# Affine bijections of $\mathcal{C}(\mathcal{X}, I)$ 

by

Janko Marovt (Maribor)


#### Abstract

Let $\mathcal{X}$ be a compact Hausdorff space which satisfies the first axiom of countability, $I=[0,1]$ and $\mathcal{C}(\mathcal{X}, I)$ the set of all continuous functions from $\mathcal{X}$ to $I$. If $\varphi$ : $\mathcal{C}(\mathcal{X}, I) \rightarrow \mathcal{C}(\mathcal{X}, I)$ is a bijective affine map then there exists a homeomorphism $\mu: \mathcal{X} \rightarrow \mathcal{X}$ such that for every component $C$ in $\mathcal{X}$ we have either $\varphi(f)(x)=f(\mu(x)), f \in \mathcal{C}(\mathcal{X}, I)$, $x \in C$, or $\varphi(f)(x)=1-f(\mu(x)), f \in \mathcal{C}(\mathcal{X}, I), x \in C$.


1. Introduction and statement of the result. The problem we consider in this paper has been motivated by results of L. Molnár in [15] and [17]. Molnár and several other authors studied preservers of various operations, relations and quantities on Hilbert space effect algebras (see [2, 5, 9, 10, 12, $15-17])$. Let $\mathcal{A}$ be a unital $C^{*}$-algebra. The effects in $\mathcal{A}$ are the positive elements of $\mathcal{A}$ which are less than or equal to the unit of $\mathcal{A}$. The set of all effects in $\mathcal{A}$ is denoted by $E(\mathcal{A})$. If $\mathcal{A}$ equals the algebra $B(\mathcal{H})$ of all bounded linear operators on the complex Hilbert space $\mathcal{H}$, then the corresponding effects are called Hilbert space effects. The concept of effects plays an important role in certain parts of quantum mechanics, for instance, in the quantum theory of measurement (see $[1,4,11]$ ).

The set $E(\mathcal{H})$ of Hilbert space effects can be equipped with several algebraic operations and relations, each having a physical content. In [6] Gudder and Nagy defined the sequential product between effects (see also [7]) by

$$
A \circ B=A^{1 / 2} B A^{1 / 2}, \quad A, B \in E(\mathcal{A})
$$

If $\mathcal{A}, \mathcal{B}$ are unital $C^{*}$-algebras, then a bijective $\operatorname{map} \varphi: E(\mathcal{A}) \rightarrow E(\mathcal{B})$ is called a sequential isomorphism if

$$
\varphi(A \circ B)=\varphi(A) \circ \varphi(B), \quad A, B \in E(\mathcal{A})
$$

Gudder and Greechie described in [5] the general form of sequential automorphisms of the set of all Hilbert space effects assuming that the underlying Hilbert space is at least three-dimensional: every such automorphism

2000 Mathematics Subject Classification: Primary 46J10; Secondary 46E05.
Key words and phrases: preserver, affine map.
$\varphi$ is implemented either by a unitary or an antiunitary operator $U$ of the underlying Hilbert space $\mathcal{H}$, via

$$
\varphi(A)=U A U^{*}, \quad A \in E(\mathcal{H})
$$

This result was generalized by Molnár [17] to the case of effects in general von Neumann algebras. Namely, if $\mathcal{A}, \mathcal{B}$ are von Neumann algebras and $\varphi: E(\mathcal{A}) \rightarrow E(\mathcal{B})$ is a sequential isomorphism, then there are direct decompositions

$$
\mathcal{A}=\mathcal{A}_{1} \oplus \mathcal{A}_{2} \oplus \mathcal{A}_{3} \quad \text { and } \quad \mathcal{B}=\mathcal{B}_{1} \oplus \mathcal{B}_{2} \oplus \mathcal{B}_{3}
$$

within the category of von Neumann algebras and there are bijective maps

$$
\varphi_{1}: E\left(\mathcal{A}_{1}\right) \rightarrow E\left(\mathcal{B}_{1}\right), \quad \Phi_{2}: \mathcal{A}_{2} \rightarrow \mathcal{B}_{2}, \quad \Phi_{3}: \mathcal{A}_{3} \rightarrow \mathcal{B}_{3}
$$

such that
(i) $\mathcal{A}_{1}, \mathcal{B}_{1}$ are commutative and $\mathcal{A}_{2} \oplus \mathcal{A}_{3}, \mathcal{B}_{2} \oplus \mathcal{B}_{3}$ have no commutative direct summands;
(ii) $\varphi_{1}$ is a multiplicative bijection, $\Phi_{2}$ is an algebra ${ }^{*}$-isomorphism, $\Phi_{3}$ is an algebra ${ }^{*}$-antiisomorphism and $\varphi=\varphi_{1} \oplus \Phi_{2} \oplus \Phi_{3}$ on $E(\mathcal{A})$.

In our recent paper [13] we studied the first factor in the above decomposition, i.e., the bijective multiplicative maps between the sets of effects in commutative von Neumann algebras or, more generally, in commutative unital $C^{*}$-algebras. It is well known that every commutative $C^{*}$-algebra is isomorphic to the algebra of all continuous complex-valued functions on a compact Hausdorff space $\mathcal{X}$. Therefore, it is enough to consider the set $\mathcal{C}(\mathcal{X}, I)$ of all continuous functions from $\mathcal{X}$ to the unit interval $I$. The main result in [13] describes the general form of bijective multiplicative maps of $\mathcal{C}(\mathcal{X}, I)$ under the technical condition that $\mathcal{X}$ satisfies the first axiom of countability.

The set $E(\mathcal{H})$ may also be equipped with a partial order $\leq$, which comes from the usual order between self-adjoint operators on $\mathcal{H}$, and one can also define the operation of orthocomplementation by

$$
A \mapsto I-A, \quad A \in E(\mathcal{H})
$$

It turns out that automorphisms of $E(\mathcal{H}), \operatorname{dim} \mathcal{H}>1$, with respect to order and orthocomplementation are again implemented by a unitary or an antiunitary operator $U$ of $\mathcal{H}$ as in the case of sequential automorphisms (see $[2,12,18])$. It seems that a necessary step in understanding the structure of preservers of different types on general von Neumann algebra effects is to investigate the transformations of $\mathcal{C}(\mathcal{X}, I)$. We presented in [14] a structural result describing the bijective transformations of $\mathcal{C}(\mathcal{X}, I)$ which preserve the order $\leq$ in both directions, i.e., $f \leq g$ if and only if $\varphi(f) \leq \varphi(g)$ for
all $f, g \in \mathcal{C}(\mathcal{X}, I)$. Again, we assumed that $\mathcal{X}$ satisfies the first axiom of countability.

The Hilbert space effect algebra is clearly a convex set. So, it is natural to equip it with the operation of convex combinations (called mixture in physics). Automorphisms with respect to this operation were studied, for example, in [8]. These automorphisms, called affine, were determined in [15, Corollary 2], stating that the bijective maps $\varphi: E(\mathcal{H}) \rightarrow E(\mathcal{H})$ which satisfy

$$
\varphi(\lambda A+(1-\lambda) B)=\lambda \varphi(A)+(1-\lambda) \varphi(B)
$$

for all $A, B \in E(\mathcal{H})$ and $\lambda \in I$ are exactly the transformations which are either of the form

$$
\varphi(A)=U A U^{*}, \quad A \in E(\mathcal{H})
$$

or of the form

$$
\varphi(A)=U(I-A) U^{*}, \quad A \in E(\mathcal{H})
$$

where $U$ is either a unitary or an antiunitary operator on $\mathcal{H}$.
In this paper we will study the bijective affine transformations of $\mathcal{C}(\mathcal{X}, I)$, i.e., the bijective maps $\varphi: \mathcal{C}(\mathcal{X}, I) \rightarrow \mathcal{C}(\mathcal{X}, I)$ which satisfy

$$
\varphi(\lambda f+(1-\lambda) g)=\lambda \varphi(f)+(1-\lambda) \varphi(g)
$$

for all $f, g \in \mathcal{C}(\mathcal{X}, I)$ and $\lambda \in I$, under the technical condition that $\mathcal{X}$ satisfies the first axiom of countability.

Theorem 1.1. Let $\mathcal{X}$ be a compact Hausdorff space which satisfies the first axiom of countability and $I=[0,1]$. If $\varphi: \mathcal{C}(\mathcal{X}, I) \rightarrow \mathcal{C}(\mathcal{X}, I)$ is a bijective affine map then there exists a homeomorphism $\mu: \mathcal{X} \rightarrow \mathcal{X}$ such that for every component $C$ in $\mathcal{X}$, either

$$
\varphi(f)(x)=f(\mu(x)) \quad \text { for every } f \in \mathcal{C}(\mathcal{X}, I) \text { and } x \in C
$$

or

$$
\varphi(f)(x)=1-f(\mu(x)) \quad \text { for every } f \in \mathcal{C}(\mathcal{X}, I) \text { and } x \in C
$$

We believe that the same result holds without the first countability assumption.
2. Proof of Theorem 1.1. Let us first recall some well known facts. Let $\mathcal{A}$ be a $C^{*}$-algebra. An element $p \in \mathcal{A}$ is a projection if $p=p^{*}=p^{2}$. An element $x \in \mathcal{A}$ is positive if there exists $y \in \mathcal{A}$ such that $x=y^{*} y$. A point $x$ of a convex set $C$ in a linear space $\mathcal{X}$ is an extreme point of $C$ if the condition $x=t y+(1-t) z$, where $y, z \in C$ and $0<t<1$, implies that $x=y=z$. Recall also (see, for example, [3]) that the extreme points of the set of all positive elements from the unit ball in $\mathcal{A}$ are exactly the projections. Clearly, the set $\mathcal{C}(\mathcal{X})$ of all continuous complex-valued functions on $\mathcal{X}$ is a $C^{*}$-algebra with the pointwise operations, the supremum norm
and $f^{*}=\bar{f}, f \in \mathcal{C}(\mathcal{X})$. The set of all positive elements in the unit ball of $\mathcal{C}(\mathcal{X})$ is $\mathcal{C}(\mathcal{X}, I)$.

