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Backward extensions of hyperexpansive operators
by

ZENON J. JABLONSKI (Krakow), IL BoNG JUNG (Daegu)
and JAN STOCHEL (Krakéw)

Abstract. The concept of k-step full backward extension for subnormal operators is
adapted to the context of completely hyperexpansive operators. The question of existence
of k-step full backward extension is solved within this class of operators with the help of
an operator version of the Levy—Khinchin formula. Some new phenomena in comparison
with subnormal operators are found and related classes of operators are discussed as well.

1. Introduction. In 1976 A. Lambert, using a result of M. Embry [14],
gave in [25] a characterization of subnormality for an abstract operator
(bounded and linear) in terms of weighted shifts. It states that an injec-
tive operator 7' acting on a (complex) Hilbert space H is subnormal if and
only if for each nonzero vector h in H, the weighted shift Wy ; with weight
sequence {||T"*Lh||/||T™h||}22, is subnormal. In other words, the class of in-
jective subnormal operators is an instance of an abstract class C of injective
Hilbert space operators possessing the following property:

(P)  an operator 7" on H is of class C if and only if for every nonzero vector
h in 'H, the weighted shift W, is of class C.

It turns out that the class of injective paranormal operators (!) satisfies
(P) as well. Indeed, T is paranormal if and only if for each nonzero vector
h in ‘H, the sequence {|T""1h|/||T"h||}32, is weakly increasing (cf. [15,
Addendum]) or equivalently the weighted shift Wr ), is hyponormal. Since
an injective weighted shift is hyponormal if and only if it is paranormal, our
claim is proved. According to the above discussion, we see that the class

2000 Mathematics Subject Classification: Primary 47B20, 47B37; Secondary 44A60.

Key words and phrases: completely hyperexpansive operator, 2-isometry, unilateral
weighted shift, the Levy—Khinchin formula, backward extension.

The work of the first and the third authors was supported by the KBN grant 2 PO3A
037 024. The work of the second author was supported by a grant (R14-2003-006-01000-0)
from the Korea Science and Engineering Research Foundation.
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of injective hyponormal operators does not have the property (P) because
there are injective paranormal operators which are not hyponormal (if 7" is
an injective hyponormal operator whose square is not hyponormal (cf. [19]),
then by [15, Theorem 1], T? is the required paranormal operator; see also
[15, Theorem 2] for the noninjective case).

Recently new classes of Hilbert space operators have attracted the at-
tention of researchers. These are m-isometries |27, 2, 28, 3, 4, 5, 30, 23],
m-hyperexpansive operators [27, 26, 7, 30, 29, 23] and completely hyperex-
pansive operators [6, 7, 11, 30, 20, 9, 10, 21, 8, 22|. As shown in |23, Propo-
sition 6.7], the classes of 2-isometries and 2-hyperexpansive operators have
property (P). It turns out that the classes of m-isometries, m-hyperexpansive
operators and completely hyperexpansive operators share the same property
(cf. Proposition 2.4 and Corollary 2.5).

In [12] R. Curto characterized subnormal weighted shifts which have
backward extensions within the class of subnormal weighted shifts. Recall
that a weighted shift with weights {\,,}°2, has a subnormal (one-step) back-
ward extension if for some positive scalar A_1, the weighted shift with weights
{A-1}22 is subnormal. The concept of backward extension was studied in
more detail in [17, 13| and extended to the case of abstract subnormal op-
erators in [24].

In the present paper we adapt the concept of backward extension to com-
pletely hyperexpansive and 2-hyperexpansive operators (in fact, this can be
done for other classes of operators mentioned above). The essential part of
our paper deals with (injective and unilateral) weighted shifts. In Section 3
we discuss the question of existence of completely hyperexpansive backward
extensions. The main result of this section, Theorem 3.2, provides a solu-
tion written in terms of measures associated with operators in question via
the Levy—Khinchin formula. Moreover, the set of all measures associated
with completely hyperexpansive backward extensions of the given operator
is explicitly described.

Section 4 extends the main result of the previous one to the context of
k-step backward extensions. Moreover, we show that a nonisometric com-
pletely hyperexpansive weighted shift has no completely hyperexpansive co-
step backward extension (cf. Corollary 4.6). This is opposite to the case of
nonisometric subnormal weighted shifts which allow for subnormal oco-step
backward extensions (cf. [24]).

In Section 5 we turn our attention to abstract completely hyperexpan-
sive operators transplanting the notion of k-step full backward extension
from subnormal operators to completely hyperexpansive ones. An operator
version of the Levy—Khinchin formula plays a crucial role in this section. The
next essential difference between subnormality and complete hyperexpansiv-
ity is emphasized by Proposition 5.8. Namely, it is proved that the prop-
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erty of having completely hyperexpansive k-step full backward extension is
preserved by infinite orthogonal sums, which is not the case for subnormal
operators (cf. [24]).

Section 6 deals with scalar and operator-valued weighted shifts. The third
difference between subnormality and complete hyperexpansivity is exhibited
in Example 6.5. It is shown there that the set of all completely hyperexpan-
sive k-step backward extension vectors need not be a linear space (compare
with [17, Corollary 5.4]). In the final section we discuss the question of exis-
tence of k-step full backward extension within the class of 2-hyperexpansive
operators. This enables us to clarify the role played by 2-isometries in our
considerations.

2. Preliminaries. Let H be a (complex) Hilbert space. Denote by B(H)
the C*-algebra of all bounded linear operators on H and by I3 the identity
operator on H. From now on, all operators taken into consideration in this
paper are assumed to be linear and bounded. Given A, B € B(H), we write
A > B (resp. A > B) in case (Ah, h) > (Bh, h) (resp. (Ah, h) > (Bh, h)) for
every h € H \ {0}; we say that A is positive if A > 0. As usual, ¢? stands for
the Hilbert space of all square summable complex sequences and {e,, }>° , for
the canonical orthonormal basis of /2, i.e. e, = (6n.0,0n.1,--.), where Ok, is
the Kronecker symbol. Denote by B([0, 1]) the o-algebra of all Borel subsets
of the closed unit segment [0, 1]. For = € [0, 1], 0, stands for the probability
Borel measure on [0, 1] with total mass at x.

