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Affine bijections of C(X , I)

by

Janko Marovt (Maribor)

Abstract. Let X be a compact Hausdorff space which satisfies the first axiom of
countability, I = [0, 1] and C(X , I) the set of all continuous functions from X to I. If ϕ :
C(X , I) → C(X , I) is a bijective affine map then there exists a homeomorphism µ : X → X

such that for every component C in X we have either ϕ(f)(x) = f(µ(x)), f ∈ C(X , I),
x ∈ C, or ϕ(f)(x) = 1 − f(µ(x)), f ∈ C(X , I), x ∈ C.

1. Introduction and statement of the result. The problem we con-
sider in this paper has been motivated by results of L. Molnár in [15] and [17].
Molnár and several other authors studied preservers of various operations,
relations and quantities on Hilbert space effect algebras (see [2, 5, 9, 10, 12,
15–17]). Let A be a unital C∗-algebra. The effects in A are the positive ele-
ments of A which are less than or equal to the unit of A. The set of all effects
in A is denoted by E(A). If A equals the algebra B(H) of all bounded linear
operators on the complex Hilbert space H, then the corresponding effects
are called Hilbert space effects. The concept of effects plays an important
role in certain parts of quantum mechanics, for instance, in the quantum
theory of measurement (see [1, 4, 11]).

The set E(H) of Hilbert space effects can be equipped with several alge-
braic operations and relations, each having a physical content. In [6] Gudder
and Nagy defined the sequential product between effects (see also [7]) by

A ◦B = A1/2BA1/2, A,B ∈ E(A).

If A, B are unital C∗-algebras, then a bijective map ϕ : E(A) → E(B) is
called a sequential isomorphism if

ϕ(A ◦B) = ϕ(A) ◦ ϕ(B), A,B ∈ E(A).

Gudder and Greechie described in [5] the general form of sequential auto-
morphisms of the set of all Hilbert space effects assuming that the under-
lying Hilbert space is at least three-dimensional: every such automorphism
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ϕ is implemented either by a unitary or an antiunitary operator U of the
underlying Hilbert space H, via

ϕ(A) = UAU∗, A ∈ E(H).

This result was generalized by Molnár [17] to the case of effects in gen-
eral von Neumann algebras. Namely, if A, B are von Neumann algebras
and ϕ : E(A) → E(B) is a sequential isomorphism, then there are direct
decompositions

A = A1 ⊕A2 ⊕A3 and B = B1 ⊕ B2 ⊕ B3

within the category of von Neumann algebras and there are bijective maps

ϕ1 : E(A1) → E(B1), Φ2 : A2 → B2, Φ3 : A3 → B3

such that

(i) A1, B1 are commutative and A2 ⊕A3, B2 ⊕B3 have no commutative
direct summands;

(ii) ϕ1 is a multiplicative bijection, Φ2 is an algebra ∗-isomorphism, Φ3 is
an algebra ∗-antiisomorphism and ϕ = ϕ1 ⊕ Φ2 ⊕ Φ3 on E(A).

In our recent paper [13] we studied the first factor in the above decom-
position, i.e., the bijective multiplicative maps between the sets of effects
in commutative von Neumann algebras or, more generally, in commutative
unital C∗-algebras. It is well known that every commutative C∗-algebra is
isomorphic to the algebra of all continuous complex-valued functions on
a compact Hausdorff space X . Therefore, it is enough to consider the set
C(X , I) of all continuous functions from X to the unit interval I. The main
result in [13] describes the general form of bijective multiplicative maps of
C(X , I) under the technical condition that X satisfies the first axiom of
countability.

The set E(H) may also be equipped with a partial order ≤, which comes
from the usual order between self-adjoint operators on H, and one can also
define the operation of orthocomplementation by

A 7→ I −A, A ∈ E(H).

It turns out that automorphisms of E(H), dimH > 1, with respect to order
and orthocomplementation are again implemented by a unitary or an anti-
unitary operator U of H as in the case of sequential automorphisms (see
[2, 12, 18]). It seems that a necessary step in understanding the structure
of preservers of different types on general von Neumann algebra effects is to
investigate the transformations of C(X , I). We presented in [14] a structural
result describing the bijective transformations of C(X , I) which preserve
the order ≤ in both directions, i.e., f ≤ g if and only if ϕ(f) ≤ ϕ(g) for
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all f, g ∈ C(X , I). Again, we assumed that X satisfies the first axiom of
countability.

The Hilbert space effect algebra is clearly a convex set. So, it is natural
to equip it with the operation of convex combinations (called mixture in
physics). Automorphisms with respect to this operation were studied, for
example, in [8]. These automorphisms, called affine, were determined in
[15, Corollary 2], stating that the bijective maps ϕ : E(H) → E(H) which
satisfy

ϕ(λA+ (1 − λ)B) = λϕ(A) + (1 − λ)ϕ(B)

for all A,B ∈ E(H) and λ ∈ I are exactly the transformations which are
either of the form

ϕ(A) = UAU∗, A ∈ E(H),

or of the form
ϕ(A) = U(I −A)U∗, A ∈ E(H),

where U is either a unitary or an antiunitary operator on H.
In this paper we will study the bijective affine transformations of C(X , I),

i.e., the bijective maps ϕ : C(X , I) → C(X , I) which satisfy

ϕ(λf + (1 − λ)g) = λϕ(f) + (1 − λ)ϕ(g)

for all f, g ∈ C(X , I) and λ ∈ I, under the technical condition that X satisfies
the first axiom of countability.