Lemma 2.1. Let $\mathcal{X}$ be a compact Hausdorff space. If $\varphi: \mathcal{C}(\mathcal{X}, I) \rightarrow$ $\mathcal{C}(\mathcal{X}, I)$ is a bijective affine map then $\varphi$ preserves the extreme points of $\mathcal{C}(\mathcal{X}, I)$.

The trivial proof of Lemma 2.1 is omitted.
From now on, let $\varphi: \mathcal{C}(\mathcal{X}, I) \rightarrow \mathcal{C}(\mathcal{X}, I)$ be a bijective affine map. By Lemma 2.1, $\varphi$ preserves the projections. A function $f \in \mathcal{C}(\mathcal{X})$ is a projection if $\bar{f}=f=f^{2}$. So, $f \in \mathcal{C}(\mathcal{X}, I)$ is a projection if $f^{2}=f$ and therefore $f(x)(f(x)-1)=0$. For a projection $f \in \mathcal{C}(\mathcal{X}, I)$ and $x \in \mathcal{X}$ we thus obtain

$$
f(x)=1 \quad \text { or } \quad f(x)=0
$$

For $c \in I$, let $c_{\mathcal{X}}(x)=c$ for every $x \in \mathcal{X}$. Since $0_{\mathcal{X}}$ and $1_{\mathcal{X}}$ are projections we see that for every $x \in \mathcal{X}, \varphi\left(1_{\mathcal{X}}\right)(x)=0$ or 1 and $\varphi(0 \mathcal{X})(x)=0$ or 1 . Also,

$$
\varphi(c \mathcal{X})=\varphi\left(c 1_{\mathcal{X}}+(1-c) 0_{\mathcal{X}}\right)=c \varphi\left(1_{\mathcal{X}}\right)+(1-c) \varphi\left(0_{\mathcal{X}}\right)
$$

So, if for an $x \in \mathcal{X}$ we have $\varphi\left(1_{\mathcal{X}}\right)(x)=0$ and $\varphi\left(0_{\mathcal{X}}\right)(x)=0$, then $\varphi\left(c_{\mathcal{X}}\right)(x)=0$ for all $c \in I$. Let $X_{1}$ be the set of all $x \in \mathcal{X}$ which satisfy this condition. If $\varphi\left(1_{\mathcal{X}}\right)(x)=1$ and $\varphi\left(0_{\mathcal{X}}\right)(x)=1$ for an $x \in \mathcal{X}$, then $\varphi\left(c_{\mathcal{X}}\right)(x)=1$ for all $c \in I$. Let $X_{2}$ be the set of all $x \in \mathcal{X}$ which satisfy this condition. If $\varphi(1 \mathcal{X})(x)=1$ and $\varphi(0 \mathcal{X})(x)=0$ for an $x \in \mathcal{X}$, we obtain $\varphi(c \mathcal{X})(x)=c$ for all $c \in I$. Again, let $X_{3}$ be the set of all $x \in \mathcal{X}$ which satisfy this condition. Finally, if $\varphi\left(1_{\mathcal{X}}\right)(x)=0$ and $\varphi\left(0_{\mathcal{X}}\right)(x)=1$ for an $x \in \mathcal{X}$, we obtain $\varphi\left(c_{\mathcal{X}}\right)(x)=1-c$ for all $c \in I$. Let $X_{4}$ be the set of all $x \in \mathcal{X}$ which satisfy this condition.

Assume that $X_{1} \neq \emptyset$ and let $x_{0} \in X_{1}$. Let $f \in \mathcal{C}(\mathcal{X}, I)$ and $g=1_{\mathcal{X}}-f$. Then $g \in \mathcal{C}(\mathcal{X}, I)$. So, $\frac{1}{2} g+\frac{1}{2} f=\left(\frac{1}{2}\right)_{\mathcal{X}}$ and hence

$$
0=\varphi\left(\left(\frac{1}{2}\right)_{\mathcal{X}}\right)\left(x_{0}\right)=\frac{1}{2} \varphi(g)\left(x_{0}\right)+\frac{1}{2} \varphi(f)\left(x_{0}\right)
$$

But then $\varphi(f)\left(x_{0}\right)=0$ for every $f \in \mathcal{C}(\mathcal{X}, I)$, which is a contradiction since $\varphi$ is surjective. So, $X_{1}=\emptyset$. Similarly we prove that $X_{2}=\emptyset$. It follows that

$$
\varphi(c \mathcal{X})(x)=c \quad \text { or } \quad \varphi(c \mathcal{X})(x)=1-c
$$

for all $x \in \mathcal{X}$ and $c \in I$. Notice that then $\varphi\left(\left(\frac{1}{2}\right)_{\mathcal{X}}\right)=\left(\frac{1}{2}\right)_{\mathcal{X}}$. Since $\left(\frac{1}{2}\right)_{\mathcal{X}}=$ $\frac{1}{2} f+\frac{1}{2}(1 \mathcal{X}-f)$ and hence $\left(\frac{1}{2}\right)_{\mathcal{X}}=\frac{1}{2} \varphi(f)+\frac{1}{2} \varphi\left(1_{\mathcal{X}}-f\right)$, we get

$$
\begin{equation*}
\varphi\left(1_{\mathcal{X}}-f\right)=1_{\mathcal{X}}-\varphi(f) \tag{2.1}
\end{equation*}
$$

Notice also that

$$
X_{3}=\varphi\left(1_{\mathcal{X}}\right)^{-1}(1), \quad X_{4}=\varphi\left(1_{\mathcal{X}}\right)^{-1}(0), \quad X_{3} \cup X_{4}=\mathcal{X}
$$

Lemma 2.2. Let $f \in \mathcal{C}(\mathcal{X}, I)$. Then $0<f(x)<1$ for every $x \in \mathcal{X}$ if and only if $0<\varphi(f)(x)<1$ for every $x \in \mathcal{X}$.

Proof. Let $f \in \mathcal{C}(\mathcal{X}, I)$. For $\lambda \in I$ and $x_{0} \in X_{3}$ we obtain

$$
\begin{equation*}
\varphi(\lambda f)\left(x_{0}\right)=\lambda \varphi(f)\left(x_{0}\right)+(1-\lambda) \varphi\left(0_{\mathcal{X}}\right)\left(x_{0}\right)=\lambda \varphi(f)\left(x_{0}\right) \tag{2.2}
\end{equation*}
$$

and for $x_{0} \in X_{4}$ we get

$$
\begin{equation*}
\varphi(\lambda f)\left(x_{0}\right)=\lambda \varphi(f)\left(x_{0}\right)+(1-\lambda) \tag{2.3}
\end{equation*}
$$

Suppose that $f(x) \in(0,1)$ for every $x \in \mathcal{X}$. Since $\mathcal{X}$ is compact there exists $a=\max f$. Then $a \in(0,1)$. Let $1<\lambda_{0}<1 / a$ and $g=\lambda_{0} f$. Since $\lambda_{0} f(x) \leq \lambda_{0} a<1$ for every $x \in \mathcal{X}$, we conclude that $g \in \mathcal{C}(\mathcal{X}, I)$ and $g(x)<1$ for every $x \in \mathcal{X}$. Let $\lambda_{1}=1 / \lambda_{0}$. Also, suppose first that $x_{0} \in X_{3}$. Since $\lambda_{1} \in(0,1)$ we obtain, by (2.2),

$$
\varphi(f)\left(x_{0}\right)=\varphi\left(\lambda_{1} g\right)\left(x_{0}\right)=\lambda_{1} \varphi(g)\left(x_{0}\right)<1
$$

If $x_{0} \in X_{4}$ then by (2.3),

$$
\varphi(f)\left(x_{0}\right)=\varphi\left(\lambda_{1} g\right)\left(x_{0}\right)=\lambda_{1} \varphi(g)\left(x_{0}\right)+1-\lambda_{1}>0
$$

Let now $b=\min f$ and let $\lambda_{0}>1-b$ be such that $\lambda_{0} \in(0,1)$. Let $\lambda_{1}=1 / \lambda_{0}$. Also, let $h(x)=\lambda_{1}(f(x)-1)+1$ for every $x \in \mathcal{X}$. Then, since $f(x)<1$ for every $x \in \mathcal{X}$, we get $h(x)<1$ for every $x \in \mathcal{X}$. Also,

$$
h(x)=\lambda_{1}(f(x)-1)+1 \geq \lambda_{1}(b-1)+1>\frac{1}{1-b}(b-1)+1=0
$$

We conclude that $h \in \mathcal{C}(\mathcal{X}, I)$. Notice that $f=\lambda_{0} h+1-\lambda_{0}$. Again, let first $x_{0} \in X_{3}$. Then

$$
\varphi(f)\left(x_{0}\right)=\lambda_{0} \varphi(h)\left(x_{0}\right)+\left(1-\lambda_{0}\right) \varphi\left(1_{\mathcal{X}}\right)\left(x_{0}\right)=\lambda_{0} \varphi(h)\left(x_{0}\right)+1-\lambda_{0}>0
$$

If $x_{0} \in X_{4}$ then

$$
\varphi(f)\left(x_{0}\right)=\lambda_{0} \varphi(h)\left(x_{0}\right)+\left(1-\lambda_{0}\right) \varphi\left(1_{\mathcal{X}}\right)\left(x_{0}\right)=\lambda_{0} \varphi(h)\left(x_{0}\right)<1
$$

So, $\varphi(f)(x) \in(0,1)$ for every $x \in \mathcal{X}$. Conversely, if $\varphi(f)(x) \in(0,1)$ for every $x \in \mathcal{X}$ then, since $\varphi^{-1}$ has the same properties as $\varphi$, we conclude that $f(x) \in(0,1)$ for every $x \in \mathcal{X}$.

