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Reducibility and unitary equivalence for a class of
multiplication operators on the Dirichlet space

by

Yong Chen (Jinhua), Young Joo Lee (Gwangju)
and Tao Yu (Jinhua)

Abstract. We consider the reducibility and unitary equivalence of multiplication
operators on the Dirichlet space. We first characterize reducibility of a multiplication
operator induced by a finite Blaschke product and, as an application, we show that a
multiplication operator induced by a Blaschke product with two zeros is reducible only in
an obvious case. Also, we prove that a multiplication operator induced by a multiplier φ
is unitarily equivalent to a weighted shift of multiplicity 2 if and only if φ = λz2 for some
unimodular constant λ.

1. Introduction. Let D be the unit disk in the complex plane C, and
T be the unit circle. The Dirichlet space D consists of all analytic functions
f on D for which �

D

|f ′|2 dA <∞

where dA is the normalized area measure on D. Note that D ⊂ H2 where
H2 is the well known Hardy space consisting of analytic functions f on D
such that

sup
0≤r<1

�

T

|f(rζ)|2 |dζ|
2π

<∞.

It is known that the Dirichlet space D is a Hilbert space with the norm

‖f‖ =

(�
T

|f |2 |dζ|
2π

+
�

D

|f ′|2 dA
)1/2

and the inner product

〈f, g〉 =
�

T

fg
|dζ|
2π

+
�

D

f ′ g′ dA

for f, g ∈ D . See [R] for more information on the Dirichlet space.

2010 Mathematics Subject Classification: Primary 47B35; Secondary 32A36.
Key words and phrases: Dirichlet space, multiplication operators, reducing subspaces.

DOI: 10.4064/sm220-2-3 [141] c© Instytut Matematyczny PAN, 2014



142 Y. Chen et al.

We say that a function φ on D is a multiplier on D if φD ⊂ D . By the
closed graph theorem, each multiplier φ induces a bounded multiplication
operator Mφ on D defined by Mφf = φf . Let M(D) be the set of all
multipliers on D . Recall that each multiplier is a bounded analytic function
on D (see [S] for details).

For a bounded linear operator T on a Hilbert space H, a closed subspace
A in H is said to be invariant under T , or an invariant subspace of T , if
TA ⊂ A. Also, we say that A is a reducing subspace of T if A is invariant
under both T and its adjoint T ∗. We also say an operator T on H is reducible
if T has a nontrivial reducing subspace.

The problem of characterizing reducing subspaces of certain multipli-
cation operators has been well studied on the Hardy space and Bergman
spaces. For examples, see [C], [DPW], [DSZ], [GH], [HSXY], [SW], [T1],
[T2], [Zhu1] and references therein.

In [SZ], Stessin and Zhu studied the problem of characterizing reducing
subspaces on certain weighted Hilbert spaces of analytic functions and ob-
tained a complete description of reducing subspaces for weighted unilateral
shift operators of finite multiplicity. As a consequence of their result, we
know that for a given positive integer N , MzN has exactly 2N − 2 nontrivial
reducing subspaces on the Dirichlet space D . Later, Zhao [Zh1] studied the
same problem on a Dirichlet space equipped with a norm smaller than ‖ ‖.
To be more precise, let D0 be the space of all analytic functions f on D for
which

‖f‖0 =
(
|f(0)|2 +

�

D

|f ′|2 dA
)1/2

<∞.

Also, given a point a ∈ D, let

ϕa(z) =
a− z
1− az

, z ∈ D,

be the Möbius transformation. For finitely many points a1, . . . , aN ∈ D, we
call ϕa1 . . . ϕaN a finite Blaschke product with zeros a1, . . . , aN . Note each
finite Blaschke product is a multiplier for D .

Zhao [Zh1] considered multiplication operators Mϕaϕb
induced by

Blaschke products with two zeros a, b and proved that Mϕaϕb
has a nontriv-

ial reducing subspace on D0 if and only if a+ b = 0. Moreover, if a+ b = 0,
he shows that Mϕaϕb

has only two nontrivial reducing subspaces on D0.

Motivated by the result of Zhao, we consider the same problem on the
Dirichlet space D for multiplication operators induced by finite Blaschke
products. In Section 2, we first give a characterization of reducibility of
multiplication operators induced by general finite Blaschke products on D
(Proposition 2.2). As an application, we show that Mϕaϕb

is reducible on
D if and only if a + b = 0 (Theorem 2.5). Also, for a multiplication op-
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erator Mφ induced by a general finite Blaschke product φ, we point out
that nonreducibility of Mφ on D implies the same on D0. As an immediate
consequence, we recover the result of Zhao [Zh1] mentioned above.