Given an operator T' € B(H) and an integer n > 1, we define the real-
valued function o7, on ‘H by

n
ora)i= 3 oy (M) iEhip hen
0<p<n P
DEFINITION 2.1 (|27, 7, 20, 21]). Let m > 1 be an integer. We say that
an operator T' € B(H) is

(a) m-isometric if pp,, =0,

(b) m-ezpansive if o7, <0,

(c) m-hyperezpansive if o7, <0 foralln=1,...,m,
(d) completely hyperexpansive if o7, < 0 for all n > 1.

inclusion relations among the classes defined above are as follows:

The case g7, > 0 is closely related to subnormal contractions (cf. [1]). The

2-isometry C completely hyperexpansive C --- C (m + 1)-hyperexpansive
C m-hyperexpansive C --- C 1-hyperexpansive.

Moreover, all these inclusions are proper (cf. [27] and [30]).
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An operator W on £2 of the form
W(&, &) = (0, X0é0, Mén,-.),  (§0,&,--.) € 42,

where {\,}5°, is a bounded sequence of positive real numbers, is called
a (unilateral) weighted shift with weight sequence {\,}5% . Set B (W) =
[Wmeg||? for n > 0, ie. Bo(W) = 1 and B,(W) = N2---A2_| for n > 1.
It is evident that the weights A, of W can be recovered from the sequence
{Bm(W)}oo_, as follows:

_ ﬁn 1(W)
(2.1) AH_MW, n>0.

This means that the formula (2.1) establishes one-to-one correspondence
between weighted shifts W and sequences {3,,,(W)}oo_,. In case A, = 1 for
all n > 0, W is called the isometric unilateral shift.

The following result characterizes completely hyperexpansive weighted
shifts (see |7, Proposition 3|, [20, Lemma 4.1] and [23, Lemma 6.1]).

PROPOSITION 2.2. A weighted shift W with weight sequence {\,}>2 is
completely hypererpansive if and only if there exists a finite positive Borel
measure (1 on [0,1] such that

(2.2) BaW) =1+ | (I+a+--+2" Ndu), n>L1
[0,1]

The correspondence W « p is one-to-one (in particular, the measure j in
(2.2) is unique). Moreover, the weighted shift W is a 2-isometry if and only
if the corresponding measure 1 is of the form ad1, where o is a nonnegative
real number.

DEFINITION 2.3. If (2.2) holds, then we say that the measure p is asso-
ciated with the weighted shift W or that W is associated with p.

Let us recall that if 7" € B(H) is injective and h € H \ {0}, then W,
stands for the weighted shift with weight sequence {||T™"1h|/||T"R||}2,
(the operator W, is bounded because the sequence of its weights is bounded
above by || T||). Now we show that the classes of (hyper-) expansive operators
defined above have the property (P) mentioned in Section 1 (for the case of
2-hyperexpansive and 2-isometric operators see [23, Proposition 6.7]).

PROPOSITION 24. If T € B(H) and m > 1 is an integer, then the
following conditions are equivalent:
(i) T is m-isometric (resp. m-expansive, m-hyperexpansive),
(ii) T is injective and Wy, is m-isometric (resp. m-expansive, m-hyper-
expansive) for every nonzero vector h € H.
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Proof. If T' is m-expansive and Th = 0 for some h € H, then
Ihl* = or,m(R) <0,
which yields the injectivity of T'. It is easily seen that a weighted shift W is
m-isometric (resp. m-expansive) if and only if gy, (en) = 0 (resp. ow,m(en)
< 0) for every integer n > 0. This and the equality

_orm(T"h)

QWT,h’m(en) - HTnh”Q ) h E H \ {0}7 n Z 07

complete the proof. m

COROLLARY 2.5. An operator T € B(H) is completely hyperezpansive if
and only if T' is injective and the weighted shift W, is completely hyperex-
pansive for every h € H\ {0}. If this is the case, then for every h € H\ {0},
there erists a unique finite positive Borel measure ppy on [0,1] such that

172
1112

Bn(Wrp) = =1+ S 1+x+---+ x”_l) dprp(x), n>1.

(0,1]

3. Completely hyperexpansive backward extensions

DEFINITION 3.1. We say that a weighted shift W with weight sequence
{A\n}02y has a completely hyperezpansive (one-step) backward extension if
for some positive scalar A\_1, the weighted shift W’ with weight sequence
{An—1}22 is completely hyperexpansive; the weighted shift W’ will be called
a completely hypererpansive backward extension of W.

Regarding Definition 3.1, we see that the operator W may be identi-
fied (up to unitary equivalence) with the restriction W'l .,y of W’ to
Vo_,{en}, the closed linear span of {e,}>2 ;. This means that W itself is
completely hyperexpansive.

The following result characterizes those weighted shifts which have com-
pletely hyperexpansive backward extensions.

THEOREM 3.2. Let W be a completely hypererpansive weighted shift with
weight sequence {\n,}o>, and with associated measure ji. Then W has a
completely hyperexpansive backward extension if and only if (%)

1
(3.1) | —du(z) < 1.

X
[0,1]

If this is the case, then the measures v associated with completely hyperez-
pansive backward extensions of W are in one-to-one correspondence with the

(*) In the formula (3.1), we adhere to the convention that = co. In particular, (3.1)
implies u({0}) = 0.
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nonnegative real numbers t via

1+¢ 1
C1- So.) T dp(x) CS,E dp(z) +tdo(0), o € B0, 1]).

Proof. Let W’ be a completely hyperexpansive backward extension of
W and let v be a measure associated with W’. It is easily seen that (cf.
Definition 3.1)

(3-3) 5n+1(W/) = )‘EI/BR(W)v n = 0.
This and Definition 2.3 imply

S 2"z dv(z) = Bro(W') = Bug1 (W) = X241 (Busr (W) — B (W)
[0,1]

(3.2) v(o)

= S "M\ du(x), n>0,
(0,1]
which, by the uniqueness of the solution of the Hausdorff moment problem,
yields
N yu(o) = Vwdv(z), o< B(0,1)).

g

In consequence, we have p({0}) = 0 and

(34 (o) = | idu(x) +u({ON)do(e), o € B(0,1)).

oz

Applying (2.2) (to W’ and v in place of W and p) and (3.4), we get

Ny =B W) =1+v(0,1]) =1+ v({0}) + A2, | idu(x).
[0,1]
This leads to
(3.5) 2 (1 — | %du(x)) =1+v({0}).
[0,1]

From (3.5) and A_; > 0 we infer that (3.1) holds. Computing A2 from (3.5)
and then substituting it into (3.4) we come to (3.2) with ¢ = v({0}).
Suppose now that (3.1) holds. Let W’ be the weighted shift with associ-
ated measure v given by (3.2). Then we have
1+1¢
1— 8[0,1] & dp(x)

One can deduce from Definition 2.3, (3.2) and (3.6) that for every n > 1,

Brsa (W) = 14 0([0,1]) + AW | T ) = BU(W)Bu(W),
[0,1]

(3.6) S(W') =1+v([0,1]) =
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which implies (3.3) with A_y := /f1(W’). This and (2.1) show that W’ is
a completely hyperexpansive backward extension of W.

