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Uniqueness of the topology on L1(G)

by

J. Extremera, J. F. Mena and A. R. Villena (Granada)

Abstract. Let G be a locally compact abelian group and let X be a translation in-
variant linear subspace of L1(G). If G is noncompact, then there is at most one Banach
space topology on X that makes translations on X continuous. In fact, the Banach space
topology on X is determined just by a single nontrivial translation in the case where the
dual group Ĝ is connected. For G compact we show that the problem of determining a
Banach space topology on X by considering translation operators on X is closely related
to the classical problem of determining whether or not there is a discontinuous transla-
tion invariant linear functional on X. As a matter of fact L1(G) does not carry a unique
Banach space topology that makes translations continuous, but translations almost de-
termine the Banach space topology on X. Moreover, if G is connected and compact and
1 < p < ∞, then Lp(G) carries a unique Banach space topology that makes translations
continuous.

1. Introduction. It is easily seen that no infinite-dimensional Banach
space carries a unique Banach space topology. However, if we restrict atten-
tion to those Banach space topologies that make some meaningful operators
continuous, this situation becomes different. As a matter of fact if G is a
locally compact group then it is well known that L1(G) is a semisimple
Banach algebra. There is of course Johnson’s famous theorem [4] that a
semisimple Banach algebra carries a unique Banach algebra topology. Ac-
cordingly, L1(G) carries a unique Banach space topology that makes mul-
tiplication operators on L1(G) continuous. Recently K. Jarosz [3] has con-
sidered the question whether L1(G) carries a unique Banach space topology
that makes translation operators on L1(G) continuous for the groups R
and T. In this paper we extend these results to function spaces on arbi-
trary locally compact abelian groups by proving the results given in the
abstract.

It is worth pointing out that our arguments also apply to the study of
the automatic continuity of translation invariant linear operators.
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2. Preliminaries. From now on, G denotes a locally compact abelian
group, Ĝ denotes its dual group, and f̂ the Fourier transform of f for each
f ∈ L1(G). The Fourier transform on L1(G) is an injective continuous linear
map from L1(G) into C0(Ĝ).

For every t ∈ G let Tt denote the operator of translation by t which is
the map from L1(G) onto itself given by

(Ttf)(s) = f(s+ t)

for all f ∈ L1(G) and s ∈ G. It is easy to check that T̂t(f)(γ) = γ(t)f̂(γ)
for all t ∈ G, f ∈ L1(G) and γ ∈ Ĝ.

Suppose that X is a linear subspace of L1(G) . We shall denote by IX
the identity map from X onto itself, and by iX the inclusion map from
X into L1(G). To shorten notation, if t ∈ G is such that Tt(X) ⊂ X,
we continue to write Tt for the operator of translation by t from X into
itself. We say that a Banach space topology T on X makes Tt continuous
if the map Tt : (X, T ) → (X, T ) is continuous. X is said to be translation
invariant when Tt(X) ⊂ X for each t ∈ G. In such a case we say that T
makes translations continuous if it makes all the translation operators on X
continuous.

A key notion to study the continuity of a linear map Φ from a Banach
space X into a Banach space Y is that of the separating space S(Φ) of Φ,
which is defined as follows:

S(Φ) = {y ∈ Y : there exists (xn)→ 0 in X with (Φ(xn))→ y}.
The separating space measures the closability of Φ and the closed graph
theorem shows that Φ is continuous if and only if S(Φ) = {0}. For a thorough
discussion of the separating space we refer the reader to [8].

It should be noted that a linear subspace X of L1(G) has at most one
Banach space topology not weaker than the topology of convergence in mean.
Indeed, if T1 and T2 are Banach space topologies on X which are not weaker
than the topology of convergence in mean then the identity map from (X, T1)
onto (X, T2) is easily seen to have a closed graph, which shows that it is
continuous and therefore that T2 ⊂ T1.

In the case where X is a linear subspace of L1(G) which is endowed with
a Banach space topology, for abbreviation, we write SX instead of S(iX).
Furthermore we set

∆X = {γ ∈ Ĝ : f̂(γ) 6= 0 for some f ∈ SX}.
In the following result we state some important properties of ∆X . We

omit the proofs because they are straightforward.

Lemma 1. Let X be a linear subspace of L1(G) which is endowed with
a Banach space topology. Then the following assertions hold.
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(i) ∆X is an open subset of Ĝ.
(ii) The topology of X is not weaker than the topology of convergence in

mean if and only if ∆X = ∅.
(iii) dim(SX) <∞ if and only if ∆X is finite.

