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Nonommutative Orliz spaesassoiated to a statebyMaryam H. A. Al-Rashed and Bogusªaw Zegarli«ski (London)
Abstrat. We introdue and study the nonommutative Orliz spaes assoiated toa normal faithful state on a semi�nite von Neumann algebra.1. Introdution. The main objetive of this paper is to establish thebasis of the theory of nonommutative Orliz spaes assoiated to a faithfulnormal state on a semi�nite von Neumann algebra. The family of spaes weintrodue generalises the nonommutative Lp spaes, and is furnished withOrliz and Luxemburg norms, whih�as we prove�are equivalent. Moreoverwe show that the suitable Young and Hölder inequalities are true. We notethat in the ase of Orliz spaes assoiated to a trae suh a theory was pre-sented long time ago in [12℄ (see also [13℄, [14℄). Its speial ase, the nonom-mutative Lp spaes assoiated to a nontrivial state, was studied extensivelyeven earlier (see [2℄, [5℄, [7℄�[9℄, [11℄, [15℄, [18℄, [19℄�[22℄). Stritly speaking,given the Orliz spaes for traes (as in [12℄), by using the nonommutativeintegration theory an abstrat and ompliated onstrution of Orliz spaesis possible even when working with fator III type von Neumann algebras.What we demonstrate is that, with a bit of extra tehnial assumptions atthe start, one an introdue the Orliz spaes in a very expliit way, whihin the speial ase of monomial type Young funtions reprodues the origi-nal nonommutative Lp spaes. We believe that suh expliit representationis useful not only to study interesting properties of nonommutative Orlizspaes, but should also be of great potential interest for various appliations.The paper is organised as follows. In the �rst setion we introdue nota-tion and reall some known fats from the theory of lassial Orliz spaeswith respet to a given measure [16℄, as well as the nonommutative analog2000 Mathematis Subjet Classi�ation: 46B28, 46L51, 46L52.Key words and phrases: Orliz spae, von Neumann algebra, faithful normal trae.M. H. A. Al-Rashed on leave from Department of Mathematis, Basi College ofEduation, Kuwait. [199℄ © Instytut Matematyzny PAN, 2007



200 M. H. A. Al-Rashed and B. Zegarli«skiinvolving the trae in plae of integration [12℄. In the next setion we intro-due a de�nition of the Orliz spae assoiated to a faithful normal state ona semi�nite von Neumann algebra furnished with the analog of Orliz andLuxemburg norms. In that setion we also prove the Young and Hölder in-equalities, and equivalene of various norms. We �nish with a brief summaryand outlook.2. Preliminaries. A ontinuous, onvex, nonnegative, stritly inreas-ing funtion Φ of a real variable is alled a Young funtion i� for any x ∈ R,
Φ(x) =

|x|\
0

ϕ(t) dtwith a funtion ϕ : [0,∞) → R+ whih vanishes only at zero, is right ontinu-ous, nondereasing and diverges to in�nity as t→ ∞. By this de�nition, Φ isunbounded and vanishes only at zero. For every Young funtion Φ there ex-ists a funtion Ψ , alled the omplementary Young funtion, given as follows:
Ψ(x) =

|x|\
0

ψ(s) ds, x ≥ 0,where ψ is the right inverse of ϕ. A pair of omplementary Young funtions
(Φ, Ψ) satis�es the following Young inequality:

ts ≤ Φ(t) + Ψ(s) for all t, s ∈ [0,∞),with equality if and only if t = ψ(s) or s = ϕ(t) (see [10℄ or [16℄). We re-mark that the lass of Young funtions generalises the well known family ofmonomial type funtions x 7→ (1/p)xp, p ≥ 1.For later purposes we note that the inverse funtions Φ−1 and Ψ−1 satisfy(1) r < Φ−1(r)Ψ−1(r) ≤ 2rfor any nonnegative r (see [16℄).Let A be a semi�nite von Neumann algebra on a Hilbert spae H witha faithful normal semi�nite trae Tr. We denote by M = M(A) the topo-logial ∗-algebra (equipped with the measure topology) of trae-measurableoperators [15℄, [22℄. [Reall that a losed densely de�ned operator f a�li-ated with A is alled trae-measurable i�, for eah ε ∈ R+, there exists aprojetion p ∈ A suh that
pH ⊆ D(f) and Tr(1 − p) ≤ ε,where D is the domain of f . The measure topology on M(A) is by de�nitionthe linear topology in whih the sets