That the correspondence t <+ W' is one-to-one follows from Proposi-
tion 2.2 and the equality v({0}) = ¢, which in turn is a consequence of (3.2).
This completes the proof. =

The following corollary may be thought of as the complete hyperexpan-
sive counterpart of [12, Proposition §].

COROLLARY 3.3. Let W be a weighted shift with weight sequence {\,}22 .
Suppose that the restriction of W to \/,—{en} is completely hyperezpan-
sive (3) with associated measure . Then W is completely hyperezpansive if
and only if the following two conditions hold:

() §jo,1) 3 du(z) <1,
(i) A3 > (1= §y Ldu(z) "

Proof. Applying Theorem 3.2 and (3.6), we see that W is completely
hyperexpansive (*) if and only if (i) is valid and
1+t
1- 8[0,1] z dp(x)

Since (3.7) is equivalent to (ii), the proof is complete. =

(3.7) M= (W) = for some t > 0.

COROLLARY 3.4. The restriction of any completely hypererpansive
weighted shift to \/7{en} has infinitely many completely hyperezpansive
backward extensions.

4. Completely hyperexpansive k-step backward extensions

DEFINITION 4.1. Given an integer k > 1, we say that a weighted shift
W with weight sequence {\,} 2, has a completely hyperezpansive k-step
backward extension if for some positive scalars A_j, ..., A_1, the weighted
shift V' with weight sequence {\,,_j}52 is completely hyperexpansive; the
weighted shift V' will be called a completely hyperexpansive k-step backward
extension of W.

Regarding Definition 4.1, we see that the operator W may be identified
(up to unitary equivalence) with Viy/> (. . Hence W itself is completely
hyperexpansive. It is a matter of routine to show that a weighted shift W has
a completely hyperexpansive k-step backward extension if and only if it has a

(3) This is the same as saying that the weighted shift with weight sequence {\,1+1}5%¢
is completely hyperexpansive.

(4) Note that W can be thought of as a completely hyperexpansive backward extension
of W|V$L°:1{en}‘
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completely hyperexpansive (k—1)-step backward extension V'’ which in turn
has a completely hyperexpansive (one-step) backward extension (k > 2).

THEOREM 4.2. Let k > 1 be an integer and W be a completely hyper-
ezpansive weighted shift with weight sequence {\,}5°, and with associated
measure . Then

1° W has a completely hyperexpansive k-step backward extension if and
only if
(4.1) { (l+-~+i) du(z) < 1,
x xk
[0,1]
2° if (4.1) holds, then the measures ( associated with completely hyper-

expansive k-step backward extensions of W are in one-to-one corre-
spondence with the nonnegative real numbers t via
1+1¢

1
(4.2) ((o) = [Ty (Fh -+ 1) da(@) §ﬁdﬂ(9¢) + téo(o),

o € B([0,1]),

3° if (4.1) holds, then there exists at most one completely hyperexpansive
k-step backward extension V of W which has a completely hyperez-
pansive backward extension; the weighted shift V is associated with
the measure ¢ given by (4.2) with t = 0.

Proof. 3° can be inferred from 2° via Theorem 3.2 (see also footnote (?)).
To prove 1° and 2°, we proceed by induction on k. The case k = 1 is covered
by Theorem 3.2. We show how to pass from k to k + 1. According to Theo-
rem 3.2, the weighted shift with associated measure ¢ given by (4.2) has a
completely hyperexpansive backward extension if and only if ¢ = (({0}) =0
and

1 1 1
(4.3) ; ; | dp(e) = | —d¢(x) <1,
L= S0 (G 4+ ) du(z) [0,1] wht 0,1 ©
which in turn is equivalent to the conjunction of t = 0 and
1 1
(4.4) [081] (; N W) du(z) < 1.

This implies 1° with k£ + 1 in place of k. If (4.4) holds, then in view of 3°,
(4.3) and Theorem 3.2 there exists exactly one completely hyperexpansive
k-step backward extension V' of W which has a completely hyperexpansive
backward extension; the weighted shift V' is associated with the measure ¢
given by (4.2) with ¢ = 0. Applying Theorem 3.2 to this particular mea-
sure and employing (4.3), we conclude that all measures £ associated with
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completely hyperexpansive (k+ 1)-step backward extensions of W are of the
form

£(o) = 1+t

T fou 2 (@) )

S d¢(z) + t8o(0)
(1+1)§, o dp(2)

5[0,1] xk—lﬂdu(x) )
(1 1= G+ k) du(m)) (=S &+ + 2¢) du(a)

+ t60(0)
1+t 1
- dp() + t6o(o), o € B(0,1]),
L= fjo) (54 + zom1) d(w) § zhtt

where ¢ runs over the segment [0, 00). This completes the proof. =

REMARK 4.3. The reader can verify that the probability measures (
associated with subnormal k-step backward extensions of a fixed subnormal
weighted shift W are in one-to-one correspondence with the real numbers
t €[0,1) via

o e —

—_ \ = do(o
S[O’oo)g%kdﬂ(m) dﬂ( )+t 0( )

xk
for any Borel subset o of [0, 00),

where p is the Stieltjes moment measure associated with the weighted shift
W (for definitions and related results, see [12]).

Corollary 4.4 below is related to Corollary 3.5 of [17]. It deals with finite
perturbations of weights of completely hyperexpansive weighted shifts, while
its counterpart in [17] with one-point perturbations of weights of subnormal
weighted shifts.

COROLLARY 4.4. Let Wy and W2 be completely hyperexpansive weighted
shifts with weight sequences {)\ o0 o and {)\ }n o, respectively. If there

exists N > 1 such that )\(1) = )\ for all n > N, then )\%) = %2) for all
n > 1.