Theorem 1.1. Let X be a compact Hausdorff space which satisfies the

first axiom of countability and I = [0, 1]. If ϕ : C(X , I) → C(X , I) is a

bijective affine map then there exists a homeomorphism µ : X → X such

that for every component C in X , either

ϕ(f)(x) = f(µ(x)) for every f ∈ C(X , I) and x ∈ C

or

ϕ(f)(x) = 1 − f(µ(x)) for every f ∈ C(X , I) and x ∈ C.

We believe that the same result holds without the first countability as-
sumption.

2. Proof of Theorem 1.1. Let us first recall some well known facts.
Let A be a C∗-algebra. An element p ∈ A is a projection if p = p∗ = p2.
An element x ∈ A is positive if there exists y ∈ A such that x = y∗y.
A point x of a convex set C in a linear space X is an extreme point of C
if the condition x = ty + (1 − t)z, where y, z ∈ C and 0 < t < 1, implies
that x = y = z. Recall also (see, for example, [3]) that the extreme points
of the set of all positive elements from the unit ball in A are exactly the
projections. Clearly, the set C(X ) of all continuous complex-valued functions
on X is a C∗-algebra with the pointwise operations, the supremum norm
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and f∗ = f , f ∈ C(X ). The set of all positive elements in the unit ball of
C(X ) is C(X , I).

Lemma 2.1. Let X be a compact Hausdorff space. If ϕ : C(X , I) →
C(X , I) is a bijective affine map then ϕ preserves the extreme points of

C(X , I).

The trivial proof of Lemma 2.1 is omitted.
From now on, let ϕ : C(X , I) → C(X , I) be a bijective affine map. By

Lemma 2.1, ϕ preserves the projections. A function f ∈ C(X ) is a projection
if f = f = f2. So, f ∈ C(X , I) is a projection if f2 = f and therefore
f(x)(f(x)− 1) = 0. For a projection f ∈ C(X , I) and x ∈ X we thus obtain

f(x) = 1 or f(x) = 0.

For c ∈ I, let cX (x) = c for every x ∈ X . Since 0X and 1X are projections
we see that for every x ∈ X , ϕ(1X )(x) = 0 or 1 and ϕ(0X )(x) = 0 or 1. Also,

ϕ(cX ) = ϕ(c1X + (1 − c)0X ) = cϕ(1X ) + (1 − c)ϕ(0X ).

So, if for an x∈X we have ϕ(1X )(x)=0 and ϕ(0X )(x)=0, then ϕ(cX )(x)=0
for all c ∈ I. Let X1 be the set of all x ∈ X which satisfy this condition.
If ϕ(1X )(x) = 1 and ϕ(0X )(x) = 1 for an x ∈ X , then ϕ(cX )(x) = 1 for
all c ∈ I. Let X2 be the set of all x ∈ X which satisfy this condition. If
ϕ(1X )(x) = 1 and ϕ(0X )(x) = 0 for an x ∈ X , we obtain ϕ(cX )(x) = c
for all c ∈ I. Again, let X3 be the set of all x ∈ X which satisfy this
condition. Finally, if ϕ(1X )(x) = 0 and ϕ(0X )(x) = 1 for an x ∈ X , we
obtain ϕ(cX )(x) = 1 − c for all c ∈ I. Let X4 be the set of all x ∈ X which
satisfy this condition.

Assume that X1 6= ∅ and let x0 ∈ X1. Let f ∈ C(X , I) and g = 1X − f .
Then g ∈ C(X , I). So, 1

2g + 1
2f =

(

1
2

)

X
and hence

0 = ϕ

((

1

2

)

X

)

(x0) =
1

2
ϕ(g)(x0) +

1

2
ϕ(f)(x0).

But then ϕ(f)(x0) = 0 for every f ∈ C(X , I), which is a contradiction since
ϕ is surjective. So, X1 = ∅. Similarly we prove that X2 = ∅. It follows that

ϕ(cX )(x) = c or ϕ(cX )(x) = 1 − c

for all x ∈ X and c ∈ I. Notice that then ϕ
((

1
2

)

X

)

=
(

1
2

)

X
. Since

(

1
2

)

X
=

1
2f + 1

2(1X − f) and hence
(

1
2

)

X
= 1

2ϕ(f) + 1
2ϕ(1X − f), we get

(2.1) ϕ(1X − f) = 1X − ϕ(f).

Notice also that

X3 = ϕ(1X )−1(1), X4 = ϕ(1X )−1(0), X3 ∪X4 = X .

Lemma 2.2. Let f ∈ C(X , I). Then 0 < f(x) < 1 for every x ∈ X if

and only if 0 < ϕ(f)(x) < 1 for every x ∈ X .
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Proof. Let f ∈ C(X , I). For λ ∈ I and x0 ∈ X3 we obtain

(2.2) ϕ(λf)(x0) = λϕ(f)(x0) + (1 − λ)ϕ(0X )(x0) = λϕ(f)(x0)

and for x0 ∈ X4 we get

(2.3) ϕ(λf)(x0) = λϕ(f)(x0) + (1 − λ).

Suppose that f(x) ∈ (0, 1) for every x ∈ X . Since X is compact there
exists a = max f . Then a ∈ (0, 1). Let 1 < λ0 < 1/a and g = λ0f . Since
λ0f(x) ≤ λ0a < 1 for every x ∈ X , we conclude that g ∈ C(X , I) and
g(x) < 1 for every x ∈ X . Let λ1 = 1/λ0. Also, suppose first that x0 ∈ X3.
Since λ1 ∈ (0, 1) we obtain, by (2.2),

ϕ(f)(x0) = ϕ(λ1g)(x0) = λ1ϕ(g)(x0) < 1.

