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On generalized a-Browder’s theorem

by

Pietro Aiena (Palermo) and T. Len Miller (Drawer MA, MS)

Abstract. We characterize the bounded linear operators T satisfying generalized
a-Browder’s theorem, or generalized a-Weyl’s theorem, by means of localized SVEP, as
well as by means of the quasi-nilpotent part H0(λI −T ) as λ belongs to certain sets of C.
In the last part we give a general framework in which generalized a-Weyl’s theorem follows
for several classes of operators.

1. Preliminaries. Let L(X) denote the space of bounded linear oper-
ators on an infinite-dimensional complex Banach space X. For T ∈ L(X),
denote by α(T ) the dimension of the kernel kerT , and by β(T ) the codi-
mension of the range T (X). The operator T ∈ L(X) is called upper semi-

Fredholm if α(T ) < ∞ and T (X) is closed, and lower semi-Fredholm if
β(T ) < ∞. If T is either upper or lower semi-Fredholm then it is said to be
semi-Fredholm; finally, T is a Fredholm operator if it is both upper and lower
semi-Fredholm. If T ∈ L(X) is semi-Fredholm, then its index is defined by
indT := α(T ) − β(T ).

For every T ∈ L(X) and a nonnegative integer n we shall denote by
T[n] the restriction of T to Tn(X) viewed as a map from Tn(X) into itself
(we set T[0] = T ). Following Berkani ([6], [11] and [8]), T ∈ L(X) is said
to be semi B-Fredholm (resp., B-Fredholm, upper semi B-Fredholm, lower

semi B-Fredholm) if for some integer n ≥ 0 the range Tn(X) is closed and
T[n] is a semi-Fredholm (resp., Fredholm, upper semi-Fredholm, lower semi-
Fredholm) operator. Note that in this case T[m] is semi-Fredholm for all
m≥n ([11]). This enables one to define the index of a semi B-Fredholm op-
erator as indT = indT[n]. The class of all upper semi B-Fredholm operators
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will be denoted by USBF(X). A bounded operator is said to be B-Weyl if
for some integer n ≥ 0 the range Tn(X) is closed and T[n] is a Weyl operator,
i.e., T[n] is Fredholm with index 0.

This paper deals with two other classical quantities associated with an
operator T . The ascent of T is defined as the smallest nonnegative integer
p := p(T ) such that ker T p = kerT p+1. If such an integer does not exist
we put p(T ) = ∞. Analogously, the descent of T is defined as the smallest
nonnegative integer q := q(T ) such that T q(X) = T q+1(X), and if such an
integer does not exist we put q(T ) = ∞. It is well-known that if p(T ) and
q(T ) are both finite then p(T ) = q(T ) (see [1, Theorem 3.3]). Moreover,
0 < p(λI −T ) = q(λI −T ) < ∞ if and only if λ is a pole of the resolvent. In
this case λ is an eigenvalue and an isolated point of the spectrum (see [21,
Prop. 50.2]). The concept of Drazin invertibility [16] has been introduced
in a more abstract setting than operator theory. In the case of the Banach
algebra L(X), T ∈ L(X) is Drazin invertible (with a finite index) precisely
when p(T ) = q(T ) < ∞, and this is equivalent to saying that T = T0 ⊕ T1,
where T0 is invertible and T1 is nilpotent (see [25, Corollary 2.2] and [23,
Prop. A]). The Drazin spectrum is defined as

σd(T ) := {λ ∈ C : λI − T is not Drazin invertible}.

The concept of Drazin invertibility for bounded operators may be extended
as follows.

Definition 1.1 ([10]). An operator T ∈ L(X) is said to be left Drazin

invertible if p := p(T ) < ∞ and T p+1(X) is closed. The left Drazin spectrum

is then defined as

σld(T ) := {λ ∈ C : λI − T is not left Drazin invertible}.

Recall that a bounded operator is said to be bounded below if it is injec-
tive and has closed range. Denote by σa(T ) the classical approximate point

spectrum of T ,

σa(T ) := {λ ∈ C : λI − T is not bounded below}.

Definition 1.2 ([10]). A point λ ∈ σa(T ) is said to be a left pole if
λI − T is left Drazin invertible.

The single-valued extension property was introduced by Dunford [17],
[18] and has an important role in local spectral theory and Fredholm theory
(see the recent monographs by Laursen and Neumann [24] and Aiena [1]).

Definition 1.3. An operator T ∈ L(X) is said to have the single-valued

extension property at λ0 ∈ C (abbreviated SVEP at λ0) if for every open
disc U centered at λ0, the only analytic function f : U → X which satisfies
the equation (λI − T )f(λ) = 0 for all λ ∈ U is the function f ≡ 0. An
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operator T ∈ L(X) is said to have SVEP if T has SVEP at every point
λ ∈ C.

Evidently, T ∈ L(X) has SVEP at every point of the resolvent set
̺(T ) := C \ σ(T ). Moreover, the identity theorem for analytic functions
entails that T has SVEP at every point of the boundary ∂σ(T ) of the spec-
trum σ(T ). In particular, T has SVEP at every isolated point of the spec-
trum. Note that the SVEP is inherited by restrictions to closed invariant
subspaces, i.e. if T has SVEP at λ0 and M is a closed T -invariant subspace
of X then T |M has SVEP at λ0. Moreover, if T ∈ L(X) has SVEP at λ0

and if S ∈ L(Y ) is similar to T , then S also has SVEP at λ0.