Proof. It suffices to consider the case N > 2. Slnce the weighted shifts

and Vo with weight sequences {)‘n+1} > and {)\n+1 o o, respectively, are

completely hyperexpansive (N 1) step backward extensions of the weighted
shift with weight sequence {)\nJrN}n 0, and both have completely hyperex-
pansive backward extensions (namely W; and Wa, respectively), we infer
from parts 1° and 3° of Theorem 4.2 (with k = N — 1) that V; = V5, which
completes the proof. m
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REMARK 4.5. Corollary 4.4 can be rephrased as follows: changing finitely
many weights of a weighted shift including at least one of its weights with
index s > 1 does destroy complete hyperexpansivity. Corollary 3.4 explains
why the weighted shifts W7 and Ws satisfying the assumptions of Corollary
4.4 need not coincide in general. It has been proved in [23, Proposition
6.2 (vii)] that if two successive weights As and As41 of a 2-hyperexpansive
weighted shift W coincide, then A\, = 1 for all n > s. If additionally W is
completely hyperexpansive, we can show more, namely that all the weights
of W, except possibly Ag, must be equal to 1 (apply Corollary 4.4 to W, = W
and Wy = the isometric unilateral shift).

The following corollary shows that a completely hyperexpansive weighted
shift which is not isometric has no completely hyperexpansive co-step back-
ward extension. This is a new phenomenon compared with nonisometric
subnormal weighted shifts which allow for subnormal co-step backward ex-
tensions (cf. [24, Example 4.5]).

For a weighted shift W, we define the quantity sy as follows: if W
does not have any completely hyperexpansive backward extension, we set
sy = 0; if such an extension exists, s stands for the maximum integer
k > 1 for which W has a completely hyperexpansive k-step backward ex-
tension provided the maximum exists; otherwise we set s = co. We say
that a sequence {a,}72; C RU {oo} is strictly increasing within R if either
{an}e®; € R and {a,}32, is strictly increasing, or there exists an integer
m > 1 such that {a,}"_; C R, {a,}]"_, is strictly increasing and a,, = oo
for every n > m + 1.

COROLLARY 4.6. Let W be a completely hyperexpansive weighted shift
with associated measure . Set

1 1

= § (s B )dua) ez
0,1

Then

(i) saw = oo if and only if W is the isometric unilateral shift (%),
(i) if 1 < s < o0, then the sequence {1 }72, is strictly increasing
within R, limg_ 7, = 00 and sy = max{k > 1: 7, < 1},

(iil) if 1 < s < 00, then S1(W) > 1 and sy < 1/(B1 (W) —1).

Proof. (i) It suffices to prove the “only if” part of (i). Theorem 4.2 yields
(4.5) Eu(0,1)) <7 <1, k>1,
which implies p = 0. This, Proposition 2.2 and (2.1) complete the proof
of (i).

(°) Assertion (i) is a particular case of Proposition 7.1.
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(ii) Suppose that 1 < sy < 0o. Then clearly u # 0 and, by Theorem
4.2, 1({0}) = 0. Hence 8[0,1] xk% du(x) > 0 for every integer k > 0. This, the
inequality % p([0,1]) <7 (k> 1) and Theorem 4.2 imply (ii).

(iii) This follows from (4.5) applied to k = s and (2.2). =

EXAMPLE 4.7. Let us discuss some examples of completely hyperexpan-
sive weighted shifts. In view of (2.1) and Proposition 2.2, the completely hy-
perexpansive weighted shift W (%) with associated measure 1 = ady, where
« is a nonnegative real number, is a 2-isometry with weight sequence

{ 1+(n+1)a}°°

1+ na

n=0
and all 2-isometric weighted shifts are of this form. There are two cases which
are of particular interest, namely o = 0 and « = 1, which correspond to the
isometric unilateral shift and the Dirichlet shift, respectively. By Theorem
4.2, for every k > 1, W(®) has a completely hyperexpansive k-step backward
extension if and only if ka < 1. This automatically excludes the Dirichlet
shift from the class of weighted shifts which have completely hyperexpan-
sive backward extensions. In our considerations the Dirichlet shift plays a
similar role to the Bergman shift in the theory of subnormal backward exten-
sions; namely, the Bergman shift (which is the weighted shift with weights
{v/(n+1)/(n+2)}2,) does not have any subnormal backward extension
(cf. [17, Example 4.2]). Reverting to the case of arbitrary «, note that if (@)
has a completely hyperexpansive k-step backward extension (i.e. ka < 1),
then by Theorem 4.2 all measures ( associated with completely hyperexpan-
sive k-step backward extensions of W(®) are of the form

Czw(ﬁ—l—t&), t> 0.

1—ka

The completely hyperexpansive weighted shift with associated measure ( is
2-isometric if and only if ¢ = 0. This means that W (% has a lot of completely
hyperexpansive k-step backward extensions, but exactly one of them is 2-
isometric.

We conclude Example 4.7 with a somewhat surprising observation.
Namely, according to the above discussion, a 2-isometric weighted shift W
has a completely hyperexpansive backward extension if and only if 81 (W) <2
(because o = (1 (W) —1). On the other hand, the inequality 51 (1) < 2 does
not guarantee that an arbitrary completely hyperexpansive weighted shift
W has a completely hyperexpansive backward extension. Indeed, consider-
ing u = adp with o € (0,1) we see that 51(W) =1+ o < 2 and W has no
completely hyperexpansive backward extension.
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5. Completely hyperexpansive k-step full backward extensions.
Let T' € B(H) be a completely hyperexpansive operator. In view of Corollary
2.5, for every h € H \ {0}, the weighted shift Wy}, is completely hyperex-
pansive. Denote by pir ) the measure associated with Wr . By Theorem 4.2,
W, has a completely hyperexpansive k-step backward extension if and only
if

| on(@) durn(z) < 1,
[0,1]

where

1 ! f 0,1
s for x = 0,

DEFINITION 5.1. Let k& > 1 be an integer and T' € B(H) be a completely
hyperexpansive operator. A nonzero vector h € H is called a completely hy-
perexpansive k-step backward extension vector for T' if W, has a completely
hyperexpansive k-step backward extension; the set of all such vectors to-
gether with the zero vector is denoted by Ep . If £7, = H, then we say that
T has completely hyperexpansive k-step full backward extension.

The set £7j need not be a linear subspace of H (cf. Example 6.5). We
now show that the restriction T} of a completely hyperexpansive operator
T to the range of T% has completely hyperexpansive k-step full backward
extension, and that this “virtual” extension is closely related to the “real”
one T (see also Example 6.6 which illustrates Proposition 5.2 and Corollary

5.3).

PROPOSITION 5.2. If k > 1 is an integer and T € B(H) is a completely
hyperexpansive operator, then the following two conditions hold:

(i) the space T*(H) is closed, the operator Ty := T'|rr 3y 1 completely
hyperexpansive and T*(H) = Er 1 € Er ks moreover, for every non-

zero vector h in TF(H), the weighted shift Wy p—xy, is a completely
hyperexpansive k-step backward extension of Wr, , (= Wr ) and

1+¢ 1
- SOZdMTh S ok dpn(@) + thdo(o),
[071] "o
o € B([0,1]),

(5.2) MT,T—kh(U) = 1

where
TR G i)
TR — Sy 9t dirn)
(ii) if prg({0}) = 0 for every g € H, then t, = 0 for all h € T*(H)\ {0}.