If x0 ∈ X4 then by (2.3),

ϕ(f)(x0) = ϕ(λ1g)(x0) = λ1ϕ(g)(x0) + 1 − λ1 > 0.

Let now b = min f and let λ0 > 1−b be such that λ0 ∈ (0, 1). Let λ1 = 1/λ0.
Also, let h(x) = λ1(f(x) − 1) + 1 for every x ∈ X . Then, since f(x) < 1 for
every x ∈ X , we get h(x) < 1 for every x ∈ X . Also,

h(x) = λ1(f(x) − 1) + 1 ≥ λ1(b− 1) + 1 >
1

1 − b
(b− 1) + 1 = 0.

We conclude that h ∈ C(X , I). Notice that f = λ0h+1−λ0. Again, let first
x0 ∈ X3. Then

ϕ(f)(x0) = λ0ϕ(h)(x0) + (1 − λ0)ϕ(1X )(x0) = λ0ϕ(h)(x0) + 1 − λ0 > 0.

If x0 ∈ X4 then

ϕ(f)(x0) = λ0ϕ(h)(x0) + (1 − λ0)ϕ(1X )(x0) = λ0ϕ(h)(x0) < 1.

So, ϕ(f)(x) ∈ (0, 1) for every x ∈ X . Conversely, if ϕ(f)(x) ∈ (0, 1) for
every x ∈ X then, since ϕ−1 has the same properties as ϕ, we conclude that
f(x) ∈ (0, 1) for every x ∈ X .

Throughout the proof we will need the notions of 0-proper and 1-proper
functions in C(X , I). Let f ∈ C(X , I). If f−1(0) 6= X and Intf−1(0) 6= ∅ then
f is called 0-proper and we write Int f−1(0) = Zf . Similarly, if f−1(1) 6= X
and Int f−1(1) 6= ∅ then f is called 1-proper and we set Int f−1(1) = Of .

Lemma 2.3. Let U be an open nonempty subset of X with U 6= X . Then

there exists f ∈ C(X , I) such that f 6= 1X , f(U) = {1} and f(x) 6= 0 for

every x ∈ X . Furthermore, for every such f the function ϕ(f) is either

1-proper or 0-proper.

Proof. By Urysohn’s lemma there exists g ∈ C(X , I) such that g ≡ 1 on
U and g 6= 1X . Let c ∈ (0, 1) and f = max{g, cX}. Then f ∈ C(X , I), f ≡ 1
on U , f 6= 1X and f(x) 6= 0 for every x ∈ X .
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Let f1 ∈ C(X , I), f1 6= 1X , f1(U) = {1} and f1(x) 6= 0 for every x ∈ X .
By Urysohn’s lemma there exists f2 ∈ C(X , I) such that f2 ≡ 1 on U c,
f2 6= 1X and f2(x) 6= 0 for every x ∈ X . Similarly, there exist f3, f4 ∈ C(X , I)
such that f3 ≡ 0 on U , f3 6= 0X , f3(x) 6= 1 for every x ∈ X , and f4 ≡ 0
on U c, f4 6= 0X , f4(x) 6= 1 for every x ∈ X . Let h ∈ C(X , I) be such that
h(x0) = 1 for some x0 ∈ X and let λ ∈ (0, 1). Then there exists i ∈ {1, 2}
such that fi(x0) = 1 and hence

λfi(x0) + (1 − λ)h(x0) = 1.

By Lemma 2.2 there exists x1 ∈ X such that either ϕ(λfi+(1−λ)h)(x1) = 1
or ϕ(λfi + (1 − λ)h)(x1) = 0. Therefore either

λϕ(fi)(x1) + (1 − λ)ϕ(h)(x1) = 1 or λϕ(fi)(x1) + (1 − λ)ϕ(h)(x1) = 0

and hence either ϕ(fi)(x1) = ϕ(h)(x1) = 1 or ϕ(fi)(x1) = ϕ(h)(x1) = 0.
Similarly, if h(x0) = 0 then there exist i ∈ {3, 4} and x2 ∈ X such that
either ϕ(fi)(x2) = ϕ(h)(x2) = 1 or ϕ(fi)(x2) = ϕ(h)(x2) = 0.

Suppose now that there exists xλ ∈ X such that ϕ(fi)(xλ) 6= 1 for all
i ∈ {1, 2, 3, 4}. By the continuity of ϕ(fi) there exists an open neighbourhood
V of xλ such that ϕ(fi)(x) 6= 1 for all x ∈ V and i ∈ {1, 2, 3, 4}. By
Urysohn’s lemma and the surjectivity of ϕ there exists fλ ∈ C(X , I) such
that ϕ(fλ)(xλ) = 1, ϕ(fλ)(x) 6= 1 for every x ∈ V c and ϕ(fλ)(x) 6= 0 for
every x ∈ X . On the one hand, by Lemma 2.2 there exists x ∈ X such
that fλ(x) = 1 or fλ(x) = 0. Since ϕ(fλ)−1(1) ∩ ϕ(fi)

−1(1) = ∅ for every
i ∈ {1, 2, 3, 4} and ϕ(fλ)(x) 6= 0 for every x ∈ X , we obtain

0 < λϕ(fλ)(x) + (1 − λ)ϕ(fi)(x) < 1

for all i ∈ {1, 2, 3, 4} and x ∈ X , and therefore by Lemma 2.2,

0 < λfλ(x) + (1 − λ)fi(x) < 1

for all i ∈ {1, 2, 3, 4} and x ∈ X . So, on the other hand, f−1
λ (1)∩ f−1

i (1) = ∅

and f−1
λ (0)∩f−1

i (0) = ∅ for every i ∈ {1, 2, 3, 4} and therefore fλ(x) ∈ (0, 1)
for every x ∈ X , which is a contradiction.