Throughout the proof we will need the notions of 0-proper and 1-proper functions in $\mathcal{C}(\mathcal{X}, I)$. Let $f \in \mathcal{C}(\mathcal{X}, I)$. If $f^{-1}(0) \neq \mathcal{X}$ and $\operatorname{Int} f^{-1}(0) \neq \emptyset$ then $f$ is called 0-proper and we write Int $f^{-1}(0)=Z_{f}$. Similarly, if $f^{-1}(1) \neq \mathcal{X}$ and $\operatorname{Int} f^{-1}(1) \neq \emptyset$ then $f$ is called 1-proper and we set $\operatorname{Int} f^{-1}(1)=O_{f}$.

Lemma 2.3. Let $U$ be an open nonempty subset of $\mathcal{X}$ with $\bar{U} \neq \mathcal{X}$. Then there exists $f \in \mathcal{C}(\mathcal{X}, I)$ such that $f \neq 1 \mathcal{X}, f(\bar{U})=\{1\}$ and $f(x) \neq 0$ for every $x \in \mathcal{X}$. Furthermore, for every such $f$ the function $\varphi(f)$ is either 1-proper or 0-proper.

Proof. By Urysohn's lemma there exists $g \in C(\mathcal{X}, I)$ such that $g \equiv 1$ on $\bar{U}$ and $g \neq 1_{\mathcal{X}}$. Let $c \in(0,1)$ and $f=\max \left\{g, c_{\mathcal{X}}\right\}$. Then $f \in \mathcal{C}(\mathcal{X}, I), f \equiv 1$ on $\bar{U}, f \neq 1_{\mathcal{X}}$ and $f(x) \neq 0$ for every $x \in \mathcal{X}$.

Let $f_{1} \in \mathcal{C}(\mathcal{X}, I), f_{1} \neq 1_{\mathcal{X}}, f_{1}(\bar{U})=\{1\}$ and $f_{1}(x) \neq 0$ for every $x \in \mathcal{X}$. By Urysohn's lemma there exists $f_{2} \in \mathcal{C}(\mathcal{X}, I)$ such that $f_{2} \equiv 1$ on $U^{\mathrm{c}}$, $f_{2} \neq 1_{\mathcal{X}}$ and $f_{2}(x) \neq 0$ for every $x \in \mathcal{X}$. Similarly, there exist $f_{3}, f_{4} \in \mathcal{C}(\mathcal{X}, I)$ such that $f_{3} \equiv 0$ on $\bar{U}, f_{3} \neq 0_{\mathcal{X}}, f_{3}(x) \neq 1$ for every $x \in \mathcal{X}$, and $f_{4} \equiv 0$ on $U^{\mathrm{c}}, f_{4} \neq 0 \mathcal{X}, f_{4}(x) \neq 1$ for every $x \in \mathcal{X}$. Let $h \in \mathcal{C}(\mathcal{X}, I)$ be such that $h\left(x_{0}\right)=1$ for some $x_{0} \in \mathcal{X}$ and let $\lambda \in(0,1)$. Then there exists $i \in\{1,2\}$ such that $f_{i}\left(x_{0}\right)=1$ and hence

$$
\lambda f_{i}\left(x_{0}\right)+(1-\lambda) h\left(x_{0}\right)=1
$$

By Lemma 2.2 there exists $x_{1} \in \mathcal{X}$ such that either $\varphi\left(\lambda f_{i}+(1-\lambda) h\right)\left(x_{1}\right)=1$ or $\varphi\left(\lambda f_{i}+(1-\lambda) h\right)\left(x_{1}\right)=0$. Therefore either

$$
\lambda \varphi\left(f_{i}\right)\left(x_{1}\right)+(1-\lambda) \varphi(h)\left(x_{1}\right)=1 \quad \text { or } \quad \lambda \varphi\left(f_{i}\right)\left(x_{1}\right)+(1-\lambda) \varphi(h)\left(x_{1}\right)=0
$$

and hence either $\varphi\left(f_{i}\right)\left(x_{1}\right)=\varphi(h)\left(x_{1}\right)=1$ or $\varphi\left(f_{i}\right)\left(x_{1}\right)=\varphi(h)\left(x_{1}\right)=0$. Similarly, if $h\left(x_{0}\right)=0$ then there exist $i \in\{3,4\}$ and $x_{2} \in \mathcal{X}$ such that either $\varphi\left(f_{i}\right)\left(x_{2}\right)=\varphi(h)\left(x_{2}\right)=1$ or $\varphi\left(f_{i}\right)\left(x_{2}\right)=\varphi(h)\left(x_{2}\right)=0$.

Suppose now that there exists $x_{\lambda} \in \mathcal{X}$ such that $\varphi\left(f_{i}\right)\left(x_{\lambda}\right) \neq 1$ for all $i \in\{1,2,3,4\}$. By the continuity of $\varphi\left(f_{i}\right)$ there exists an open neighbourhood $V$ of $x_{\lambda}$ such that $\varphi\left(f_{i}\right)(x) \neq 1$ for all $x \in V$ and $i \in\{1,2,3,4\}$. By Urysohn's lemma and the surjectivity of $\varphi$ there exists $f_{\lambda} \in \mathcal{C}(\mathcal{X}, I)$ such that $\varphi\left(f_{\lambda}\right)\left(x_{\lambda}\right)=1, \varphi\left(f_{\lambda}\right)(x) \neq 1$ for every $x \in V^{\mathrm{c}}$ and $\varphi\left(f_{\lambda}\right)(x) \neq 0$ for every $x \in \mathcal{X}$. On the one hand, by Lemma 2.2 there exists $x \in \mathcal{X}$ such that $f_{\lambda}(x)=1$ or $f_{\lambda}(x)=0$. Since $\varphi\left(f_{\lambda}\right)^{-1}(1) \cap \varphi\left(f_{i}\right)^{-1}(1)=\emptyset$ for every $i \in\{1,2,3,4\}$ and $\varphi\left(f_{\lambda}\right)(x) \neq 0$ for every $x \in \mathcal{X}$, we obtain

$$
0<\lambda \varphi\left(f_{\lambda}\right)(x)+(1-\lambda) \varphi\left(f_{i}\right)(x)<1
$$

for all $i \in\{1,2,3,4\}$ and $x \in \mathcal{X}$, and therefore by Lemma 2.2,

$$
0<\lambda f_{\lambda}(x)+(1-\lambda) f_{i}(x)<1
$$

for all $i \in\{1,2,3,4\}$ and $x \in \mathcal{X}$. So, on the other hand, $f_{\lambda}^{-1}(1) \cap f_{i}^{-1}(1)=\emptyset$ and $f_{\lambda}^{-1}(0) \cap f_{i}^{-1}(0)=\emptyset$ for every $i \in\{1,2,3,4\}$ and therefore $f_{\lambda}(x) \in(0,1)$ for every $x \in \mathcal{X}$, which is a contradiction.

Thus for every $x \in \mathcal{X}$ there exists $i \in\{1,2,3,4\}$ such that $\varphi\left(f_{i}\right)(x)=1$. Similarly, for every $x \in \mathcal{X}$ there exists $j \in\{1,2,3,4\}$ such that $\varphi\left(f_{j}\right)(x)=0$. Also for $i \in\{1,2\}$ and $j \in\{3,4\}$ we get $0<\lambda f_{i}(x)+(1-\lambda) f_{j}(x)<1$ for all $x \in \mathcal{X}$ and $\lambda \in(0,1)$. Therefore, by Lemma 2.2 we obtain

$$
0<\lambda \varphi\left(f_{i}\right)(x)+(1-\lambda) \varphi\left(f_{j}\right)(x)<1
$$

for all $x \in \mathcal{X}$ and $\lambda \in(0,1)$. So, if $\varphi\left(f_{i}\right)(x)=0$ then $\varphi\left(f_{j}\right)(x) \neq 0$ and if $\varphi\left(f_{i}\right)(x)=1$ then $\varphi\left(f_{j}\right)(x) \neq 1, i \in\{1,2\}, j \in\{3,4\}$.