V (ε, δ) = {a ∈ M(A) : ∃ projection q ∈ A, ‖aq‖ < ε and Tr(1 − q) < δ}with ε, δ ∈ R+, form a base of neighbourhoods of zero.℄



Nonommutative Orliz spaes 201A losed densely de�ned operator f a�liated with A has a polar deom-position f = u|f | with a partial isometry u and modulus |f | of f admittingthe spetral deomposition |f | =
T∞
0 λdeλ. The rearrangement f̃ of f is byde�nition the funtion given by

f̃(t) := inf{λ > 0 : Tr(e(λ,∞)) ≤ t}where e(λ,∞) denotes the orresponding spetral projetor of |f |. Following[6℄ and [22℄ we list the following properties of the rearrangement mapping.Lemma 2.1. Let A ∈ M(A). Then:(1) Ã = Ã∗ = |A|∼.(2) If X is a bounded measurable operator , then ÃX ≤ ‖X‖Ã.(3) If B ∈ M(A) and 0 ≤ A ≤ B, then Ã ≤ B̃.(4) For 0 ≤ A ∈ M(A) and any ontinuous inreasing funtion φ :

[0,∞) → [0,∞) one has φ(Ã) = φ̃(A) and
Tr(φ(A)) =

∞\
0

φ(Ã(t)) dt.For later use we also reall the following properties of operator absolutevalue (f [1℄, [4℄ and [3℄, [12℄).Lemma 2.2.(1) (Operator triangle inequality) For any A,B ∈ M(A) there existpartial isometries u, v ∈ A with uu∗ = vv∗ = 1 suh that
|A+B| ≤ u∗|A|u+ v∗|B|v.(2) (Jensen inequality for traes) If Φ is a Young funtion and z ∈

M(A), ‖z‖ ≤ 1, then for any nonnegative measurable f one has
Tr(Φ(z∗fz)) ≤ Tr(z∗Φ(f)z).(3) (Young inequality for traes) For any A,B ∈ M(A) and a pair ofomplementary Young funtions Φ and Ψ one has

Tr(|AB|) ≤ Tr(Φ(|A|)) + Tr(Ψ(|B|)).3. Nonommutative Orliz spaes assoiated to a faithful normalstate. Let Tr be a faithful trae on a semi�nite von Neumann algebra Aand let ω be a state given by
ω(f) = Tr(̺f)with a measurable density operator ̺ > 0 (normalisation is nowhere impor-tant). For any Young funtion Φ and a given s ∈ [0, 1] we de�ne the Orlizfuntional

M(A) ∋ f 7→ OΦ,s(f) := Tr(Φ(|FΦ,s|))
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FΦ,s := (Φ−1(̺))sf(Φ−1(̺))1−s.De�ne

KΦ,s = {f ∈ M(A) : OΦ,s(f) ≤ 1}, LΦ,s(A, ω) :=
∞⋃

n=1

nKΦ,s.One an see that h ∈ LΦ,s(A, ω) i� there exists β ∈ (0, 1] suh that βh ∈
KΦ,s. We have the following two properties.Proposition 3.1.(i) KΦ,s is absolutely onvex.(ii) LΦ,s(A, ω) is a linear spae.Proof. (i) We need to show that for α ∈ [0, 1] and all f, g ∈ KΦ,s, wehave αf + (1 − α)g ∈ KΦ,s. To this end we note that by Lemma 2.2, thereare partial isometries u and v with uu∗ = vv∗ = 1 suh that

|αF + (1 − α)G| ≤ αu∗|F |u+ (1 − α)v∗|G|v,where
F ≡ FΦ,s ≡ (Φ−1(̺))sf(Φ−1(̺))1−s,