Thus for every x ∈ X there exists i ∈ {1, 2, 3, 4} such that ϕ(fi)(x) = 1.
Similarly, for every x ∈ X there exists j ∈ {1, 2, 3, 4} such that ϕ(fj)(x) = 0.
Also for i ∈ {1, 2} and j ∈ {3, 4} we get 0 < λfi(x) + (1 − λ)fj(x) < 1 for
all x ∈ X and λ ∈ (0, 1). Therefore, by Lemma 2.2 we obtain

0 < λϕ(fi)(x) + (1 − λ)ϕ(fj)(x) < 1

for all x ∈ X and λ ∈ (0, 1). So, if ϕ(fi)(x) = 0 then ϕ(fj)(x) 6= 0 and if
ϕ(fi)(x) = 1 then ϕ(fj)(x) 6= 1, i ∈ {1, 2}, j ∈ {3, 4}.

Assume that there does not exist a nonempty open set V1 ⊂ X such that
ϕ(f1) ≡ 1 on V1 or ϕ(f1) ≡ 0 on V1. If ϕ(f1)(x0) = 1 for some x0 ∈ X then for
each open neighbourhood V of x0 there exists x ∈ V such that ϕ(f1)(x) 6= 1
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and therefore ϕ(fi)(x) = 1 for some i ∈ {2, 3, 4}. Since X is first countable
we can construct a sequence {xj : j ∈ N} such that limj→∞ xj = x0 and for
some i ∈ {2, 3, 4} we have ϕ(fi)(xj) = 1 for every j ∈ N. Then

1 = lim
j→∞

ϕ(fi)(xj) = ϕ(fi)(x0).

If i ∈ {3, 4} then we get a contradiction by the argument above. So,
if ϕ(f1)(x0) = 1 then ϕ(f2)(x0) = 1. Similarly, if ϕ(f1)(x0) = 0 then
ϕ(f2)(x0) = 0.

By Urysohn’s lemma and the continuity of f2 there exist h ∈ C(X , I) and
a nonempty open set U1 ⊂ U such that h(x) = 1 for some x ∈ U1, h(x) 6= 1
for every x ∈ U c

1 and f2(x) 6= 1 for every x ∈ U1. So, there does not exist
x ∈ X such that h(x) = f2(x) = 1. Since f2(x) 6= 0 for every x ∈ X we see
that if ϕ(h)(x) = 1 then ϕ(f2)(x) 6= 1 and if ϕ(h)(x) = 0 then ϕ(f2)(x) 6= 0.
By Lemma 2.2 there exists x ∈ X such that either ϕ(f1)(x) = ϕ(h)(x) = 1
or ϕ(f1)(x) = ϕ(h)(x) = 0. But then ϕ(f2)(x) = 1 in the former case and
ϕ(f2)(x) = 0 in the latter, which is a contradiction.

Hence there exists a nonempty open set V1 such that either ϕ(f1) ≡ 1
on V1 or ϕ(f1) ≡ 0 on V1. Assume the former. Define V = Int(ϕ(f1)

−1(1)).
We have proven that V 6= ∅. Observe that ϕ(f1)

−1(1) 6= X since f1 is
not a projection and ϕ preserves the projections. This shows that ϕ(f1) is
1-proper. Similarly, if we assume the latter then ϕ(f1) is 0-proper.

The first part of the next lemma can be proven in the same way as
Lemma 2.3, and the second part is a direct consequence of Lemma 2.3
and (2.1).

Lemma 2.4. Let U be an open nonempty subset of X with U 6= X . Then

there exists f ∈ C(X , I) such that f 6= 0X , f(U) = {0} and f(x) 6= 1 for

every x ∈ X . Furthermore, for every such f the function ϕ(f) is either

0-proper or 1-proper.

Let c ∈ (0, 1). By the surjectivity of ϕ there exists g1 ∈ C(X , I) such that

ϕ(g1) = max{ϕ(1X ), cX }.

Then ϕ(g1)
−1(1) = X3. From now on let

A = g−1
1 (1).

Notice that if ϕ(1X ) = 1X then A = X since ϕ is injective, and if ϕ(1X ) = 0X
then A = ∅ by Lemma 2.2.

Lemma 2.5. Suppose that ϕ(1X ) 6= 1X and ϕ(1X ) 6= 0X . Then A is

an open and closed nonempty subset of X , A 6= X , and if f1 ∈ C(X , I)
satisfies f1(x) 6= 0 for every x ∈ X and f1(x) 6= 1 for every x ∈ Ac, then

ϕ(f1)(x) 6= 0 for every x ∈ X . Similarly , if f2 ∈ C(X , I) satisfies f2(x) 6= 0
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for every x ∈ X and f2(x) 6= 1 for every x ∈ A, then ϕ(f2)(x) 6= 1 for every

x ∈ X .

Proof. Notice first that X3 6= ∅ and X3 6= X . Also, X3 is open and closed
since ϕ(1X ) is continuous. By the surjectivity of ϕ there exists g2 ∈ C(X , I)
such that

ϕ(g2) = min{ϕ(1X ), cX}.