Assume that there does not exist a nonempty open set $V_{1} \subset \mathcal{X}$ such that $\varphi\left(f_{1}\right) \equiv 1$ on $V_{1}$ or $\varphi\left(f_{1}\right) \equiv 0$ on $V_{1}$. If $\varphi\left(f_{1}\right)\left(x_{0}\right)=1$ for some $x_{0} \in \mathcal{X}$ then for each open neighbourhood $V$ of $x_{0}$ there exists $x \in V$ such that $\varphi\left(f_{1}\right)(x) \neq 1$
and therefore $\varphi\left(f_{i}\right)(x)=1$ for some $i \in\{2,3,4\}$. Since $\mathcal{X}$ is first countable we can construct a sequence $\left\{x_{j}: j \in \mathbb{N}\right\}$ such that $\lim _{j \rightarrow \infty} x_{j}=x_{0}$ and for some $i \in\{2,3,4\}$ we have $\varphi\left(f_{i}\right)\left(x_{j}\right)=1$ for every $j \in \mathbb{N}$. Then

$$
1=\lim _{j \rightarrow \infty} \varphi\left(f_{i}\right)\left(x_{j}\right)=\varphi\left(f_{i}\right)\left(x_{0}\right)
$$

If $i \in\{3,4\}$ then we get a contradiction by the argument above. So, if $\varphi\left(f_{1}\right)\left(x_{0}\right)=1$ then $\varphi\left(f_{2}\right)\left(x_{0}\right)=1$. Similarly, if $\varphi\left(f_{1}\right)\left(x_{0}\right)=0$ then $\varphi\left(f_{2}\right)\left(x_{0}\right)=0$.

By Urysohn's lemma and the continuity of $f_{2}$ there exist $h \in \mathcal{C}(\mathcal{X}, I)$ and a nonempty open set $U_{1} \subset U$ such that $h(x)=1$ for some $x \in U_{1}, h(x) \neq 1$ for every $x \in U_{1}^{c}$ and $f_{2}(x) \neq 1$ for every $x \in U_{1}$. So, there does not exist $x \in \mathcal{X}$ such that $h(x)=f_{2}(x)=1$. Since $f_{2}(x) \neq 0$ for every $x \in \mathcal{X}$ we see that if $\varphi(h)(x)=1$ then $\varphi\left(f_{2}\right)(x) \neq 1$ and if $\varphi(h)(x)=0$ then $\varphi\left(f_{2}\right)(x) \neq 0$. By Lemma 2.2 there exists $x \in \mathcal{X}$ such that either $\varphi\left(f_{1}\right)(x)=\varphi(h)(x)=1$ or $\varphi\left(f_{1}\right)(x)=\varphi(h)(x)=0$. But then $\varphi\left(f_{2}\right)(x)=1$ in the former case and $\varphi\left(f_{2}\right)(x)=0$ in the latter, which is a contradiction.

Hence there exists a nonempty open set $V_{1}$ such that either $\varphi\left(f_{1}\right) \equiv 1$ on $V_{1}$ or $\varphi\left(f_{1}\right) \equiv 0$ on $V_{1}$. Assume the former. Define $V=\operatorname{Int}\left(\varphi\left(f_{1}\right)^{-1}(1)\right)$. We have proven that $V \neq \emptyset$. Observe that $\varphi\left(f_{1}\right)^{-1}(1) \neq \mathcal{X}$ since $f_{1}$ is not a projection and $\varphi$ preserves the projections. This shows that $\varphi\left(f_{1}\right)$ is 1-proper. Similarly, if we assume the latter then $\varphi\left(f_{1}\right)$ is 0 -proper.

The first part of the next lemma can be proven in the same way as Lemma 2.3, and the second part is a direct consequence of Lemma 2.3 and (2.1).

Lemma 2.4. Let $U$ be an open nonempty subset of $\mathcal{X}$ with $\bar{U} \neq \mathcal{X}$. Then there exists $f \in \mathcal{C}(\mathcal{X}, I)$ such that $f \neq 0 \mathcal{X}, f(\bar{U})=\{0\}$ and $f(x) \neq 1$ for every $x \in \mathcal{X}$. Furthermore, for every such $f$ the function $\varphi(f)$ is either 0 -proper or 1-proper.

Let $c \in(0,1)$. By the surjectivity of $\varphi$ there exists $g_{1} \in \mathcal{C}(\mathcal{X}, I)$ such that

$$
\varphi\left(g_{1}\right)=\max \left\{\varphi\left(1_{\mathcal{X}}\right), c_{\mathcal{X}}\right\}
$$

Then $\varphi\left(g_{1}\right)^{-1}(1)=X_{3}$. From now on let

$$
A=g_{1}^{-1}(1)
$$

Notice that if $\varphi\left(1_{\mathcal{X}}\right)=1_{\mathcal{X}}$ then $A=\mathcal{X}$ since $\varphi$ is injective, and if $\varphi\left(1_{\mathcal{X}}\right)=0_{\mathcal{X}}$ then $A=\emptyset$ by Lemma 2.2.

Lemma 2.5. Suppose that $\varphi\left(1_{\mathcal{X}}\right) \neq 1_{\mathcal{X}}$ and $\varphi\left(1_{\mathcal{X}}\right) \neq 0_{\mathcal{X}}$. Then $A$ is an open and closed nonempty subset of $\mathcal{X}, A \neq \mathcal{X}$, and if $f_{1} \in \mathcal{C}(\mathcal{X}, I)$ satisfies $f_{1}(x) \neq 0$ for every $x \in \mathcal{X}$ and $f_{1}(x) \neq 1$ for every $x \in A^{\mathrm{c}}$, then $\varphi\left(f_{1}\right)(x) \neq 0$ for every $x \in \mathcal{X}$. Similarly, if $f_{2} \in \mathcal{C}(\mathcal{X}, I)$ satisfies $f_{2}(x) \neq 0$
for every $x \in \mathcal{X}$ and $f_{2}(x) \neq 1$ for every $x \in A$, then $\varphi\left(f_{2}\right)(x) \neq 1$ for every $x \in \mathcal{X}$.

Proof. Notice first that $X_{3} \neq \emptyset$ and $X_{3} \neq \mathcal{X}$. Also, $X_{3}$ is open and closed since $\varphi\left(1_{\mathcal{X}}\right)$ is continuous. By the surjectivity of $\varphi$ there exists $g_{2} \in \mathcal{C}(\mathcal{X}, I)$ such that

$$
\varphi\left(g_{2}\right)=\min \left\{\varphi\left(1_{\mathcal{X}}\right), c_{\mathcal{X}}\right\}
$$

So, $\varphi\left(g_{2}\right)^{-1}(0)=X_{4}=X_{3}^{\text {c }}$ and $\varphi\left(g_{2}\right) \equiv c$ on $X_{3}$. Since $\varphi\left(g_{1}\right)^{-1}(1)=X_{3}$ and $\varphi\left(g_{1}\right) \equiv c$ on $X_{3}^{\mathrm{c}}$, we obtain $\varphi\left(g_{1}\right)(x) \neq \varphi\left(g_{2}\right)(x)$ for every $x \in \mathcal{X}$. By (2.1) we obtain $\varphi\left(0_{\mathcal{X}}\right)=1_{\mathcal{X}}-\varphi\left(1_{\mathcal{X}}\right)$ and therefore $\varphi\left(0_{\mathcal{X}}\right)(x) \neq \varphi\left(g_{1}\right)(x)$ and $\varphi(0 \mathcal{X})(x) \neq \varphi\left(g_{2}\right)(x)$ for every $x \in \mathcal{X}$. It then follows by Lemma 2.2 that $g_{1}(x) \neq 0$ and $g_{2}(x) \neq 0$ for every $x \in \mathcal{X}$. By Lemmas 2.3 and 2.4 and since $\varphi^{-1}$ has the same properties as $\varphi$ we establish that $g_{1}$ and $g_{2}$ are 1-proper. Also, for every $x \in \mathcal{X}$ there exist $h_{1}, h_{2} \in\left\{\varphi\left(g_{1}\right), \varphi\left(g_{2}\right), \varphi(0 \mathcal{X})\right\}$ such that $h_{1}(x)=0$ and $h_{2}(x)=1$. Therefore, since $\varphi\left(g_{1}\right)(x) \neq \varphi\left(g_{2}\right)(x)$ for every $x \in \mathcal{X}$, we establish (by using similar arguments to the proof of Lemma 2.3) that $\left(g_{1}^{-1}(1)\right)^{\mathrm{c}}=g_{2}^{-1}(1)$. Clearly, $A \neq \emptyset$ and $A \neq \mathcal{X}$. By the continuity of $g_{1}$ and $g_{2}$ we also conclude that $A$ is open and closed.

