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Multidimensional weak resolvents and spatialequivalen
e of normal operatorsby
Michał Jasiczak (Pozna«)Abstra
t. The aim of this paper is to answer some questions 
on
erning weak re-solvents. Firstly, we investigate the domain of extension of weak resolvents Ω and �nd aformula linking Ω with the Taylor spe
trum.We also show that equality of weak resolvents of operator tuples A and B resultsin isomorphism of the algebras generated by these operators. Although this isomorphismneed not be of the form(1) X 7→ U

∗

XU,where U is an isometry, for normal operators it is always possible to �nd a �large� subspa
eon whi
h unitary similarity holds. This observation is used to prove that the in�nitein�ation of the spatial isomorphism between algebras generated by in�ations of A and B,respe
tively, does have the form (1).These fa
ts are generalized to other not ne
essarily 
ommuting operators. We dealmostly with the self-adjoint 
ase.1. Introdu
tion. Let A be an operator on a Bana
h spa
e X with thedual spa
e denoted by X⋆. The paper [13℄ (
f. also [12℄) started a systemati
study of sets of weak resolvents, i.e. fun
tions of the form ζ 7→ G((ζ−A)−1f),where f ∈ X and G ∈ X⋆. It is natural to expe
t, espe
ially in light of resultsin lo
al spe
tral theory, that the set of all fun
tions of this form, denoted by
W (A), should 
ontain some relevant information about the operator A.It was proved that for 
y
li
 operators a
ting on a �nite-dimensionalspa
e W (A) is a 
omplete similarity invariant of A. The same 
hara
teriza-tion was obtained for normal operators having spe
tra of zero area. It wasalso shown that an operator is algebrai
 if and only if W (A) 
onsists only ofmeromorphi
 fun
tions.In fa
t, the study of weak resolvents had started earlier. In [11℄ it wasproved that if ea
h weak resolvent of an operator A belongs to the Hardyspa
e H1(D), then the spe
tral radius of A is less than one. This was gener-2000 Mathemati
s Subje
t Classi�
ation: 47B15, 47C05, 47L99.Key words and phrases: weak resolvent, spatial isomorphism, Taylor spe
trum.[129℄
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zakalized to tuples of operators and Taylor spe
trum in [9℄. It should be pointedout that it is still not 
lear for whi
h 
ontra
tions weak resolvent sets are
ontained in other Hardy spa
es.Let n ≥ 1 be an integer and B be a unit ball in Cn. We will denote by H aHilbert spa
e and by B(H) the algebra of all bounded operators on H. In [15℄operator-valued Cau
hy and Poisson kernels were de�ned. Let A ∈ B(H)nbe a 
ommuting n-tuple. Then the operator-valued Cau
hy kernel is de�nedby the formula
C(A, ζ) = [1− 〈A, ζ〉]−n = [1− (A1ζ1 + · · ·+Anζn)]−n.The Poisson kernel is given by(2) P (A, ζ) = C(A, ζ)∆n

AC(A∗, ζ),where ∆n
A =

∑

α≥0 kn,αA
∗αAα (for the de�nition of the numbers kn,α see[15℄). Throughout the paper we use standard multi-index notation.Assume that the Taylor spe
trum of A is 
ontained in the unit ball. Forfun
tions in the ball algebra A(B) the following formula holds:(3) f(A) =

\
S

f(ζ)K(A, ζ) dσ(ζ),where σ is the unique rotation-invariant normalized positive Borel measureon S = ∂B and K(A, ζ) is the Cau
hy or Poisson kernel. A

ordingly, it isnatural to investigate properties of fun
tions of the form
φ(ζ) = 〈K(A, ζ)f, g〉, f, g ∈ H,whi
h will thereafter be 
alled multidimensional weak resolvents or brie�yweak resolvents of an n-tuple A of operators. For the operator-valued Cau
hykernel we may and will 
onsider weak resolvents for 
ommuting n-tuples ofoperators a
ting on a Bana
h spa
e X.It is the aim of this paper to give, at least partial, answers to someproblems posed in [8℄ and [13℄. We will show that weak resolvents of n-tuplesof 
ommuting operators 
annot be used to investigate the Taylor spe
trum.We will prove a relation between the Taylor spe
trum and the domain ofextension of ea
h weak resolvent Ω(A). This fa
t, generalizing results of [9℄,shows that there exist plenty of operators for whi
h Ω(A) is the same butwhose Taylor spe
tra di�er signi�
antly.We also investigate 
onsequen
es of in
lusions of the formW (A) ⊂W (B)for normal 
ommuting operators. We deal mostly with the self-adjoint 
ase.This is again 
onne
ted with questions posed in [13℄ and [8℄.For operators A1, . . . , An ∈ B(H) we will denote by P(A) the image ofthe homomorphism
C[Z1, . . . , Zn] ∋ p 7→ p(A) ∈ B(H)
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onsequen
e of the above-mentioned theorem of F.-H. Vasiles
u,in light of results in [13℄, that the homomorphism Φ : P(A)→ P(B) de�nedby p(A) 7→ p(B) is bounded (homomorphisms of this kind are 
alled spatial).Thus, if W (A) = W (B) (this 
ondition will be referred to as the resolventequality) then P(A) and P(B) are isomorphi
 as Bana
h algebras.It is natural to ask about the form of this isomorphism. It is almost obvi-ous that the operators A and B need not be unitarily equivalent. However,we shall prove that for 
ommuting normal operators the resolvent equalityresults in equivalen
e of the operators on ea
h maximal 
y
li
 subspa
e. This
ondition turns out to be also ne
essary for the weak resolvent equality tohold.Although a spatial isomorphism need not be of the form X 7→ U∗XU ,where U is unitary or isometri
 on H, the 
ondition W (A,A∗) = W (B,B∗)implies that Φ : p(A,A∗) 7→ p(B,B∗) 
an be written in the form
Φ(p(A,A∗)) = V ∗p(A(∞), A(∞)∗)V ι,where A(∞) denotes the in�nite in�ation of A and ι is the in
lusion of aHilbert spa
e H into the in�nite orthogonal sum of 
opies of H. Again, thisfa
t is a ne
essary 
ondition for the weak resolvent equality.We generalize these theorems to other operators using elementary C∗-algebra te
hniques.A
knowledgments. The author wishes to thank the referee for sugges-tions whi
h helped the author not only to improve the style of the paper butalso 
orre
t some mistakes.2. Conne
tion with Taylor spe
trum. Let A1, . . . , An be 
ommutingoperators a
ting on a Bana
h spa
e X. De�ne