We have

(1) p(λI − T ) < ∞ ⇒ T has SVEP at λ,

and dually

(2) q(λI − T ) < ∞ ⇒ T ∗ has SVEP at λ

(see [1, Theorem 3.8]). Furthermore, from the definition of localized SVEP
it easily seen that

(3) σa(T ) does not cluster at λ ⇒ T has SVEP at λ.

The quasi-nilpotent part of T is defined as the set

H0(T ) := {x ∈ X : lim
n→∞

‖Tnx‖1/n = 0}.

From the definition we see that kerTn ⊆ H0(T ) for every n ∈ N, so
N∞(T ) ⊆ H0(T ), where N∞(T ) :=

⋃
∞

n=1 ker(Tn) denotes the hyper-kernel

of T . Moreover, T is quasi-nilpotent if and only if H0(T ) = X (see [1, The-
orem 1.68]), while if T is invertible then H0(T ) = {0}. Note that generally
H0(T ) is not closed and

(4) H0(λI − T ) closed ⇒ T has SVEP at λ.

Remark 1.4. All the implications (1)–(4) above become equivalences if
we assume that λI − T is semi-Fredholm (see [1, Chapter 3, §2]).

The subspace H0(T ) admits the following local spectral characterization.
For an arbitrary operator T ∈ L(X) and a closed subset F of C, let XT (F )
denote the glocal spectral subspace consisting of all x ∈ X for which there
exists an analytic function f : C \ F → X such that (λI − T )f(λ) = x for
all λ ∈ C \ F . By [1, Theorem 2.20], it follows that H0(T ) = XT ({0}).

Definition 1.5. Let T ∈ L(X) and d ∈ N. Following Grabiner [19], T is
said to have uniform descent for n ≥ d if T (X) + ker Tn = T (X) + kerT d

for all n ≥ d. If, in addition, T (X) + kerT d is closed then T is said to have
topological uniform descent for n ≥ d.
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Note that if either of the quantities α(T ), β(T ), p(T ), q(T ) is finite then
T has uniform descent. Define

∆(T ) := {n ∈ N : Tn(X) ∩ ker T ⊆ Tm(X) ∩ ker T for all m ≥ n}.

The degree of stable iteration is defined as dis(T ) := inf ∆(T ) if ∆(T ) 6= ∅,
while dis(T ) = ∞ if ∆(T ) = ∅.

Definition 1.6. An operator T ∈ L(X) is said to be quasi-Fredholm of

degree d if there exists d ∈ N such that:

(a) dis(T ) = d,
(b) Tn(X) is a closed subspace of X for each n ≥ d,
(c) T (X) + kerT d is a closed subspace of X.

Let QF(d) denote the set of all quasi-Fredholm operators of degree d.
If T ∈ QF(d) then T has topological uniform ascent for n ≥ d (see [19,
Theorem 3.2]).

The following result is a particular case of Lemma 12 of [26].

Lemma 1.7. If T ∈ L(X) and p = p(T ) < ∞ then the following state-

ments are equivalent :

(i) there exists n ≥ p + 1 such that Tn(X) is closed ;

(ii) Tn(X) is closed for all n ≥ p.

Proof. Set c′i(T ) := dim(ker T i+1/kerT i). It is clear that p = p(T ) < ∞
entails that c′i(T ) = 0 for all i ≥ p, so ki(T ) := c′i(T ) − c′i+1(T ) = 0 for all
i ≥ p. The equivalence is then a consequence of Lemma 12 of [26].

Let USF−(X) denote the class of all upper semi-Fredholm operators
such that indT ≤ 0, and USBF−(X) the class of all upper semi B-Fredholm
operators such that indT ≤ 0.

The concepts of left Drazin invertibility and localized SVEP are related
as follows:

Theorem 1.8. For T ∈ L(X) the following statements are equivalent :

(i) T ∈ USBF−(X) and T has SVEP at 0;
(ii) T ∈ QF(d) for some d and T has SVEP at 0;
(iii) there exists n ∈ N such that Tn(X) is closed and T[n] is bounded

below ;
(iv) T ∈ USBF−(X) and p(T ) < ∞;
(v) T is left Drazin invertible.

Proof. (i)⇒(ii). By Proposition 2.5 of [11] every semi B-Fredholm oper-
ator is quasi-Fredholm.

(ii)⇒(iii). By Proposition 3.2 of [7] if T ∈ QF(d) then there exists n ∈ N

such that Tn(X) is closed and T[n] is semi-regular. By assumption T has
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SVEP at 0, so T[n] has SVEP at 0. From Theorem 2.49 of [1] it then follows
that T[n] is bounded below.

(iii)⇒(iv). Suppose that x ∈ kerTn+1. Clearly, T (Tnx) = 0 so Tnx ∈
kerT . As Tnx ∈ Tn(X) it follows that Tnx ∈ kerT∩Tn(X) = kerT[n] = {0},

thus x ∈ kerTn. Therefore, kerTn+1 = kerTn, so T has finite ascent. Since
any operator bounded below is upper semi-Fredholm with index less than
or equal to 0, it follows that T ∈ USBF−(X).