Let now $f_{1} \in \mathcal{C}(\mathcal{X}, I)$ be such that $f_{1}(x) \neq 0$ for every $x \in \mathcal{X}$ and $f_{1}(x) \neq 1$ for every $x \in A^{\text {c }}$. Since $f_{1}(x) \neq 1$ if $g_{2}(x)=1$, Lemma 2.2 shows that $\varphi\left(f_{1}\right)(x) \neq 0$ if $\varphi\left(g_{2}\right)(x)=0$. Similarly, since $f_{1}(x) \neq 0$ for every $x \in \mathcal{X}$, we obtain $\varphi\left(f_{1}\right)(x) \neq 0$ if $\varphi(0 \mathcal{X})(x)=0$. So, as $\varphi\left(0_{\mathcal{X}}\right)^{-1}(0)=X_{3}$ and $\varphi\left(g_{2}\right)^{-1}(0)=X_{3}^{\text {c }}$ we conclude that $\varphi\left(f_{1}\right)(x) \neq 0$ for every $x \in \mathcal{X}$. If $f_{2} \in \mathcal{C}(\mathcal{X}, I)$ is such that $f_{2}(x) \neq 0$ for every $x \in \mathcal{X}$ and $f_{2}(x) \neq 1$ for every $x \in A$, then similar arguments yield $\varphi\left(f_{2}\right)(x) \neq 1$ for every $x \in \mathcal{X}$.

The next remark follows from the argument already used before. Namely, if $f, g \in \mathcal{C}(\mathcal{X}, I)$ satisfy $f^{-1}(0) \cap g^{-1}(0)=\emptyset$ and $f^{-1}(1) \cap g^{-1}(1)=\emptyset$ then $\varphi(f)^{-1}(0) \cap \varphi(g)^{-1}(0)=\emptyset$ and $\varphi(f)^{-1}(1) \cap \varphi(g)^{-1}(1)=\emptyset$.

REmark 2.6. If $\varphi\left(1_{\mathcal{X}}\right)=1_{\mathcal{X}}$ then $\varphi(0 \mathcal{X})=0_{\mathcal{X}}$ and therefore if $f_{1} \in$ $\mathcal{C}(\mathcal{X}, I)$ is never zero then $\varphi\left(f_{1}\right)(x)$ is never zero. Similarly, if $\varphi\left(1_{\mathcal{X}}\right)=0_{\mathcal{X}}$ then $\varphi\left(0_{\mathcal{X}}\right)=1_{\mathcal{X}}$ and therefore if $f_{2} \in \mathcal{C}(\mathcal{X}, I)$ is never zero then $\varphi\left(f_{2}\right)(x)$ is never 1 .

Lemma 2.7. Suppose that $\varphi\left(1_{\mathcal{X}}\right) \neq 0_{\mathcal{X}}$. The functions $f_{1}, \ldots, f_{n}$ are 1 -proper and $f_{i}(x) \neq 0$ for every $x \in \mathcal{X}$ and $f_{i}(x) \neq 1$ for every $x \in A^{\mathrm{c}}$, $i \in\{1, \ldots, n\}$, if and only if $\varphi\left(f_{1}\right), \ldots, \varphi\left(f_{n}\right)$ are 1-proper and $\varphi\left(f_{i}\right)(x) \neq 0$ for every $x \in \mathcal{X}$ and $\varphi\left(f_{i}\right)(x) \neq 1$ for every $x \in X_{3}^{\mathrm{c}}, i \in\{1, \ldots, n\}$. Furthermore, in this case

$$
O_{f_{1}} \cap \cdots \cap O_{f_{n}} \neq \emptyset \quad \text { if and only if } \quad O_{\varphi\left(f_{1}\right)} \cap \cdots \cap O_{\varphi\left(f_{n}\right)} \neq \emptyset .
$$

Proof. Let $f_{1} \ldots, f_{n}$ be 1-proper, never zero on $\mathcal{X}$ and never 1 on $A^{\text {c }}$. By Lemma 2.3, each function $\varphi\left(f_{i}\right), i \in\{1, \ldots, n\}$, is 1-proper or 0-proper.

If $\varphi\left(1_{\mathcal{X}}\right) \neq 1_{\mathcal{X}}$ then we conclude by Lemma 2.5 that $\varphi\left(f_{i}\right)(x) \neq 0$ for all $x \in \mathcal{X}$ and $i \in\{1, \ldots, n\}$. So, $\varphi\left(f_{1}\right), \ldots, \varphi\left(f_{n}\right)$ are 1-proper. Also, by Lemma 2.2 since $\varphi(0 \mathcal{X})^{-1}(1)=X_{3}^{\mathrm{c}}$, we see that $\varphi\left(f_{i}\right)(x) \neq 1$ for all $x \in X_{3}^{\mathrm{c}}$ and $i \in\{1, \ldots, n\}$. If $\varphi\left(1_{\mathcal{X}}\right)=1_{\mathcal{X}}$ then $X_{3}=\mathcal{X}$ and so we get the same conclusions using Remark 2.6. Since $\varphi^{-1}$ has the same properties as $\varphi$ we prove the converse implication in the same way.

Let $O_{f_{1}} \cap \cdots \cap O_{f_{n}} \neq \emptyset$. The set $\left(O_{f_{1}} \cap \cdots \cap O_{f_{n}}\right)^{\text {c }}$ is closed, so by Urysohn's lemma there exist $h_{1} \in \mathcal{C}(\mathcal{X}, I)$ and a nonempty open set $U \subset O_{f_{1}} \cap \cdots \cap O_{f_{n}}$ such that $h_{1} \equiv 1$ on $\left(O_{f_{1}} \cap \cdots \cap O_{f_{n}}\right)^{\text {c }}$ and $h_{1}(x) \neq 1$ for every $x \in U$. Also, there exists a 1-proper function $h_{2}$ such that $O_{h_{2}} \subset U, h_{2}(x) \neq 0$ for every $x \in \mathcal{X}$ and $h_{2}(x) \neq 1$ for every $x \in U^{\mathrm{c}}$. By Lemmas 2.3 and 2.5 or in case $\varphi\left(1_{\mathcal{X}}\right)=1_{\mathcal{X}}$ by Lemma 2.3 and Remark 2.6 we conclude that $\varphi\left(h_{2}\right)$ is 1-proper and never zero. Since $h_{2}^{-1}(1) \cap h_{1}^{-1}(1)=\emptyset$ and $h_{2}$ is never zero, we obtain

$$
\begin{equation*}
\varphi\left(h_{2}\right)^{-1}(1) \cap \varphi\left(h_{1}\right)^{-1}(1)=\emptyset \tag{2.4}
\end{equation*}
$$

Again, since $h_{2}$ is never zero, we get

$$
\begin{equation*}
\varphi\left(h_{2}\right)^{-1}(1) \cap \varphi\left(0_{\mathcal{X}}\right)^{-1}(1)=\emptyset \tag{2.5}
\end{equation*}
$$

Also, for every $x \in \mathcal{X}$ and $i \in\{1, \ldots, n\}$ we obtain $h_{1}(x)=1$ or $f_{i}(x)=1$. This implies that for every $i \in\{1, \ldots, n\}$ and $x \in \mathcal{X}$ there exist $g_{i_{1}}, g_{i_{2}} \in$ $\left\{\varphi(0 \mathcal{X}), \varphi\left(h_{1}\right), \varphi\left(f_{i}\right)\right\}$ such that $g_{i_{1}}(x)=0$ and $g_{i_{2}}(x)=1$. We then conclude by (2.4) and (2.5) that $\varphi\left(h_{2}\right)^{-1}(1) \subset \varphi\left(f_{i}\right)^{-1}(1)$ for every $i \in\{1, \ldots, n\}$. Therefore

$$
\emptyset \neq O_{\varphi\left(h_{2}\right)} \subset O_{\varphi\left(f_{1}\right)} \cap \cdots \cap O_{\varphi\left(f_{n}\right)}
$$

We prove the converse implication in a similar way since $\varphi^{-1}$ has the same properties as $\varphi$.

We prove the following lemma in a similar way to Lemma 2.7 by additionally using Lemma 2.4.

Lemma 2.8. Suppose that $\varphi\left(1_{\mathcal{X}}\right) \neq 1_{\mathcal{X}}$. The functions $f_{1}, \ldots, f_{n}$ are 1 -proper and $f_{i}(x) \neq 0$ for every $x \in \mathcal{X}$ and $f_{i}(x) \neq 1$ for every $x \in A$, $i \in\{1, \ldots, n\}$, if and only if $\varphi\left(f_{1}\right), \ldots, \varphi\left(f_{n}\right)$ are 0 -proper and $\varphi\left(f_{i}\right)(x) \neq 1$ for every $x \in \mathcal{X}$ and $\varphi\left(f_{i}\right)(x) \neq 0$ for every $x \in X_{3}^{\mathrm{c}}, i \in\{1, \ldots, n\}$. Furthermore, in this case

$$
O_{f_{1}} \cap \cdots \cap O_{f_{n}} \neq \emptyset \quad \text { if and only if } \quad Z_{\varphi\left(f_{1}\right)} \cap \cdots \cap Z_{\varphi\left(f_{n}\right)} \neq \emptyset
$$