G ≡ GΦ,s ≡ (Φ−1(̺))sg(Φ−1(̺))1−s.Sine
OΦ,s(αf + (1 − α)g) = Tr(Φ(|αF + (1 − α)G|)),using the fat that by our assumption Φ is a Young funtion together withLemmata 2.1 and 2.2 we have

Tr(Φ(|αF + (1 − α)G|)) ≤ αTr(Φ(u∗|F |u)) + (1 − α) Tr(Φ(v∗|G|v))

≤ αTr(u∗Φ(|F |)u) + (1 − α) Tr(v∗Φ(|G|)v)

≤ αTr(Φ(|F |)) + (1 − α) Tr(Φ(|G|)).Sine αTr(Φ(|F |)) + (1 − α) Tr(Φ(|G|)) = αOΦ,s(f) + (1 − α)OΦ,s(g), thisimplies the absolute onvexity of KΦ,s.(ii) We need to show that the sum of two operators in LΦ,s(A, ω) alsobelongs to LΦ,s(A, ω). For i = 1, 2, let hi ∈ LΦ,s(A, ω); that is, by de�nition,there exist βi ∈ (0, 1] suh that βihi ∈ KΦ,s. Let β = min(β1, β2). Then
β > 0 and setting Hi = (Φ−1(̺))shi(Φ

−1(̺))1−s we have
OΦ,s

(
β

2
(h1 + h2)

)
= Tr

[
Φ

(∣∣∣∣
β

2
(H1 +H2)

∣∣∣∣
)]

≤
1

2
(Tr(Φ(|βH1|)) + Tr(Φ(|βH2|)))

≤
1

2
[OΦ,s(β1h1) +OΦ,s(β2h2)] ≤ 1



Nonommutative Orliz spaes 203(where we have used monotoniity and onvexity properties of Φ). Hene,
h1 + h2 ∈ LΦ,s(A, ω). The fat that a salar multiple of an operator in
LΦ,s(A, ω) belongs to LΦ,s(A, ω) follows from the remark after the de�nitionof this set.We furnish LΦ,s(A, ω) with the Luxemburg norm

‖f‖Φ,s := inf

{
λ > 0 :

1

λ
f ∈ KΦ,s

}
.One an show the following fats.Proposition 3.2.(i) (LΦ,s(A, ω), ‖ · ‖Φ,s) is a normed linear spae.(ii) If ‖f‖Φ,s ≤ 1, then OΦ,s(f) ≤ ‖f‖Φ,s, with equality if the normequals 1.Given s ∈ [0, 1] we introdue the salar produt

〈f, g〉s := Tr(̺1−sf∗̺sg).It is useful to note the following representation of the salar produt.Lemma 3.3.
〈f, g〉s = Tr(M1−sF ∗

Φ,sM
sGΨ,s)with a bounded operator(2) 1/2 ≤M ≡ ̺(Φ−1(̺))−1(Ψ−1(̺))−1 ≤ 1.Proof. Sine we have F ∗

Φ,s ≡ (Φ−1(̺))1−sf∗(Φ−1(̺))s and GΨ,s ≡

(Ψ−1(̺))sg(Ψ−1(̺))
1−s, using the de�nition of the salar produt, we obtain

〈f, g〉s = Tr(̺1−sf∗̺sg)

= Tr((Φ−1(̺))1−sf∗(Φ−1(̺))s{(Φ−1(̺))−s̺s(Ψ−1(̺))−s}

· (Ψ−1(̺))sg(Ψ−1(̺))1−s{(Ψ−1(̺))−(1−s))̺1−s(Φ−1(̺))−(1−s)})

= Tr(F ∗
Φ,sM

sGΨ,sM
1−s) = Tr(M1−sF ∗

Φ,sM
sGΨ,s).The lower and upper bounds of M follow from (1).We show the following relations between this salar produt and thefuntionals introdued above.Theorem 3.4.(i) (Young inequality) For f, g ∈ M(A) and any density matrix ̺ > 0,

|〈f, g〉s| ≤ OΦ,s(f) +OΨ,s(g).(ii) (Hölder inequality)
|〈f, g〉s| ≤ 2‖f‖Φ,s‖g‖Ψ,sfor any f ∈ LΦ,s(A, ω) and g ∈ LΨ,s(A, ω).



