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Hypercontractivity of simple random variables
by

PAWEL WOLFF (Warszawa)

Abstract. The optimal hypercontractivity constant for a natural operator semigroup
acting on a discrete finite probability space is established up to a universal factor. The
two-point spaces are proved to be the extremal case. The constants obtained are also
optimal in the related moment inequalities for sums of independent random variables.

1. Notation and preliminary results. Let {2 be an arbitrary finite
set and let 41 be a probability measure on the measurable space (£2,2%). For
any function f: 2 — R, E,f denotes the expected value of f with respect
to . To avoid trivialities, we assume that p has at least two atoms with
non-zero measure.

We shall consider operators acting on the finite-dimensional space Lo (1)
(for abbreviation, we write L,(p) instead of L,(f2, 1)) over the real scalar
field. Let L be the orthogonal projection in Lo(u) onto the subspace of
functions with zero mean, i.e. L = Id —FE,,. We define the semigroup 7; =
et (t > 0) of self-adjoint operators. Throughout the paper, we shall use
the explicit formula

Ti=E,+e'L=(1-e"E,+e"Id,

which implies that (7}):>0 is a non-negativity preserving semigroup of con-
tractions from L,(p) to Ly(p) for 1 < p < oc.

DEFINITION 1.1. The semigroup (7}):>0 is (p, q)-hypercontractive (for
1 < g < p < o0) if there exists tg > 0 such that for all t >ty and f € Ly(p),

(1.1) 1T N 2y < Ny ()
If such a tp exists and is the least possible (the minimum exists, since ob-
viously 7} is a strongly continuous semigroup), then o, 4(u) := e~ is the
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(p, q)-hypercontractivity constant for the measure p. (Non-triviality of u gives
to >0, i.e., opq(p) € (0,1).)

Note that hypercontractivity of the semigroup (73):>0 does not depend
on the set {2 itself, but only on the weights of the atoms of the measure pu.
In particular, if #(2 = 2, then we may assume that u = 36_, + adg for some
a € (0,1/2] with =1 — a. Therefore we shall use the notation

Opg(@) 1= 0pq(B0-a + adp).

REMARK 1.1. The standard duality argument yields o, (1) = o¢ 1 (1),
where p’ = p/(p — 1) and ¢’ = q/(q — 1). Indeed, self-adjointness of T; implies
that |7 Ly () L) = 1T L,y )~ L (-

REMARK 1.2. For f = a + g, where a € R and E,g = 0, we have
Tif = a+ e~tg. Since T} preserves non-negativity, we have Ti|f| > T;.f and
Ti|—f| > =Tif, so Ti|f| > |Tif|. Therefore in order to check (1.1) we can
consider only f = a + g > 0. Then, except the trivial case g = 0, we must
have a > 0 and, by homogeneity, we can assume a = 1. Therefore

(1.2)  opq(p) =max{o € (0,1) : 1+ ogllp, < I1+ 9L,
whenever E,,g =0 and 1+ ¢ > 0}

and in the case of the two-point measure y = 35_ + adg every g is of the
form g(x) = zu for u € [-1/5,1/a].
The hypercontractivity of semigroups has been transferred to the context

of random variables. Let us recall the following definition introduced by

Krakowiak and Szulga [5] (see also 6] and [7, Ch. 3|).

DEFINITION 1.2. Let 0 < ¢ < p < o0, let (F, || ||) be a separable Banach
space and let X be a random vector with values in F such that E|| X||? < oo.
Then we say that X is (p, q)-hypercontractive with constant o € (0, 1) if

Voer  [lv+0X]|p < [lv+ X][g.
(The notation ||Y||, means (E||Y||?)!/?.)

REMARK 1.3. Let X be a zero-mean F-valued random vector which
is simple (i.e. takes on finitely many values) and p be its distribution.
A standard reasoning shows that if the semigroup T; = e tId—Eu) ig (p,q)-
hypercontractive, then X is (p, ¢)-hypercontractive with constant o, ().
Indeed, taking e~ = o := 0y,4(u) we have || Ty, |1, (1)—1,(n) < 1. Consi-

dering, for a fixed v € F, the convex function f(x) = ||v + z|| and using the
Jensen inequality we obtain

(Tio )(X) = (1 = 0) Ef(X) + 0 f(X) = (1 = 0)f(0) + 0 f(X) = f(0 X),
so [lv+ o X|lp = [[f(eX)llp < [(Tto H(X)lp < 1F(X)llg = [lo + Xlq-
Let us recall the following result [6, 7]:
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PROPOSITION 1.1. Let 0 < ¢ < p < oo. If (Xy)}_, is a sequence of
independent random vectors with values in a separable Banach space F and
each Xy is (p, q)-hypercontractive with the same constant o, then

Voer  |lv+ 0S|l < lv+Slq
where S = Y"1, Xj. In particular,
151y < o H1S]lg-

We shall use the following notation. For a,b € R, a V b = max(a,b),
a Ab = min(a,b). If z,4 > 0 and ¢ > 1 are such that c~!z < y < cx, then
we shall write 2 ~ y. We shall often omit the constant ¢ and write z ~ y
whenever c is some universal (numerical) constant. For z,y > 0, z < y means
that x < cy, where ¢ > 0 is a universal constant.