When considering a Banach space topology on a linear subspace X of
L1(G) making a number of translations on X continuous we become involved
with the classical stability lemma [8, Lemma 1.6]. The following result illus-
trates this technique and it yields information about such a topology.

Lemma 2. Let X be a linear subspace of L1(G), let (tn) be a sequence
in G such that Ttn(X) ⊂ X for each n ∈ N, and let (γn) be a sequence
in Ĝ. Suppose that X is endowed with a Banach space topology making the
translation Ttn on X continuous for each n ∈ N. Then there exists n ∈ N
with the property that

(γ1(t1)− γn+1(t1)) . . . (γn(tn)− γn+1(tn))f̂(γn+1) = 0

for each f ∈ SX .

Proof. For every n ∈ N, let Rn and Sn be the continuous linear operators
on X and L1(G) respectively, given by Rn = γn(tn)IX − Ttn and Sn =
γn(tn)IL1(G)−Ttn . Since iXRn = SniX for each n ∈ N, the classical stability
lemma shows that there is n ∈ N such that

(S1 . . . Sn)(SX) = (S1 . . . Sn+1)(SX).

We thus get
(S1 . . . Sn)(SX) ⊂ (S1 . . . Sn+1)(SX).

We now observe that the Fourier transform of every function of the latter
set vanishes at γn+1. Indeed, we have

[(S1 . . . Sn+1)(f)]∧(γn+1)

= (γ1(t1)− γn+1(t1)) . . . (γn+1(tn+1)− γn+1(tn+1))f̂(γn+1) = 0

for each f ∈ SX . Consequently, for every f ∈ SX ,

(γ1(t1)− γn+1(t1)) . . . (γn(tn)− γn+1(tn))f̂(γn+1)

= [(S1 . . . Sn)(f)]∧(γn+1) = 0.

3. Noncompact groups. In [3] it was shown that a single nontrivial
translation determines the Banach space topology on L1(R). We have found
out that this property is just a consequence of the connectedness of R̂.

Theorem 1. Let G be a locally compact abelian group such that Ĝ is
connected , let t ∈ G\{0}, and let X be a linear subspace of L1(G) such that
Tt(X) ⊂ X. Then every Banach space topology on X making the translation
operator Tt on X continuous is not weaker than the topology of convergence
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in mean. Accordingly , there is at most one Banach space topology on X
making the translation operator Tt on X continuous.

Proof. We begin by proving that the set {γ(t) : γ ∈ ∆X} is finite. On
the contrary, suppose that it is infinite. Let (γn) be a sequence in ∆X such
that γm(t) 6= γn(t) for n 6= m. For every n ∈ N there exists fn ∈ SX such

that f̂n(γn+1) 6= 0 and so

(γ1(t)− γn+1(t)) . . . (γn(t)− γn+1(t))f̂n(γn+1) 6= 0,

which contradicts Lemma 2.
We can now proceed to show that ∆X is empty. To obtain a contradiction

suppose that ∆X is nonempty. As {γ(t) : γ ∈ ∆X} is finite, there exist
λ1, . . . , λN ∈ C such that

∆X =
N⋃

k=1

{γ ∈ ∆X : γ(t) = λk}.

The sets {γ ∈ ∆X : γ(t) = λk} (k = 1, . . . , N) are pairwise disjoint closed
subsets in ∆X . Hence each of them is open in ∆X and so it is open in Ĝ.
Thus there exists k ∈ {1, . . . , N} such that {γ ∈ ∆X : γ(t) = λk} is a
nonempty open subset in Ĝ. Let γ0 ∈ {γ ∈ ∆X : γ(t) = λk} and let V be a

symmetric open neighborhood of the identity e in Ĝ such that

γ0V ⊂ {γ ∈ ∆X : γ(t) = λk}.
For every γ ∈ V we have γ0(t)γ(t) = λk and therefore γ(t) = 1. Clearly the
set
⋃∞
n=1 V

n is an open subgroup of Ĝ and [2, Proposition 2.1.d] shows that
it is closed in Ĝ. By the connectedness of Ĝ we conclude that

⋃∞
n=1 V

n = Ĝ.
Therefore γ(t) = 1 for each γ ∈ Ĝ and this leads to t = 0, a contradiction.

Corollary 2. Let G be a locally compact abelian group such that Ĝ is
connected and let t ∈ G \ {0}. Then L1(G) carries a unique Banach space
topology making the translation operator Tt on L1(G) continuous.