204 M. H. A. Al-Rashed and B. Zegarli«skiProof. (i) For simpliity of notation, setting F ≡ FΦ,s and G ≡ GΨ,s,from Lemma 3.3 we have
〈f, g〉s = Tr(M1−sF ∗M sG).Applying the absolute value and using the Young inequality for traes(Lemma 2.2(3)), we get

|〈f, g〉s| = |Tr(M1−sF ∗M sG)| ≤ Tr(|M1−sF ∗M sG|)(3)
≤ Tr(Φ(|M1−sF ∗|)) + Tr(Ψ(|M sG|)).Next we use Lemma 2.1(4) to represent eah term from the right hand sideof (3) as the integral of a monotone funtion of the orresponding rearrange-ment. At this stage we utilize properties (1)�(3) of Lemma 2.1 together withthe upper bound M ≤ 1 of Lemma 2.2 to get
|M1−sF ∗|∼ ≤ ‖M1−s‖ · |F |∼ ≤ |F |∼,

|M sG|∼ ≤ ‖M s‖ · |G|∼ ≤ |G|∼.This implies the bound
|〈f, g〉s| ≤ ‖M1−s‖Tr(Φ(|F ∗|)) + ‖M s‖Tr(Ψ(|G|))(4)

≤ Tr(Φ(|F ∗|)) + Tr(Ψ(|G|)) = Tr(Φ(|F |)) + Tr(Ψ(|G|)).Now it is su�ient to reall our de�nition of F and G to arrive at thedesired Young inequality(5) |〈f, g〉s| ≤ OΦ,s(f) +OΨ,s(g).(ii) For f ∈ LΦ,s(A, ω) and g ∈ LΨs
(A, ω) with ‖f‖Φ,s, ‖g‖Ψs

6= 0, we have
OΦ,s(f/‖f‖Φ,s) = 1 = OΨ,s(g/‖g‖Ψs

). Therefore by the Young inequality,
∣∣∣∣
〈

f

‖f‖Φ,s

,
g

‖g‖Ψs

〉

s

∣∣∣∣ ≤ OΦ,s

(
f

‖f‖Φ,s

)
+OΨ,s

(
g

‖g‖Ψs

)
= 2.From this the desired inequality follows.In the rest of this setion we introdue other natural norms on LΦ,s(A, ω)and disuss their relations. We have already introdued the de�nition of theLuxemburg norm whih an be represented in the following equivalent form:(6) ‖f‖Φ,s = inf{λ > 0 : OΦ,s(f/λ) ≤ 1}.We de�ne the Orliz norm as follows:(7) ‖f‖◦Φ,s := sup{|〈f, g〉s| : ‖g‖Ψ,s ≤ 1},where beause of Proposition 3.2(ii) the ondition ‖g‖Ψ,s ≤ 1 an be replaedby OΨ,s(g) ≤ 1. We also introdue the following prime norm:(8) ‖f‖′Φ,s := inf

k>0

{
1

k
(1 +OΦ,s(kf))

}
.



Nonommutative Orliz spaes 205We remark �rst that with these de�nitions one gets
|〈f, g〉s| = |〈f, g/‖g‖Ψ,s〉s|‖g‖Ψ,s

≤ sup
‖h‖Ψ,s≤1

|〈f, h〉s| ‖f‖
◦
Φ,s‖g‖Ψ,s = ‖f‖◦Φ,s‖g‖Ψ,s.That is, we get another representation of the Hölder inequality:Proposition 3.5.

|〈f, g〉s| ≤ ‖f‖◦Φ,s‖g‖Ψ,s.Next reall that two norms, ‖ · ‖1 and ‖ · ‖2, on a normed linear spae Xare alled equivalent if there exist two positive real onstants C and D suhthat C‖x‖1 ≤ ‖x‖2 ≤ D‖x‖1 for all x ∈ X. We show the following resultproving the equivalene of the norms introdued above.Theorem 3.6. For any f ∈ LΦ,s(A, ω) one has(9) 1

