
n+1}∞n=0 and {λ(2)

n+1}∞n=0, respe
tively, are
ompletely hyperexpansive (N−1)-step ba
kward extensions of the weightedshift with weight sequen
e {λ(1)
n+N}∞n=0, and both have 
ompletely hyperex-pansive ba
kward extensions (namely W1 and W2, respe
tively), we inferfrom parts 1o and 3o of Theorem 4.2 (with k = N − 1) that V1 = V2, whi
h
ompletes the proof.



242 Z. J. Jabªo«ski et al.Remark 4.5. Corollary 4.4 
an be rephrased as follows: 
hanging �nitelymany weights of a weighted shift in
luding at least one of its weights withindex s ≥ 1 does destroy 
omplete hyperexpansivity. Corollary 3.4 explainswhy the weighted shifts W1 and W2 satisfying the assumptions of Corollary4.4 need not 
oin
ide in general. It has been proved in [23, Proposition6.2 (vii)℄ that if two su

essive weights λs and λs+1 of a 2-hyperexpansiveweighted shift W 
oin
ide, then λn = 1 for all n ≥ s. If additionally W is
ompletely hyperexpansive, we 
an show more, namely that all the weightsofW , ex
ept possibly λ0, must be equal to 1 (apply Corollary 4.4 toW1 = Wand W2 = the isometri
 unilateral shift).The following 
orollary shows that a 
ompletely hyperexpansive weightedshift whi
h is not isometri
 has no 
ompletely hyperexpansive ∞-step ba
k-ward extension. This is a new phenomenon 
ompared with nonisometri
subnormal weighted shifts whi
h allow for subnormal ∞-step ba
kward ex-tensions (
f. [24, Example 4.5℄).For a weighted shift W , we de�ne the quantity κW as follows: if Wdoes not have any 
ompletely hyperexpansive ba
kward extension, we set
κW = 0; if su
h an extension exists, κW stands for the maximum integer
k ≥ 1 for whi
h W has a 
ompletely hyperexpansive k-step ba
kward ex-tension provided the maximum exists; otherwise we set κW = ∞. We saythat a sequen
e {an}∞n=1 ⊆ R ∪ {∞} is stri
tly in
reasing within R if either
{an}∞n=1 ⊆ R and {an}∞n=1 is stri
tly in
reasing, or there exists an integer
m ≥ 1 su
h that {an}m

n=1 ⊆ R, {an}m
n=1 is stri
tly in
reasing and an = ∞for every n ≥ m+ 1.Corollary 4.6. Let W be a 
ompletely hyperexpansive weighted shiftwith asso
iated measure µ. Set

τk =
\

[0,1]

(

1

x
+ · · · + 1

xk

)

dµ(x) for k ≥ 1.Then(i) κW = ∞ if and only if W is the isometri
 unilateral shift (5),(ii) if 1 ≤ κW < ∞, then the sequen
e {τk}∞k=1 is stri
tly in
reasingwithin R, limk→∞ τk = ∞ and κW = max{k ≥ 1 : τk < 1},(iii) if 1 ≤ κW <∞, then β1(W ) > 1 and κW < 1/(β1(W ) − 1).Proof. (i) It su�
es to prove the �only if� part of (i). Theorem 4.2 yields
kµ([0, 1]) ≤ τk < 1, k ≥ 1,(4.5)whi
h implies µ = 0. This, Proposition 2.2 and (2.1) 
omplete the proofof (i).

(5) Assertion (i) is a parti
ular 
ase of Proposition 7.1.
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kward extensions of hyperexpansive operators 243(ii) Suppose that 1 ≤ κW < ∞. Then 
learly µ 6= 0 and, by Theorem4.2, µ({0}) = 0. Hen
e T[0,1]
1

xk+1 dµ(x) > 0 for every integer k ≥ 0. This, theinequality k µ([0, 1]) ≤ τk (k ≥ 1) and Theorem 4.2 imply (ii).(iii) This follows from (4.5) applied to k = κW and (2.2).Example 4.7. Let us dis
uss some examples of 
ompletely hyperexpan-sive weighted shifts. In view of (2.1) and Proposition 2.2, the 
ompletely hy-perexpansive weighted shift W (α) with asso
iated measure µ = αδ1, where
α is a nonnegative real number, is a 2-isometry with weight sequen
e

{

√

1 + (n+ 1)α

1 + nα

}∞

n=0

,and all 2-isometri
 weighted shifts are of this form. There are two 
ases whi
hare of parti
ular interest, namely α = 0 and α = 1, whi
h 
orrespond to theisometri
 unilateral shift and the Diri
hlet shift, respe
tively. By Theorem4.2, for every k ≥ 1, W (α) has a 
ompletely hyperexpansive k-step ba
kwardextension if and only if kα < 1. This automati
ally ex
ludes the Diri
hletshift from the 
lass of weighted shifts whi
h have 
ompletely hyperexpan-sive ba
kward extensions. In our 
onsiderations the Diri
hlet shift plays asimilar role to the Bergman shift in the theory of subnormal ba
kward exten-sions; namely, the Bergman shift (whi
h is the weighted shift with weights
{
√