So, ϕ(g2)
−1(0) = X4 = Xc

3 and ϕ(g2) ≡ c on X3. Since ϕ(g1)
−1(1) = X3 and

ϕ(g1) ≡ c on Xc
3, we obtain ϕ(g1)(x) 6= ϕ(g2)(x) for every x ∈ X . By (2.1)

we obtain ϕ(0X ) = 1X − ϕ(1X ) and therefore ϕ(0X )(x) 6= ϕ(g1)(x) and
ϕ(0X )(x) 6= ϕ(g2)(x) for every x ∈ X . It then follows by Lemma 2.2 that
g1(x) 6= 0 and g2(x) 6= 0 for every x ∈ X . By Lemmas 2.3 and 2.4 and since
ϕ−1 has the same properties as ϕ we establish that g1 and g2 are 1-proper.
Also, for every x ∈ X there exist h1, h2 ∈ {ϕ(g1), ϕ(g2), ϕ(0X )} such that
h1(x) = 0 and h2(x) = 1. Therefore, since ϕ(g1)(x) 6= ϕ(g2)(x) for every
x ∈ X , we establish (by using similar arguments to the proof of Lemma 2.3)
that (g−1

1 (1))c = g−1
2 (1). Clearly, A 6= ∅ and A 6= X . By the continuity of g1

and g2 we also conclude that A is open and closed.

Let now f1 ∈ C(X , I) be such that f1(x) 6= 0 for every x ∈ X and
f1(x) 6= 1 for every x ∈ Ac. Since f1(x) 6= 1 if g2(x) = 1, Lemma 2.2
shows that ϕ(f1)(x) 6= 0 if ϕ(g2)(x) = 0. Similarly, since f1(x) 6= 0 for every
x ∈ X , we obtain ϕ(f1)(x) 6= 0 if ϕ(0X )(x) = 0. So, as ϕ(0X )−1(0) = X3

and ϕ(g2)
−1(0) = Xc

3 we conclude that ϕ(f1)(x) 6= 0 for every x ∈ X . If
f2 ∈ C(X , I) is such that f2(x) 6= 0 for every x ∈ X and f2(x) 6= 1 for every
x ∈ A, then similar arguments yield ϕ(f2)(x) 6= 1 for every x ∈ X .

The next remark follows from the argument already used before. Namely,
if f, g ∈ C(X , I) satisfy f−1(0) ∩ g−1(0) = ∅ and f−1(1) ∩ g−1(1) = ∅ then
ϕ(f)−1(0) ∩ ϕ(g)−1(0) = ∅ and ϕ(f)−1(1) ∩ ϕ(g)−1(1) = ∅.

Remark 2.6. If ϕ(1X ) = 1X then ϕ(0X ) = 0X and therefore if f1 ∈
C(X , I) is never zero then ϕ(f1)(x) is never zero. Similarly, if ϕ(1X ) = 0X
then ϕ(0X ) = 1X and therefore if f2 ∈ C(X , I) is never zero then ϕ(f2)(x)
is never 1.

Lemma 2.7. Suppose that ϕ(1X ) 6= 0X . The functions f1, . . . , fn are

1-proper and fi(x) 6= 0 for every x ∈ X and fi(x) 6= 1 for every x ∈ Ac,
i ∈ {1, . . . , n}, if and only if ϕ(f1), . . . , ϕ(fn) are 1-proper and ϕ(fi)(x) 6= 0
for every x ∈ X and ϕ(fi)(x) 6= 1 for every x ∈ Xc

3, i ∈ {1, . . . , n}. Fur-

thermore, in this case

Of1
∩ · · · ∩Ofn

6= ∅ if and only if Oϕ(f1) ∩ · · · ∩Oϕ(fn) 6= ∅.

Proof. Let f1 . . . , fn be 1-proper, never zero on X and never 1 on Ac. By
Lemma 2.3, each function ϕ(fi), i ∈ {1, . . . , n}, is 1-proper or 0-proper.
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If ϕ(1X ) 6= 1X then we conclude by Lemma 2.5 that ϕ(fi)(x) 6= 0 for
all x ∈ X and i ∈ {1, . . . , n}. So, ϕ(f1), . . . , ϕ(fn) are 1-proper. Also, by
Lemma 2.2 since ϕ(0X )−1(1) = Xc

3, we see that ϕ(fi)(x) 6= 1 for all x ∈ Xc
3

and i ∈ {1, . . . , n}. If ϕ(1X ) = 1X then X3 = X and so we get the same
conclusions using Remark 2.6. Since ϕ−1 has the same properties as ϕ we
prove the converse implication in the same way.

Let Of1
∩· · ·∩Ofn

6= ∅. The set (Of1
∩· · ·∩Ofn

)c is closed, so by Urysohn’s
lemma there exist h1 ∈ C(X , I) and a nonempty open set U ⊂ Of1

∩· · ·∩Ofn

such that h1 ≡ 1 on (Of1
∩ · · · ∩Ofn

)c and h1(x) 6= 1 for every x ∈ U . Also,
there exists a 1-proper function h2 such that Oh2

⊂ U , h2(x) 6= 0 for every
x ∈ X and h2(x) 6= 1 for every x ∈ U c. By Lemmas 2.3 and 2.5 or in
case ϕ(1X ) = 1X by Lemma 2.3 and Remark 2.6 we conclude that ϕ(h2) is
1-proper and never zero. Since h−1

2 (1)∩h−1
1 (1) = ∅ and h2 is never zero, we

obtain

(2.4) ϕ(h2)
−1(1) ∩ ϕ(h1)

−1(1) = ∅.

Again, since h2 is never zero, we get

(2.5) ϕ(h2)
−1(1) ∩ ϕ(0X )−1(1) = ∅.

Also, for every x ∈ X and i ∈ {1, . . . , n} we obtain h1(x) = 1 or fi(x) = 1.
This implies that for every i ∈ {1, . . . , n} and x ∈ X there exist gi1 , gi2 ∈
{ϕ(0X ), ϕ(h1), ϕ(fi)} such that gi1(x) = 0 and gi2(x) = 1. We then conclude
by (2.4) and (2.5) that ϕ(h2)

−1(1) ⊂ ϕ(fi)
−1(1) for every i ∈ {1, . . . , n}.