Clearly Corollary 2 generalizes [3, Theorem 3.3].
If we remove the connectedness assumption, we are still able to determine

the Banach space topology if we consider all the translations on the space.

Theorem 3. Let G be a noncompact locally compact abelian group and
let X be a translation invariant linear subspace of L1(G). Then every Ba-
nach space topology on X making translations on X continuous is not
weaker than the topology of convergence in mean on X. Accordingly , there
is at most one Banach space topology on X making translations on X con-
tinuous.
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Proof. Suppose ∆X were nonempty. Set Γ0 = ∆X and γ1 ∈ Γ0. Since
G is noncompact, Ĝ is nondiscrete. Therefore Γ0 is infinite and there exists
t1 ∈ G such that the open set Γ1 = {γ ∈ Γ0 : γ(t1) 6= γ1(t1)} is infinite. We
can successively choose Γn ⊂ G, γn ∈ Ĝ, and tn ∈ G such that γn ∈ Γn−1
and the open set Γn = {γ ∈ Γn−1 : γ(tn) 6= γn(tn)} is infinite for each n ∈ N.
Consequently, we have γn(tn) 6= γk(tn) for all k, n ∈ N with k > n. For every

n ∈ N let fn ∈ SX be such that f̂n(γn+1) 6= 0. We have

(γ1(t1)− γn+1(t1)) . . . (γn(tn)− γn+1(tn))f̂n(γn+1) 6= 0

for each n ∈ N, which contradicts Lemma 2.

Corollary 4. Let G be a noncompact locally compact abelian group.
Then L1(G) carries a unique Banach space topology making translations on
L1(G) continuous.

Remark 1. It is clear that the same proofs as in all the preceding results
still work when we replace the group algebra L1(G) by the measure algebra
M(G). Accordingly, Theorems 1 and 3 and Corollaries 2 and 4 are still true
with L1(G) replaced by M(G).

Remark 2. It is easy to see that Theorems 1 and 3 and Corollaries 2
and 4 still hold with L1(G) replaced by L1(G,E), where E is any Banach
space. Similar results (just for X = L1(G,E)) have recently been obtained
in [9] by using much more sophisticated arguments.

4. Compact groups. Throughout this section, G is a compact abelian
group and we assume that the Haar measure λ on G is normalized so that
λ(G) = 1.

In this context the situation becomes completely different to that in
the preceding section. In fact, the uniqueness of the Banach space topology
making translations continuous on a translation invariant linear subspace X
of L1(G) is closely related to the classical problem of whether there exists a
discontinuous translation invariant linear functional on X. For an excellent
survey about the last question we refer the reader to [6] and the references
given there.

Theorem 5. Let G be a compact abelian group and let X be a transla-
tion invariant linear subspace of L1(G) such that 1 ∈ X. Suppose that X is
endowed with a Banach space topology making translations on X continu-
ous and that X has a discontinuous translation invariant linear functional.
Then X does not carry a unique Banach space topology making translations
on X continuous.

Proof. Let φ be a discontinuous invariant linear functional on X. We
claim that there is a discontinuous invariant linear functional ψ on X such
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that ψ(1) = 1. Indeed, if φ(1) = α 6= 0 then we take ψ = α−1φ. If φ(1) = 0,
then we define ψ(f) = φ(f) +

�
G f(t) dt for each f ∈ X.

Since the map f 7→ 2f − ψ(f)1 is a linear bijection from X onto itself,
it may be concluded that |f | = ‖2f −ψ(f)1‖ is a complete norm on X that
is not equivalent to ‖ · ‖. Let t ∈ G. For every f ∈ X we have

|Ttf | = ‖2Tt(f)− ψ(Tt(f))1‖ = ‖Tt(2f)− ψ(f)1‖ = ‖Tt(2f − ψ(f)1)‖
≤ ‖Tt‖ · ‖2f − ψ(f)1‖ = ‖Tt‖ · |f |,

which shows that Tt from (X, | · |) into itself is continuous.

By using [7, Theorem 1] together with the preceding result we obtain
the following.

Corollary 6. If G is an infinite compact abelian group then L1(G)
does not carry a unique Banach space topology making translations on L1(G)
continuous.

Despite the preceding facts we are going to prove that translations al-
most determine the Banach space topology of the translation invariant linear
subspaces of L1(G).