(n+ 1)/(n+ 2)}∞n=0) does not have any subnormal ba
kward extension(
f. [17, Example 4.2℄). Reverting to the 
ase of arbitrary α, note that ifW (α)has a 
ompletely hyperexpansive k-step ba
kward extension (i.e. kα < 1),then by Theorem 4.2 all measures ζ asso
iated with 
ompletely hyperexpan-sive k-step ba
kward extensions of W (α) are of the form
ζ =

(1 + t)α

1 − kα
δ1 + tδ0, t ≥ 0.The 
ompletely hyperexpansive weighted shift with asso
iated measure ζ is

2-isometri
 if and only if t = 0. This means thatW (α) has a lot of 
ompletelyhyperexpansive k-step ba
kward extensions, but exa
tly one of them is 2-isometri
.We 
on
lude Example 4.7 with a somewhat surprising observation.Namely, a

ording to the above dis
ussion, a 2-isometri
 weighted shift Whas a 
ompletely hyperexpansive ba
kward extension if and only if β1(W )<2(be
ause α = β1(W )−1). On the other hand, the inequality β1(W ) < 2 doesnot guarantee that an arbitrary 
ompletely hyperexpansive weighted shift
W has a 
ompletely hyperexpansive ba
kward extension. Indeed, 
onsider-ing µ = αδ0 with α ∈ (0, 1) we see that β1(W ) = 1 + α < 2 and W has no
ompletely hyperexpansive ba
kward extension.
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kward extensions.Let T ∈ B(H) be a 
ompletely hyperexpansive operator. In view of Corollary2.5, for every h ∈ H \ {0}, the weighted shift WT,h is 
ompletely hyperex-pansive. Denote by µT,h the measure asso
iated withWT,h. By Theorem 4.2,
WT,h has a 
ompletely hyperexpansive k-step ba
kward extension if and onlyif \

[0,1]

ϕk(x) dµT,h(x) < 1,

where
ϕk(x) =

{

1

x
+ · · · + 1

xk
for x ∈ (0, 1],

∞ for x = 0, k ≥ 1.(5.1)
Definition 5.1. Let k ≥ 1 be an integer and T ∈ B(H) be a 
ompletelyhyperexpansive operator. A nonzero ve
tor h ∈ H is 
alled a 
ompletely hy-perexpansive k-step ba
kward extension ve
tor for T ifWT,h has a 
ompletelyhyperexpansive k-step ba
kward extension; the set of all su
h ve
tors to-gether with the zero ve
tor is denoted by ET,k. If ET,k = H, then we say that

T has 
ompletely hyperexpansive k-step full ba
kward extension.The set ET,k need not be a linear subspa
e of H (
f. Example 6.5). Wenow show that the restri
tion Tk of a 
ompletely hyperexpansive operator
T to the range of T k has 
ompletely hyperexpansive k-step full ba
kwardextension, and that this �virtual� extension is 
losely related to the �real�one T (see also Example 6.6 whi
h illustrates Proposition 5.2 and Corollary5.3).Proposition 5.2. If k ≥ 1 is an integer and T ∈ B(H) is a 
ompletelyhyperexpansive operator , then the following two 
onditions hold :(i) the spa
e T k(H) is 
losed , the operator Tk := T |T k(H) is 
ompletelyhyperexpansive and T k(H) = ETk,k ⊆ ET,k; moreover , for every non-zero ve
tor h in T k(H), the weighted shift WT,T−kh is a 
ompletelyhyperexpansive k-step ba
kward extension of WTk,h (= WT,h) and
(5.2) µT,T−kh(σ) =

1 + th
1 −

T
[0,1] ϕk dµT,h

\
σ

1

xk
dµT,h(x) + thδ0(σ),

σ ∈ B([0, 1]),where
th =

‖T−(k−1)h‖2(1 −
T
[0,1] ϕk dµT,h)

‖T−kh‖2(1 −
T
[0,1] ϕk−1 dµT,h)

− 1, ϕ0 := 0,(5.3)(ii) if µT,g({0}) = 0 for every g ∈ H, then th = 0 for all h ∈ T k(H)\{0}.
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kward extensions of hyperexpansive operators 245Proof. (i) By [27, Lemma 1℄, the operator T is inje
tive and the spa
e
T (H) is 
losed. This in turn implies that T k(H) is 
losed as well (see [24,Remark 2.7℄). It follows dire
tly from De�nition 2.1 that Tk is 
ompletelyhyperexpansive. If h ∈ T k(H) is nonzero, then in view of Corollary 2.5the weighted shift WT,T−kh is a 
ompletely hyperexpansive k-step ba
kwardextension of WTk,h. Hen
e by part 2o of Theorem 4.2 the measure µT,T−khis of the form (5.2) with a unique th ≥ 0. Applying (2.2) and (5.2), we get

β1(WT,T−kh) = 1 + µT,T−kh([0, 1])(5.4)
= 1 +

1 + th
1 −

T
[0,1] ϕk dµT,h

\
[0,1]

1

xk
dµT,h(x) + th.Computing th from (5.4) leads to (5.3).(ii) By (5.2), we have th = µT,T−kh({0}) = 0 for every h ∈ T k(H) \ {0},whi
h 
ompletes the proof.Corollary 5.3. Let k, r ≥ 1 be integers and T ∈ B(H) be a 
ompletelyhyperexpansive operator su
h that µT,g({0}) = 0 for every g ∈ H. If Tk :=