In Section 2 we formulate known and new results on the constants o 4 ().
Proofs of the latter are presented in Section 4. In Section 3 we show that
0p,q(1t) are comparable with o, 4(cv), where o, is the mass of the least atom
of p. This solves a problem posed by Janson [4].

2. Hypercontractivity constants for two-point measures. It is
a classical result [2, 1] that for 1 < ¢ < p < o0,
q—1
2.1 1/2) =4/ ——.
(21) 7112 = /1=
The values of o2 4() and op2(a) for a € (0,1/2) and 1 < ¢ <2 < p < o0
were established by Oleszkiewicz [10]:

3220 _ o2=2/a \ /2 32/p — 2P 1/2
o24(0) = <a1—2/q5 _ 51—2/qa) » op2(@) = <a2/p—1g — 52/19—1(1)
where 3 = 1 — . (One can easily check that lim,_,; /5~ 02 4() = 02,4(1/2)
and lim,_,/o- 0p2(a) = 02(1/2).) The above results imply that o, 4()
is well-defined for all 1 < ¢ < p < oo (i.e. the related semigroup is (p, q)-
hypercontractive), since oy 4(a) > 024(a) for p < 2, op4(0) > 0p2(c) for
q > 2, and op4() > o2 4(a)op2(a) for ¢ < 2 < p. Elementary calculations
show the asymptotic behaviour of o3 4(a) (and op2(a)) asa — 0 or ¢ — 1
(p — o0) (for more details see [10, proof of Theorem 2.1|):

al/a—1/2 for L < 1nl’
oa,q(c) ~ qI Cf

V(g —1aln(1/a) for 1 > In =

al/2-1/p for p < 1In é,

Jp,2(a) ~ 1
L (1/p)aln(l/a) forp>lna.
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In Section 3 we will need the following

LEMMA 2.1. For 1 < ¢ < 2 < p < oo, the functions (0,1/2] 3 a —
o24(c) and (0,1/2] 3 a +— op2(a) are strictly increasing.

We postpone the proof of Lemma 2.1 and of other results stated in this
section until Section 4.

The main result of this section deals with estimates of o, 4(a) for all
combinations of parameters «, p, ¢ except the case ¢ < 2 < p.

THEOREM 2.1. Foralll < ¢ <p<2anda € (0,1/2] we have op 4(cv) ~
Op,q(e), where
al/a=1/p fora el =
(g = V)In(1/a))/Pal=1/P
1/(p—1) 1 1 1/(g—1)
forozEIzz{ase g—ln—<e },
a  «

P _ -1 In(1/«)
opqla) =9 4
p—1 1+]n(ﬂllné)

< —In-—
qg—1 a

el/la-1) 1 1 }

p—1la
-1 1. 1 1/(p—1)
fO?”CVGIg: a:p_g_ln_<e :
g—1"a « g—1
-1 1.1 p-1
\/]qj_l()éln(l/()é) fOTaEI4:{aalna<§_1}

As a corollary we obtain

THEOREM 2.2. For all 2 < ¢ < p < o0 and « € (0,1/2] we have
op.q(@) ~ apq(a), where
4

1
ol/a=1/p forael] = {a: peP < —ln—},
«@

Op,q(a) =

In(1/a) 11

(n /a) alld foraeféz{a:pqu—ln—<pep},
o «

a4 1/)

p

1 1 1
ul ) foraé[éz{a:gg—ln—<peq},
1+In(221n7) g a
q / 1.1 _p
= aln(1l/a) foraelj=qa: —In— < =5.
p o« q

As in the case of the constants o2 () and o, 2(), in Section 3 we will
use the following

LEMMA 2.2. For all p,q such that 1 < g<p<2o0r2<qg<p< oo we
have op (1) S opglae) for all 0 < o < ag < 1/2.
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By applying results from [8], we may observe that up to a universal factor,
the constants o, 4(«) appear as a ratio of the gth and pth moments of certain
sums of independent two-point random variables.

THEOREM 2.3. Let (X))}, be a sequence of independent random vari-
ables with a common distribution 80—+ adg, where o+ =1, a € (0,1/2].
Set n(a,p) = [p/In(1/a)]. Then for all 2 < q < p < oo and for S =
Zzg’p) X} we have

1S51lg ~ Tp.q(a)[IS]lp-

On the other hand, by Theorem 2.2, Remark 1.3 and Proposition 1.1,
for any sum S = Y, vp X} where (vg)7_; is a sequence in any Banach
space F, we have

151lq Z Tp.q()[S]|p-

Thus we see that the case n = [p/In(1/a)] and v1 = --- = v, # 0 (or
even just F = R and v; = --- = v, = 1) is extremal up to some universal
constant. It is interesting that n depends only on a and p and does not
depend on q. Moreover, n can be defined as the greatest integer for which
ISo0_ Xillp ~ 13°7— Xklloo With some absolute constant ¢ > 0 (see the
proof of Theorem 2.3).