From now on, let $|\mathcal{X}|>1$. We will use this assumption nearly to the end of the proof. In the next step we will construct a homeomorphism $\mu: \mathcal{X} \rightarrow \mathcal{X}$. First assume that $A \neq \emptyset$ and let $x_{0} \in A$. Since $A$ is open there exists an open neighbourhood $A_{x_{0}}$ of $x_{0}$ such that $A_{x_{0}} \subset A$ and $\bar{A}_{x_{0}} \neq \mathcal{X}$. By Urysohn's lemma there exists a 1-proper function $f$ such that $x_{0} \in O_{f}$, $\bar{O}_{f} \subset A_{x_{0}}, f(x) \neq 0$ for every $x \in \mathcal{X}$ and $f(x) \neq 1$ for every $x \in A^{\mathrm{c}}$. Let
$\mathcal{F}_{A_{x_{0}}}$ be the set all such 1-proper functions $f$. Then $x_{0} \in \bigcap_{f \in \mathcal{F}_{A_{x_{0}}}} O_{f}$. Let $x_{1} \in \mathcal{X}, x_{1} \neq x_{0}$. Then there exist open sets $A_{1}, A_{2}$ such that $A_{1} \cap A_{2}=\emptyset$ and $x_{0} \in A_{1}$ and $x_{1} \in A_{2}$. Again by Urysohn's lemma there exists $f \in \mathcal{F}_{A_{x_{0}}}$ such that $\bar{O}_{f} \subset A_{1} \cap A_{x_{0}}$. So, $O_{f} \cap A_{2}=\emptyset$ and hence $x_{1} \notin \bigcap_{f \in \mathcal{F}_{A_{x_{0}}}} O_{f}$. This gives us

$$
\bigcap_{f \in \mathcal{F}_{A x_{0}}} O_{f}=\left\{x_{0}\right\}
$$

The set $A$ is nonempty, so $\varphi(1 \mathcal{X}) \neq 0 \mathcal{X}$. Let $f \in \mathcal{F}_{A_{x_{0}}}$. By Lemma 2.7 then $\varphi(f)$ is also 1-proper. We will next show that there exists $x_{1} \in \mathcal{X}$ such that

$$
\bigcap_{f \in \mathcal{F}_{A_{x_{0}}}} O_{\varphi(f)}=\left\{x_{1}\right\}
$$

First assume that $\bigcap_{f \in \mathcal{F}_{A_{x_{0}}}} \bar{O}_{\varphi(f)}=\emptyset$. Since $\mathcal{X}$ is compact there exist $f_{1}, \ldots, f_{n} \in \mathcal{F}_{A_{x_{0}}}$ such that $\bar{O}_{\varphi\left(f_{1}\right)} \cap \cdots \cap \bar{O}_{\varphi\left(f_{n}\right)}=\emptyset$. But since $O_{f_{1}} \cap \cdots \cap O_{f_{n}}$ $\neq \emptyset$ Lemma 2.7 shows that $O_{\varphi\left(f_{1}\right)} \cap \cdots \cap O_{\varphi\left(f_{n}\right)} \neq \emptyset$, a contradiction. So,

$$
\bigcap_{f \in \mathcal{F}_{A x_{0}}} \bar{O}_{\varphi(f)} \neq \emptyset
$$

Next assume that

$$
\bigcap_{f \in \mathcal{F}_{A_{x_{0}}}} O_{\varphi(f)}=\emptyset
$$

Then there exist $x_{\lambda} \in \bigcap_{f \in \mathcal{F}_{A_{x_{0}}}} \bar{O}_{\varphi(f)}$ and $f_{\lambda} \in \mathcal{F}_{A_{x_{0}}}$ such that $x_{\lambda} \in \bar{O}_{\varphi\left(f_{\lambda}\right)}$ and $x_{\lambda} \notin O_{\varphi\left(f_{\lambda}\right)}$. By Lemma 2.7 we infer that $\bar{O}_{\varphi\left(f_{\lambda}\right)} \subset X_{3}$. By Urysohn's lemma there exists $g_{\lambda} \in \mathcal{C}(\mathcal{X}, I)$ such that $g_{\lambda}\left(x_{0}\right) \neq 1, g_{\lambda}(x) \neq 0$ for every $x \in \mathcal{X}$ and $g_{\lambda} \equiv 1$ on $O_{f_{\lambda}}^{\text {c }}$. So, $g_{\lambda}^{-1}(1) \cup f_{\lambda}^{-1}(1)=\mathcal{X}$ and therefore for every $x \in \mathcal{X}$ there exist $h_{1}, h_{2} \in\left\{\varphi\left(0_{\mathcal{X}}\right), \varphi\left(f_{\lambda}\right), \varphi\left(g_{\lambda}\right)\right\}$ such that $h_{1}(x)=0$ and $h_{2}(x)=1$. Let $C_{\lambda}$ be any open neighbourhood of $x_{\lambda}$ such that $C_{\lambda} \subset X_{3}$. Since $x_{\lambda} \in \bar{O}_{\varphi\left(f_{\lambda}\right)} \backslash O_{\varphi\left(f_{\lambda}\right)}$ there exists $x \in C_{\lambda}$ such that $\varphi\left(f_{\lambda}\right)(x) \neq 1$. Since $\mathcal{X}$ is first countable we can construct a sequence $\left\{x_{i}: i \in \mathbb{N}\right\} \subset X_{3} \backslash \bar{O}_{\varphi\left(f_{\lambda}\right)}$ such that $\lim _{i \rightarrow \infty} x_{i}=x_{\lambda}$ and $\varphi\left(f_{\lambda}\right)\left(x_{i}\right) \neq 1, i \in \mathbb{N}$. Since $\varphi\left(0_{\mathcal{X}}\right)^{-1}(0)=X_{3}$, this shows that $\varphi\left(g_{\lambda}\right)\left(x_{i}\right)=1$ for every $i \in \mathbb{N}$ and therefore by the continuity of $\varphi\left(g_{\lambda}\right)$,

$$
\varphi\left(g_{\lambda}\right)\left(x_{\lambda}\right)=1
$$

Since $g_{\lambda}\left(x_{0}\right) \neq 1$ and $g_{\lambda}$ is continuous there exists an open neighbourhood $U_{1}$ of $x_{0}$ such that $g_{\lambda}(x) \neq 1$ for every $x \in U_{1}$ and $U_{1} \subset U_{\lambda}$. By Urysohn's lemma there exists a 1-proper function $h_{\lambda}$ such that $O_{h_{\lambda}} \subset U_{1} \subset U_{\lambda}, x_{0} \in O_{h_{\lambda}}$, $h_{\lambda}(x) \neq 0$ for every $x \in \mathcal{X}$ and $h_{\lambda}(x) \neq 1$ for every $x \in U_{1}^{\text {c }}$. So, $h_{\lambda} \in \mathcal{F}_{A_{x_{0}}}$. Notice that $h_{\lambda}(x)=g_{\lambda}(x)=1$ for no $x \in \mathcal{X}$. But then, since $h_{\lambda}$ is never
zero, Lemma 2.2 shows that $\varphi\left(h_{\lambda}\right)(x)=\varphi\left(g_{\lambda}\right)(x)=1$ for no $x \in \mathcal{X}$. Hence

$$
\varphi\left(h_{\lambda}\right)\left(x_{\lambda}\right) \neq 1
$$

This is a contradiction since $h_{\lambda} \in \mathcal{F}_{A_{x_{0}}}$ and therefore $x_{\lambda} \in \bar{O}_{\varphi\left(h_{\lambda}\right)}$. We have proven that

$$
\bigcap_{f \in \mathcal{F}_{A_{x_{0}}}} O_{\varphi(f)} \neq \emptyset
$$

Now assume that there exist $x_{1}, x_{2} \in \mathcal{X}, x_{1} \neq x_{2}$, such that $\left\{x_{1}, x_{2}\right\} \subset$ $\bigcap_{f \in \mathcal{F}_{A x_{0}}} O_{\varphi(f)}$. So, $x_{1}, x_{2} \in X_{3}$. Let $V^{\prime}, V^{\prime \prime} \subset X_{3}$ be disjoint open neighbourhoods of $x_{1}$ and $x_{2}$ respectively. By Urysohn's lemma and the surjectivity of $\varphi$ there exists a 1-proper function $\varphi\left(g_{1}\right)$ such that $\bar{O}_{\varphi\left(g_{1}\right)} \subset V^{\prime}, x_{1} \in O_{\varphi\left(g_{1}\right)}$, $\varphi\left(g_{1}\right)(x) \neq 0$ for every $x \in \mathcal{X}$, and $\varphi\left(g_{1}\right)(x) \neq 1$ for every $x \in V^{\prime c}$. Similarly, there exists a 1-proper function $\varphi\left(g_{2}\right)$ such that $\bar{O}_{\varphi\left(g_{2}\right)} \subset V^{\prime \prime}, x_{2} \in O_{\varphi\left(g_{2}\right)}$, $\varphi\left(g_{2}\right)(x) \neq 0$ for every $x \in \mathcal{X}, \varphi\left(g_{2}\right)(x) \neq 1$ for every $x \in V^{\prime \prime c}$. By Lemma 2.7 we conclude that $g_{1}$ and $g_{2}$ are also 1-proper. Furthermore, $O_{g_{1}} \cap O_{g_{2}}=\emptyset$, $g_{i}(x) \neq 0$ for every $x \in \mathcal{X}$ and $g_{i}(x) \neq 1$ for every $x \in A^{c}, i \in\{1,2\}$. Since $\varphi\left(g_{1}\right)^{-1}(1) \cap \varphi\left(g_{2}\right)^{-1}(1)=\emptyset$ and $\varphi\left(g_{1}\right)$ is never zero we obtain $g_{1}^{-1}(1) \cap g_{2}^{-1}(1)=\emptyset$. Hence, $\bar{O}_{g_{1}} \cap \bar{O}_{g_{2}}=\emptyset$. Without loss of generality we may assume that $x_{0} \notin \bar{O}_{g_{1}}$. By Urysohn's lemma there exists $g_{3} \in \mathcal{F}_{A_{x_{0}}}$ such that $\bar{O}_{g_{1}} \cap \bar{O}_{g_{3}}=\emptyset$. By Lemma 2.7 we obtain

$$
O_{\varphi\left(g_{1}\right)} \cap O_{\varphi\left(g_{3}\right)}=\emptyset
$$

hence $x_{1} \notin O_{\varphi\left(g_{3}\right)}$. But since $g_{3} \in \mathcal{F}_{A_{x_{0}}}$ we get $x_{1} \in O_{\varphi\left(g_{3}\right)}$, a contradiction. Therefore

$$
\bigcap_{f \in \mathcal{F}_{A_{x_{0}}}} O_{\varphi(f)}=\left\{x_{1}\right\}
$$

It is easy to check that this intersection is independent of the selection of the neighbourhood $A_{x_{0}}$.