(iv)⇒(i). Follows from implication (1).
(iii)⇒(v). Suppose that there exists n ∈ N such that Tn(X) is closed and

T[n] is bounded below. The same argument of the proof of (iii)⇒(iv) shows

that p := p(T ) ≤ n. The range of T[n] is the closed subspace Tn+1(X), with

p + 1 ≤ n + 1. Therefore T p+1(X) is closed, thus T is left Drazin invertible.
(v)⇒(iii). Suppose that T is left Drazin invertible. Then p = p(T ) < ∞

and T p+1(X) is closed. From Lemma 1.7 it follows that T p(X) is closed. By
[1, Lemma 3.2] we have kerT ∩ T p(X) = ker T[p] = {0}, so T[p] is injective.

The range of T[p] is closed, since it coincides with T p+1(X), hence T[p] is
bounded below, so condition (iii) is satisfied.

2. Generalized a-Browder’s theorem. We shall denote by accK and
isoK the set of accumulation points and the set of isolated points of K ⊆ C,
respectively.

Define
σusbf−(T ) := {λ ∈ C : λI − T /∈ USBF−(X)}.

Theorem 2.1. If T ∈ L(X) then

(5) σusbf−(T ) ⊆ σld(T ) ⊆ σa(T ).

More precisely ,

(6) σld(T ) = σusbf−(T ) ∪ acc σa(T ).

Proof. The inclusion σld(T ) ⊆ σa(T ) is obvious: if λ /∈ σa(T ) then
p(λI − T ) = 0 and (λI − T )(X) is closed, so λ /∈ σld(T ). The inclusion
σusbf−(T ) ⊆ σld(T ) is clear from Theorem 1.8.

From the inclusions (5) in order to show that σusbf−(T ) ∪ acc σa(T ) ⊆
σld(T ) we only need to prove that accσa(T ) ⊆ σld(T ). For this, let λ0 /∈
σld(T ). By Theorem 1.8 we know that λ0I −T is quasi-Fredholm and hence
has topological uniform descent. Since p(λ0I −T ) < ∞ it then follows, from
Corollary 4.8 of [19] that λI − T is bounded below in a punctured disc
centered at λ0, so λ /∈ accσa(T ).

To show the opposite inclusion, let λ0 /∈ σusbf−(T ) ∪ acc σa(T ). Since
λ0 /∈ acc σa(T ), from the implication (3) we know that T has SVEP at λ0.
Moreover, from λ0 /∈ σusbf−(T ) we see that λ0I − T ∈ USBF−(X) so, again
by Theorem 1.8, λ0I − T is left Drazin invertible and hence λ0 /∈ σld(T ).



290 P. Aiena and T. L. Miller

Denote by Πa(T ) the set of left poles of T . Clearly, Πa(T ) = σa(T ) \
σld(T ). Note that

(7) Πa(T ) ⊆ isoσa(T ) for all T ∈ L(X).

In fact, if λ0 ∈ Πa(T ) then λ0I − T is left Drazin invertible and hence, by
Theorem 1.8, λ0I − T ∈ QF(d). This implies that λ0I − T has topological
uniform descent, and since p(λ0I − T ) < ∞, it follows from Corollary 4.8 of
[19] that λI − T is bounded below in a punctured disc centered at λ0.

Define ∆a(T ) := σa(T ) \ σusbf−(T ).

Lemma 2.2. If T ∈ L(X) then

(8) ∆a(T ) = {λ ∈ C : λI − T ∈ USBF−(X), 0 < α(λI − T )}.

Furthermore, Πa(T ) ⊆ ∆a(T ).

Proof. The inclusion

{λ ∈ C : λI − T ∈ USBF−(X), 0 < α(λI − T )} ⊆ ∆a(T )

is obvious. To show the opposite inclusion, suppose that λ ∈ ∆a(T ). There
is no harm if we assume λ = 0. Then T ∈ USBF−(X) and 0 ∈ σa(T ). Both
conditions entail that α(T ) > 0 (if α(T ) = 0, and hence p(T ) = 0, then by
Lemma 1.7, we would have T (X) closed, thus 0 /∈ σa(T ), a contradiction).
Therefore the equality (8) holds.

To show the inclusion Πa(T ) ⊆ ∆a(T ), assume that λ ∈ Πa(T ) = σa(T )\
σld(T ). Since λI − T is a left pole we have λ ∈ σa(T ), and by Theorem 1.8,
λI − T ∈ USBF−(X). Therefore Πa(T ) ⊆ ∆a(T ).

Definition 2.3. An operator T ∈ L(X) is said to satisfy generalized

a-Browder’s theorem if ∆a(T ) = Πa(T ), or equivalently σusbf−(T ) = σld(T ).

From Theorem 2.1 we readily see that

T satisfies generalized a-Browder’s theorem ⇔ accσa(T ) ⊆ σusbf−(T ).

In the following result we give a local spectral characterization of the oper-
ators satisfying generalized a-Browder’s theorem.

Theorem 2.4. An operator T ∈ L(X) satisfies generalized a-Browder’s

theorem if and only if T has SVEP at every λ /∈ σusbf−(T ).

Proof. If T satisfies generalized a-Browder’s theorem then σld(T ) =
σusbf−(T ) and hence T has SVEP at every λ /∈σusbf−(T ), since p(λI−T )<∞.

Conversely, assume that T has SVEP at every λ 6∈ σusbf−(T ). If λ /∈
σusbf−(T ) then, by Theorem 1.8, λ /∈ σld(T ). Hence, σld(T ) ⊆ σusbf−(T ),
and since the opposite inclusion holds for all operators, we have σusbf−(T ) =
σld(T ), and thus T satisfies generalized a-Browder’s theorem.