3. Hypercontractivity constants for discrete measures

THEOREM 3.1. Let p be a discrete measure with the mass of the least
atom equal to ay, > 0. Then for all 1 < g < p < 0o we have

inf opg(a) < opg(p) < opglas).
a€lax,1/2]

Proof. The second inequality is quite obvious (e.g. see (1.2)). From now
on, we consider only the case p > 2; the case 1 < g < p < 2 follows from the
previous one and a duality argument (see Remark 1.1). In order to prove the
first inequality we shall prove that for all t > 0 we have

(3.1) I Tl Ly )Ly < SUP ||St(a)”Lq(u(o‘))—>Lp(l/(°‘))
a€las,1/2]

where (1})¢>0 is the semigroup attached to p and (Sga))tzo is the semigroup

associated to the two-point measure v(® = 8_, + adg (o + = 1). The
argument used below is similar to one presented by Diaconis and Saloff-Coste
[3] and originates in Rothaus [11]. The main difference is the context—we
deal with hypercontractivity, whereas in the cited papers this argument was
used to prove logarithmic Sobolev inequalities.

For fixed t > 0, set

A= Tl y—ro) = ST 2,0 € La(w)s [1fllyw) = 13-
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Clearly, if A =1 then (3.1) is trivial. So assume A > 1. The fact that L,(x)

has finite dimension implies that A < oo and there exists fy for which the

above supremum is attained. Defining the functionals I(f) = ||T.f Hip(u)

and J(f) = |If||? () OO0 L,(p), we see that fy maximizes I subject to the
q

constraint J(f) = 1. The functionals I and .J are both C! and DJ(fo) # 0,
since J(fp) = 1. Therefore for some constant A we have

(3.2) DI(fo) = ADJ(fo).

Since T} preserves non-negativity, we may choose fy to be non-negative. The
assumption A > 1 implies that fy cannot be a constant function. We shall
show that fy takes at most two values. The computations of the derivatives
from (3.2) are as follows ((f, g), stands for E, fg):

DJ(fo) = a(fi™", s
DI(fo) = DI - I}, (Tefo) e DTy(fo) = P{(Tefo)’ ' )uo T

= p{(Tefo) " T())u = D(L((Tefo)’ ™),

(the last equality follows from the fact that T; is a self-adjoint operator).
Thus by (3.2) we have

T(Tifo)P ™) = MY

for some constant A. Since fo > 0, also go := Tifo > 0. We have fy =
(Ty)"tgo = elgo + (1 — €') E,go, so

(et + (L= e gl )07 = Aetgo + (1 — ') Eugo):
Fixing an argument x of gy and putting u := go(z) € [0, 00), we obtain
(3.3) ((auP ™t 4 P~ Y1/ =Dy (r=1)/(a=1) — ¢y, g

for some constants a > 0, b,v > 0 and ¢, d € R which do not depend on the
choice of . The right hand side of (3.3) is a linear function of u, whereas
the left hand side of (3.3) is a strictly convex function of u. Indeed, it is
the composition of the convex and strictly increasing function [0,00) > u —
(auP™! 4 boP~1)1/(P=1) (this expression is just some L,_j-norm because we
have assumed p > 2) and the function [0,00) 3 z +— zP=D/(@=D which is
strictly convex and strictly increasing. Therefore the equation (3.3) has at
most two solutions u € [0,00), so go (and also fp) takes on at most two
values.

Therefore fy takes on exactly two different values. Denote them by w1,
ug so that p(fy '(u1)) = a and u(fy'(u2)) = 1 — a for some a € (0,1/2].
Clearly, o € [ax,1/2] and || T3]z, (u)—1
proves (3.1). m

p(p) = ||St(a)||Lq(y(a))*>Lp(y(a)), which
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COROLLARY 3.1. Let p be a discrete measure with the mass of the least
atom equal to o € (0,1/2). Then for all 1 < g <2 < p < co we have
02,4(1) = 024(a) and op2(p) = opa(a),
and for all 1 < g < p < oo satisfying q,p < 2 or q,p > 2 we have

Opq(1t) ~ opqla).
Proof. The first part follows from Theorem 3.1 and Lemma 2.1, whereas

the second part follows from Theorem 3.1 and Lemma 2.2. =

It is worth mentioning that Theorem 3.1 allows us to generalize some
Sobolev-type inequality considered by Latata and Oleszkiewicz [9, Remark 2]
from a two-point space to any finite space.