In Section 3, we consider the problem of when a multiplication operator
induced by a multiplier on D is unitarily equivalent to a weighted unilateral
shift of finite multiplicity. The corresponding problem on the Bergman space
has been studied in [GZ] and [SZZ]. Also, the same problem on D0 has been
studied by Zhao [Zh2].

We first characterize multipliers on D for which the corresponding mul-
tiplication operator is unitarily equivalent to a weighted unilateral shift of
finite multiplicity (Proposition 2.5). In particular, we show that for a mul-
tiplier φ ∈ M(D), Mφ is unitarily equivalent to Mz2 on D if and only if
φ = λz2 for some unimodular constant λ (Theorem 3.2).

2. Reducibility of multiplication operators. In this section, we give
a characterization of multiplication operators induced by finite Blaschke
products and having a reducing subspace. We start with an observation on
analytic branches of φ−1 for a finite Blaschke product φ.

Let φ be a finite Blaschke product with N zeros and let {β1, . . . , βN} be
N analytic branches of φ−1 on a simply connected set D \ L where L is a
curve connecting all finite points in {φ(z) : z ∈ D, φ′(z) = 0} and a point
ξ0 in T. For k = 1, . . . , N , put Dk = βk(D \L) and Tk = βk(T \ {ξ0}). Then
Dj ∩Dk = ∅ and Tj ∩ Tk = ∅ for all j 6= k. Also, we have

D \ φ−1(L) =
N⋃
k=1

Dk, T \ φ−1({ξ0}) =
N⋃
k=1

Tk.

Note that φ◦βk(λ) = λ for all λ ∈ D\L and φ◦βk(ξ) = ξ for all λ ∈ T\{ξ0}.
Also, βk ◦ φ|Dk

(λ) = λ for all λ ∈ Dk and βk ◦ φ|Tk(ξ) = ξ for all λ ∈ Tk.
For the details one is referred to [DPW], [DSZ] or [GH].

For a function f ∈ D , the function(
f(β1(z)), . . . , f(βN (z))

)
, z ∈ D \ L,

is a vector-valued analytic function on D\L. Since D ⊂ H2 and each function
in H2 admits a nontangential limit at almost all points in T, we see that to
each f ∈ D corresponds a unique vector-valued function(

f(β1(ξ)), . . . , f(βN (ξ))
)

for almost all points ξ ∈ T. These vector-valued functions will play an im-
portant role in our characterizations of reducibility and unitary equivalence.

Let H = D or H = H2. For ψ ∈ H and a multiplier φ on H, we shall
denote by [ψ]φ,H the smallest invariant subspace of Mφ generated by ψ in H.
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Namely, [ψ]φ,H is the closure of the set of linear combinations of functions
of the form φkψ for k = 0, 1, 2, . . . .

The following result generalizes the arguments for local inverse in [GH]
on the Bergman space, and provides a practical way towards solutions for the
reducing subspace problem. It also shows that there is a useful connection
between the smallest invariant subspaces on the Dirichlet space and Hardy
space for the multiplication operator induced by a finite Blaschke product.
Note that

(2.1) 〈f, g〉 =
�

D

(zf)′ (zg)′ dA

for all f, g ∈ D .

Proposition 2.1. Let φ be a finite Blaschke product with N zeros. Sup-
pose f, g ∈ D 	 φD and f ⊥ g. Then the following conditions are equi-
valent:

(a) [f ]φ,D ⊥ [g]φ,D .
(b) [ξφ′f ]φ,H2 ⊥ [g]φ,H2.

(c)
(
f(β1(ξ)), . . . , f(βN (ξ))

)
⊥
(
g(β1(ξ)), . . . , g(βN (ξ))

)
for almost all

ξ ∈ T.