Therefore
∅ 6= Oϕ(h2) ⊂ Oϕ(f1) ∩ · · · ∩Oϕ(fn).

We prove the converse implication in a similar way since ϕ−1 has the same
properties as ϕ.

We prove the following lemma in a similar way to Lemma 2.7 by addi-
tionally using Lemma 2.4.

Lemma 2.8. Suppose that ϕ(1X ) 6= 1X . The functions f1, . . . , fn are

1-proper and fi(x) 6= 0 for every x ∈ X and fi(x) 6= 1 for every x ∈ A,
i ∈ {1, . . . , n}, if and only if ϕ(f1), . . . , ϕ(fn) are 0-proper and ϕ(fi)(x) 6= 1
for every x∈X and ϕ(fi)(x) 6= 0 for every x ∈ Xc

3, i ∈ {1, . . . , n}. Further-

more, in this case

Of1
∩ · · · ∩Ofn

6= ∅ if and only if Zϕ(f1) ∩ · · · ∩ Zϕ(fn) 6= ∅.

From now on, let |X | > 1. We will use this assumption nearly to the
end of the proof. In the next step we will construct a homeomorphism
µ : X → X . First assume that A 6= ∅ and let x0 ∈ A. Since A is open there
exists an open neighbourhood Ax0

of x0 such that Ax0
⊂ A and Ax0

6= X .
By Urysohn’s lemma there exists a 1-proper function f such that x0 ∈ Of ,
Of ⊂ Ax0

, f(x) 6= 0 for every x ∈ X and f(x) 6= 1 for every x ∈ Ac. Let
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FAx0
be the set all such 1-proper functions f . Then x0 ∈

⋂

f∈FAx0

Of . Let

x1 ∈ X , x1 6= x0. Then there exist open sets A1, A2 such that A1 ∩ A2 = ∅
and x0 ∈ A1 and x1 ∈ A2. Again by Urysohn’s lemma there exists f ∈ FAx0

such that Of ⊂ A1 ∩ Ax0
. So, Of ∩ A2 = ∅ and hence x1 /∈

⋂

f∈FAx0

Of .

This gives us
⋂

f∈FAx0

Of = {x0}.

The set A is nonempty, so ϕ(1X ) 6= 0X . Let f ∈ FAx0
. By Lemma 2.7 then

ϕ(f) is also 1-proper. We will next show that there exists x1 ∈ X such that
⋂

f∈FAx0

Oϕ(f) = {x1}.

First assume that
⋂

f∈FAx0

Oϕ(f) = ∅. Since X is compact there exist

f1, . . . , fn ∈FAx0
such that Oϕ(f1)∩· · ·∩Oϕ(fn) = ∅. But since Of1

∩· · ·∩Ofn

6= ∅ Lemma 2.7 shows that Oϕ(f1) ∩ · · · ∩Oϕ(fn) 6= ∅, a contradiction. So,
⋂

f∈FAx0

Oϕ(f) 6= ∅.

Next assume that
⋂

f∈FAx0

Oϕ(f) = ∅.

Then there exist xλ ∈
⋂

f∈FAx0

Oϕ(f) and fλ ∈ FAx0
such that xλ ∈ Oϕ(fλ)

and xλ /∈ Oϕ(fλ). By Lemma 2.7 we infer that Oϕ(fλ) ⊂ X3. By Urysohn’s
lemma there exists gλ ∈ C(X , I) such that gλ(x0) 6= 1, gλ(x) 6= 0 for every
x ∈ X and gλ ≡ 1 on Oc

fλ
. So, g−1

λ (1) ∪ f−1
λ (1) = X and therefore for every

x ∈ X there exist h1, h2 ∈ {ϕ(0X ), ϕ(fλ), ϕ(gλ)} such that h1(x) = 0 and
h2(x) = 1. Let Cλ be any open neighbourhood of xλ such that Cλ ⊂ X3.
Since xλ ∈ Oϕ(fλ)\Oϕ(fλ) there exists x ∈ Cλ such that ϕ(fλ)(x) 6= 1. Since

X is first countable we can construct a sequence {xi : i ∈ N} ⊂ X3\Oϕ(fλ)

such that limi→∞ xi = xλ and ϕ(fλ)(xi) 6= 1, i ∈ N. Since ϕ(0X )−1(0) = X3,
this shows that ϕ(gλ)(xi) = 1 for every i ∈ N and therefore by the continuity
of ϕ(gλ),

ϕ(gλ)(xλ) = 1.

Since gλ(x0) 6= 1 and gλ is continuous there exists an open neighbourhood U1

of x0 such that gλ(x) 6= 1 for every x ∈ U1 and U1 ⊂ Uλ. By Urysohn’s lemma
there exists a 1-proper function hλ such that Ohλ

⊂ U1 ⊂ Uλ, x0 ∈ Ohλ
,

hλ(x) 6= 0 for every x ∈ X and hλ(x) 6= 1 for every x ∈ U c
1 . So, hλ ∈ FAx0

.
Notice that hλ(x) = gλ(x) = 1 for no x ∈ X . But then, since hλ is never
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zero, Lemma 2.2 shows that ϕ(hλ)(x) = ϕ(gλ)(x) = 1 for no x ∈ X . Hence

ϕ(hλ)(xλ) 6= 1.

This is a contradiction since hλ ∈ FAx0
and therefore xλ ∈ Oϕ(hλ). We have

proven that
⋂

f∈FAx0

Oϕ(f) 6= ∅.