COROLLARY 3.2. Let u be a discrete measure with the mass of the least
atom equal to o € (0,1/2), 6 =1—a, 1 < q < 2. Define the quadratic form
E(f)=E.fLf, where L =1d—E,. Then for every function f € La(u),

(3.4) Euf* = (Bl f17)%/7 < Cy()E(f)

where

a1—2/q _ ﬁ1—2/q
al=2/ap — g1-2/aq°

Cyla) =

Proof. Consider the self-adjoint semigroup T} = e~*L. Corollary 3.1 im-
plies that if to satisfies 7" = a3 4(a) then || Ty, ||, (1) —Lo(u) < 1, hence

1020 = 1T 1220 = (T fs Teo F )i = {f> Toto )
= e Ef+ (1 - e20)(Euf)’ = Buf? — (1 - e 2)E(S)
= qu = Co()E(f),
because, as one may check, Cy(a) =1 — 05 q(oz) n

Letting ¢ — 2 in the inequality (3.4) one can obtain the logarithmic
Sobolev inequality considered in [3, Theorem A.1]:
lnﬂ Ina

E(f).
e

By Corollary 3.1, Remark 1.3 and Proposition 1.1 we finally get

E.f*Inf>—E,f’nE,f*<

COROLLARY 3.3. Let (Xj)p_, be a sequence of independent simple ran-
dom wvectors with values in a Banach space ¥, and S = > | Xj. Let
a=min{P(X; =v) #0: v € F}. Then for every 2 < q < p < o0,

1Sl < Cayg(a)lSllq

where C' > 0 is a universal constant, which may be 1 if g = 2.



226 P. Wolff

Moreover, by Theorem 2.2 we clearly get [|S||, < 7, ()||S]lq, whereas
Theorem 2.3 implies that for fixed «, p, ¢ the constants in the above moment

inequalities are optimal up to some universal factor.

4. Proofs

Proof of Lemma 2.1. Due to Remark 1.1 it suffices to prove that f(a) =
ag’q(a) is increasing for o € (0,1/2). For z,y > 0, z # y and t € (0,1), we
define

1

gl gyl

o(r,y) = W
Clearly, ¢(z,y) = ¢(y,z) and ¢(z,y) = @(A\x, A\y) for A > 0. Putting ¢t =
2/q — 1 we have f(«a) = ¢(1 — a, «), thus

(@) = 0yp(1l — a,a) — (1 — v, @)

1 11—« 1 o
= —0gp| —,1) — Oy , 1.
o « 11—« 1—«

Therefore the proof will be completed by showing that

Orp(z,1) >0 forz € (0,1) and Jpp(z,1) <0 forz € (1,00).
Putting

U(x,s) = % (2°—a7%) = Inz S (" 4+ 27" du

0
for x > 0 and s € (0, 1], we have

Opip(z,1) = (1=t z — 27t — (= — 1)1+ ta—tL))

ta~t

" (W(z,t) —P(x,1)).

Now it suffices to show that ¢(x, s) is increasing as a function of s € (0, 1] for
x > 1 and decreasing for « € (0,1). The former statement implies the latter,
because ¥ (x,s) = —(1/x,s). Therefore we consider the case z > 1. Fix
0 < 51 < 53 <1andput A =s;/sy < 1. Using the inequality 2 4 =2 <
% + 27", which holds by the convexity of u — x*, we obtain

Inz 7
P(x,s1) = % S (2™ + 27 )\ du
1
0
Inz
< — S (" 4+ 27") du = (z,s2). m
S92 0
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Now, we turn to the proof of Theorem 2.1. First, note that Remark 1.2
implies that o, () is the greatest o such that

(81 — saulP + a|l + o BulP) /P < (B|1 — aul|? + a|l + Bul) /T (B=1-a)

for all w € [-1/3,1/a] (or, equivalently, for all u € R).
The following lemmas will be used in the proof of Theorem 2.1.

LEMMA 4.1. Foralll < ¢ < p < o0 and 0 < a1 < az < 1/2 with
Bi=1—a; (i =1,2) we have ap4(a1) ~ op4(2), where ¢ = azBi/(a152).

Proof. First, note that for any convex function ¢: R — R we have
B B
(4.1)  Bip(—ary) + aap(fry) < 5290<—a2 5, V) teel g y),

(42)  Bap(—a2y) + asp(fay) < 51<P<—al - y) + 04190<ﬁ1 - y),
a1 aq

for every y € R. For any fixed u € R and r > 1 we consider the convex func-
tion ¢, (x) = |1 4+ zu|". Putting o = o) 4(a2) and using (4.1), the definition
of op 4 and (4.2) we get

b B\
(rop(-n0) + argy(ro)) 2 < (a2 0L o) + aap (3251 0))

B AN 1
< (ﬁ%ﬂq( 52) + g (52 52>) < (Brpg(—can) + arpq(cfr)) 9,

which proves o, 4(a2) < copq(a1), since u € R can be chosen arbitrarily.
Putting 0 = 0, 4(a1) and using (4.2), the definition of o), ; and (4.1) we have

1/p
(Bapp(—a20) + anpp(a0)) /P < (ﬁwp( o a_1<7> + a1y <ﬂl _j 0>>

1/q
< <ﬁ1tpq <—Oé1 Z—i) + a1y <ﬁ1 Z—j)) < (Bapg(—can) + agpy(cfz))9,

which yields oy, 4(a1) < cop (). =
LEMMA 4.2. For each C' > 1 there exists D > 1 such that for all 1 < q <
p<2and ay,a € (0,1/2], if g < ag, then op () Y Op.q(2).