2
‖f‖Φ,s ≤ ‖f‖◦Φ,s ≤ ‖f‖′Φ,s ≤ 2‖f‖Φ,s.Proof of the �rst inequality of (9). First of all we reall that by the Younginequality for a trae ([12, Proposition 2.2℄), for any measurable G there isa 0 ≤ b ∈ M(A) satisfying Tr(Ψ(b)) ≤ 1 suh that
Tr(|G|b) = Tr(Φ(|G|)) + Tr(Ψ(b)).Thus for any 0 < f ∈ LΦ,s(A, ω) with F ≡ FΦ,s we have

OΦ,s(f) = Tr(Φ(|F |)) ≤ Tr(Φ(|F |)) + Tr(Ψ(b))(10)
= Tr(Φ(|F |)) + Tr(Ψ(b)) = Tr(|F ∗|b)with a suitable 0 ≤ b ∈ M(A) satisfying Tr(Ψ(b)) ≤ 1. The polar deompo-sition F ∗ = W |F ∗| implies W ∗F ∗ = |F ∗|, where W is the partial isometryfor F ∗. Hene the right hand side of (10) an be written as(11) Tr(|F ∗|b) = Tr(W ∗F ∗b) = Tr(F ∗bW ∗)by yliity of trae. Inserting the expliit expression for F ≡ FΦ,s, aftersimple manipulations under the trae we get

Tr(|F ∗|b) = Tr(F ∗bW ∗)(12)
= Tr((Φ−1(̺))1−sf∗(Φ−1(̺))

s
bW ∗)

= Tr((Φ−1(̺))1−s̺−(1−s)̺1−sf∗̺s̺−s(Φ−1(̺))
s
bW ∗)

= Tr((̺1−sf∗̺s)(̺−s(Φ−1(̺))sbW ∗̺−(1−s)(Φ−1(̺))1−s)).Inserting (Ψ−1(̺))−s(Ψ−1(̺))s and (Ψ−1(̺))−(1−s)(Ψ−1(̺))1−s on the leftand on the right of the term in the seond braket under the trae on the



206 M. H. A. Al-Rashed and B. Zegarli«skiright hand side of (12), respetively, we arrive at
(13) Tr(|F ∗|b) = Tr((̺1−sf∗̺s)(Ψ−1(̺))−s((Ψ−1(̺))s̺−s(Φ−1(̺))s)bW ∗

· (̺−(1−s)(Φ−1(̺))1−s(Ψ−1(̺))1−s)(Ψ−1(̺))−(1−s))

= Tr((̺1−sf∗̺s)(Ψ−1(̺))−sM−sbW ∗M−(1−s)(Ψ−1(̺))−(1−s))

= Tr((̺1−sf∗̺s)(Ψ−1(̺))−sM−sbW ∗M−(1−s)(Ψ−1(̺))−(1−s))where M−1 ≡ ̺−1Φ−1(̺)Ψ−1(̺). Setting
b ≡

1

2
(Ψ−1(̺))

−s
M−sbW ∗M−(1−s)(Ψ−1(̺))−(1−s),we an write (13) as

Tr(|F ∗|b) = 2〈f,b〉s.Combining this with (10), we get(14) OΦ,s(f) ≤ 2〈f,b〉s.To onlude the proof we need to show that OΨ,s(b) ≤ 1. To this end wenote that
OΨ,s(b) = Tr(Ψ(|(Ψ−1(̺))s

b(Ψ−1(̺))1−s|))

= Tr
(
Ψ

(∣∣(Ψ−1(̺))
s

· (Ψ−1(̺))−s 1
2M

−sbW ∗M−(1−s)(Ψ−1(̺))−(1−s)(Ψ−1(̺))1−s
∣∣))

≤ Tr
(
Ψ

(∣∣1
2M

−sbW ∗M−(1−s)
∣∣)).Beause by (1) we have M−1 ≤ 2, using Lemma 2.1 we get the followinginequality for rearrangements:

∣∣1
2M

−sbW ∗M−(1−s)
∣∣∼ ≤ b̃.This together with monotoniity of Ψ on the positive real axis and our as-sumptions about b implies that(15) OΨ,s(b) ≤ Tr

(
Ψ

(∣∣1
2M

−sbW ∗M−(1−s)
∣∣)) ≤ Tr(Ψ(b)) ≤ 1.From (14) and (15), we obtain

OΦ,s(f) ≤ 2〈f,b〉s ≤ 2‖f‖◦Φ,s.Applying this to a funtion with the Luxemburg norm equal to one andtaking into aount Proposition 3.2(ii), after simple algebrai manipulationswe onlude with
1
2‖f‖Φ,s ≤ ‖f‖◦Φ,s.Proof of the seond inequality of (9). Let g ∈ LΨ,s(A, ω). By de�nitionof ‖f‖◦Φ,s (and Proposition 3.2(ii)), we have

‖f‖◦Φ,s = sup{|〈f, g〉s| : OΨ,s(g) ≤ 1}.



Nonommutative Orliz spaes 207Hene for any 0 < k <∞ using the Young inequality, one gets
‖f‖◦Φ,s = sup

{∣∣∣∣
1

k
〈kf, g〉s

∣∣∣∣ : OΨ,s(g) ≤ 1

}

≤ sup

{
1

k
(OΦ,s(kf) +OΨ,s(g)) : OΨ,s(g) ≤ 1

}

≤
1

k
(OΦ,s(kf) + 1).Sine k ∈ (0,∞) was arbitrary, taking the inf with respet to k we arrive at

‖f‖◦Φ,s ≤ inf
k>0

1

k
(OΦ,s(kf) + 1) ≡ ‖f‖′Φ,s.(In fat one an show equality in this ase.)Proof of the third inequality of (9). Let f ∈ M(A) be suh that ‖f‖Φ,s

6= 0. Using the de�nition of ‖ · ‖′Φ,s, we have
∥∥∥∥

f

‖f‖Φ,s

∥∥∥∥
′

Φ,s

= inf
k>0

{
1

k

(
1 +OΦ,s

(
kf

‖f‖Φ,s

))}

≤
1

k̃

(
1 +OΦ,s

(
k̃f

‖f‖Φ,s

))

for any k̃ > 0. Choosing k̃ = 1 and noting that by Proposition 3.2(ii) onehas OΦ,s(f/‖f‖Φ,s) = 1, we arrive at(16) ‖f‖′Φ,s ≤ 2‖f‖Φ,s.4. Summary and outlook. We have introdued the Orliz spaes as-soiated to a given faithful normal state (or weight) on a semisimple vonNeumann algebra. Our spaes generalise the well known nonommutative
Lp spaes. In a similar manner to that well established ase, for every valueof a ontinuous parameter s ∈ [0, 1] we an de�ne a norm ‖ · ‖Φ,s as well asits dual ‖ · ‖Ψ,s assoiated to the omplementary Young funtion, whih arerelated in a natural way to a salar produt 〈·, ·〉s. In ertain appliations itis useful to onsider the following Bogolyubov�Kubo�Mori salar produt:

〈〈f, g〉〉 :=

1\
0

〈f, g〉s ds.It is then natural to onsider the generalisation of the presented sheme inwhih for every s one onsiders a pair of omplementary Young funtions
(Φs, Ψs) depending possibly in a nontrivial way on s. Assuming that thedependene on s in the family Φ = (Φs)s∈[0,1] is su�iently smooth, we an



208 M. H. A. Al-Rashed and B. Zegarli«skide�ne a onvex funtional
OΦ(f) :=

1\
0

OΦs,s(f) dsand similarly for the omplementary family Ψ = (Ψs)s∈[0,1]. With suh fun-tionals one an reover all elements of the theory disussed in the previoussetion, inluding in partiular the Young inequality
〈〈f, g〉〉 ≤ OΦ(f) + OΨ(f).Some appliations of our theory will be desribed elsewhere.
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