Proof. Put F = zf and G = zg for simplicity. Note that F and G are
analytic on the closed unit disk D (see (2.3) below). By (2.1) and Stokes’
theorem, we first note that

〈φmf, φng〉 =
�

D

(φmF )′ (φnG)′ dA(2.2)

=
−1

2πi

�

D

∂

∂z

(
(φmF )′ φnG

)
dz ∧ dz =

1

2πi

�

T

(φmF )′ φnGdξ

=
�

T

ξF ′φm−nG
|dξ|
2π

+m
�

T

ξFφ′φm−n−1G
|dξ|
2π

=
�

T

ξF ′φm−nG
|dξ|
2π

+m
�

T

ξfφ′φm−n−1g
|dξ|
2π

for any integers m,n ≥ 0.
First suppose (a). By (2.2), we have

�

T

ξF ′φm−nG
|dξ|
2π

= −m
�

T

ξfφ′φm−n−1g
|dξ|
2π

for any integers m,n ≥ 0. Thus, given integers t and ` > 0 with ` > t, the
above equation shows that

�

T

ξfφ′φt−1g
|dξ|
2π

=
−1

`

�

T

ξF ′φtG
|dξ|
2π

.
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Now fixing an integer t and letting `→∞, we see that�

T

ξfφ′φt−1g dσ(ξ) = 0

for all integers t, which implies (b).
Now we prove the equivalence of (b) and (c). For each integer k, we note

that

�

T

ξφ′φφkfg
|dξ|
2π

=
N∑
j=1

�

Tj

ξφ′φkfg

φ

|dξ|
2π

=
N∑
j=1

�

T

ηkf(βj(η)) g(βj(η))
|dη|
2π

=
�

T

ηk
N∑
j=1

f(βj(η)) g(βj(η))
|dη|
2π

where we used the change of variables η = φ(ξ), ξ ∈ T, with

|dη| = ξφ′(ξ)

φ(ξ)
|dξ|,

which gives the equivalence of (b) and (c).
Finally, we assume (b) and prove (a). By (2.2), it suffices to show that

I(t) :=
�

T

ξF ′φtG
|dξ|
2π

= 0

for every integer t. For t = 0, (2.2) shows that

I(0) =
�

T

ξF ′G
|dξ|
2π

= 〈f, g〉 = 0

because f ⊥ g by the assumption. For t < 0, we note that

I(t) =
�

T

φ−tGξF ′
|dξ|
2π

.

Since φ is a finite Blaschke product with N zeros, we may write

φ = zMϕM1
a1 · · ·ϕ

Mk
ak

where M +M1 + · · ·+Mk = N , aj 6= 0 and ai 6= aj for all i 6= j. Then it is
not hard to see that the space z(D 	 φD) is spanned by the functions

z, z2, . . . , zM , log
1

1− aiz
,

zj

(1− aiz)j
, j = 1, . . . ,Mi − 1,

for i = 1, . . . , k. Since F = zf ∈ z(D 	 φD), we can write

(2.3) F (z) =

M∑
j=1

ajz
j +

k∑
j=1

bj log
1

1− ajz
+

k∑
i=1

Mi−1∑
j=1

cij
zj

(1− aiz)j

for some constants aj , bj and cij . Then



146 Y. Chen et al.

zF ′(z) =

M∑
j=1

jajz
j +

k∑
j=1

bjajz

1− ajz
(2.4)

+
∑
i,j

jcij

[
zj

(1− aiz)j
+

aiz
j+1

(1− aiz)j+1

]
for all z ∈ D. Recalling φ−tG has a zero of order at least M + 1 at 0, we
have

�

T

φ−tGξj
|dξ|
2π

=
(φ−tG)(j)(0)

j!
= 0(2.5)

for all j = 1, . . . ,M . Also, since φ(aj) = 0 for j = 1, . . . , k, it follows from
the reproducing property of the Hardy space that

�

T

φ−t(ξ)G(ξ)ajξ

1− ajξ
|dξ|
2π

=
�

T

φ−t(ξ)G(ξ)

(
1

1− ajξ
− 1

)
|dξ|
2π

(2.6)

= φ−t(aj)G(aj)− φ−t(0)G(0) = 0

for all j = 1, . . . , k. Also, since ξ/(1− aξ) = 1/ξ − aj for each a ∈ D and
ξ ∈ T, we have, by the Cauchy integral formula,

�

T

φ−t(ξ)G(ξ)ξj

(1− aiξ)j
|dξ|
2π

=
�

T

φ−t(ξ)G(ξ)

(ξ − ai)j
|dξ|
2π

=
1

2πi

�

T

φ−t(ξ)G(ξ)

ξ(ξ − ai)j
dξ(2.7)

=
1

2πi

�

T

φ−t(ξ)g(ξ)

(ξ − ai)j
dξ =

1

(j − 1)!
(φ−tg)(j−1)(ai)

for all i = 1, . . . , k and j = 2, . . . ,Mi. But, since φ = zMϕM1
a1 · · ·ϕ

Mk
ak

, we

can easily see that (φ−tg)(j−1)(ai) = 0 for all i = 1, . . . , k and j = 2, . . . ,Mi.
Now, combining (2.5)–(2.7) with (2.4), we see that I(t) = 0 for t < 0.