Lemma 3. Let K be a subset of G with nonempty interior and let Γ be
an infinite subset of Ĝ. Then the set {γ|K : γ ∈ Γ} is infinite, where γ|K
stands for the restriction of γ to K.

Proof. Suppose the lemma were false. Then we could find ξ1, . . . , ξN ∈ Γ
such that Γ =

⋃N
k=1{γ ∈ Γ : γ = ξk on K}. Let t ∈ K and let U be

a symmetric open neighborhood of 0 such that t + U ⊂ K. It is easily
checked that the set H =

⋃∞
n=1(U+ n. . . +U) is an open subgroup of G and

that Γ ⊂ ⋃N
k=1{γ ∈ Γ : γ = ξk on H}. [2, Proposition 2.1.d] shows that

H is closed and from the compactness of G it follows that G/H is finite.
[2, Corollary 4.7 and Theorem 4.39] now shows that G/H = Ĝ/H = H⊥,
where we write H⊥ for the set {γ ∈ Ĝ : γ(H) = 1}. Therefore the set ξkH⊥

is finite for each k = 1, . . . , N . Since

Γ ⊂
N⋃

k=1

{γ ∈ Γ : γ = ξk on H} =
N⋃

k=1

{γ ∈ Γ : γ ∈ ξkH⊥},

it may be concluded that Γ is finite. This contradicts our assumption.

Lemma 4. Let Γ be an infinite subset of Ĝ and let γ1 ∈ Γ . Then there
are t1 ∈ G and Γ1 ⊂ Γ infinite such that γ1(t1) 6= γ(t1) for each γ ∈ Γ1.

Proof. We claim that there exist a sequence (γn) in Γ and a decreasing
sequence (Kn) of compact subsets of G with nonempty interior such that
γ1(t) 6= γn(t) for all t ∈ Kn and n ∈ N with n > 1. We choose γ2 ∈ Γ with
γ2 6= γ1. By the continuity of γ1 and γ2 we can choose a compact subset
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K1 of G with nonempty interior such that γ1(t) 6= γ2(t) for all t ∈ K1.
Assume that γ2, . . . , γn+1 and K1, . . . ,Kn have been chosen satisfying our
requirements. According to the preceding lemma, the set {γ|Kn : γ ∈ Γ}
is infinite. Hence there exists γn+2 ∈ Γ such that γ1|Kn 6= γn+2|Kn . Let
Kn+1 ⊂ G be a compact subset of G with nonempty interior such that
Kn+1 ⊂ Kn and such that γ1(t) 6= γn+2(t) for all t ∈ Kn+1.

Since
⋂∞
n=1Kn 6= ∅ we can take t1 ∈

⋂∞
n=1Kn. Of course γ1(t1) 6= γn(t1)

for each n > 1. Therefore the element t1 and the set Γ1 = {γn : n > 1}
satisfy the requirement of the lemma.

Theorem 7. Let G be a compact abelian group and let X be a trans-
lation invariant linear subspace of L1(G). Then for every Banach space
topology on X making translations on X continuous the inclusion map from
X into L1(G) has a finite-dimensional separating space.

Proof. It suffices to prove that ∆X is finite. On account of Lemma 4, if
∆X were infinite, we could successively choose γn ∈ Γn−1, Γn ⊂ Γn−1 ⊂ ∆X ,
and tn ∈ G such that γn(tn) 6= γ(tn) for all γ ∈ Γn and n ∈ N. Here we
write Γ0 = ∆X . Thus γn(tn) 6= γk(tn) for all k, n ∈ N with k > n. For every

n ∈ N let fn ∈ SX be such that f̂n(γn+1) 6= 0. We have

(γ1(t1)− γn+1(t1)) . . . (γn(tn)− γn+1(tn))f̂n(γn+1) 6= 0,

which contradicts Lemma 2.

Corollary 8. Let G be a compact abelian group and let | · | be a com-
plete norm on L1(G) making translations on L1(G) continuous. Then there
exists a finite-dimensional ideal S of L1(G) such that the quotient norm of
| · | and ‖ · ‖1 are equivalent on the quotient linear space L1(G)/S.

Proof. Let S be the separating space of the identity map from (L1(G), |·|)
onto (L1(G), ‖ · ‖1). By Theorem 7, S is a finite-dimensional subspace of
L1(G). On the other hand, it follows immediately that S is translation
invariant. Therefore S is an ideal of L1(G).

Since the quotient map from (L1(G), | · |) onto (L1(G)/S, ‖ · ‖1) is
continuous it follows that the identity map from (L1(G)/S, | · |) onto
(L1(G)/S, ‖ · ‖1) is continuous, as required.