Now assume that there exist x1, x2 ∈ X , x1 6= x2, such that {x1, x2} ⊂
⋂

f∈FAx0

Oϕ(f). So, x1, x2 ∈ X3. Let V ′, V ′′ ⊂X3 be disjoint open neighbour-

hoods of x1 and x2 respectively. By Urysohn’s lemma and the surjectivity of
ϕ there exists a 1-proper function ϕ(g1) such that Oϕ(g1) ⊂ V ′, x1 ∈ Oϕ(g1),
ϕ(g1)(x) 6= 0 for every x ∈ X , and ϕ(g1)(x) 6= 1 for every x ∈ V ′c. Similarly,
there exists a 1-proper function ϕ(g2) such that Oϕ(g2) ⊂ V ′′, x2 ∈ Oϕ(g2),
ϕ(g2)(x) 6= 0 for every x ∈ X , ϕ(g2)(x) 6= 1 for every x ∈ V ′′c. By Lemma 2.7
we conclude that g1 and g2 are also 1-proper. Furthermore, Og1

∩ Og2
= ∅,

gi(x) 6= 0 for every x ∈ X and gi(x) 6= 1 for every x ∈ Ac, i ∈ {1, 2}.
Since ϕ(g1)

−1(1) ∩ ϕ(g2)
−1(1) = ∅ and ϕ(g1) is never zero we obtain

g−1
1 (1) ∩ g−1

2 (1) = ∅. Hence, Og1
∩ Og2

= ∅. Without loss of generality
we may assume that x0 /∈ Og1

. By Urysohn’s lemma there exists g3 ∈ FAx0

such that Og1
∩Og3

= ∅. By Lemma 2.7 we obtain

Oϕ(g1) ∩Oϕ(g3) = ∅,

hence x1 /∈ Oϕ(g3). But since g3 ∈ FAx0
we get x1 ∈ Oϕ(g3), a contradiction.

Therefore
⋂

f∈FAx0

Oϕ(f) = {x1}.

It is easy to check that this intersection is independent of the selection of
the neighbourhood Ax0

.
Now assume that Ac 6= ∅ and let x0 ∈ Ac. As before, there exists an

open neighbourhood Ax0
of x0 such that Ax0

⊂ Ac and Ax0
6= X . There also

exists a 1-proper function f such that x0 ∈ Of , Of ⊂ Ax0
, f(x) 6= 0 for every

x ∈ X and f(x) 6= 1 for every x ∈ A. Let now FAx0
be the set of all such

1-proper functions f . Let f ∈ FAx0
. By Lemma 2.8, ϕ(f) is then 0-proper.

By using Lemma 2.8 we can prove as before that there exists y1 ∈ X such
that

⋂

f∈FAx0

Zϕ(f) = {y1}.

Again we observe that this intersection is independent of the selection of the
neighbourhood of x0.

We now define ψ : X → X in the following way. If x0 ∈ A then ψ
maps x0 to x1, and if x0 ∈ Ac then ψ maps x0 to y1. Notice that x1 ∈ X3
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and y1 ∈ Xc
3. We will prove that ψ is a homeomorphism. Let xa 6= xb,

xa, xb ∈ A. There exist 1-proper functions f1 and f2 such that fi(x) 6= 0 for
every x ∈ X , fi(x) 6= 1 for every x ∈ Ac, i ∈ {1, 2}, and Of1

, Of2
are disjoint

neighbourhoods of xa, xb respectively. Since Of1
∩ Of2

= ∅, by Lemma 2.7
we get Oϕ(f1) ∩Oϕ(f2) = ∅. This yields

{ψ(xa)} =
⋂

f∈FAxa

Oϕ(f) 6=
⋂

f∈FAxb

Oϕ(f) = {ψ(xb)}.

So, ψ(xa) 6= ψ(xb). Similarly, if ya, yb ∈ Ac, ya 6= yb, then ψ(ya) 6= ψ(yb) by
Lemma 2.8. If xa ∈ A and yb ∈ Ac then ψ(xa) ∈ X3 and ψ(yb) ∈ Xc

3. So, ψ
is injective. We prove that ψ is also surjective by using Lemmas 2.7 and 2.8
and the fact that ϕ−1 has the same properties as ϕ.

Assume now ϕ(f) is 1-proper and ϕ(f)(x) 6= 0 for every x ∈ X and
ϕ(f)(x) 6= 1 for every x ∈ Xc

3. Let x ∈ Oϕ(f). The set Of is then a neigh-

bourhood of ψ−1(x). So, ψ−1(Oϕ(f)) ⊂ Of . Similarly, ψ(x) ∈ Oϕ(f) for each
x ∈ Of , which yields ψ(Of ) ⊂ Oϕ(f) and therefore

ψ−1(Oϕ(f)) = Of .

Hence ψ−1(Oϕ(f)) is an open set. Similarly, if ϕ(f) is 0-proper and ϕ(f)(x)
6= 1 for every x ∈ X and ϕ(f)(x) 6= 0 for every x ∈ X3, then as before we
prove that ψ−1(Zϕ(f)) = Of .

Let now C ⊂ X be any nonempty open set. Set A1 = X3 ∩ C and
A2 = Xc

3 ∩ C. Suppose A1 6= ∅. By Urysohn’s lemma we may find for every
a ∈ A1 a 1-proper function fa such that a ∈ Ofa

, Ofa
⊂ A1, fa(x) 6= 0 for

every x ∈ X and fa(x) 6= 1 for every x ∈ Xc
3. Therefore A1 =

⋃

a∈A1
Ofa

,
hence

ψ−1(A1) =
⋃

a∈A1

ψ−1(Ofa
).