Finally, consider the case t > 0. Using integration by parts and condi-
tion (b), we have

I(t) =
1

2πi

2π�

0

φt(eiθ)G(eiθ) dF (eiθ) =
−1

2πi

2π�

0

F (eiθ)
d

dθ
[φt(eiθ)G(eiθ)] dθ

=
−t
2πi

2π�

0

F (eiθ)φt−1(eiθ)φ′(eiθ)ieiθG(eiθ) dθ

− 1

2πi

2π�

0

F (eiθ)φt(eiθ)G′(eiθ)ieiθ dθ

= −t
�

T

ξfφ′φt−1g
|dξ|
2π

+
�

T

Fφt ξG′
|dξ|
2π

=
�

T

Fφt ξG′
|dξ|
2π

.
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Now, using the same argument as in the case t < 0, we can see that I(t) = 0
for t > 0, as desired. The proof is complete.

A theorem of Richter [Ric, Theorem 1] says that if S is a two-isometry
operator on D which satisfies

⋂
n>0 S

nD = {0}, then any invariant subspace
N of S must be of the form

N =
∨
n≥0

Sn(N 	 SN ).

Also, it is known that a multiplier ψ on D is a two-isometry if and only if
ψ is an inner function (see [RS, Theorem 4.2] for details). So, if φ is a finite
Blaschke product, we have

(2.8) D =
∨
n≥0

φn(D 	 φD).

In addition, if M is a reducing subspace for Mφ in D , we have

(2.9) M =
∨
n≥0

φn(M	 φM), M⊥ =
∨
n≥0

φn(M⊥ 	 φM⊥).

Now we are ready to prove the main result of this section which char-
acterizes reducibility of multiplication operators induced by finite Blaschke
products.

Theorem 2.2. Let φ be a finite Blaschke product with N zeros. Then
the following conditions are equivalent:

(a) Mφ is reducible on D .
(b) There exist nonempty sets E1 6= {0} and E2 6= {0} in D such that:

(b1) E1 ⊥ E2.
(b2) D 	 φD = span(E1 ∪ E2).
(b3) For any f ∈ E1 and g ∈ E2, we have(

f(β1(ξ)), . . . , f(βN (ξ))
)
⊥
(
g(β1(ξ)), . . . , g(βN (ξ))

)
for almost all ξ ∈ T.

Proof. Suppose (a) and letM be a nontrivial reducing subspace of Mφ.
Let E1 =M	 φM and E2 =M⊥ 	 φM⊥. Since E1, E2 are all contained
in D	φD and D	φD = E1⊕E2, we see that (b1) and (b2) hold. Also, for
any f ∈ E1 and g ∈ E2, we see that [f ]φ,D ⊂M and [g]φ,D ⊂M⊥ by (2.9).
So, (b3) is a consequence of Proposition 2.1.

Now, to prove (b)⇒(a), put

M =
∨
n≥0

φn span(E1), N =
∨
n≥0

φn span(E2).

Then M and N are invariant under Mφ and M ⊥ N by Proposition 2.1.
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On the other hand, (2.8) implies∨
n≥0

φn span(E1 ∪ E2) =
∨
n≥0

φn(D 	 φD) = D .

It follows easily that N =M⊥ andM is a nontrivial reducing subspace for
Mφ, thus Mφ is reducible.

As an application of Theorem 2.2, we characterize the reducibility of
multiplication operators induced by finite Blaschke products with two zeros.
First we consider the case when the zeros are the same.

Proposition 2.3. Let φ = ϕ2
a where a ∈ D. Then Mφ is reducible on D

if and only if a = 0.