Proof. For ay,as € I; (j =1,...,4) this is quite obvious—it suffices to
observe that ln(l/al) ~ In(1/az) and in case a,as € I3 also that

To see the assertion for any pair aj, ao satisfying the assumptions of the
lemma, it suffices to show that &, 4(a) ~ lim, o+ 0p4(a’) for a = sup I;
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(j =1,2,3). For j = 1, we have

1-1 1/g—1 ~
aILH;JF Tpqla) =a /P~ el = Tp,a(@),

since al/471 = ¢1/4 ~ 1. For 1=2,

lim 7, ,(a ,):q—l In(1/a)
o/ —at 1 p—11+mn(l/(p—1)+1/(p—1)

~ (a-1)n(1/a),
1/p—1
Fnale) = (a= Dn(1/0) (g -1 ;1)

=(¢—1)In(1/a)e" /P

and finally, for j = 3 we have g 4(a) = @ = limy_, o+ 0pq4(a). =

In the next two lemmas and in the proof of Theorem 2.1 we shall use
the following notation. Let 1 < ¢ < p <2, o € (0,1/2] with § =1 — «. For
€ [-1/8,1/a], we define

Lap(z) = B(1 — ax)? + (1 + Br)?P —
Rogp(®) = (B(1 — az)? + a(1 + Bz)1)P/ - 1.

If o € (0,e72], we set

(p— 1)az? for x € [0, €],
Lop(@) =< e(p—1aznz for z € (e, /@1 A1/ql,
orP for 2 € (e'/®=V A1/a,1/al,

and, when additionally 1/a ¢ (e!/(4=1) ed/(a=1)],

_ _ 2
Raqp(m) — { (q 1)C¥$ for z € [0’ 6]7 if 1/a < 61/((1*1)7
” e(¢q—Daxlnz for z € (e,1/a],
and
(¢ — 1)ax? for x € [0, e]
~ e(q— Dazlnz for z € (e,el/(@=1)], . _
R, — f1/a > et/@1),
ap(7) o for € (M), (1/a)1/] ifl/a>e
aP/agP for z € ((1/a)Y9,1/al,

Note that Lap and Raqp are continuous, differentiable (except the case
1/a > e?/(@1) when R, 4p 18 not differentiable at (1/a)/9) and increasing.
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Additionally, the following approximate formulas will be used: for every
e > 0 there exist c1,co,c3 > 0 (each depends only on ) such that

(4.4) et =12t for0<t<e,
(4.5) et =12 e fort>e,
(4.6) In(1+t) 2t for0<t<e.

LEMMA 4.3. Fora <e 2 and x € [~1/6,1/a], Lap(|z|) ~ Lap(z).

Proof. Obviously, for all z1,z9 € [0,1/a] such that x; < T9 we have

Za’p(xl) 2 zmp(mg), where D > 0 depends only on C. Moreover, L, is
convex and C* on (—1/3,1/a), hence L, ), is decreasing on [—1/43,0] and
increasing on [0,1/a], since Ly, ,(0) = 0. Therefore it is sufficient to prove

the assertion only for z € {—1/8} U [-1/(28),1/(26)] U [¢?,1/q].
CASE z € [-1/(20),1/(20)]. It suffices to prove that
(@7 Ll (@) ~ (b~ Do
Indeed, by integrating we get Ly, ,(v) ~ (p —1)ax, now, L, ,(0) = 0, and by
integrating once again we get L, »(7) ~ (p — 1)az?, since L, ,(0) = 0. Now,

L (@) = p(p — DaB(a(l — ax)P2 + B(1 + Bz)"~2).

Clearly, we have 1 — ax ~ 1 and 1+ Sz ~ 1. Since p — 2 € (—1, 0], we also
have (1 — az)?~2 ~ 1 and (1 + Bx)P~2 ~ 1, which implies (4.7).

CASE z = —1/3. From (4.4) and (4.6) we have
Lap(=1/8) = B+ a/P — 1= (1+ @/ 1 = o= h05e/0)
~(p-1)In(1+a/8) ~ (p—1a/B ~ Lap(1/B),
since (p —1)In(1+a/B) < (p—1)a/f < 1and a/F < 1.
CASE x € [e2,1/a]. We shall approximate
Lop(@) = B(1 - az)((1 — az)’~ = 1) + (1 + Ba)((1 + )P ™! — 1)
= M + Mos.