Now assume that $A^{\mathrm{c}} \neq \emptyset$ and let $x_{0} \in A^{\mathrm{c}}$. As before, there exists an open neighbourhood $A_{x_{0}}$ of $x_{0}$ such that $A_{x_{0}} \subset A^{\mathrm{c}}$ and $\bar{A}_{x_{0}} \neq \mathcal{X}$. There also exists a 1-proper function $f$ such that $x_{0} \in O_{f}, \bar{O}_{f} \subset A_{x_{0}}, f(x) \neq 0$ for every $x \in \mathcal{X}$ and $f(x) \neq 1$ for every $x \in A$. Let now $\mathcal{F}_{A_{x_{0}}}$ be the set of all such 1-proper functions $f$. Let $f \in \mathcal{F}_{A_{x_{0}}}$. By Lemma 2.8, $\varphi(f)$ is then 0-proper. By using Lemma 2.8 we can prove as before that there exists $y_{1} \in \mathcal{X}$ such that

$$
\bigcap_{f \in \mathcal{F}_{A_{x_{0}}}} Z_{\varphi(f)}=\left\{y_{1}\right\}
$$

Again we observe that this intersection is independent of the selection of the neighbourhood of $x_{0}$.

We now define $\psi: \mathcal{X} \rightarrow \mathcal{X}$ in the following way. If $x_{0} \in A$ then $\psi$ maps $x_{0}$ to $x_{1}$, and if $x_{0} \in A^{\mathrm{c}}$ then $\psi$ maps $x_{0}$ to $y_{1}$. Notice that $x_{1} \in X_{3}$
and $y_{1} \in X_{3}^{\mathrm{c}}$. We will prove that $\psi$ is a homeomorphism. Let $x_{a} \neq x_{b}$, $x_{a}, x_{b} \in A$. There exist 1-proper functions $f_{1}$ and $f_{2}$ such that $f_{i}(x) \neq 0$ for every $x \in \mathcal{X}, f_{i}(x) \neq 1$ for every $x \in A^{\mathrm{c}}, i \in\{1,2\}$, and $O_{f_{1}}, O_{f_{2}}$ are disjoint neighbourhoods of $x_{a}, x_{b}$ respectively. Since $O_{f_{1}} \cap O_{f_{2}}=\emptyset$, by Lemma 2.7 we get $O_{\varphi\left(f_{1}\right)} \cap O_{\varphi\left(f_{2}\right)}=\emptyset$. This yields

$$
\left\{\psi\left(x_{a}\right)\right\}=\bigcap_{f \in \mathcal{F}_{A_{x_{a}}}} O_{\varphi(f)} \neq \bigcap_{f \in \mathcal{F}_{A_{x_{b}}}} O_{\varphi(f)}=\left\{\psi\left(x_{b}\right)\right\}
$$

So, $\psi\left(x_{a}\right) \neq \psi\left(x_{b}\right)$. Similarly, if $y_{a}, y_{b} \in A^{\text {c }}, y_{a} \neq y_{b}$, then $\psi\left(y_{a}\right) \neq \psi\left(y_{b}\right)$ by Lemma 2.8. If $x_{a} \in A$ and $y_{b} \in A^{\mathrm{c}}$ then $\psi\left(x_{a}\right) \in X_{3}$ and $\psi\left(y_{b}\right) \in X_{3}^{\mathrm{c}}$. So, $\psi$ is injective. We prove that $\psi$ is also surjective by using Lemmas 2.7 and 2.8 and the fact that $\varphi^{-1}$ has the same properties as $\varphi$.

Assume now $\varphi(f)$ is 1-proper and $\varphi(f)(x) \neq 0$ for every $x \in \mathcal{X}$ and $\varphi(f)(x) \neq 1$ for every $x \in X_{3}^{\mathrm{c}}$. Let $x \in O_{\varphi(f)}$. The set $O_{f}$ is then a neighbourhood of $\psi^{-1}(x)$. So, $\psi^{-1}\left(O_{\varphi(f)}\right) \subset O_{f}$. Similarly, $\psi(x) \in O_{\varphi(f)}$ for each $x \in O_{f}$, which yields $\psi\left(O_{f}\right) \subset O_{\varphi(f)}$ and therefore

$$
\psi^{-1}\left(O_{\varphi(f)}\right)=O_{f}
$$

Hence $\psi^{-1}\left(O_{\varphi(f)}\right)$ is an open set. Similarly, if $\varphi(f)$ is 0-proper and $\varphi(f)(x)$ $\neq 1$ for every $x \in \mathcal{X}$ and $\varphi(f)(x) \neq 0$ for every $x \in X_{3}$, then as before we prove that $\psi^{-1}\left(Z_{\varphi(f)}\right)=O_{f}$.

Let now $C \subset \mathcal{X}$ be any nonempty open set. Set $A_{1}=X_{3} \cap C$ and $A_{2}=X_{3}^{\mathrm{c}} \cap C$. Suppose $A_{1} \neq \emptyset$. By Urysohn's lemma we may find for every $a \in A_{1}$ a 1-proper function $f_{a}$ such that $a \in O_{f_{a}}, \bar{O}_{f_{a}} \subset A_{1}, f_{a}(x) \neq 0$ for every $x \in \mathcal{X}$ and $f_{a}(x) \neq 1$ for every $x \in X_{3}^{\text {c }}$. Therefore $A_{1}=\bigcup_{a \in A_{1}} O_{f_{a}}$, hence

$$
\psi^{-1}\left(A_{1}\right)=\bigcup_{a \in A_{1}} \psi^{-1}\left(O_{f_{a}}\right)
$$

Similarly, assuming that $A_{2} \neq \emptyset$ we may find for every $b \in A_{2}$ a 0 -proper function $f_{b}$ such that $b \in Z_{f_{b}}, \bar{Z}_{f_{b}} \subset A_{2}, f_{b}(x) \neq 1$ for every $x \in \mathcal{X}$ and $f_{b}(x) \neq 0$ for every $x \in X_{3}$. Therefore $A_{2}=\bigcup_{b \in A_{2}} Z_{f_{b}}$, hence

$$
\psi^{-1}\left(A_{2}\right)=\bigcup_{b \in A_{2}} \psi^{-1}\left(Z_{f_{b}}\right)
$$

It follows that $\psi^{-1}(C)$ is an open set. This shows that $\psi$ is continuous. Since $\mathcal{X}$ is a compact Hausdorff space and $\psi$ is a continuous bijection we conclude that $\psi$ is a homeomorphism. Set

$$
\mu=\psi^{-1}
$$

To conclude the proof we need the following auxiliary result.

Lemma 2.9. Let $f \in \mathcal{C}(\mathcal{X}, I), x_{1} \in X_{3}$ and $y_{1} \in X_{3}^{\mathrm{c}}$. If $\max f=$ $f\left(\mu\left(x_{1}\right)\right)$ then $\varphi(f)\left(x_{1}\right)=f\left(\mu\left(x_{1}\right)\right)$, and if $\max f=f\left(\mu\left(y_{1}\right)\right)$ then $\varphi(f)\left(y_{1}\right)$ $=1-f\left(\mu\left(y_{1}\right)\right)$.