Proof. First suppose Mφ is reducible on D and a 6= 0. By Theorem 2.2,
we can choose nonzero f, g ∈ D 	φD such that [f ]φ,D ⊥ [g]φ,D . Put F = zf
and G = zg. Since F,G ∈ z(D 	 φD) and

z(D 	 φD) = span

{
log

1

1− az
,

z

1− az

}
,

we can write

F = c1 log
1

1− az
+ c2

z

1− az
, G = d1 log

1

1− az
+ d2

z

1− az
for some constants c1, c2, d1 and d2.Then, by Proposition 2.1 and (2.2),

J(t) :=
�

T

ξF ′φtG
|dξ|
2π

= 0

for all integers t. By the reproducing property for the Hardy space, we note

�

T

ξF ′(ξ)φt(ξ)
ξ

1− aξ
|dξ|
2π

=
1

a

�

T

ξF ′(ξ)φt(ξ)

(
1

1− aξ
− 1

)
|dξ|
2π

=
1

a
[(zF ′φt)(a)− (zF ′φt)(0)] = 0

for every t > 0. It follows that

(2.10) J(t) = d1
�

T

ξF ′φt log
1

1− aξ
|dξ|
2π

= 0

for all integers t. In particular, since J(1) = 0, we have

(2.11) d1
�

T

ξF ′(ξ)φ(ξ) log
1

1− aξ
|dξ|
2π

= 0.

Note φ = ϕ2
a and

F ′ =
c1a

1− az
+

c2
(1− az)2

.
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Thus, by the Cauchy integral formula,

�

T

log
1

1−aξ
ξF ′(ξ)φ(ξ)

|dξ|
2π

=
�

T

ξ log
1

1−aξ

(
ac1(a−ξ)2
(1−aξ)3

+
c2(a−ξ)2
(1−aξ)4

)
|dξ|
2π

=
�

T

log
1

1−aξ

(
ac1(1−aξ)2

ξ(ξ−a)3
+
c2(1−aξ)2

(ξ−a)4

)
dξ

2πi

=
1

2
c1

2 log(1−|a|2)+2|a|2+|a|4

a2
− 1

3
c2

a3

1−|a|2
.

Thus, if d1 6= 0, from (2.11) we have

(2.12) c1
[
6 log(1− |a|2) + 6|a|2 + 3|a|4

]
= c2

2a|a|4

1− |a|2
.

Also, since J(2) = 0, from (2.10) we have again

d1
�

T

log
1

1− aξ
ξF ′φ2

|dξ|
2π

= 0.

On the other hand, one can see as before that

�

T

log
1

1− aξ
ξF ′φ2

|dξ|
2π

=
2

4!
c1

12 log(1− |a|2) + 12|a|2 + 6|a|4 + 4|a|6 + 3|a|8

a4
− 24

5!
c2

a5

1− |a|2
.

Thus, if d1 6= 0 we get

5c1
[
12 log(1− |a|2) + 12|a|2 + 6|a|4 + 4|a|6 + 3|a|8

]
= c2

12a|a|8

1− |a|2
.

Hence, if d1 6= 0, c1 6= 0 and c2 6= 0, we see using (2.12) that

(72x2 − 60) log(1− x) = 60x+ 30x2 − 52x3 − 21x4

where x = |a|2, which is impossible because x 6= 0.

If d1 6= 0, c1 6= 0 and c2 = 0, (2.12) implies

2 log(1− x) + 2x+ x2 = 0,

which is impossible too because x = |a|2 6= 0.

Also, if d1 6= 0, c2 6= 0 and c1 = 0, we have by (2.12), a|a|4 = 0 and then
a = 0, which is a contradiction. Hence d1 must be 0. Also, by replacing the
roles of F and G in the proof above, we see that c1 must be 0 too. It follows
that

F =
c2z

1− az
, G =

d2z

1− az
.

Since 〈f, g〉 = 0, by (2.1) and the reproducing property of the Bergman
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space [Zhu2, Chapter 4], we have

0 =
�

D

F ′G′ dA = c2d2
1

(1− |a|2)2
,

which gives c2 = 0 or d2 = 0, so in turn F = 0 or G = 0, which is a
contradiction. Therefore we conclude that a = 0.

The converse implication follows from the result of Stessin and Zhu [SZ]
as mentioned at the introduction.

We say that two Blaschke products φ1 and φ2 are equivalent if there
exists λ ∈ D such that

φ1 = ϕλ ◦ φ2.
If two Blaschke products φ1 and φ2 are equivalent, it turns out that Mφ1

and Mφ1 share reducing subspaces (see Lemmas 2.1 and 2.2 in [Zh1], for
example).

For a function φ analytic on D, we recall that c ∈ D is a critical point of φ
if φ′(c) = 0. Bochner’s theorem [W1, W2] says that every Blaschke product
with N zeros has exactly N − 1 critical points in D.