The first term is equal to zero if x = 1/«, and is negative otherwise. In the
latter case we have the following estimate:

M; = 8(1 — ax)(eP~Vm0=e2) _1) > (1 — az)(p — 1) In(1 — ax)
> Bp = 1)(~az) > —(p — 1oz

where the second inequality follows from the inequality In(1+y) > y/(1 + y),
which holds for y > —1. For the second term we have

My = a(1 4 Bz)(e®~Dm0+62) _ 1) > (1 + B2)(p — 1) In(1 + Bx)
>azx(p—1)Inz > 2(p — 1)ax,
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since 1 4+ Sz > z and Inx > 2. Therefore My > My + My = (M + My /2) +

My/2 > My/2, hence L, p,(x) ~ My and further we deal with M. Since

1+8x > x > €2, wehave 1+832 ~ x, In(14+8z) ~ Inz and (14+8z)P~1 ~ zP~L,

Thus from (4.4) and (4.5) we obtain

(p—Dnz ifz < e/,

P! if > el/(-1) g
LEMMA 4.4. For all z € [-1/8,1/q], Ra,qquy) ~ Roqp(z), whenever

R qp is defined.

Proof. Since p/q € (1,2), we have (1 +t)P/9 — 1 ~ (1 4 t)P/7 ~ P/ for
t>1, and (1+t)P/9—1 ~t for t € [0,1]. Therefore

Ra,q,p(x) =(1+ La,q(ff))p/q -1~ La,q(af) \ La,q(ff)p/qa

My ~ az(eP~Dm0+02) _ 1y ozx{

while an easy computation shows that éa,q,p(:c) ~ Ea,q(x) \/qu(gj)P/Q_ Then
Lemma 4.3 completes the proof. =

Proof of Theorem 2.1. To prove optimality of the constants o, 4(a) we
may proceed as follows. Let p’ = p/(p—1), ¢ = q/(¢—1). Theorem 2.3 yields
1S1g /1SNy ~ 5;,711),(01). Transforming (¢’,p’) to (p,q) in the formula for
04 p (a) from Theorem 2.2, together with Lemma 4.2, shows that o4,y (o) ~
Op,q(). On the other hand, Proposition 1.1 implies that ||S|,/||S|ly <
Oy () =0y o(@) (the last equality follows from Remark 1.1). Thus we get
Op,q(@) 2 opglc).

We proceed to show the converse inequality, i.e. op4(t) < 0p (). Lem-
mas 4.1 and 4.2 imply that we may neglect some values of «, therefore we
assume a ¢ (e72,1/2] and 1/a ¢ (eV/@=1), e?/@=D] since e=2 ~ 1/2 and
et/(a=1) ~ ea/(a-1), By Remark 1.2, it suffices to prove that

(4.8) Lop(ox) < Rogp(x) forall z e [-1/8,1/a],

where o0 ~ ¢ := g 4(c). This, in fact, can be reduced to showing that for
some universal constant C7 > 0,

(4.9) Lop(62) < C1Rogp(z)  forall z € [0,1/al.
Indeed, combining (4.9) with Lemmas 4.3 and 4.4, we get
(4.10) Lop(oz) < CoRogp(xz) forallz e [—1/3,1/q],

where (s is some universal constant. Clearly, we may assume Cs > 1. Since
the left hand side of (4.10) is a convex function of z, taking the zero value at
z = 0, we have L, ,(Cy'o2) < Cy 'L, ,»(5x), which combined with (4.10)
gives (4.8) with o = C; '5.

Lop(ox)
ek
non-decreasing. Since it is differentiable (except at the point (1/a)'/? in case

We now claim that the continuous function (0,1/a) 3 x —
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1/a > e9/(@=1) it suffices to show that its first derivative is non-negative,
or, equivalently, that

~

(4.11) Lop(5z) > Ragp(x) forall z € (0,1/a),

(excluding = = (1/a)'/? when 1/a > €9/(4=1) where Lap( x) = :l; 2%) and

N La p(x)
D Ra .4, p(x)

Ro g p(z) = x==222—_ Simple computations give
H Ra,q,p(2)

2 for z € (0, €],
Ea,p(x) ={ 1+ 1/Inz forz € (e,e/®D Al/a),

v for 2 € [0 A 1/, 1/),

Rap(@) = Lap(a) i 1/a < /6D,
2 for z € (0, €],

7} 1/(q—1)

Raqp(®) = ;‘F 1/Inx iz z 2 Eel/e(q 1) (]1/04)1/‘1) if 1/a > et/(a=1),
p for z € ((1/a)Y9,1/a),

~

L, p is non-increasing, thus Ea,p(&r) > La,p(a:), since ¢ < 1 (this can be
checked in many ways, e.g. see the proof of Lemma 2.2, where monotonic-
ity of o = 0} 4() is investigated). Moreover, Lq p(z) = Raqp(x) for o €
(0,e!/®=Y A'1/a) and Za,p(x) =p> ]%a’q,p(x) for x € [P~V A1/a,1/a)
(excluding = = (1/a)'/? when 1/a > e?/(4=1)) which proves (4.11).

To complete the proof, it remains to check (4.9) for z = 1/a. We consider
four cases (as in the formula for &, 4()).