(5.3)

_17 Yo = 07
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Proof. (i) By [27, Lemma 1], the operator T is injective and the space
T(H) is closed. This in turn implies that T%(H) is closed as well (see [24,
Remark 2.7]). It follows directly from Definition 2.1 that T} is completely
hyperexpansive. If h € T*(H) is nonzero, then in view of Corollary 2.5
the weighted shift Wy, p—x, is a completely hyperexpansive k-step backward
extension of Wy, ». Hence by part 2° of Theorem 4.2 the measure pip sy,
is of the form (5.2) with a unique ¢, > 0. Applying (2.2) and (5.2), we get

(54) LWy p—kp) = 1+ pipp-rp ([0, 1])
1+t S
1- 8[071} Pk dNT,h

1
— d,uTyh(x) + .

=1
+ ok

[0,1]
Computing ¢, from (5.4) leads to (5.3).

(i) By (5.2), we have t, = pp -1, ({0}) = 0 for every h € T*(H)\ {0},
which completes the proof. »

COROLLARY 5.3. Let k,r > 1 be integers and T € B(H) be a completely
hyperexpansive operator such that pr4({0}) = 0 for every g € H. If T}, :=
T]Tk(H) has completely hyperexpansive (k + r)-step full backward extension,
then T has completely hyperexpansive r-step full backward extension.

Proof. Take a nonzero vector g € ‘H and set h := T*(g). By our as-
sumption, the weighted shift Wy, j, has a completely hyperexpansive (k+17)-
step backward extension, say V. In turn, according to Proposition 5.2, the
weighted shift W ;g = Wy pk), is a completely hyperexpansive k-step back-
ward extension of Wr, ; and (5.2) holds with ¢;, = 0. By Theorem 4.2, Wr 4
can be identified (up to unitary equivalence) with V|, (. 1. Hence, V is a
completely hyperexpansive r-step backward extension of Wr 4, which com-
pletes the proof. =

Let us recall an operator version of the Levy—Khinchin formula for com-
pletely hyperexpansive operators.

THEOREM 5.4. An operator T € B(H) is completely hyperezpansive if
and only if there exists a (unique) positive-operator-valued Borel measure (%)
Fr on [0,1] such that

(55) T =In+ | Q+z+-+2") Pp(de), n>L
[0,1]
If this is the case, then

(5.9 pralo) = oz (Frlohh). o € B(0.1)). h e\ {0},

(6) Fr is o-additive with respect to the weak operator topology; we do not assume
that FT([O, 1]) = Iy.
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Proof. The first part of the conclusion follows from [20, Theorem 4.2].
Then (5.6) is a consequence of (5.5) and Corollary 2.5. u

DEFINITION 5.5. If (5.5) holds, then we say that the operator measure
Fr is associated with the operator T or that T is associated with Fr.

Following [31, Appendix|, we write 1) € L'(Fr) in case v is a complex Bo-
rel function on [0, 1] and S[o i [(@)| (Fr(dz)h, h) < oo for all h € H. If this

is the case, then there exists a unique operator S[o 1] Y dFr € B(H) such that

(5.7) < | ¢dFTh,h>: | (@) (Pr(da)n,h), heH.
[0,1] [0,1]
Moreover,
68) | § varn| <| § wldp| = sw | )] (Pr(donn).
[0,1] 0,1] IRI=1 (g 1]

If ¢ is nonnegative, then S[O Y dPp > 0.

THEOREM 5.6. Let T' € B(H) be a completely hyperezpansive operator
with associated operator measure Fp and let k > 1 be an integer. Then the
following conditions are equivalent:

(i) T has completely hyperezpansive k-step full backward extension,
(ii) ¢, € L' (Fr) and 5[0,1] or dFr < Iy,
(iii) ¢r € LY(Fr), | 8[071] vrdFr| <1 and 1 is not an eigenvalue of the
operator 8[0,1} o dFp.

Moreover, if T has completely hyperexpansive k-step full backward extension,
then

1
(5.9) Fr((0,1]) < - I,
(5.10) T*T < % In.

Proof. The equivalence (i)<(ii) can be deduced from the equality (5.7)
and Theorems 4.2 and 5.4. The equivalence (ii)<(iii) is a consequence of the
following fact: if A € B(H) is a positive contraction, then
(5.11) (AR, h) = (h,h) & [|(B = )2 = 0

& (Iy—Ah=0, heH.
If (ii) holds, then
kPp([0,1]) < | opdFr < In,
[0,1]
which implies (5.9). Finally, (5.10) follows from (5.9) and (5.5) applied to
n=1mn
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The inequality (5.10) (and consequently (5.9)) can also be inferred from
Corollary 7.2. It becomes optimal in the case of 2-isometric operators.

COROLLARY 5.7. A 2-isometric operator T € B(H) has completely hy-
perexpansive k-step full backward extension if and only if (5.10) holds.

Proof. By Proposition 4.5 of [20], there exists a positive operator C' €
B(H) such that Fp(o) = 61(0)C for o € B([0,1]). Applying Theorem 5.6
completes the proof. m

The following proposition emphasizes the essential difference between
subnormal and completely hyperexpansive operators regarding backward ex-
tensions of orthogonal sums. In contradistinction to subnormal operators, the
property of having completely hyperexpansive k-step full backward exten-
sion is preserved by the operation of taking infinite orthogonal sums (cf.
Proposition 2.9 and Example 2.10 in [24]).

PROPOSITION 5.8. Let T = @ ., T, be the orthogonal sum of an arbi-
trary family of completely hyperezpansive operators T,, € B(H,,).

(i) If T is bounded, then T is completely hyperexpansive and

(5.12) Pr(o) = @ Pr,(0), o< B([0,1)),
wen
(5.13) V varr =P | vdPr, wvel'(Fn),
[0,1] wEN[0,1]

where Fr and Fr, are operator measures associated with T' and T,
respectively.

(ii) If every T,,, w € 2, has completely hyperexpansive k-step full back-
ward extension, then T is bounded, it has completely hyperexpansive
k-step full backward extension and (5.13) holds for ¥ = ¢y.