Now suppose the Blaschke product φ = ϕaϕb has two zeros a, b ∈ D.
Then φ has only one critical point c in D. If we let φ1 = ϕφ(c) ◦ φ, then it is

easy to see that φ1 = λϕ2
c for some unimodular constant λ and hence φ is

equivalent to ϕ2
c . Note that (ϕaϕb)

′(z) = 0 if and only if[
b(|a|2 − 1) + a(|b|2 − 1)

]
z2 + 2(1− |a|2|b|2)z + b(|a|2 − 1) + a(|b|2 − 1) = 0.

It follows that 0 is the solution of the equation (ϕaϕb)
′(z) = 0 if and only if

a + b = 0. Also, if φ is equivalent to z2, we see the only critical point of φ
is 0. So the observation above gives the following lemma.

Lemma 2.4. Let φ = ϕaϕb where a, b ∈ D. Then φ is equivalent to ϕ2
c

where c is the critical point of φ. In particular, φ is equivalent to z2 if and
only if a+ b = 0.

Now we characterize the reducibility of Mφ with φ = ϕaϕb.

Theorem 2.5. Let φ = ϕaϕb where a, b ∈ D. Then Mφ is reducible on D
if and only if a+ b = 0. In this case, Mφ has exactly two nontrivial reducing
subspaces.

Proof. Let c be the critical point of φ. By Lemma 2.4, φ is equivalent
to ϕ2

c . By Proposition 2.3, Mφ is reducible if and only if φ is equivalent to z2,
which is in turn equivalent to a+ b = 0 by Lemma 2.4 again. The remaining
assertion follows from the result of Stessin–Zhu [SZ].

Recall that D0 is the space of all functions f analytic on D for which

‖f‖0 =
(
|f(0)|2 +

�

D

|f ′|2 dA
)1/2

<∞.
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In the rest of this section, we find a relation between reducibility of
multiplication operators on the spaces D and D0. To do this, we need the

following useful lemma, taken from [Zh2]. For a ∈ D, we let Pa(ξ) = 1−|a|2
|ξ−a|2

be the Poisson kernel on D. Also, we let 〈f, g〉0 = f(0)g(0) + 〈f, g〉∗ where

〈f, g〉∗ =
�

D

f ′g′ dA

for f, g ∈ D0.

Lemma 2.6. Let φ = ϕa1 · · ·ϕaN where a1, . . . , aN ∈ D. Then

〈φmf, φmg〉0 = m
�

T

N∑
j=1

fgPaj
|dξ|
2π

+ 〈f, g〉0 + (|φ(0)|2m − 1)f(0)g(0)

for all f, g ∈ D0 and integers m > 0.

In the following result, we let D̃ be the space of all f analytic on D for
which f(0) = 0 and �

D

|f ′|2 dA <∞.

Note that D̃ is a Hilbert space with respect to the inner product 〈 , 〉∗.

Proposition 2.7. Let φ be a finite Blaschke product. IfM is a nontriv-
ial reducing subspace of Mφ on D0, then (1/z)M or (1/z)M⊥ is a nontrivial
reducing subspace of Mφ on D . Hence, the reducibility of Mφ on D0 implies
the same on D .

Proof. Put φ = ϕλ1 · · ·ϕλN where λ1, . . . , λN ∈ D. Let M be a non-
trivial reducing subspace of Mφ on D0. Let f ∈ M and g ∈ M⊥. Since
〈φmf, φmg〉0 = 0, it follows from Lemma 2.6 that

�

T

N∑
k=1

fgPλk
|dξ|
2π

= − 1

m
(|φ(0)|2m − 1)f(0)g(0)

for every integer m > 0. Taking m→∞ in the above, we see that

�

T

N∑
k=1

fgPλk
|dξ|
2π

= 0

and hence (|φ(0)|2m − 1)f(0)g(0) = 0 for all integers m > 0. Thus either
f(0) = 0 or g(0) = 0. Decompose 1 = ε+ ζ where ε ∈ M and ζ ∈ M⊥. By
the observation above, ε(0) = 0 or ζ(0) = 0. If ε(0) = 0, then

〈ε, ε〉0 = 〈ε, 1− ζ〉0 = 〈ε, 1〉0 = ε(0) = 0.