T |T k(H) has 
ompletely hyperexpansive (k + r)-step full ba
kward extension,then T has 
ompletely hyperexpansive r-step full ba
kward extension.Proof. Take a nonzero ve
tor g ∈ H and set h := T k(g). By our as-sumption, the weighted shift WTk,h has a 
ompletely hyperexpansive (k+r)-step ba
kward extension, say V . In turn, a

ording to Proposition 5.2, theweighted shift WT,g = WT,T−kh is a 
ompletely hyperexpansive k-step ba
k-ward extension of WTk,h and (5.2) holds with th = 0. By Theorem 4.2, WT,g
an be identi�ed (up to unitary equivalen
e) with V |∨∞
n=r{en}. Hen
e, V is a
ompletely hyperexpansive r-step ba
kward extension of WT,g, whi
h 
om-pletes the proof.Let us re
all an operator version of the Levy�Khin
hin formula for 
om-pletely hyperexpansive operators.Theorem 5.4. An operator T ∈ B(H) is 
ompletely hyperexpansive ifand only if there exists a (unique) positive-operator-valued Borel measure (6)

FT on [0, 1] su
h that
T ∗nTn = IH +

\
[0,1]

(1 + x+ · · · + xn−1)FT (dx), n ≥ 1.(5.5)
If this is the 
ase, then

µT,h(σ) =
1

‖h‖2
〈FT (σ)h, h〉, σ ∈ B([0, 1]), h ∈ H \ {0}.(5.6)

(6) FT is σ-additive with respe
t to the weak operator topology; we do not assumethat FT ([0, 1]) = IH.
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on
lusion follows from [20, Theorem 4.2℄.Then (5.6) is a 
onsequen
e of (5.5) and Corollary 2.5.Definition 5.5. If (5.5) holds, then we say that the operator measure
FT is asso
iated with the operator T or that T is asso
iated with FT .Following [31, Appendix℄, we write ψ∈L1(FT ) in 
ase ψ is a 
omplex Bo-rel fun
tion on [0, 1] and T[0,1] |ψ(x)| 〈FT (dx)h, h〉 < ∞ for all h ∈ H. If thisis the 
ase, then there exists a unique operator T[0,1] ψ dFT ∈ B(H) su
h that

〈 \
[0,1]

ψ dFTh, h
〉

=
\

[0,1]

ψ(x) 〈FT (dx)h, h〉, h ∈ H.(5.7)Moreover,
∥

∥

∥

\
[0,1]

ψ dFT

∥

∥

∥
≤

∥

∥

∥

\
[0,1]

|ψ| dFT

∥

∥

∥
= sup

‖h‖=1

\
[0,1]

|ψ(x)| 〈FT (dx)h, h〉.(5.8)
If ψ is nonnegative, then T[0,1] ψ dFT ≥ 0.Theorem 5.6. Let T ∈ B(H) be a 
ompletely hyperexpansive operatorwith asso
iated operator measure FT and let k ≥ 1 be an integer. Then thefollowing 
onditions are equivalent :(i) T has 
ompletely hyperexpansive k-step full ba
kward extension,(ii) ϕk ∈ L1(FT ) and T[0,1] ϕk dFT < IH,(iii) ϕk ∈ L1(FT ), ‖T[0,1] ϕk dFT ‖ ≤ 1 and 1 is not an eigenvalue of theoperator T[0,1] ϕk dFT .Moreover , if T has 
ompletely hyperexpansive k-step full ba
kward extension,then

FT ([0, 1]) <
1

k
IH,(5.9)

T ∗T <
k + 1

k
IH.(5.10)Proof. The equivalen
e (i)⇔(ii) 
an be dedu
ed from the equality (5.7)and Theorems 4.2 and 5.4. The equivalen
e (ii)⇔(iii) is a 
onsequen
e of thefollowing fa
t: if A ∈ B(H) is a positive 
ontra
tion, then

〈Ah, h〉 = 〈h, h〉 ⇔ ‖(IH −A)1/2h‖2 = 0(5.11)
⇔ (IH −A)h = 0, h ∈ H.If (ii) holds, then

kFT ([0, 1]) ≤
\

[0,1]

ϕk dFT < IH,whi
h implies (5.9). Finally, (5.10) follows from (5.9) and (5.5) applied to
n = 1.
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kward extensions of hyperexpansive operators 247The inequality (5.10) (and 
onsequently (5.9)) 
an also be inferred fromCorollary 7.2. It be
omes optimal in the 
ase of 2-isometri
 operators.Corollary 5.7. A 2-isometri
 operator T ∈ B(H) has 
ompletely hy-perexpansive k-step full ba
kward extension if and only if (5.10) holds.Proof. By Proposition 4.5 of [20℄, there exists a positive operator C ∈
B(H) su
h that FT (σ) = δ1(σ)C for σ ∈ B([0, 1]). Applying Theorem 5.6
ompletes the proof.The following proposition emphasizes the essential di�eren
e betweensubnormal and 
ompletely hyperexpansive operators regarding ba
kward ex-tensions of orthogonal sums. In 
ontradistin
tion to subnormal operators, theproperty of having 
ompletely hyperexpansive k-step full ba
kward exten-sion is preserved by the operation of taking in�nite orthogonal sums (
f.Proposition 2.9 and Example 2.10 in [24℄).Proposition 5.8. Let T =