Corollary 2.5. If T ∈ L(X) has SVEP then T satisfies generalized

a-Browder’s theorem.
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Let

σbw(T ) := {λ ∈ C : λI − T is not B-Weyl}.

An operator T ∈ L(X) is said to satisfy generalized Browder’s theorem if
σ(T ) \σbw(T ) coincides with the set of poles of T , or equivalently σbw(T ) =
σd(T ). Let UB(X) denote the class of all upper Browder operators consisting
of all upper semi-Fredholm operators T ∈ L(X) such that p(T ) < ∞, and
denote by UW(X) the class of all upper Weyl operators consisting of all
upper semi-Fredholm operators T ∈ L(X) such that indT ≤ 0. Set

σub(T ) := {λ ∈ C : λI − T /∈ UB(X)},

σuw(T ) := {λ ∈ C : λI − T /∈ UW(X)},

An operator T is said to satisfy a-Browder’s theorem if σub(T ) = σuw(T ).
The next result is an immediate consequence of the fact that each of the

Browder type theorems introduced before corresponds to the SVEP at the
points of certain sets:

Corollary 2.6. If T ∈ L(X) satisfies generalized a-Browder’s theo-

rem then both generalized Browder’s theorem and a-Browder’s theorem hold

for T .

Proof. Generalized Browder’s theorem for T is equivalent to the SVEP
of T at the points λ /∈ σbw(T ) [5], and obviously, σusbf−(T ) ⊆ σbw(T ).
By Theorem 2.4 generalized a-Browder’s theorem for T implies generalized
Browder’s theorem for T . In a similar way, a-Browder’s theorem for T is
equivalent to the SVEP of T at the points λ /∈ σuw(T ), and obviously,
σusbf−(T ) ⊆ σuw(T ). Therefore, by Theorem 2.4, generalized a-Browder’s
theorem for T implies a-Browder’s theorem for T

Denote by H(σ(T )) the set of all analytic functions defined on an open
neighborhood of σ(T ), and for f ∈ H(σ(T )) let f(T ) be defined by means
of the classical functional calculus. It is known that the spectral mapping
theorem holds for σld(T ) whenever f is not constant on any component of
its domain [26]. From this we easily obtain the following result:

Corollary 2.7. Suppose that T has SVEP and that f ∈ H(σ(T )).
Then generalized a-Browder’s theorem holds for f(T ). Moreover , if f is not

constant on any component of its domain, then f(σusbf−(T ))=σusbf−(f(T )).

Proof. If T has SVEP then f(T ) has SVEP (see Theorem 2.40 of [1]),
so generalized a-Browder’s theorem holds for f(T ). Moreover, if f is not
constant on any component of its domain, we have

f(σusbf−(T )) = f(σld(T )) = σld(f(T )) = σusbf−(f(T )).

Given n ∈ N we shall denote by T̂n : X/kerTn → X/kerTn the canonical

quotient map defined by T̂nx̂ := T̂ x for each x̂ ∈ X/kerTn, where x ∈ x̂.
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Lemma 2.8. If T ∈ L(X), Tn(X) is closed and T[n] is upper semi-

Fredholm then T̂n is upper semi-Fredholm with ind T̂n = indT[n]. Moreover ,

if T has SVEP at 0 then so does T̂n.

Proof. The operator [Tn] : X/kerTn → Tn(X) defined by

[Tn]x̂ = Tnx, where x ∈ x̂,

is a bijection and it is easy to check that [Tn]T̂n = T[n][T
n], from which the

first assertion follows. If T has SVEP at 0 then the restriction T[n] has SVEP

at 0 and the SVEP of T̂n at 0 follows from Theorem 2.15 of [1].

Theorem 2.9. If T ∈ L(X) and T ∗ has SVEP then generalized a-
Browder’s theorem holds for T . Moreover ,

(9) σusbf−(T ) = σbw(T ) = σld(T ) = σd(T ).

Proof. Suppose that λ /∈ σusbf−(T ). Without loss of generality, we may
assume that λ = 0. Then, by Lemma 2.8, there exists n ≥ 0 such that
T̂n is upper semi-Fredholm with ind T̂n ≤ 0. Since (T̂n)∗ = T ∗|(kerTn)⊥,

(kerTn)⊥ being the annihilator of kerTn, it follows that (T̂n)∗ has SVEP

and thus (see Remark 1.4) q(T̂n) < ∞. Since T̂n is semi-Fredholm it follows

from [1, Theorem 3.4] that ind T̂n ≥ 0. Therefore, ind T̂n = 0 and, again by

Theorem 3.4 of [1], we may conclude that p(T̂n) < ∞. Thus 0 is a pole of

the resolvent of T̂n, in particular 0 is isolated in σ(T̂n).

We claim that 0 is an isolated point of σ(T ). Indeed, if D(0, ε) is an

open ball centered at 0 such that D(0, ε) \ {0} ⊆ ̺(T̂n), then D(0, ε) \ {0} ⊆

̺(T |kerTn), since T |kerTn is nilpotent. Set X̂ := X/kerTn. If x ∈ X and

0 < |λ| < ε, then there exists y ∈ X such that (λI − T̂n)ŷ = x̂, and hence
x − (λI − T )y ∈ ker Tn. Thus there exists z ∈ kerTn so that

x − (λI − T )y = (λI − T )z,

from which it follows that x ∈ (λI − T )(X). From ker(λI − T̂n) = {0}
and ker(λI − T |ker Tn) = {0} we easily see that ker(λI − T ) = {0}, so
D(0, ε) \ {0} ⊆ ̺(T ), and hence 0 is an isolated point of σ(T ), as claimed.
Therefore, T has SVEP at 0, and this implies by Theorem 1.8 that 0 /∈
σld(T ) so that σld(T ) ⊆ σusbf−(T ). The opposite inclusion is always true, so
σld(T ) = σusbf−(T ) and hence T satisfies generalized a-Browder’s theorem.