CASE « € I;. Clearly 5/a = (1/a)'=1/4+1/P > (1/a)'/P. Since we as-
sumed that 1/a ¢ (e!/(@=1 ¢a/(a=1)] we have 1/a > e9/(@=1) > ep/(P=1)
and therefore &/a > €'/(P=1) hence L, ,(7/a) = a(G/a)P = (1/a)P7P/1 =
Ra:%]’(l/a)‘

CASE « € I,. Clearly, anq,p(l/a) =e(lg—11In(1/a). If 5/a > /@1,
then L, ,(5/a) = a(3/a)? = (¢ —1)In(1/a), and if 7/a < /=1 then by
the monotonicity of L, ,(x) and  +— 2 Inz we have

Lap(F/a) < e(p — 1)ae"/ @V In(et/P=D) = ae?/ @1 < (¢ — 1) In(1/a),
where the last inequality is due to the fact that o € Is.

CASE a € I3. Ryqp(1/a) is the same as in the previous case. We now
show that &/a < e!/(P~1) Setting
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we get o/a = €“ /(1 + ugp). Since « € I3, we have
1 1
0< < 1 .
_U[)_p_l-l- Ilp_l
The function h(u)=e*/(1 + u) is increasing for u>0 (h'(u) =ue®/(1+u)?),
hence

~ 1 1
o/a < h(p— 1 —i—lnp_ 1) < !/,

We next estimate the fraction Eam(&/a)/éa,q,p(l/a). If o/a > e, then

Lop(c/a) = e(p — 1)on(c/a), otherwise, by the monotonicity of L p(z),

Lap(c/a) < (p—1)ae?. In the first case, the fraction above is equal to

e(p—1)5In(F/a)  uo+In g

= <1.
e(q—1)In(1/a) 1+ wug
In the second case the same fraction is equal to
—1)ae? - 1, 1
(p Jae <e, since p=- < —In—
e(q—1)In(1/a) g—1 " a «

(because a € I3).

CASE o € Iy. Rg4p(1/a)is as in the previous case. Clearly, o /a € (0,1),
thus

Lap@/0) __(p=1D3)a

Reqp(1/a) elg—1)In(1/a)
This gives (4.9) with the constant C = e, which completes the proof. m

Proof of Theorem 2.2. At the beginning of the proof of Theorem 2.1 we
stated that oy q(a) ~ G4 () for p' = p/(p — 1), ¢ = q/(q — 1), whereas
Theorem 2.1 and Remark 1.1 imply that oy () ~ oy () = opg(a). m

Proof of Lemma 2.2. By Remark 1.1, we can assume 1 < ¢ < p < 2.
Theorem 2.1 implies that it suffices to prove o) 4(a1) < 0pq(2), and Lem-
ma 4.2 shows that it suffices to do it only for oy, a0 € I}, j = 1,...,4.

CASE a1, a9 € I;. The function o — o'/971/? is increasing, since 1/q —
1/p > 0.

CASE oy, ag € I. We check that the function h(a) = (In(1/a))/Pal=1/p
is increasing for a < e~1/(=1) 50 in particular for o € I. Indeed,

B (a) = —;O (aln(1/a)) (o) + (1 - %)a‘lh(a)

= a i) (1= 2 0+ m1/a) ).

which is non-negative, since 1+ (In(1/a))~! < p.
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CASE a1, ay € I3. We check that the function

. hl(a) . hl(l/a)
M) T k(@ T T (L)

is increasing if In(1/a) < (p —1)/(q¢ — 1) and decreasing otherwise. Indeed,
the sign of its first derivative is the same as the sign of

h'l(Oé)(l + Inhz(a)) — hi(a) Zégg;
B ) 1+ In(1/a)
=~ (14 Inha(e) + ha(e) —Frms s

= —a'(Inhy(a) —In(1/a)) = —a~ ! ln(j): 1 In é)

Thus if {a: In(1/a) > (p—1)/(¢—1)} N I3 = O, then this case is done.
Assume the opposite. Then we have the non-empty interval (o, @] (where
a = inf I3 and In(1/@) = (p—1)/(¢ — 1)) on which h(«) is decreasing. So
a < @, which implies that

P=1 -1/ o1/ (1)
q—1 qg—1
S0 PR S SPN DR
n )
g—1 (»—-12 p—-1 p—-1  (p—1)?
hence 3
| <In2+21 < —.
n i—1 n2+2Iin b1 b1

It suffices to show that for some universal constant C' > 1 we have
lim, o+ 0pq(a) < Capq(@). Clearly,
1 qg—1

Jp,q(a)zl_kz%} p—1

and from (4.3) we have

. 1 1 1
11m+ap,q(a)~(q—l)lnéw(q—1)<p_1 —|—1nq_1>,

a—a
since . S/ o-1)
In— ~1In .
el q—1
Hence o g—1 ' 1 1
lim op4(a) ~ ——, since In S —.
a—at p—1 qg—1"p—-1

CASE aj,ap € Iy. We check that the function o +— «In(1/a) is increas-
ing for o < e~!. Indeed, its first derivative is In(1/a) — 1. By Lemma 4.2 we
have G,,4(a) ~ Gp4(e™1) for a € (e71,1/2], so this case is done. =