⊕

ω∈Ω Tω be the orthogonal sum of an arbi-trary family of 
ompletely hyperexpansive operators Tω ∈ B(Hω).(i) If T is bounded , then T is 
ompletely hyperexpansive and
FT (σ) =

⊕

ω∈Ω

FTω
(σ), σ ∈ B([0, 1]),(5.12) \

[0,1]

ψ dFT =
⊕

ω∈Ω

\
[0,1]

ψ dFTω
, ψ ∈ L1(FT ),(5.13)

where FT and FTω
are operator measures asso
iated with T and Tωrespe
tively.(ii) If every Tω, ω ∈ Ω, has 
ompletely hyperexpansive k-step full ba
k-ward extension, then T is bounded , it has 
ompletely hyperexpansive

k-step full ba
kward extension and (5.13) holds for ψ = ϕk.Proof. (i) That T is 
ompletely hyperexpansive follows dire
tly from Def-inition 2.1. Applying (5.5) to Tω and n = 1, we 
on
lude that
‖FTω

(σ)‖ ≤ ‖FTω
([0, 1])‖ = ‖T ∗

ωTω − IHω
‖ ≤ 1 + ‖Tω‖2(5.14)

≤ 1 + ‖T‖2, σ ∈ B([0, 1]), ω ∈ Ω.This implies that for every σ ∈ B([0, 1]), the operator F (σ) :=
⊕

ω∈Ω FTω
(σ)is bounded and F is a positive-operator-valued Borel measure on [0, 1]. Using(5.14), we see that T[0,1] ψ dF =

⊕

ω∈Ω

T
[0,1] ψ dFTω

for every bounded Borelfun
tion ψ on [0, 1]. Applying the last equality to the fun
tions ψ(x) =
1 + x+ · · · + xn−1, we get

T ∗nTn = I +
\

[0,1]

(1 + x+ · · · + xn−1)F (dx), n ≥ 1.
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onsequen
e, by Theorem 5.4, FT = F , whi
h proves (5.12). Take ψ ∈
L1(FT ). It follows from (5.8) that ψ ∈ L1(FTω

) and
∥

∥

∥

\
[0,1]

ψ dFTω

∥

∥

∥
≤

∥

∥

∥

\
[0,1]

|ψ| dFTω

∥

∥

∥
≤

∥

∥

∥

\
[0,1]

|ψ| dFT

∥

∥

∥
, ω ∈ Ω.

This means that the operator ⊕

ω∈Ω

T
[0,1] ψ dFTω

is bounded. It is now aroutine matter to show that (5.13) is valid.(ii) The operator T is bounded be
ause by (5.10), ‖Tω‖ ≤
√

(k + 1)/kfor all ω ∈ Ω. Take h = ⊕ω∈Ωhω ∈ ⊕

ω∈Ω Hω. By (5.12), 〈FT (σ)h, h〉 =
∑

ω∈Ω〈FTω
(σ)hω, hω〉 for every σ ∈ B([0, 1]). Employing now the standardapproximation pro
edure and Lebesgue's monotone 
onvergen
e theorem forintegrals and series, we get\
[0,1]

ψ(x) 〈FT (dx)h, h〉 =
∑

ω∈Ω

\
[0,1]

ψ(x) 〈FTω
(dx)hω, hω〉(5.15)

for every nonnegative Borel fun
tion ψ on [0, 1]. Suppose that h is nonzero.Applying (5.6), (5.15) to ψ = ϕk and part 1o of Theorem 4.2, we obtain\
[0,1]

ϕk(x) dµT,h(x) =
1

‖h‖2

\
[0,1]

ϕk(x) 〈FT (dx)h, h〉

=
1

‖h‖2

∑

ω∈Ω

\
[0,1]

ϕk(x) 〈FTω
(dx)hω, hω〉

=
1

‖h‖2

∑

ω∈Ω
hω 6=0

‖hω‖2
\

[0,1]

ϕk(x) dµTω,hω
(x) < 1.

A

ording to Theorem 4.2 and De�nition 5.1, T has 
ompletely hyperexpan-sive k-step full ba
kward extension. In view of the equivalen
e (i)⇔(ii) ofTheorem 5.6 and (5.13), we see that (5.13) holds for ψ = ϕk, whi
h 
ompletesthe proof.6. Ba
k to weighted shifts. We now return to the 
ase of weightedshifts. We begin with a result whi
h may be thought of as the 
ompletehyperexpansive 
ounterpart of [24, Corollary 4.4℄ (see also [17, Corollary5.4℄).Proposition 6.1. Let k ≥ 1 be an integer and W be a 
ompletely hyper-expansive weighted shift. Then the following 
onditions are equivalent :(i) W has 
ompletely hyperexpansive k-step full ba
kward extension,(ii) W has a 
ompletely hyperexpansive k-step ba
kward extension (orequivalently: e0 ∈ EW,k),(iii) ϕk ∈ L1(FW ) and ‖
T
[0,1] ϕk dFW ‖ < 1.