Hence ε = 0 and so 1 ∈M⊥. Similarly, ζ(0) = 0 implies 1 ∈M. Thus either
1 ∈M or 1 ∈M⊥.
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Assume 1 ∈ M. Since 〈f, 1〉0 = f(0), we see f(0) = 0 for any f ∈ M⊥
and hence M⊥ ⊂ D̃ . Let N = {f − f(0) : f ∈ M}. Since 1 ∈ M, we see
that N = {f ∈ M : f(0) = 0} and D0 = C ⊕ N ⊕M⊥. Note φN ⊂ N ,
φM⊥ ⊂M⊥ and N ⊥M⊥. ThusM⊥ is a nontrivial reducing subspace for
Mφ on D̃ . Consider the multiplication operator Mz : D → D̃ . By (2.1), it is
easy to see that Mz is a unitary operator. Moreover, Mφ on D is unitarily

equivalent to Mφ on D̃ via Mz. Thus M−1z M⊥ = 1
zM

⊥ is a nontrivial
reducing subspace for Mφ on D .

Similarly, if 1 ∈ M⊥, we see that (1/z)M is a nontrivial reducing sub-
space of Mφ on D .

The above result says that nonreducibility of Mφ on D implies the same
on D0. Thus, by Theorem 2.5, together with Lemma 2.4 and the result
of Stessin–Zhu [SZ], we see that Mϕaϕb

is reducible on D0 if and only if
a+ b = 0, which is already noticed in [Zh1].

3. Unitary equivalence to Mz2. In this section, we characterize mul-
tipliers on D for which the corresponding multiplication operator is unitarily
equivalent to a weighted shift of multiplicity 2. We first characterize finite
Blaschke products for which the corresponding multiplication operator on
D is unitarily equivalent to a weighted unilateral shift of finite multiplicity:

Proposition 3.1. Let φ be a finite Blaschke product with N zeros. Then
the following are equivalent:

(a) Mφ on D is unitarily equivalent to a weighted unilateral shift of finite
multiplicity N .

(b) There exists an orthogonal set {f1, . . . , fN} ⊂ D 	 φD for which the
N ×N matrix

U(ξ) :=


f1(β1(ξ)) f2(β1(ξ)) · · · fN (β1(ξ))

f1(β2(ξ)) f2(β2(ξ)) · · · fN (β2(ξ))
...

... · · ·
...

f1(βN (ξ)) f2(βN (ξ)) · · · fN (βN (ξ))


is unitary for almost all ξ ∈ T.

Proof. First assume (a). Then there is an orthogonal set {g1, . . . , gN} in
D 	 φD such that

(3.1) 〈φmgj , φngk〉 = 0

for m,n ≥ 0 and j 6= k. Also,

(3.2) 〈φmgk, φngk〉 = 0
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for m 6= n and k = 1, . . . , N . By Proposition 2.1, (3.1) is equivalent to

(3.3)

N∑
l=1

gj(βl(ξ)) gk(βl(ξ)) = 0, j 6= k,

for almost all ξ ∈ T. Also, by a similar argument to that for Proposition 2.1,
we see that (3.2) is equivalent to

(3.4)

N∑
l=1

|gk(βl(ξ))|2 = ck, k = 1, . . . , N,

for almost all ξ ∈ T and some constants ck. Now, letting fk = gk/
√
ck for

k = 1, . . . , N , we see from (3.3) and (3.4) that the matrix U(ξ) is unitary
for almost all ξ ∈ T, so we have (a)⇒(b).

For (b)⇒(a), it is obvious that (b) implies (3.3) and (3.4), and in turn
(3.1) and (3.2) hold. Then it is easy to see that Mφ is unitarily equivalent
to a weighted unilateral shift of finite multiplicity N , so (a) holds.

Now we characterize multipliers on D which are unitarily equivalent to
a weighted shift of multiplicity 2.

Theorem 3.2. Let φ ∈M(D). Then Mφ is unitarily equivalent to Mz2

if and only if φ = λz2 for some unimodular constant λ.

Proof. First suppose Mφ is unitarily equivalent to Mz2 . By Lemma 2.1 of
[Zh2], we see that φ = λϕaϕb for some a, b ∈ D and unimodular constant λ.
Notice that Mz2 is reducible, and hence an application of Theorem 2.5 im-
plies φ = λϕaϕ−a.

Now we show a = 0. If a 6= 0, it follows that there exist nonzero g1, g2 ∈
D 	 φD such that

〈φmg1, φng2〉 = 0, m, n ≥ 0,(3.5)

〈φmg1, φng1〉 = 〈φmg2, φng2〉 = 0, m 6= n.(3.6)

Since the set z(D 	 φD) is spanned by the functions − log(1 − az) and
− log(1 + az), we write

F := zg1 = −c1 log(1− az)− c2 log(1 + az),

G := zg2 = −d1 log(1− az)− d2 log(1 + az)

for some constants c1, c2, d1 and d2 and then

F ′ =
c1a

1− az
− c2a

1 + az
.