Proof. (i) That T is completely hyperexpansive follows directly from Def-
inition 2.1. Applying (5.5) to T, and n = 1, we conclude that
(5.14)  |[Pp, ()] < 1P, ([0, 1) = |1 T5T0 — I, |l < 1+ |1 T2

<1+|T)1? o€B([0,1]),we .
This implies that for every o € B([0,1]), the operator F(c) := @, I, (0)
is bounded and F is a positive-operator-valued Borel measure on [0, 1]. Using
(5.14), we see that S[O yYdF = D.co S[o 1) ¥ dFr,, for every bounded Borel
function ¢ on [0,1]. Applying the last equality to the functions ¥ (z) =
l+z+-+2" 1 we get
T =1+ | (l+2+- +2" ) F(dr), n>1
[0,1]
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In consequence, by Theorem 5.4, Fp = F, which proves (5.12). Take ¢ €
LY(Fr). 1t follows from (5.8) that ¢ € L'(Fr,) and

| § vare|<| § wiar| <] § wiar|
0,1] [0,1]

)

w € (2.

This means that the operator @, 8[07” ¥ dFr, is bounded. It is now a
routine matter to show that (5.13) is valid.

(ii) The operator T is bounded because by (5.10), ||T,| < +/(k+1)/k
for all w € 2. Take h = Buephy € P cnHe- By (5.12), (Fr(o)h,h) =
Y wenFr, (0)hy, hy,) for every o € B([0,1]). Employing now the standard
approximation procedure and Lebesgue’s monotone convergence theorem for
integrals and series, we get

(5.15) \ @) (Fr(da)h,n) =Y | (@) (Fr,(dz)he, ho)

[0,1] WEN[0,1]
for every nonnegative Borel function ¢ on [0, 1]. Suppose that h is nonzero.
Applying (5.6), (5.15) to 1) = ¢y and part 1° of Theorem 4.2, we obtain

| er) duT,m):W [ oxe) (Fr(dz)h, by
[0,1] [0,1]

= H? >\ (@) (Pr, (de)hu, ho)

w€ef2[0,1]

||h||2 Z || w” S (‘T) d/’LTwth(x) <L
we? [0,1]
he,#0

According to Theorem 4.2 and Definition 5.1, T" has completely hyperexpan-
sive k-step full backward extension. In view of the equivalence (i)<(ii) of
Theorem 5.6 and (5.13), we see that (5.13) holds for ¢ = ¢, which completes
the proof. =

6. Back to weighted shifts. We now return to the case of weighted
shifts. We begin with a result which may be thought of as the complete
hyperexpansive counterpart of [24, Corollary 4.4] (see also [17, Corollary
5.4]).

PROPOSITION 6.1. Let k > 1 be an integer and W be a completely hyper-
expansive weighted shift. Then the following conditions are equivalent:

(i) W has completely hyperexpansive k-step full backward extension,
(ii) W has a completely hyperexpansive k-step backward extension (or
equivalently: eg € Eyw ),
(ii)) ¢ € L' (Fw) and || §i y ox dFw || < 1.
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Proof. The implication (i)=-(ii) is obvious.

(ii)=-(iii). Suppose that ey € Ew . Let p be the (scalar) measure associ-
ated with . By (5.8) and Proposition 6.1 of [20], we have L'(u) = L*(Fy)
and

(6.1) H | 1wl dFWH — | [dldy for every ¢ € L'().
[0,1] [0,1]
This and part 1° of Theorem 4.2 imply (iii).

The implication (iii)=-(i) is a direct consequence of Theorem 5.6. m

REMARK 6.2. Let W be a completely hyperexpansive weighted shift with
associated operator measure Fyy. By [20, Proposition 6.1], Fyy is of the form

(6.2) Fyy(0)en = pn(0)en, o € B([0,1]),n >0,
where
Ho =
(6.3) 1 (0) Jo 2" dp(x) , oeB(0,1]),n>1.

T T gy (Tt et e ) dp(x)

One can check that for every ¢ € L'(u) = L'(Fy), the operator S[O ¥ dEw

is diagonal (with respect to the orthonormal basis {e,}°, of £2) with the
diagonal {d,}22, given by
8[0,1] "y () dp(x)

do= \ wdy, d,= - . n>1
[051] L+ (L2 + -+ 1) du(z)

EXAMPLE 6.3. Condition (iii) of Proposition 6.1 characterizes weighted
shifts having completely hyperexpansive k-step full backward extensions.
One might expect that this would be true for all completely hyperexpansive
operators. However, this is not the case. Indeed, consider the sequence o, =
n/(1+4 kn), n > 1. Let W(® a >0, be as in Example 4.7. Since ko, < 1 for
all n > 1, we infer from Theorem 4.2 and Proposition 6.1 that each weighted
shift (@) has completely hyperexpansive k-step full backward extension.
In view of Proposition 5.8, the operator T := @, , W(en) is completely
hyperexpansive (in fact 2-isometric) and it has completely hyperexpansive
k-step full backward extension. By (6.1), we have

(6.4) H | ordFy
[0,1]

=ka,, n>1.

It follows from part (ii) of Proposition 5.8 and (6.4) that ¢, € L'(Fr) and

= sup kay, = 1.

S S%dFT‘ = sup
n>1

S @k dFyy (om)
n>1 ]

) )
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We now return to completely hyperexpansive k-step backward extension
vectors in the context of weighted shifts.

PROPOSITION 6.4. Let k > 1 be an integer and W be a completely hy-
perexpansive weighted shift with associated measure p. Then (cf. Definition

5.1)
(i) a nonzero vector {n,}2, € €* belongs to Ewy. if and only if

8[071]1: Sok(x) d:u( Z’ ‘2
L+ §o (Lt a4+ a2 ) du(z) o

mol® | en du+z 1 ?
0,1 n=1
(i) \/nzk{en} C Ewp-
Proof. (i) Using (5.6), (6.2), (6.3) and Theorem 4.2 (see also (5.15)), we
conclude that a nonzero vector h={n, }5° ;€ /? belongs to Ew if and only if

1> | (@) dpwa(e |h||22|77n | ordpn
[0,1] [0,1]
1 2 > 2 S[O 1] 33”9% (:E) dlu’(x) >
= — du + n : .
e (1 3 e Y g

[0,1] n=1

(ii) By Proposition 5.2, W¥(¢?) is a closed linear subspace of ¢2. Hence we
have W*(¢?) = \/,~,{en}. Applying once more Proposition 5.2 completes
the proof of (ii) (one can also deduce (ii) directly from (i)). m

It is worth noting that part (i) of Proposition 6.4 implies the equivalence
(i)<(ii) of Proposition 6.1 as well as part 1° of Theorem 4.2 (however, the
latter has been essentially used in the proof of Proposition 6.4).