234 P. Wolff

Proof of Theorem 2.3. Let (X} )72, be an independent copy of the se-

quence (Xj)72,. Weset YV, = X, — X;, 8" = Z(:al’p) X, and 8" =85 -5
and X = X1, Y = Y;. Each random variable Y} is symmetric and its dis-
tribution is equal to afBd_1 + (1 — 2a3)dp + aBd1. Moreover, for any r > 1
we have || X, < ||V, < 2||X]||, (the first inequality comes from the Jensen
inequality and the fact that £X = 0, whereas the second is just the triangle
inequality for the L,-norm). Clearly, the same applies to S and S”. Therefore
we proceed to show that ||S”||4/]1S”|lp ~ Tpq(c).

First, note that if p < In(1/«) (equivalently n(a,p) = 1), then a € I
and we have ||S"|l, = |V, = (2a8)Y9 ~ a'/9 and ||S"||, ~ o/P.

Further we assume that p > In(1/«) (equivalently, n := n(a,p) > 2). It
is a simple matter to approximate ||S”||,. Indeed, we have n/2 < p/In(1/a),
thus e~ < o < (af)", so P(S” =n) > e %. Hence

n=15"lloo = 8" [lp = nP(S" =n)"/? > ne™,

so ||S”|lp ~ n ~ p/In(1/c). We now want to approximate [|S”||,. Originally
the author just used an explicit approximate formula due to Rafal Latata
[unpublished]. We may also apply [8, Corollary 2] which states that for ¢ > 2

and i.i.d. symmetric random variables Z, Z1,. .., Z,,
g(n\"* q
||Zl+...+Zn||qNsup{—<—) ”Z”S:Q\/—SSSQ}.
s\ ¢q n

In our situation, we have

I1S"1, - L(qg, 1\""'° q
~ fi=sups f(s)=—( -In— a’?:2V—7—<s<gqy,
15”1l =3 p o« [t7ay |

since n!/* ~ (p/In(1/a))'/*. Note that f is differentiable for s € (0, 00) and

ro-(2nt)(H320) ") -3 o3202) )

hence f(s) is increasing for 0 < s < sg and decreasing for sy < s < oo, where
= ln(%é In é) Let us consider three cases:

CASE (p/q)e? < (1/a)In(1/a) < peP. Clearly, so > ¢, hence
= _ In(1/a)\ Y4 In(1/a)\ 44
f:f(q):q 1/q< ( / )> al/qN< ( / )> O[l/q'
p p
If pe? < (1/a)In(1/a) < peP (i.e. a € Ib), then we have f ~ G, 4(a). If
(p/q)e? < (1/a)In(1/a) < pe? (hence « € I3), then we see that

5 11, 1\Ye
Gpaq(e) g (__m_) “1,

(C1/a)) =141/ T +n(2fmI)\pa a
p
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since the first term is ~ 1 because ¢ < ln(%é In é) < q+Ingq, as also is the

second, because ¢ le? < %é lné < e, so this case is done.

CASE (p/q)e? < (1/a)In(1/a) < (p/q)ed. First, we show that
q
2V ————= <50 <g.
[p/In(1/)]
It is clear that 2 < 59 < ¢q. If sp < ¢q/[p/In(1/a)], we would have sy <
(¢/p) In(1/c), hence by monotonicity of In we would obtain

1 2 1.1 1
In—<ln— < ln<g—ln—> =350 < gln—,
« Q poa o« p «
which is a contradiction, since ¢ < p. Therefore f = f(sg). We now show
that f(sg) ~ 0pq(a). Since sg > 2, we have so ~ 1 + sg, so

gIn(l/a) (g 1 1\ Voo son—1/sn  ~
f(s0) ~ ) 1(7/(9(])(5 L a) = Gpq(a)(e) 7% ~ Gy g(a).

Case (1/a)In(1/a) < (p/q)e?. In this case so < 2 and

q q, 1 2
/(1 /a)] < plna < ae”.

If ae? < 2, then ¢/[p/In(1/a)] < 2. Hence in the case a < 2e 2 or a €
(2¢72,1/2] and ¢/[p/In(1/a)] < 2 we have f = f(2) = 3/(¢/p)aIn(1/a),
which is ~ 7, 4(a) if a € If. If @ € I}, ie. p/g < (1/a)In(1/a) < (p/q)e?,
then by Lemma 4.2 (more precisely: by an analogous fact which deals with
the dual case 2 < ¢ < p < 00) we get f ~ a ~ G, 4(c). There remains the
case when o € (2¢72,1/2] and s; := ¢q/[p/In(1/a)] > 2. Then f = f(s1)

and 2 < s1 < (¢/p)In(1/a) < ae® < Le?. Thus f ~ 1 and ¢/p ~ 1, since

In(1/a) ~ 1. The latter implies that o, 4(1/2) ~ 1 and from Lemma 4.2 we
know that 7, 4(a) ~ 7p4(1/2). =
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