Ba
kward extensions of hyperexpansive operators 249Proof. The impli
ation (i)⇒(ii) is obvious.(ii)⇒(iii). Suppose that e0 ∈ EW,k. Let µ be the (s
alar) measure asso
i-ated with W . By (5.8) and Proposition 6.1 of [20℄, we have L1(µ) = L1(FW )and
∥

∥

∥

\
[0,1]

|ψ| dFW

∥

∥

∥
=
\

[0,1]

|ψ| dµ for every ψ ∈ L1(µ).(6.1)
This and part 1o of Theorem 4.2 imply (iii).The impli
ation (iii)⇒(i) is a dire
t 
onsequen
e of Theorem 5.6.Remark 6.2. LetW be a 
ompletely hyperexpansive weighted shift withasso
iated operator measure FW . By [20, Proposition 6.1℄, FW is of the form

FW (σ)en = µn(σ)en, σ ∈ B([0, 1]), n ≥ 0,(6.2)where
µ0 = µ,

µn(σ) =

T
σ x

n dµ(x)

1 +
T
[0,1](1 + x+ · · · + xn−1) dµ(x)

, σ ∈ B([0, 1]), n ≥ 1.
(6.3)
One 
an 
he
k that for every ψ ∈ L1(µ) = L1(FW ), the operator T[0,1] ψ dFWis diagonal (with respe
t to the orthonormal basis {en}∞n=0 of ℓ2) with thediagonal {dn}∞n=0 given by

d0 =
\

[0,1]

ψ dµ, dn =

T
[0,1] x

nψ(x) dµ(x)

1 +
T
[0,1](1 + x+ · · · + xn−1) dµ(x)

, n ≥ 1.

Example 6.3. Condition (iii) of Proposition 6.1 
hara
terizes weightedshifts having 
ompletely hyperexpansive k-step full ba
kward extensions.One might expe
t that this would be true for all 
ompletely hyperexpansiveoperators. However, this is not the 
ase. Indeed, 
onsider the sequen
e αn =
n/(1 + kn), n ≥ 1. LetW (α), α ≥ 0, be as in Example 4.7. Sin
e kαn < 1 forall n ≥ 1, we infer from Theorem 4.2 and Proposition 6.1 that ea
h weightedshift W (αn) has 
ompletely hyperexpansive k-step full ba
kward extension.In view of Proposition 5.8, the operator T :=

⊕∞
n=1W

(αn) is 
ompletelyhyperexpansive (in fa
t 2-isometri
) and it has 
ompletely hyperexpansive
k-step full ba
kward extension. By (6.1), we have

∥

∥

∥

\
[0,1]

ϕk dFW (αn)

∥

∥

∥
= kαn, n ≥ 1.(6.4)

It follows from part (ii) of Proposition 5.8 and (6.4) that ϕk ∈ L1(FT ) and
∥

∥

∥

\
[0,1]

ϕk dFT

∥

∥

∥
= sup

n≥1

∥

∥

∥

\
[0,1]

ϕk dFW (αn)

∥

∥

∥
= sup

n≥1
kαn = 1.
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ompletely hyperexpansive k-step ba
kward extensionve
tors in the 
ontext of weighted shifts.Proposition 6.4. Let k ≥ 1 be an integer and W be a 
ompletely hy-perexpansive weighted shift with asso
iated measure µ. Then (
f. De�nition5.1) (i) a nonzero ve
tor {ηn}∞n=0 ∈ ℓ2 belongs to EW,k if and only if
|η0|2

\
[0,1]

ϕk dµ+

∞
∑

n=1

|ηn|2
T
[0,1] x

nϕk(x) dµ(x)

1 +
T
[0,1](1 + x+ · · · + xn−1) dµ(x)

<

∞
∑

n=0

|ηn|2,(ii) ∨

n≥k{en} ⊆ EW,k.Proof. (i) Using (5.6), (6.2), (6.3) and Theorem 4.2 (see also (5.15)), we
on
lude that a nonzero ve
tor h={ηn}∞n=0∈ℓ2 belongs to EW,k if and only if
1 >

\
[0,1]

ϕk(x) dµW,h(x) =
1

‖h‖2

∞
∑

n=0

|ηn|2
\

[0,1]

ϕk dµn

=
1

‖h‖2

(

|η0|2
\

[0,1]

ϕk dµ+
∞

∑

n=1

|ηn|2
T
[0,1] x

nϕk(x) dµ(x)

1 +
T
[0,1](1 + x+ · · · + xn−1) dµ(x)

)

.