Proof. Let $f \in \mathcal{C}(\mathcal{X}, I), f \neq 0_{\mathcal{X}}$. Since $\mathcal{X}$ is compact and $\mu$ surjective there exists $x_{1} \in \mathcal{X}$ such that $\max f=f\left(\mu\left(x_{1}\right)\right)=\lambda_{0}$. Suppose first $x_{1} \in X_{3}$ and let $g=\left(1 / \lambda_{0}\right) f$. Then $g \in \mathcal{C}(\mathcal{X}, I)$ and $g\left(\mu\left(x_{1}\right)\right)=1$. Suppose $\varphi(g)\left(x_{1}\right) \neq 1$. Since $\varphi(g)$ is continuous there exists an open neighbourhood $V$ of $x_{1}, V \subset X_{3}$, such that $\varphi(g)(x) \neq 1$ for every $x \in V$. By Urysohn's lemma and the surjectivity of $\varphi$ there exists a 1-proper function $\varphi(h)$ such that $x_{1} \in O_{\varphi(h)}, \varphi(h)(x) \neq 0$ for every $x \in \mathcal{X}$, and $\varphi(h)(x) \neq 1$ for every $x \in V^{\mathrm{c}}$. It follows that $\mu\left(x_{1}\right) \in O_{h}$. On the one hand, we obtain

$$
h\left(\mu\left(x_{1}\right)\right)=g\left(\mu\left(x_{1}\right)\right)=1
$$

but on the other hand, since $\varphi(h)^{-1}(1) \cap \varphi(g)^{-1}(1)=\emptyset$ and $\varphi(h)(x) \neq 0$ for every $x \in \mathcal{X}$, we conclude that $h(x)=g(x)=1$ for no $x \in \mathcal{X}$, a contradiction. So, $\varphi(g)\left(x_{1}\right)=1$. Since $x_{1} \in X_{3}$ it follows that
$\varphi(f)\left(x_{1}\right)=\varphi\left(\lambda_{0} g+\left(1-\lambda_{0}\right) 0_{\mathcal{X}}\right)\left(x_{1}\right)=\lambda_{0} \varphi(g)\left(x_{1}\right)+\left(1-\lambda_{0}\right) \varphi\left(0_{\mathcal{X}}\right)\left(x_{1}\right)=\lambda_{0}$. So, $\varphi(f)\left(x_{1}\right)=f\left(\mu\left(x_{1}\right)\right)$. Suppose now that $y_{1} \in X_{3}^{\mathrm{c}}$ and $\max f=f\left(\mu\left(y_{1}\right)\right)$ $=\lambda_{0}$. Define $g$ as before. Again, by using Lemma 2.8 we prove that $\varphi(g)\left(x_{1}\right)$ $=0$. So,

$$
\varphi(f)\left(y_{1}\right)=\lambda_{0} \varphi(g)\left(y_{1}\right)+\left(1-\lambda_{0}\right) \varphi\left(0_{\mathcal{X}}\right)\left(y_{1}\right)=1-\lambda_{0}
$$

and hence $\varphi(f)\left(y_{1}\right)=1-f\left(\mu\left(y_{1}\right)\right)$.
Let $f \in \mathcal{C}(\mathcal{X}, I), x_{0} \in \mathcal{X}$ and suppose $f\left(\mu\left(x_{0}\right)\right) \neq \max f$. Let $D_{x_{0}}=$ $\left\{x: f(x) \geq f\left(\mu\left(x_{0}\right)\right)\right\}$. Then $D_{x_{0}}$ is a nonempty closed set. Also, define $g: D_{x_{0}} \rightarrow I$ by $g(x)=1-f(x), x \in D_{x_{0}}$. Then $\max g=g\left(\mu\left(x_{0}\right)\right)$. Since $g$ is continuous there exists by Tietze's theorem a continuous extension $g_{1}$ : $\mathcal{X} \rightarrow I$. Define $g_{2}: \mathcal{X} \rightarrow I$ by

$$
g_{2}(x)= \begin{cases}g_{1}(x), & x \in D_{x_{0}} \\ \min \left\{g_{1}(x), g_{1}\left(\mu\left(x_{0}\right)\right)\right\}, & x \in D_{x_{0}}^{\mathrm{c}}\end{cases}
$$

Then $g_{2} \in \mathcal{C}(\mathcal{X}, I)$ and $\max g_{2}=g_{2}\left(\mu\left(x_{0}\right)\right)$. Let now $h=\frac{1}{2} g_{2}+\frac{1}{2} f$. Clearly, $h \in \mathcal{C}(\mathcal{X}, I)$. Suppose first $x \in D_{x_{0}}^{\mathrm{c}}$. Then $f(x)<f\left(\mu\left(x_{0}\right)\right)$ and hence

$$
h(x)<\frac{1}{2} g_{2}\left(\mu\left(x_{0}\right)\right)+\frac{1}{2} f\left(\mu\left(x_{0}\right)\right)=h\left(\mu\left(x_{0}\right)\right)
$$

Next, let $x \in D_{x_{0}}$. Then $g_{2}(x)=1-f(x)$ and hence

$$
h(x)=\frac{1}{2}(1-f(x))+\frac{1}{2} f(x)=\frac{1}{2}
$$

Since $\mu\left(x_{0}\right) \in D_{x_{0}}$ and hence $h\left(\mu\left(x_{0}\right)\right)=1 / 2$ it follows that $\max h=$ $h\left(\mu\left(x_{0}\right)\right)=1 / 2$. Suppose $x_{0} \in X_{3}$. Since $\varphi(h)=\frac{1}{2} \varphi\left(g_{2}\right)+\frac{1}{2} \varphi(f)$ Lemma 2.9
yields

$$
\varphi(f)\left(x_{0}\right)=2 h\left(\mu\left(x_{0}\right)\right)-g_{2}\left(\mu\left(x_{0}\right)\right)=1-g_{2}\left(\mu\left(x_{0}\right)\right)=f\left(\mu\left(x_{0}\right)\right)
$$

Let now $x_{0} \in X_{3}^{\mathrm{c}}$. Again, by Lemma 2.9 we get

$$
\varphi(f)\left(x_{0}\right)=2\left(1-h\left(\mu\left(x_{0}\right)\right)\right)-\left(1-g_{2}\left(\mu\left(x_{0}\right)\right)\right)=g_{2}\left(\mu\left(x_{0}\right)\right)=1-f\left(\mu\left(x_{0}\right)\right)
$$

Let $C$ be a component in $\mathcal{X}$. Then $\varphi\left(1_{\mathcal{X}}\right)(C)$ is connected. It follows that either $\varphi\left(1_{\mathcal{X}}\right)(x)=1$ for every $x \in C$ or $\varphi\left(1_{\mathcal{X}}\right)(x)=0$ for every $x \in C$. So, $C \subset X_{3}$ or $C \subset X_{3}^{\mathrm{c}}$, which shows that either

$$
\varphi(f)(x)=f(\mu(x)) \quad \text { for every } x \in C \text { and } f \in \mathcal{C}(\mathcal{X}, I)
$$

or

$$
\varphi(f)(x)=1-f(\mu(x)) \quad \text { for every } x \in C \text { and } f \in \mathcal{C}(\mathcal{X}, I)
$$

Finally, let $|\mathcal{X}|=1$. Clearly, then $\varphi(f)(x)=f(x)$ or $\varphi(f)(x)=1-f(x)$ for a unique $x \in \mathcal{X}$. This concludes the proof of Theorem 1.1.

## References

[1] P. Busch, P. J. Lahti and P. Mittelstaedt, The Quantum Theory of Measurement, Springer, New York, 1991.
[2] G. Cassinelli, E. De Vito, P. J. Lahti and A. Lavrero, A theorem of Ludwig revisited, Found. Phys. 30 (2000), 175-1761.
[3] J. B. Conway, A Course in Operator Theory, Amer. Math. Soc., Providence, 2000.
[4] A. Dvurečenskij and S. Pulmannová, Recent Trends in Quantum Structures, Kluwer, Dordrecht, 2000.
[5] S. P. Gudder and R. Greechie, Sequential products on effect algebras, Rep. Math. Phys. 49 (2002), 87-111.
[6] S. P. Gudder and G. Nagy, Sequential quantum measurements, J. Math. Phys. 42 (2001), 5212-5222.
[7] -, -, Sequentially independent effects, Proc. Amer. Math. Soc. 130 (2002), 1125-1130.
[8] S. P. Gudder and S. Pulmannová, Representation theorem for convex effect algebras, Comment. Math. Univ. Carolin. 39 (1998), 645-659.
[9] E. Kovács and L. Molnár, An extension of a characterization of the automorphisms of Hilbert space effect algebras, Rep. Math. Phys. 52 (2003), 141-149.
[10] -, -, Preserving some numerical correspondences between Hilbert space effects, ibid. 54 (2004), 201-209.
[11] K. Kraus, States, Effects and Operations, Lecture Notes in Phys. 190, Springer, New York, 1983.
[12] G. Ludwig, Foundations of Quantum Mechanics, Vol. I, Springer, New York, 1983.
[13] J. Marovt, Multiplicative bijections of $\mathcal{C}(\mathcal{X}, I)$, Proc. Amer. Math. Soc. 134 (2006), 1065-1075.
[14] -, Order preserving bijections of $\mathcal{C}(\mathcal{X}, I)$, J. Math. Anal. Appl. 311 (2005), 567-581.
[15] L. Molnár, On some automorphisms of the set of effects on Hilbert space, Lett. Math. Phys. 51 (2000), 37-45.
[16] -, Preservers on Hilbert space effects, Linear Algebra Appl. 370 (2003), 287-300.
[17] L. Molnár, Sequential isomorphisms between the sets of von Neumann algebra effects, Acta Sci. Math. (Szeged) 69 (2003), 755-772.
[18] L. Molnár and Zs. Pales, $\perp$-order automorphisms of Hilbert space effect algebras: The two-dimensional case, J. Math. Phys. 42 (2001), 1907-1912.

EPF - University of Maribor
Razlagova 14
2000 Maribor, Slovenia
E-mail: janko.marovt@uni-mb.si

Received May 19, 2005
Revised version December 23, 2005