To show the equalities (9) observe first that σd(T ) = σbw(T ), since by
Corollary 2.6, T satisfies generalized Browder’s theorem. Hence it suffices to
prove that σusbf−(T ) = σd(T ). The inclusion σusbf−(T ) ⊆ σbw(T ) is true for
every operator. To show the opposite inclusion, suppose that λ /∈ σusbf−(T ).
Then λI − T[n] is upper semi-Fredholm for some n ∈ N, and proceeding as

in the first part of the proof we see that ind(λI − T̂n) = 0. By Lemma 2.8 it
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then follows that ind(λI − T[n]) = 0, thus λ /∈ σbw(T ). Hence, the proof of
(9) is complete.

Corollary 2.10. If T ∈ L(X) and T ∗ has SVEP then generalized

a-Browder’s theorem holds for f(T ) for each f ∈ H(σ(T )). Moreover , the

spectral mapping theorem holds for σusbf−(T ).

Proof. (f(T ))∗ = f(T ∗) has SVEP by Theorem 2.40 of [1], so, by Theo-
rem 2.9, generalized a-Browder’s theorem holds for f(T ). Since the spectral
mapping theorem holds for σd(T ) (see [12]), it follows that

f(σusbf−(T )) = f(σd(T )) = σd(f(T )) = σusbf−(f(T )),

so also the last assertion is proved.

The following theorem gives a precise spectral picture of operators sat-
isfying generalized a-Browder’s theorem.

Theorem 2.11. For T ∈ L(X) the following statements are equivalent :

(i) T satisfies a-generalized Browder’s theorem;
(ii) every λ ∈ ∆a(T ) is an isolated point of σa(T );
(iii) ∆a(T ) ⊆ ∂σa(T ), where ∂σa(T ) is the topological boundary of σa(T );
(iv) int∆a(T ) = ∅;
(v) σa(T ) = σusbf−(T ) ∪ ∂σa(T ).
(vi) σa(T ) = σusbf−(T ) ∪ isoσa(T )

Proof. (i)⇒(ii). Clear, since by (7) we have ∆a(T ) = Πa(T )⊆ isoσa(T ).

(ii)⇒(iii). Obvious.

(iii)⇒(iv). Clear, since int ∂σa(T ) = ∅.

(iv)⇒(v). Suppose that int∆a(T ) = ∅. Let λ0 ∈ ∆a(T ) = σa(T ) \
σusbf−(T ) and suppose that λ0 /∈ ∂σa(T ). Then there exists an open disc D

centered at λ0 contained in σa(T ). Since λ0I − T is upper semi B-Fredholm
there exists a punctured open disc D1 contained in D such that λI − T is
upper semi-Fredholm for all λ ∈ D1 (see [11]). Moreover, 0 < α(λI − T )
for all λ ∈ D1. In fact, if 0 = α(λI − T ), then (λI − T )(X) being closed,
we would have λ /∈ σa(T ), a contradiction. By Lemma 2.2 then λ0 be-
longs to int∆a(T ), and this contradicts int∆a(T ) = ∅. This shows that
σa(T ) = σusbf−(T ) ∪ ∂σa(T ), as desired.

(v)⇒(vi). Let λ0 ∈ ∂σa(T ) and λ0 /∈ σusbf−(T ). Let D be an open disc
centered at λ0 and suppose that (λI−T )f(λ) = 0 for all λ ∈ D. If µ ∈ D and
µ /∈ σa(T ) then T has SVEP at µ, so f ≡ 0 in an open disc U ⊆ D centered
at µ. The identity theorem for analytic functions entails that f(λ) = 0 for
all λ ∈ D, so T has SVEP at λ0. Since λ0I − T is upper semi B-Fredholm it
follows from Theorem 1.8 that λ0I − T is left Drazin invertible, and hence
λ0 ∈ Πa(T ) ⊆ isoσa(T ). Therefore, σa(T ) = σusbf−(T ) ∪ isoσa(T ).
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(vi)⇒(i). We show that σusbf−(T ) = σld(T ). Let λ /∈ σusbf−(T ). If λ /∈
σa(T ) then, by Theorem 2.1, λ /∈ σld(T ). Suppose that λ ∈ σa(T ). Then
λ ∈ σa(T ) \ σusbf−(T ) and hence λ ∈ isoσa(T ). This implies that T has
SVEP at λ. Since λI−T is upper semi B-Fredholm it follows by Theorem 1.8
that λI−T is left Drazin invertible, so λ /∈ σld(T ). This proves the inclusion
σld(T ) ⊆ σusbf−(T ). The opposite inclusion is satisfied by every operator, so
σld(T ) = σusbf−(T ) and hence T satisfies a-generalized Browder’s theorem.

Corollary 2.12. If T ∈ L(X) has SVEP and isoσa(T ) = ∅ then

σusbf−(T ) = σa(T ).

Proof. T satisfies generalized a-Browder’s theorem and hence by Theo-
rem 2.11, σa(T ) = σusbf−(T ) ∪ isoσa(T ) = σusbf−(T ).