Remark 3. Of course, Theorem 7 and Corollary 8 still hold if we replace
L1(G) by M(G).

Theorem 9. Let G be a connected compact abelian group and let
1 < p < ∞. Then Lp(G) carries a unique Banach space topology making
translations on Lp(G) continuous.

Proof. Suppose that |·| is a complete norm on Lp(G) making translations
on Lp(G) continuous. In order to show that | · | and ‖ · ‖p are equivalent it
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suffices to show that the identity map φ from (Lp(G), ‖·‖p) onto (Lp(G), | · |)
is continuous. We claim that dim S(φ) < ∞. Indeed, let f ∈ S(φ) and let
(fn)→ 0 in (Lp(G), ‖ · ‖p) with (fn)→ f in (Lp(G), | · |). Then (f − fn)→ 0
in (Lp(G), | · |), (f − fn) → f in (Lp(G), ‖ · ‖p), and so (f − fn) → f in
(L1(G), ‖ · ‖1). This shows that S(φ) is contained in the separating space
of the inclusion map from (Lp(G), | · |) into (L1(G), ‖ · ‖1), which is finite-
dimensional on account of Theorem 7.

To obtain a contradiction, suppose that S(φ) 6= {0}. Then we can
find γ ∈ Ĝ and f0 ∈ S(φ) such that f̂0(γ) 6= 0. Let R be the linear subspace
of S(φ) given by

R = {f ∈ S(φ) : f̂(γ) = 0}
and let π denote the quotient map from (Lp(G), | · |) onto (Lp(G)/R, | · |R),
where | · |R stands for the quotient norm of | · | on Lp(G)/R. Since S(φ) 6⊂ R,
it follows that π ◦ φ is discontinuous. We claim that for each t ∈ G the map
St from (Lp(G), ‖ · ‖p) into (Lp(G)/R, | · |R) given by

St(f) = γ(t)π(f)− π(Ttf)

is continuous. We have St = π ◦ Rt ◦ φ, where Rt stands for the map
from (Lp(G), | · |) into itself given by Rt = γ(t)ILp(G) − Tt. On account of
[8, Lemma 1.3], we have S(St) = π(Rt(S(φ))). [8, Lemma 1.2.iii] shows that

Rt(S(φ)) ⊂ S(φ). On the other hand, R̂t(f)(γ) = (γ(t)− γ(t))f̂(γ) = 0 for
each f ∈ S(φ), and so Rt(S(φ)) ⊂ R. Hence π ◦ Rt ◦ φ is continuous, as
claimed.

According to [1, Proposition 3 and Corollary 4] together with the ob-
servation following [1, Proposition 3], there exist a constant C and J ∈ N
with the property that, for every f ∈ Lp(G) with

�
G f(t) dt = 0, there

is a set Ef ⊂ GJ with λJ(Ef ) = 1 (where λJ stands for the normal-
ized Haar measure on GJ) such that for every (t1, . . . , tJ) ∈ Ef there are

f
(t1,...,tJ )
1 , . . . , f

(t1,...,tJ )
J ∈ Lp(G) such that

f =
J∑

j=1

(f (t1,...,tJ )
j − Ttj (f

(t1,...,tJ )
j ))

and �

GJ

J∑

j=1

‖f (t1,...,tJ )
j ‖p d(t1, . . . , tJ) ≤ C‖f‖p.

For every n ∈ N let

Hn = {(t1, . . . , tJ) ∈ GJ : ‖Stj‖ ≤ n, j = 1, . . . , J}.
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Clearly GJ =
⋃∞
n=1Hn. We claim that there exist m,n ∈ N with the prop-

erty that every measurable set E ⊂ GJ with λJ(E) ≥ 1 − 1/m has a
nonempty intersection with Hn. Suppose, contrary to our claim, that for
all m,n ∈ N there exists Cm,n ⊂ GJ such that λJ(Cm,n) ≥ 1 − 1/m and
Hn ⊂ GJ \ Cm,n. Then

GJ =
∞⋃

n=1

Hn ⊂
∞⋃

n=1

∞⋂

m=1

(GJ \ Cm,n).