(ii) By Proposition 5.2,W k(ℓ2) is a 
losed linear subspa
e of ℓ2. Hen
e wehave W k(ℓ2) =
∨

n≥k{en}. Applying on
e more Proposition 5.2 
ompletesthe proof of (ii) (one 
an also dedu
e (ii) dire
tly from (i)).It is worth noting that part (i) of Proposition 6.4 implies the equivalen
e(i)⇔(ii) of Proposition 6.1 as well as part 1o of Theorem 4.2 (however, thelatter has been essentially used in the proof of Proposition 6.4).Example 6.5. Let k≥1 be an integer. Consider the 2-isometri
 weightedshift T := W (1/k) with asso
iated measure µ = (1/k)δ1 (
f. Example 4.7).It is easily seen that T is unitarily equivalent to W (1)|∨∞
n=k−1{en}, where

W (1) is the Diri
hlet shift. Hen
e T has no 
ompletely hyperexpansive k-stepba
kward extension, though (for k ≥ 2) it has a 
ompletely hyperexpansive
(k − 1)-step ba
kward extension. We show that the set ET,k is not a linearspa
e and 
onsequently it is not equal to ∨

n≥k{en}. Noti
e that the 
ounter-part of ET,1 in the 
ontext of subnormal operators is equal to ∨

n≥1{en} (
f.[17, Corollary 5.4℄). By Proposition 6.4, a nonzero ve
tor h = {ηn}∞n=0 ∈ ℓ2belongs to ET,k if and only if
∞

∑

n=1

|ηn|2
k

k + n
<

∞
∑

n=1

|ηn|2.This means that ET,k = {{ηn}∞n=0 ∈ ℓ2 : ∃m ≥ 1 ηm 6= 0} ∪ {0}.
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kward extensions of hyperexpansive operators 251Example 6.6. Let k, r ≥ 1 be integers and letW be a 
ompletely hyper-expansive weighted shift with asso
iated measure µ. Suppose that W has a
ompletely hyperexpansive (k + r)-step ba
kward extension. For t ∈ [0,∞),denote by Vt the 
ompletely hyperexpansive k-step ba
kward extension of
W asso
iated with the measure ζt given by the right-hand side of (4.2). ByProposition 5.2 and Corollary 5.3, we identify W (up to unitary equivalen
e)with Tk := T |T k(H), where H = ℓ2 and T = Vt. It follows from Remark 6.2that FV0({0}) = 0 and FVt

({0}) 6= 0 for t > 0. By Proposition 6.1 and Corol-lary 5.3, V0 has 
ompletely hyperexpansive r-step full ba
kward extension.On the other hand, if t > 0, then by Theorem 3.2, Vt does not have any
ompletely hyperexpansive ba
kward extension, and 
onsequently it doesnot have 
ompletely hyperexpansive full ba
kward extension.We will show in Example 6.10 below that similarity does not preservethe property of having 
ompletely hyperexpansive k-step full ba
kward ex-tension. Let us begin with a 
hara
terization of similarity of 
ompletely hy-perexpansive weighted shifts asso
iated with measures of tempered growthat 1, i.e. satisfying the 
ondition (6.5) below whi
h is 
losely related to powerboundedness of 
ompletely hyperexpansive weighted shifts (
f. [20, Proposi-tion 6.3℄).Proposition 6.7. LetW1 andW2 be 
ompletely hyperexpansive weightedshifts with asso
iated measures µ1 and µ2, respe
tively. Assume that\
[0,1)

1

1 − x
dµi(x) <∞, i = 1, 2.(6.5)

Then the weighted shifts W1 and W2 are similar if and only ifeither µ1({1}) + µ2({1}) = 0 or µ1({1}) · µ2({1}) > 0.(6.6)Proof. Indeed, by [16, Problem 76℄ and (2.2), the weighted shifts W1 and
W2 are similar if and only if there exist 
onstants c, d > 0 su
h that
(6.7) c ≤ βn+1(W1)

βn+1(W2)
=

1 + (n+ 1)µ1({1}) +
T
[0,1)

1−xn+1

1−x dµ1(x)

1 + (n+ 1)µ2({1}) +
T
[0,1)

1−xn+1

1−x dµ2(x)
≤ d,

n ≥ 0.Applying Lebesgue's monotone 
onvergen
e theorem, we get
lim

n→∞

\
[0,1)

1 − xn+1

1 − x
dµi(x) =

\
[0,1)

1

1 − x
dµi(x), i = 1, 2,

whi
h, together with (6.5) and (6.7), 
ompletes the proof.Proposition 6.8. Let W be a 
ompletely hyperexpansive weighted shiftwith asso
iated measure µ. Then



252 Z. J. Jabªo«ski et al.(i) W is similar to the isometri
 unilateral shift if and only ifW is powerbounded , or equivalently
µ({1}) = 0 and \

[0,1)

1

1 − x
dµ(x) <∞,(6.8)

(ii) W is similar to the Diri
hlet shift if and only if µ({1}) > 0.Moreover , the isometri
 unilateral shift and the Diri
hlet shift are not simi-lar.Proof. (i) If the weighted shift W is power bounded, then by [20, Propo-sition 6.3℄ the 
ondition (6.8) is valid. If (6.8) holds, then in view of Proposi-tion 6.7 the weighted shift W is similar to the isometri
 unilateral shift W (0)(be
ause W (0) is asso
iated with the zero measure). Finally, if W and W (0)are similar, then W is evidently power bounded.(ii) If µ({1}) > 0, then by (2.2) we have
1 + (n+ 1)µ({1})

1 + (n+ 1)
≤ βn+1(W )

βn+1(W (1))
≤ 1 + (n+ 1)µ([0, 1])

1 + (n+ 1)
, n ≥ 0,

where W (1) is the Diri
hlet shift (
f. Example 4.7). Hen
e, by [16, Problem76℄, the weighted shifts W and W (1) are similar.Suppose now that µ({1}) = 0. We de�ne εn =
T
[0,1] x

n dµ(x) and σn =

(ε0 + · · · + εn)/(n + 1) for n ≥ 0. By Lebesgue's dominated 
onvergen
etheorem, we have limn→∞ εn = µ({1}) = 0, and 
onsequently limn→∞ σn =0.This in turn leads to
inf
n≥0