Similarly, assuming that A2 6= ∅ we may find for every b ∈ A2 a 0-proper
function fb such that b ∈ Zfb

, Zfb
⊂ A2, fb(x) 6= 1 for every x ∈ X and

fb(x) 6= 0 for every x ∈ X3. Therefore A2 =
⋃

b∈A2
Zfb

, hence

ψ−1(A2) =
⋃

b∈A2

ψ−1(Zfb
).

It follows that ψ−1(C) is an open set. This shows that ψ is continuous. Since
X is a compact Hausdorff space and ψ is a continuous bijection we conclude
that ψ is a homeomorphism. Set

µ = ψ−1.

To conclude the proof we need the following auxiliary result.
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Lemma 2.9. Let f ∈ C(X , I), x1 ∈ X3 and y1 ∈ Xc
3. If max f =

f(µ(x1)) then ϕ(f)(x1) = f(µ(x1)), and if max f = f(µ(y1)) then ϕ(f)(y1)
= 1 − f(µ(y1)).

Proof. Let f ∈ C(X , I), f 6= 0X . Since X is compact and µ surjec-
tive there exists x1 ∈ X such that max f = f(µ(x1)) = λ0. Suppose first
x1 ∈ X3 and let g = (1/λ0)f . Then g ∈ C(X , I) and g(µ(x1)) = 1. Suppose
ϕ(g)(x1) 6= 1. Since ϕ(g) is continuous there exists an open neighbourhood
V of x1, V ⊂ X3, such that ϕ(g)(x) 6= 1 for every x ∈ V . By Urysohn’s
lemma and the surjectivity of ϕ there exists a 1-proper function ϕ(h) such
that x1 ∈ Oϕ(h), ϕ(h)(x) 6= 0 for every x ∈ X , and ϕ(h)(x) 6= 1 for every
x ∈ V c. It follows that µ(x1) ∈ Oh. On the one hand, we obtain

h(µ(x1)) = g(µ(x1)) = 1,

but on the other hand, since ϕ(h)−1(1)∩ϕ(g)−1(1) = ∅ and ϕ(h)(x) 6= 0 for
every x ∈ X , we conclude that h(x) = g(x) = 1 for no x ∈ X , a contradic-
tion. So, ϕ(g)(x1) = 1. Since x1 ∈ X3 it follows that

ϕ(f)(x1) = ϕ(λ0g+(1−λ0)0X )(x1) = λ0ϕ(g)(x1)+(1−λ0)ϕ(0X )(x1) = λ0.

So, ϕ(f)(x1) = f(µ(x1)). Suppose now that y1 ∈ Xc
3 and max f = f(µ(y1))

= λ0. Define g as before. Again, by using Lemma 2.8 we prove that ϕ(g)(x1)
= 0. So,

ϕ(f)(y1) = λ0ϕ(g)(y1) + (1 − λ0)ϕ(0X )(y1) = 1 − λ0

and hence ϕ(f)(y1) = 1 − f(µ(y1)).

Let f ∈ C(X , I), x0 ∈ X and suppose f(µ(x0)) 6= max f . Let Dx0
=

{x : f(x) ≥ f(µ(x0))}. Then Dx0
is a nonempty closed set. Also, define

g : Dx0
→ I by g(x) = 1 − f(x), x ∈ Dx0

. Then max g = g(µ(x0)). Since
g is continuous there exists by Tietze’s theorem a continuous extension g1 :
X → I. Define g2 : X → I by

g2(x) =

{

g1(x), x ∈ Dx0
,

min{g1(x), g1(µ(x0))}, x ∈ Dc
x0

.

Then g2 ∈ C(X , I) and max g2 = g2(µ(x0)). Let now h = 1
2 g2 + 1

2 f . Clearly,

h ∈ C(X , I). Suppose first x ∈ Dc
x0

. Then f(x) < f(µ(x0)) and hence

h(x) <
1

2
g2(µ(x0)) +

1

2
f(µ(x0)) = h(µ(x0)).

Next, let x ∈ Dx0
. Then g2(x) = 1 − f(x) and hence

h(x) =
1

2
(1 − f(x)) +

1

2
f(x) =

1

2
.

Since µ(x0) ∈ Dx0
and hence h(µ(x0)) = 1/2 it follows that maxh =

h(µ(x0)) = 1/2. Suppose x0 ∈ X3. Since ϕ(h) = 1
2ϕ(g2)+ 1

2ϕ(f) Lemma 2.9
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yields

ϕ(f)(x0) = 2h(µ(x0)) − g2(µ(x0)) = 1 − g2(µ(x0)) = f(µ(x0)).

Let now x0 ∈ Xc
3. Again, by Lemma 2.9 we get

ϕ(f)(x0) = 2(1 − h(µ(x0))) − (1 − g2(µ(x0))) = g2(µ(x0)) = 1 − f(µ(x0)).

Let C be a component in X . Then ϕ(1X )(C) is connected. It follows that
either ϕ(1X )(x) = 1 for every x ∈ C or ϕ(1X )(x) = 0 for every x ∈ C. So,
C ⊂ X3 or C ⊂ Xc

3, which shows that either

ϕ(f)(x) = f(µ(x)) for every x ∈ C and f ∈ C(X , I),

or
ϕ(f)(x) = 1 − f(µ(x)) for every x ∈ C and f ∈ C(X , I).

Finally, let |X | = 1. Clearly, then ϕ(f)(x) = f(x) or ϕ(f)(x) = 1− f(x)
for a unique x ∈ X . This concludes the proof of Theorem 1.1.
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