EXAMPLE 6.5. Let k>1 be an integer. Consider the 2-isometric weighted
shift T := W/®) with associated measure u = (1/k)é; (cf. Example 4.7).
It is easily seen that T is unitarily equivalent to W (1) |V > {ends where

W is the Dirichlet shift. Hence T has no completely hyperexpansive k-step
backward extension, though (for £ > 2) it has a completely hyperexpansive
(k — 1)-step backward extension. We show that the set &7 is not a linear
space and consequently it is not equal to \/, -, {e, }. Notice that the counter-
part of £ 1 in the context of subnormal operators is equal to \/n>1{en} (cf.
[17, Corollary 5.4]). By Proposition 6.4, a nonzero vector h = {n, }5°, € 02
belongs to &7, if and only if

Z!%P < Z|?7n!2

This means that & = {{nn}nzo €:3m>1 n,#0}U{0}
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EXAMPLE 6.6. Let k,r > 1 be integers and let W be a completely hyper-
expansive weighted shift with associated measure p. Suppose that W has a
completely hyperexpansive (k + r)-step backward extension. For t € [0, 00),
denote by V; the completely hyperexpansive k-step backward extension of
W associated with the measure (; given by the right-hand side of (4.2). By
Proposition 5.2 and Corollary 5.3, we identify W (up to unitary equivalence)
with T}, := T\Tk(H), where H = (%2 and T = V;. It follows from Remark 6.2
that Fy, ({0}) = 0 and Fy,({0}) # 0 for t > 0. By Proposition 6.1 and Corol-
lary 5.3, Vp has completely hyperexpansive r-step full backward extension.
On the other hand, if ¢ > 0, then by Theorem 3.2, V; does not have any
completely hyperexpansive backward extension, and consequently it does
not have completely hyperexpansive full backward extension.

We will show in Example 6.10 below that similarity does not preserve
the property of having completely hyperexpansive k-step full backward ex-
tension. Let us begin with a characterization of similarity of completely hy-
perexpansive weighted shifts associated with measures of tempered growth
at 1, i.e. satisfying the condition (6.5) below which is closely related to power
boundedness of completely hyperexpansive weighted shifts (cf. [20, Proposi-
tion 6.3]).

PROPOSITION 6.7. Let W1 and Wy be completely hyperexpansive weighted
shifts with associated measures py and uo, respectively. Assume that

1 .
(6.5) { T dpi(w) <o, i=1,2.
[0,1)

Then the weighted shifts W1 and Wy are similar if and only if

(6.6) cither p({1}) +ua({1}) =0 or m({1})-p({1}) > 0.

Proof. Indeed, by [16, Problem 76] and (2.2), the weighted shifts W7 and
Wy are similar if and only if there exist constants ¢, d > 0 such that

Bua(Wr) L (i Dpa({1}) + §g ) 55— i (@)

(67) C § = —n S d7
Fosr(W2) 1+ (n+ Dpa({1}) + §g 1522 dps(z)
n > 0.
Applying Lebesgue’s monotone convergence theorem, we get
) _ l.n—i—l 1 ]
Jim | —— dpi(z) = | T duilz), =12
[0,1) [0,1)

which, together with (6.5) and (6.7), completes the proof. =

PROPOSITION 6.8. Let W be a completely hyperexpansive weighted shift
with associated measure (. Then
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(i) W is similar to the isometric unilateral shift if and only if W is power
bounded, or equivalently

(6.8) p({1}) =0 and |
[0,1)
(i1) W is similar to the Dirichlet shift if and only if n({1}) > 0.

Moreover, the isometric unilateral shift and the Dirichlet shift are not simi-
lar.

T, dulz) <oo,

Proof. (i) If the weighted shift W is power bounded, then by [20, Propo-
sition 6.3] the condition (6.8) is valid. If (6.8) holds, then in view of Proposi-
tion 6.7 the weighted shift T is similar to the isometric unilateral shift W (®)
(because W) is associated with the zero measure). Finally, if W and W ()
are similar, then W is evidently power bounded.

(ii) If p({1}) > 0, then by (2.2) we have

L+ (n+Dp(1) o Born W) 14 (n 4+ 1)p((0,1])

) >0
L+ (n+1) = Bou(WD) = 1+ (m+1) !

)

where W) is the Dirichlet shift (cf. Example 4.7). Hence, by [16, Problem
76], the weighted shifts W and W) are similar.

Suppose now that p({1}) = 0. We define ¢, = S[O’H 2" du(x) and o, =
(eo+ -+ +epn)/(n+1) for n > 0. By Lebesgue’s dominated convergence
theorem, we have lim,,_,o, €, = £({1}) = 0, and consequently lim,,_,~, o, =0.
This in turn leads to

1
n 75"“(”(/1)) = inf 2~ =0,
n>0 B 1 (W) n>0 P

which in view of [16, Problem 76] implies that the weighted shifts W and
WM are not similar. This proves (ii).

Applying (i) to W = WO (or (ii) to W = W), we conclude that the
operators W and W) are not similar. This completes the proof. m

We now indicate an example of a completely hyperexpansive weighted

shift which is similar neither to the isometric unilateral shift nor to the
Dirichlet shift.

EXAMPLE 6.9. Let W be the completely hyperexpansive weighted shift
associated with the Lebesgue measure on [0, 1]. Since the sequence

Brr1(W) 1 1
I\ ) Z4. .. >
Bosa (W) 1+ 1 + +n+1 , n=>0,

is unbounded, the weighted shift W is not similar to the isometric unilateral
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shift (). On the other hand, since

1 1
24 (-4 +
B (W) (34 it)
Bt (W) T+ (T )
n+ll
<2+S1 mdx: 2 log(n + 1) -
B n+1 n+1 elog(n+1) ’ -7

we get inf,>1 Bni1(W)/Bai1(WM) = 0. Hence the weighted shift 1 is not
similar to the Dirichlet shift W),

EXAMPLE 6.10. Since the conditions (6.5) and (6.6) are not particularly
restrictive, one cannot expect that the property of having completely hy-
perexpansive k-step full backward extension is preserved by similarity. For
instance, if jq is such that 0 < « := 8[0,1] wrdpy < 1and pe = (1/a)pq, then
W1 and Wy are similar (7), Wi has completely hyperexpansive k-step full
backward extension, while W5 does not (cf. Theorem 4.2 and Proposition
6.1). In particular, the measures pu; = k+r151 and ps = %(51 have the feature
we want.