βn+1(W )

βn+1(W (1))
= inf

n≥0

1
n+1 + σn

n+2
n+1

= 0,

whi
h in view of [16, Problem 76℄ implies that the weighted shifts W and
W (1) are not similar. This proves (ii).Applying (i) to W = W (1) (or (ii) to W = W (0)), we 
on
lude that theoperators W (0) and W (1) are not similar. This 
ompletes the proof.We now indi
ate an example of a 
ompletely hyperexpansive weightedshift whi
h is similar neither to the isometri
 unilateral shift nor to theDiri
hlet shift.Example 6.9. Let W be the 
ompletely hyperexpansive weighted shiftasso
iated with the Lebesgue measure on [0, 1]. Sin
e the sequen
e

βn+1(W )

βn+1(W (0))
= 1 +

(

1

1
+ · · · + 1

n+ 1

)

, n ≥ 0,is unbounded, the weighted shift W is not similar to the isometri
 unilateral
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kward extensions of hyperexpansive operators 253shift W (0). On the other hand, sin
e
βn+1(W )

βn+1(W (1))
=

2 +

(

1

2
+ · · · + 1

n+ 1

)

1 + (n+ 1)

≤ 2 +
Tn+1
1

1
x dx

n+ 1
=

2

n+ 1
+

log(n+ 1)

elog(n+1)
, n ≥ 1,we get infn≥1 βn+1(W )/βn+1(W

(1)) = 0. Hen
e the weighted shift W is notsimilar to the Diri
hlet shift W (1).Example 6.10. Sin
e the 
onditions (6.5) and (6.6) are not parti
ularlyrestri
tive, one 
annot expe
t that the property of having 
ompletely hy-perexpansive k-step full ba
kward extension is preserved by similarity. Forinstan
e, if µ1 is su
h that 0 < α :=
T
[0,1] ϕk dµ1 < 1 and µ2 = (1/α)µ1, then

W1 and W2 are similar (7), W1 has 
ompletely hyperexpansive k-step fullba
kward extension, while W2 does not (
f. Theorem 4.2 and Proposition6.1). In parti
ular, the measures µ1 = 1
k+1δ1 and µ2 = 1

kδ1 have the featurewe want.We 
on
lude this se
tion with a version of Proposition 6.1 for operator-valued (unilateral) weighted shifts T with invertible weights {Tn}∞n=0 whoseprodu
ts Tn · · ·T0, n ≥ 0, are positive. We follow the notation of [22℄. Thereader should be aware of the fa
t that the operator measure G appearingin [22℄ is the same as our FT .Proposition 6.11. If T , F and G are as in Se
tion 4 of [22℄ and k ≥ 1is an integer , then the following 
onditions are equivalent :(i) T has 
ompletely hyperexpansive k-step full ba
kward extension,(ii) ϕk ∈ L1(F ) and T[0,1] ϕk dF < IH,(iii) ϕk ∈ L1(F ), ‖T[0,1] ϕk dF‖ ≤ 1 and 1 is not an eigenvalue of theoperator T[0,1] ϕk dF .Sket
h of the proof. (ii)⇒(i). In view of [22, Theorem 4.2℄, ϕk ∈ L1(F ) =
L1(G). Sin
e T[0,1] ϕk dF < IH, we have (see [22, p. 414, line 10 from above℄)\

[0,1]

ϕk(x) 〈Fi(dx)h, h〉 =
\

[0,1]

xiϕk(x) 〈F (dx)Ω−1
F,ih,Ω

−1
F,ih〉

≤
〈( \

[0,1]

ϕk dF
)

Ω−1
F,ih,Ω

−1
F,ih

〉

< 〈Ω−1
F,ih,Ω

−1
F,ih〉 ≤ 〈h, h〉

(7) This 
an be justi�ed simply by 
omputing limn→∞ βn+1(W1)/βn+1(W2).



254 Z. J. Jabªo«ski et al.for i ≥ 0 and h ∈ H \ {0}. This and (5.7) imply
ϕk ∈ L1(Fi) and \

[0,1]

ϕk dFi < IH for all i ≥ 0.(6.9)
Sin
e the operator measure G equals the orthogonal sum of the positive-operator-valued Borel measures Fi, (6.9) enables us to show that\

[0,1]

ϕk dG =
∞

⊕

i=0

\
[0,1]