Since λJ(GJ \ Cm,n) ≤ 1/m it follows that λJ(
⋂∞
m=1(GJ \ Cm,n)) = 0 and

hence that λJ(GJ) = 0, a contradiction.
Fix f ∈ Lp(G) and write g = γf − f̂(γ). Then g ∈ Lp(G) and

�
G g(t) dt

= 0. Let

K =
{

(t1, . . . , tJ) ∈ Eg :
J∑

j=1

‖g(t1,...,tJ )
j ‖p ≤ Cm‖g‖p

}
.

We have

Cm‖g‖pλJ(GJ \K) ≤

�

GJ\K

J∑

j=1

‖g(t1,...,tJ )
j ‖p d(t1, . . . , tJ)

≤

�

GJ

J∑

j=1

‖g(t1,...,tJ )
j ‖p d(t1, . . . , tJ) ≤ C‖g‖p.

Consequently, λJ(GJ\K)≤ 1/m and so λJ(K)≥ 1−1/m.HenceHn ∩K 6= ∅.
Choose (t1, . . . , tJ) ∈ Hn∩K and write gj = g

(t1,...,tJ )
j for j = 1, . . . , J . Then

g can be written in the form

g =
J∑

j=1

(gj − Ttjgj),

where g1, . . . , gJ ∈ Lp(G) are such that ‖gj‖p ≤ Cm‖g‖p (j = 1, . . . , J). We
thus get

f = f̂(γ)γ +
J∑

j=1

(γ(tj)fj − Ttjfj),

where fj = γ(tj)γgj and so ‖fj‖p = ‖gj‖p for j = 1, . . . , J . Hence

(π ◦ φ)(f) = f̂(γ)π(γ) +
J∑

j=1

Stj (fj)

and so



172 J. Extremera et al.

|(π ◦ φ)(f)|R ≤ |f̂(γ)| · |π(γ)|R +
J∑

j=1

|Stj (fj)|R

≤ ‖f‖p|π(γ)|R +
J∑

j=1

‖Stj‖ · ‖fj‖p

≤ ‖f‖p|π(γ)|R +
J∑

j=1

2nCm‖f‖p

= (|π(γ)|R + 2JnCm)‖f‖p.
Consequently, π ◦ φ is continuous, a contradiction.

The preceding generalizes [3, Theorem 3.5].

Remark 4. It should be noted that if the group G has finitely many
components, then a similar analysis to that in the proof of the preceding
theorem shows that this theorem still holds true in this case. If the group
has infinitely many components, then the situation becomes different. In
[5] it was shown that there exist discontinuous translation invariant linear
functionals on L2(G) in the case where G is the totally disconnected infinite
compact abelian group usually referred to as the Cantor discontinuum (for a
more detailed discussion of this topic we refer the reader to [6]). On account
of Theorem 5, L2(G) does not carry a unique Banach space topology making
translations continuous.

5. Translation invariant operators. Here by a group space on G we
mean a translation invariant linear subspace X of L1(G) which is endowed
with a Banach space topology that makes translations on X continuous.
The uniqueness of the group space topology on X is closely related to the
automatic continuity of translation invariant linear operators from X. In
fact, a careful analysis of the proofs given in the preceding sections leads to
the following result.

Theorem 10. Let X and Y be group spaces on a locally compact abelian
group G and let Φ be a translation invariant linear operator from X into Y .
Then the following assertions hold.

(i) If G is noncompact , then Φ is continuous.
(ii) If G is compact , then dim S(Φ) <∞.

(iii) If G is connected and compact and X = Lp(G) for some 1 < p <∞,
then Φ is continuous.

Proof. We begin by observing that assertions (i) and (ii) hold in the
case where Y = (L1(G), ‖ · ‖1). Indeed, we can apply the same arguments
as in the preceding sections, with iX replaced by Φ. The details are left to
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the reader. For the general case, we first apply what has previously been
observed to the operator iY ◦Φ. If G is noncompact, then iY and iY ◦Φ are
continuous and [8, Lemma 1.3] shows that

{0} = S(iY ◦ Φ) = iY (S(Φ)),

which shows that S(Φ) = {0}. If G is compact, then we consider the quo-
tient map from L1(G) onto L1(G)/SY . Since π and π ◦ iY are continuous,
[8, Lemma 1.3] now shows that

π(S(iY ◦ Φ)) = S(π ◦ (iY ◦ Φ)) = S((π ◦ iY ) ◦ Φ) = π(iY (S(Φ))).

Since dim SY <∞ and dim S(iY ◦ Φ) <∞ it follows that dim S(Φ) <∞.
Finally the third assertion can be proved by the same method as in the

proof of Theorem 9 with φ replaced by Φ.
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