The result of Corollary 2.12 applies in particular to non-quasi-nilpotent
shift operators on ℓp(N) (see §5 of Chapter 2 in [1]).

We shall denote by H(Ω, Y ) the Fréchet space of all analytic functions
from the open set Ω ⊆ C to the Banach space Y .

Theorem 2.13. If T ∈ L(X) is upper semi B-Fredholm and has SVEP

at 0 then there exists ν ∈ N such that H0(T ) = kerT ν .

Proof. By Lemma 2.8 there exists n ∈ N such that T̂n is upper semi-
Fredholm and T̂n has SVEP at 0. By Theorem 3.16 of [1], T̂n has finite ascent

p and H0(T̂n) = ker (T̂n)p. Suppose now that x ∈ H0(T ). We show that

x̂ ∈ H0(T̂n). Indeed, since H0(T ) = XT ({0}) there exists g ∈ H(C \ {0}, X)
such that

x = (µI − T )g(µ) for all µ ∈ C \ {0}.

If φ : X → X̂ = X/kerTn denotes the canonical quotient map then ĝ :=

φ ◦ g ∈ H(C \ {0}, X̂) and

x̂ = (µI − T̂n)ĝ(µ) = (µI − T̂n)ĝ(µ) for all µ ∈ C \ {0}.

Thus x̂ ∈ X̂
T̂n

({0}) = H0(T̂n) = ker (T̂n)p, i.e.,

T̂ p
n x̂ = T̂ px = 0̂,

and so T px ∈ kerTn. This shows that H0(T ) ⊆ kerT p+n. The opposite
inclusion holds for every operator, so H0(T ) = ker T ν , where ν := p + n.

Theorem 2.14. For T ∈ L(X) the following statements are equivalent :

(i) T satisfies generalized a-Browder’s theorem;

(ii) for each λ ∈ ∆a(T ) there exists ν := ν(λ) ∈ N such that

(10) H0(λI − T ) = ker (λI − T )ν ;

(iii) H0(λI − T ) is closed for all λ ∈ ∆a(T ).
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Proof. (i)⇒(ii). Assume that T satisfies generalized a-Browder’s theo-
rem, and let λ0 ∈ ∆a(T ). We may assume that λ0 = 0. Then T ∈ USBF−(X)
and by Theorem 2.11 we have 0 ∈ isoσa(T ), thus T has SVEP at 0. By The-
orem 2.13 it then follows that H0(T ) = kerT ν for some ν ∈ N.

(ii)⇒(iii). Clear.
(iii)⇒(i). Suppose that H0(λI − T ) is closed for all λ ∈ ∆a(T ). Let

λ 6∈ σusbf−(T ). If λ 6∈ σa(T ) then T has SVEP at λ, by (3). If λ ∈ σa(T )
then λ ∈ σa(T )\σusbf−(T ) = ∆a(T ), so by (4), T has SVEP at λ. Therefore,
by Theorem 2.4, T satisfies generalized a-Browder’s theorem.

We shall need the following punctured disc theorem which is a particular
case of a result proved in [11, Corollary 3.2] for operators having topological
uniform descent for n ≥ d.

Theorem 2.15. If T ∈ L(X) is upper semi B-Fredholm then there exists

an open disc D(0, ε) such that λI − T is upper semi-Fredholm for all λ ∈
D(0, ε) \ {0} and ind(λI − T ) = indT for all λ ∈ D(0, ε). Moreover , if

λ ∈ D(0, ε) \ {0} then

α(λI − T ) = dim(kerT ∩ T d(X)) for some d ∈ N,

so that α(λI − T ) is constant as λ varies in D(0, ε) \ {0} and

α(λI − T ) ≤ α(T ) for all λ ∈ D(0, ε).

Let M , N be two closed linear subspaces of X and define

δ(M, N) := sup{dist (u, N) : u ∈ M, ‖u‖ = 1},

in the case M 6= {0}, otherwise set δ({0}, N) = 0 for any subspace N .
According to [22, §2, Chapter IV], the gap between M and N is defined by

δ̂(M, N) := max{δ(M, N), δ(N, M)}.

The function δ̂ is a metric on the set of all closed linear subspaces of X and
the convergence Mn → M is obviously defined by δ̂(Mn, M) → 0 as n → ∞.

Theorem 2.16. For T ∈ L(X) the following statements are equivalent :

(i) T satisfies generalized a-Browder’s theorem;
(ii) The mapping λ 7→ ker(λI − T ) is discontinuous at every λ ∈ ∆a(T )

in the gap metric.

Proof. (i)⇒(ii). By Theorem 2.11 if T satisfies generalized Browder’s
theorem then ∆a(T ) ⊆ isoσa(T ). If λ0 ∈ ∆a(T ) then, by Lemma 2.2,
α(λ0I − T ) > 0, and since ∆a(T ) ⊆ isoσa(T ) there exists a punctured open
disc D(λ0) centered at λ0 such that α(λI − T ) = 0 for all λ ∈ D(λ0). Hence
λ 7→ ker(λI − T ) is discontinuous at λ0 in the gap metric.