ϕk dFi.(6.10)
Employing Theorem 5.6, (6.9) and (6.10), we see that (i) holds.(i)⇒(ii). By Theorem 5.6, ϕk ∈ L1(G) and T[0,1] ϕk dG < Iℓ2(H). Sin
e
F (σ) = F0(σ) ⊆ G(σ) for σ ∈ B([0, 1]), we 
on
lude that (ii) holds.The equivalen
e (ii)⇔(iii) follows from (5.11).7. 2-hyperexpansive k-step ba
kward extensions. In this 
on
lud-ing se
tion we brie�y dis
uss 2-hyperexpansive ba
kward extensions leavingthe question of m-hyperexpansive ba
kward extensions aside. One 
an easilyadapt De�nitions 3.1, 4.1 and 5.1 to the 
ontext of 2-hyperexpansive opera-tors, simply by repla
ing �
ompletely hyperexpansive� by �2-hyperexpansive�.For the reader's 
onvenien
e, we 
olle
t indispensable fa
ts 
on
erning 2-hyperexpansive weighted shifts. By Proposition 6.2 of [23℄, the weight se-quen
e {λn}∞n=0 of a 2-hyperexpansive weighted shift W satis�es the follow-ing 
onditions:4o λn ≥ 1 for all n ≥ 0,5o λn+1 ≤ λn for all n ≥ 0,6o λn ≤ σn(λ0) :=

√

1 + (n+ 1)(λ2
0 − 1)

1 + n(λ2
0 − 1)

for all n ≥ 0,7o if λ0 = 1, then λn = 1 for all n ≥ 0.Proposition 7.1. Let W be a 2-hyperexpansive weighted shift withweight sequen
e {λn}∞n=0 and let k ≥ 1 be an integer. Then the following
onditions are equivalent :(i) W has a 2-hyperexpansive k-step ba
kward extension,(ii) λ0 <
√

(k + 1)/k.Moreover , W has a 2-hyperexpansive k-step ba
kward extension for all k ≥ 1if and only if W is the isometri
 unilateral shift.Proof. (i)⇒(ii). Suppose that there are positive s
alars λ−k, . . . , λ−1su
h that the weighted shift V with weight sequen
e {λn−k}∞n=0 is 2-hyper-
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−k − 1. Applying 4o and 6o to V , we get α ≥ 0 and

λ0 ≤ σk(λ−k) =

√

1 + (k + 1)α

1 + kα
=

√

1 +
α

1 + kα
<

√

k + 1

k
.(ii)⇒(i). By 4o, α := λ2

0−1 ≥ 0. LetW (α) be as in Example 4.7. Sin
e (ii)is equivalent to kα < 1, we see that W (α) has a 
ompletely hyperexpansive(and 
onsequently 2-hyperexpansive) k-step ba
kward extension W ′ withweight sequen
e
λ−k, . . . , λ−1, λ0 =

√
1 + α,

√

1 + 2α

1 + α
, . . . ,

√

1 + (n+ 1)α

1 + nα
, . . .Using Lemma 6.1(i) of [23℄, one 
an 
he
k that the weighted shift V withweight sequen
e λ−k, . . . , λ−1, λ0, λ1, . . . , λn, . . . is a 2-hyperexpansive k-stepba
kward extension of W .The remaining part of the 
on
lusion 
an be dedu
ed from 4o, 7o and theimpli
ation (i)⇒(ii). This 
ompletes the proof.Corollary 7.2. Let k ≥ 1 be an integer. A 2-hyperexpansive operator

T ∈ B(H) has 2-hyperexpansive k-step full ba
kward extension if and onlyif (5.10) holds. A 2-hyperexpansive weighted shift W with weight sequen
e
{λn}∞n=0 has 2-hyperexpansive k-step full ba
kward extension if and only if
λ0 <

√

(k + 1)/k.Proof. The 
ase of T ∈ B(H) 
an be handled with the help of Proposi-tions 2.4 and 7.1. By 5o, W ∗W < k+1
k Iℓ2 if and only if λ0 <

√

(k + 1)/k,whi
h 
ompletes the proof.Remark 7.3. It is worth noting that in view of 5o and Corollary 5.7 a 2-isometri
 weighted shiftW with weight sequen
e {λn}∞n=0 has 
ompletely hy-perexpansive k-step full ba
kward extension if and only if λ0 <
√

(k + 1)/k(this 
an also be dedu
ed from Theorem 4.2 and Proposition 6.1). If a 2-isometri
 operator T ∈ B(H) has 
ompletely hyperexpansive k-step fullba
kward extension, then by Proposition 2.4 and Example 4.7, T has 2-isometri
 k-step full ba
kward extension. This and Corollaries 5.7 and 7.2imply that a 2-isometri
 operator T ∈ B(H) has 2-hyperexpansive k-stepfull ba
kward extension if and only if it has 2-isometri
 k-step full ba
kwardextension.Remark 7.4. It follows from Propositions 2.4 and 7.1 that if T ∈ B(H)is a 2-hyperexpansive operator, then a nonzero ve
tor h ∈ H is a 2-hyper-expansive k-step ba
kward extension ve
tor for T if and only if ‖Th‖ <
√

(k + 1)/k ‖h‖. If T ∈ B(H) is a 2-isometry, then in view of the dis
ussionin Remark 7.3 for every nonzero ve
tor h ∈ H the following 
onditions areequivalent:



256 Z. J. Jabªo«ski et al.(a) h is a 2-hyperexpansive k-step ba
kward extension ve
tor for T ,(b) h is a 
ompletely hyperexpansive k-step ba
kward extension ve
torfor T ,(
) h is a 2-isometri
 k-step ba
kward extension ve
tor for T .This and Example 6.5 show that the set of all 2-hyperexpansive k-step ba
k-ward extension ve
tors for T = W (1/k) together with the zero ve
tor is nota linear spa
e.A
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