We conclude this section with a version of Proposition 6.1 for operator-
valued (unilateral) weighted shifts 7" with invertible weights {T},}°°, whose
products T, - - - Ty, n > 0, are positive. We follow the notation of [22]. The
reader should be aware of the fact that the operator measure G appearing
in [22] is the same as our Frp.

PROPOSITION 6.11. If T, F and G are as in Section 4 of [22] and k > 1
s an integer, then the following conditions are equivalent:

(i) T has completely hyperezpansive k-step full backward extension,
(ii) ¢r € LY(F) and g[o,l] op dF < Iy,
(iii) ¢r € LY(F), | 8[071] vrdF| <1 and 1 is not an eigenvalue of the
operator 8[071] prdF.

Sketch of the proof. (ii)=(i). In view of [22, Theorem 4.2|, ¢, € L(F) =
LY(G). Since S[o 1] Pk dF < Iy, we have (see [22, p. 414, line 10 from above])

\ on(@) (Fi(da)h, by = | 2'op(z) (F(dx) 2R, 25 h)
[0,1] [0,1]

<(( § wedP)Qpin 2pih) < (251h, Qpih) < (b 1)
0.1

(7) This can be justified simply by computing limy,—.cc Bn+1(W1)/Brn+1(Wa).
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for i > 0 and h € H \ {0}. This and (5.7) imply
(6.9) or € L'(F) and | gpdF, <Iy foralli>0.
[0,1]

Since the operator measure G equals the orthogonal sum of the positive-
operator-valued Borel measures F;, (6.9) enables us to show that

(6.10) S (pdeZ@ S (pdeZ'.
[0,1] 1=0 [0,1]

Employing Theorem 5.6, (6.9) and (6.10), we see that (i) holds.

(i)=(ii). By Theorem 5.6, ¢ € L'(G) and 8[071] ¢ dG < Ipy). Since
F(o) = Fo(o) C G(o) for o € B(]0,1]), we conclude that (ii) holds.

The equivalence (ii)<(iii) follows from (5.11). =

7. 2-hyperexpansive k-step backward extensions. In this conclud-
ing section we briefly discuss 2-hyperexpansive backward extensions leaving
the question of m-hyperexpansive backward extensions aside. One can easily
adapt Definitions 3.1, 4.1 and 5.1 to the context of 2-hyperexpansive opera-
tors, simply by replacing “completely hyperexpansive” by “2-hyperexpansive”.
For the reader’s convenience, we collect indispensable facts concerning 2-
hyperexpansive weighted shifts. By Proposition 6.2 of [23], the weight se-
quence {\,}7°, of a 2-hyperexpansive weighted shift IV satisfies the follow-
ing conditions:

4° N\, > 1foralln >0,
5% A1 < Ay for all n >0,

1 (XN -1
6° A\ < on(No) = +(n+ )2( 0 )for all n > 0,
7° if Ay =1, then A, =1 for all n > 0.

PROPOSITION 7.1. Let W be a 2-hyperexpansive weighted shift with
weight sequence {\,}22 and let k > 1 be an integer. Then the following
conditions are equivalent:

(i) W has a 2-hyperexpansive k-step backward extension,
(ii) Ao < v/ (k + 1)/k‘

Moreover, W has a 2-hyperexpansive k-step backward extension for all k > 1
if and only if W is the isometric unilateral shift.

Proof. (i)=-(ii). Suppose that there are positive scalars \_j,..., A1
such that the weighted shift V' with weight sequence {\,_;}2% is 2-hyper-
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expansive. Set @ = Az_k — 1. Applying 4° and 6° to V, we get o > 0 and

1+ (k+1)a k+
Ao S op(Ag) = T 1t ka \/ 1+k: V7%

(ii)=(i). By 4°, a:= A2—1 > 0. Let W(® be as in Example 4.7. Since (ii)
is equivalent to ka < 1, we see that W(®) has a completely hyperexpansive
(and consequently 2—hyperexpansive) k-step backward extension W' with
weight sequence

14 2« + (n+1)a
Ak ooy A1, A V1
ko L A0 = ta "V i1i4+a’ \/ 1+na

Using Lemma 6.1(i) of [23|, one can check that the weighted shift V' with
weight sequence A_g, ..., A_1, Ao, A1,..., An, ... 18 a 2-hyperexpansive k-step
backward extension of W.

The remaining part of the conclusion can be deduced from 4°, 7° and the
implication (i)=-(ii). This completes the proof. =

COROLLARY 7.2. Let k > 1 be an integer. A 2-hyperexpansive operator
T € B(H) has 2-hyperexpansive k-step full backward extension if and only
if (5.10) holds. A 2-hyperexpansive weighted shift W with weight sequence
{A\n}02 has 2-hyperexpansive k-step full backward extension if and only if

Ao < (]{7+ )/k

Proof. The case of T € B(H) can be handled with the help of Proposi-
tions 2.4 and 7.1. By 5°, W*W < %Igz if and only if A\g < /(k+ 1)/k,
which completes the proof. =

REMARK 7.3. It is worth noting that in view of 5° and Corollary 5.7 a 2-
isometric weighted shift W with weight sequence {\,,}°° , has completely hy-
perexpansive k-step full backward extension if and only if \g < v/(k + 1)/k
(this can also be deduced from Theorem 4.2 and Proposition 6.1). If a 2-
isometric operator T € B(H) has completely hyperexpansive k-step full
backward extension, then by Proposition 2.4 and Example 4.7, T has 2-
isometric k-step full backward extension. This and Corollaries 5.7 and 7.2
imply that a 2-isometric operator T' € B(H) has 2-hyperexpansive k-step
full backward extension if and only if it has 2-isometric k-step full backward
extension.

REMARK 7.4. Tt follows from Propositions 2.4 and 7.1 that if T € B(H)
is a 2-hyperexpansive operator, then a nonzero vector h € H is a 2-hyper-
expansive k-step backward extension vector for T if and only if | Th| <
V(kE+1)/k||h|. If T € B(H) is a 2-isometry, then in view of the discussion
in Remark 7.3 for every nonzero vector h € H the following conditions are
equivalent:
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(a) his a 2-hyperexpansive k-step backward extension vector for T,
(b) h is a completely hyperexpansive k-step backward extension vector

for T,

(c) his a 2-isometric k-step backward extension vector for 7.

This and Example 6.5 show that the set of all 2-hyperexpansive k-step back-
ward extension vectors for T = W (/) together with the zero vector is not
a linear space.
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