On the other hand, since 0 = 〈g1, g2〉 = 〈F,G〉∗, it follows that

(3.7) (c1d1 + c2d2) log(1− |a|2) = −(c1d2 + c2d1) log(1 + |a|2).
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Since 0 < |a| < 1, the above shows that there are two cases to consider:

Case 1: c1d1 + c2d2 6= 0 and c1d2 + c2d1 6= 0.

Case 2: c1d1 + c2d2 = 0 and c1d2 + c2d1 = 0.

First consider Case 1. By (3.5) and (2.2), together with Proposition 2.1,
�

T

ξF ′φG
|dξ|
2π

= 0.

Using a similar argument to the proof of Proposition 2.3, we see that the
above equation yields

c1d1
�

T

(1− a2ξ2) log(1− aξ)
(ξ − a)2(ξ + a)ξ

dξ

2πi
+ c1d2

�

T

(1− a2ξ2) log(1 + aξ)

(ξ − a)2(ξ + a)ξ

dξ

2πi

= c2d1
�

T

(1− a2ξ2) log(1− aξ)
(ξ + a)2(ξ − a)ξ

dξ

2πi
+ c2d2

�

T

(1− a2ξ2) log(1 + aξ)

(ξ + a)2(ξ − a)ξ

dξ

2πi
.

By applying the Cauchy integral formula in the above equation, we see that

(c1d1 + c2d2)[(1− x2) log(1 + x) + (x2 + 3) log(1− x) + 2x(1 + x)]

= −(c1d2 + c2d1)[(1− x2) log(1− x) + (x2 + 3) log(1 + x)− 2x(1− x)]

where x = |a|2 ∈ (0, 1). It follows from (3.7) that

(1− x2) log(1− x)− 2x(1− x)

(1− x2) log(1 + x) + 2x(1 + x)
=

log(1 + x)

log(1− x)
.

Now, we prove the above is impossible. To do this, we define

h(t) = [(1− t2) log(1− t)− 2t(1− t)] log(1− t)
− [(1− t2) log(1 + t) + 2t(1 + t)] log(1 + t), t ∈ (0, 1).

Since h(0) = 0, it suffices to prove h′(t) < 0 for all t ∈ (0, 1). Since

h′(t) = 2t[log2(1 + t)− log2(1− t)]
+ 2t[log(1− t)− log(1 + t)]− 4[log(1− t) + log(1 + t)],

we see by simple calculations that

h′(t) = 4

∞∑
j=1

(
j

(j + 1)(2j + 1)
−

∑
k+m=2j+1

1

km

)
t2j+2,

which is negative because∑
k+m=2j+1

1

km
= 2

[
1

2j
+

1

2(2j − 1)
+ · · ·+ 1

j(j + 1)

]
>

2j

(j + 1)(2j + 1)
>

j

(j + 1)(2j + 1)

for all j. Thus Case 1 cannot happen.
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Now, consider Case 2. Since (c1, c2) 6= (0, 0), we have either (c1, d1) =
(c2,−d2) or (c1, d1) = (−c2, d2). Without loss of generality, we may assume
(c1, d1) = (−c2, d2) = (1, 1) and then

F = − log(1− az) + log(1 + az).

Note

F ′ =
a

1− az
+

a

1 + az
.

By (3.6) and (2.2), together with the proof of Proposition 2.1,
�

T

ξF ′φF
|dξ|
2π

= 0.

By the same arguments as in Case 1, the above equation gives

(1− x2) log(1 + x) + (x2 + 3) log(1− x) + 2x(1 + x)

= (1− x2) log(1− x) + (x2 + 3) log(1 + x)− 2x(1− x)

where x = |a|2. Thus we have

(1 + x2)[log(1− x)− log(1 + x)] + 2x = 0.

But a simple calculation shows that the above is impossible for all x ∈ (0, 1),
which gives a contradiction. Hence a = 0 and so φ = λz2, as desired.

The converse implication is clear.

We close this paper with a remark that for φ = ϕaϕ−a with a 6= 0, the
proof of Theorem 3.2 also shows that two nontrivial reducing subspaces of
Mφ are [f ]φ,D and [g]φ,D where

f =
1

z

(
log

1

1− az
− log

1

1 + az

)
, g =

1

z

(
log

1

1− az
+ log

1

1 + az

)
.
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