(ii)⇒(i). We show that ∆a(T ) ⊆ isoσa(T ), so Theorem 2.11 applies. Let
λ0 ∈ ∆a(T ). Then λ0I−T is upper semi B-Fredholm with ind(λ0I−T ) ≤ 0.
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By Theorem 2.15 there exists an open disc D(λ0, ε) such that λI−T is upper
semi B-Fredholm for all λ ∈ D(λ0, ε)\{λ0}, α(λI−T ) is constant as λ ranges
over D(λ0, ε) \ {λ0},

ind(λI − T ) = ind(λ0I − T ) for all λ ∈ D(λ0, ε),

and

0 ≤ α(λI − T ) ≤ α(λ0I − T ) for all λ ∈ D(λ0, ε).

Since λ 7→ ker(λI − T ) is discontinuous at every λ ∈ ∆a(T ),

0 ≤ α(λI − T ) < α(λ0I − T ) for all λ ∈ D(λ0, ε) \ {λ0}.

We claim that

(11) α(λI − T ) = 0 for all λ ∈ D(λ0, ε) \ {λ0}.

To see this, suppose that there exists λ1∈D(λ0, ε)\{λ0} with α(λ1I − T )>0.
Clearly, λ1 ∈ ∆a(T ), so arguing as for λ0 we obtain a λ2 ∈ D(λ0, ε)\{λ0, λ1}
such that

0 < α(λ2I − T ) < α(λ1I − T ),

and this is impossible since α(λI −T ) is constant for all λ ∈ D(λ0, ε) \ {λ0}.
Therefore (11) is satisfied and since λI − T is upper semi-Fredholm for all
λ ∈ D(λ0, ε)\{λ0}, the range (λI−T )(X) is closed for all λ ∈ D(λ0, ε)\{λ0},
thus λ0 ∈ isoσa(T ), as desired.

Define
E(T ) := {λ ∈ isoσ(T ) : 0 < α(λI − T )},

Ea(T ) := {λ ∈ isoσa(T ) : 0 < α(λI − T )}.

Clearly, E(T ) ⊆ Ea(T ) for every T ∈ L(X). Moreover, from the inclusion
(7) and Lemma 2.2 we have

(12) Πa(T ) ⊆ Ea(T ) for all T ∈ L(X).

Set ∆(T ) := σ(T ) \ σbw(T ). By Theorem 1.5 of [5] we have

∆(T ) = {λ ∈ C : λI − T is B-Weyl and 0 < α(λI − T )}.

Obviously, ∆(T ) ⊆ ∆a(T ) for every T ∈ L(X).

Definition 2.17. An operator T ∈ L(X) is said to satisfy generalized

Weyl’s theorem if ∆(T ) = E(T ), and to satisfy generalized a-Weyl’s theorem

if ∆a(T ) = Ea(T ).

Define

∆a
1(T ) := ∆a(T ) ∪ Ea(T ).

Theorem 2.18. For T ∈ L(X) the following statements are equivalent :

(i) T satisfies generalized a-Weyl’s theorem;
(ii) T satisfies generalized a-Browder’s theorem and Ea(T ) = Πa(T );
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(iii) for every λ ∈ ∆a
1(T ) there exists p := p(λ) ∈ N such that H0(λI−T )

= ker (λI − T )p and (λI − T )n(X) is closed for all n ≥ p.

Proof. The equivalence (i)⇔(ii) has been proved in [10, Corollary 3.2].
(ii)⇒(iii). If T satisfies generalized a-Browder’s theorem then ∆a(T ) =

Πa(T ) and from the assumption Ea(T ) = Πa(T ) we have

∆a
1(T ) = ∆a(T ) = Πa(T ).

Let λ ∈ ∆a
1(T ). Then from Theorem 2.14 there exists m ∈ N such that

H0(λI−T ) = ker (λI−T )m. Clearly, p := p(λI−T ) is finite, and H0(λI − T )
= ker (λI − T )p. Since λ ∈ Πa(T ), λI − T is left Drazin invertible, thus
(λI −T )p+1(X) is closed, and hence, by Lemma 1.7, (λI −T )n(X) is closed
for all n ≥ p.

(iii)⇒(ii). Since ∆a(T ) ⊆ ∆a
1(T ) Theorem 2.14 entails that T satisfies

generalized a-Browder’s theorem. To show that Ea(T ) = Πa(T ) it suffices
by (12) to prove that Ea(T ) ⊆ Πa(T ). Suppose that λ ∈ Ea(T ). Then there
exists ν ∈ N such that H0(λI − T ) = ker (λI − T )ν and this implies that
λI − T has ascent p = p(λI − T ) ≤ ν. Thus it follows from our assumption
that (λI − T )p+1(X) is closed, i.e. λ ∈ Πa(T ).

Generalized Weyl’s theorem may also be described by the quasi-nilpotent
part H0(λI −T ) as λ ranges over a suitable subset of C. In fact, if we define
∆1(T ) := ∆(T ) ∪ E(T ), in [5] it is shown that generalized Weyl’s theorem
holds for T if and only if for every λ ∈ ∆1(T ) there exists p := p(λ) ∈ N

such that H0(λI − T ) = ker (λI − T )p. Since

∆1(T ) = ∆(T ) ∪ E(T ) ⊆ ∆a(T ) ∪ Ea(T ) = ∆a
1(T )

we easily deduce from Theorem 2.18 the following implication, already
proved in [10, Theorem 1.37] by using different arguments:

generalized a-Weyl’s theorem for T ⇒ generalized Weyl’s theorem for T.

In an important situation this implication may be reversed:

Theorem 2.19. If T ∗ has SVEP then generalized a-Weyl’s theorem

holds for T if and only if generalized Weyl’s theorem holds for T .

Proof. Suppose that T satisfies generalized Weyl’s theorem. Since T ∗ has
SVEP we have σ(T ) = σa(T ) (see [1, Corollary 2.45]), and hence E(T ) =
Ea(T ). By Theorem 2.9 we also have σusbf−(T ) = σbw(T ), so that

∆a(T ) = σa(T ) \ σusbf−(T ) = σ(T ) \ σbw(T ) = ∆(T ) = E(T ) = Ea(T ),

and hence generalized a-Weyl’s theorem holds for T .

An operator T ∈ L(X) is said to be polaroid if every isolated point
of σ(T ) is a pole of the resolvent operator (λI − T )−1, or equivalently, if
0 < p(λI − T ) = q(λI − T ) < ∞ for every λ ∈ isoσ(T ).



298 P. Aiena and T. L. Miller

Corollary 2.20. If T ∗ has SVEP and T is polaroid then generalized

a-Weyl’s theorem holds for f(T ) for every f ∈ H(σ(T )).

Proof. By Theorem 1.20 of [5], f(T ) satisfies generalized Weyl’s theorem.
By [1, Theorem 2.40], f(T ∗) = f(T )∗ has SVEP.

In [27] Oudghiri studied the class H(p) of operators on Banach spaces
for which there exists p := p(λ) ∈ N such that

(13) H0(λI − T ) = ker (λI − T )p for all λ ∈ C.

Clearly, if T ∈ H(p) then T has SVEP by (4). The class H(p) is rather
large, for instance it contains the generalized scalar operators and subscalar
operators, and hence the p-hyponormal, log-hyponormal, M -hyponormal op-
erators on Hilbert spaces (see [27]).

The condition (13) (with p := p(λ) = 1 for every λ ∈ C) is also satisfied
by multipliers of commutative semisimple Banach algebras, in particular
by convolution operators on group algebras L1(G) (see [3]). Also totally
paranormal operators on Banach spaces, and ∗-paranormal operators on
Hilbert spaces satisfy the condition H(1) (see [1, p. 116] and [20]).

The condition (13) is not satisfied, in general, by algebraically para-
normal operators on Hilbert spaces (see [4, Example 2.3]), but every alge-
braically paranormal operator on Hilbert space satisfies SVEP ([4]). Note
that if T ∈ H(p) or T ∈ L(H) is algebraically paranormal then T is polaroid
(see [2, Lemmas 3.3 and 4.3]).

Remark 2.21. For an operator defined on a Hilbert space H, instead
of the dual T ∗ of T ∈ L(H) it is more appropriate to consider the Hilbert
adjoint T ′ of T ∈ L(H). However, we have [2]

T ′ has SVEP ⇔ T ∗ has SVEP,

so that the result of Corollary 2.20 holds if we suppose that T ′ has SVEP.

Theorem 2.22. If T ∈ L(X) and T ∗ ∈ H(p), then generalized a-Weyl’s

theorem holds for f(T ) for every f ∈ H(σ(T )). Analogously , if T ′ ∈ L(H),
H a Hilbert space, is algebraically paranormal then generalized a-Weyl’s

theorem holds for f(T ) for every f ∈ H(σ(T )).

Proof. Suppose first that T ∗ ∈ H(p). Then, by Lemma 3.3 of [2], for
every λ ∈ isoσ(T ) = isoσ(T ∗), we have p := p(λI∗ − T ∗) = q(λI∗ − T ∗)
< ∞. Therefore [1, Theorem 3.74] implies that X∗ = ker (λI∗ − T ∗)p ⊕
(λI∗ −T ∗)p(X∗) and that (λI∗ −T ∗)p(X∗) is closed. By the classical closed
range theorem, it follows that (λI − T )p(X) is also closed and

X = ⊥ ker (λI∗ − T ∗)p ⊕⊥(λI∗ − T ∗)p(X∗) = (λI − T )p(X)⊕ ker (λI − T )p,
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where ⊥M , denotes the pre-annihilator of M ⊂ X∗. By Theorem 3.6 of [1]
we then conclude that p(λI − T ) = q(λI − T ) < ∞. Hence T is polaroid, so
Corollary 2.20 applies.

Suppose that T ′ ∈ L(H) is algebraically paranormal and λ ∈ isoσ(T ).
Since σ(T ) = σ(T ′), λ is isolated in σ(T ′) and hence a pole of the resolvent
of T ′, i.e. p := p(λI − T ′) = q(λI − T ′) < ∞. We have H = ker (λI − T ′)p ⊕
(λI − T ′)p(H) and since (λI − T ′)p(H) is closed it then follows that
(λI − T )p(H) is closed. We also have

H = (ker (λI − T ′)p)⊥ ⊕ ((λI − T ′)p(H))⊥ = (λI − T )p(H)⊕ ker (λI − T )p,

where M⊥ denotes the orthogonal complement of M in the Hilbert space
sense. Again by Theorem 3.6 of [1] we conclude that p(λI − T ) = q(λI −T )
< ∞, i.e. λ is a pole of the resolvent of T . Therefore, T is polaroid, so
Corollary 2.20 applies also in this case.

Theorem 2.22 generalizes results from [2], [14], [15], [20] (where a-Weyl’s
theorem was proved for f(T )), and subsumes results from [13, Theorem
3.3], [28, Theorem 3.2], [9] (where generalized a-Weyl’s theorem was proved,
separately, for each class).
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