c(A) := {z ∈ C
n : 1− 〈A, z〉 /∈ InvB(X)}.Definition 1. For f ∈ X and g ∈ X⋆, the fun
tion φ = φf,g : c(A)c → C(U c denotes the 
omplement of the set U) de�ned by(4) φ(ζ1, . . . , ζn) = 〈C(A, ζ)f, g〉is 
alled a weak (Cau
hy) resolvent of the operators A1, . . . , An. The set ofall fun
tions of this form will be denoted byWC(A), orW (A) if no 
onfusion
an o

ur.Observe that, a priori, a fun
tion of the form (4) is well de�ned on c(A)c.Obviously, it may happen that it 
an be extended, as an antiholomorphi
fun
tion, to a larger domain. A trivial example 
onsists in taking f in a jointinvariant subspa
e of A and g ∈ X∗ annihilating [P(A)f ] (if S is a subset ofa Bana
h spa
e, [S] stands for the 
losure of the span of S). Then φ(ζ) =
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〈C(A, ζ)f, g〉 = 0 on c(A)c and φ 
an be extended as an antiholomorphi
fun
tion to the whole Cn.We will show that c(A)c is the largest set, in the sense of in
lusion, onwhi
h one 
an de�ne every fun
tion from W (A). From the spe
tral mappingproperty of the Taylor spe
trum [5℄ it follows that

c(A) = {z ∈ C
n : 1 ∈ σ(〈A, z〉)}

= {z ∈ C
n : ∃ζ ∈ σT(A), 1 = ζ1z1 + · · ·+ ζnzn}.Let U be an open 
onne
ted set (domain) in Cn with U ∩ c(A)c 6= ∅ su
hthat for ea
h weak resolvent f ∈ W (A), there exists an antiholomorphi
fun
tion F : U → C whi
h extends f . We denote by Ω(A) the union of alldomains U satisfying the above-des
ribed 
ondition. It follows that c(A)c ⊂

Ω(A). We investigate the reverse in
lusion.Let us also de�ne a lo
al version of c(A) denoted by c(A, x) (see also [6℄and [14℄). We will say that z ∈ Cn does not belong to c(A, x) if there existsan antiholomorphi
 fun
tion F : Uz → X de�ned on an open neighbourhood
Uz of z su
h that(5) (1− 〈A, ζ〉)nF (ζ) = xfor ζ ∈ Uz (in the terminology of [14℄ this fun
tion is A-asso
iated to x).From the de�nition it follows that the set c(A, x)c is open. We will need thefollowing lemma:Lemma 1. Let xα be elements of a Bana
h spa
e X. The domain ofabsolute 
onvergen
e of the power series ∑

α xαz
α is equal to the interior ofthe set

⋂

ξ∈X⋆

∞
⋃

k=1

{z ∈ C
n : sup

α
|ξ(xα)zα| ≤ k}.Proof. This follows from the Bana
h�Steinhaus theorem and the Abellemma (see for example [10℄).Proposition 2. If z ∈ Ω(A), then for ea
h x ∈ X there exists an openneighbourhood V of z and an antiholomorphi
 fun
tion G su
h that

C(A, ζ)G(ζ) = x for ζ ∈ V.In other words, Ω(A) ∩ c(A, x) = ∅ for every x ∈ X.Proof. Let x ∈ X. From the de�nition, for ea
h z ∈ Ω(A) there existsa domain U 
ontaining z and an antiholomorphi
 extension of ea
h weakresolvent to the domain U .Choose open polydis
s P1 = P (z1, r1), . . . , Pm = P (zm, rm) with 
losures
ontained in U with z1 ∈ c(A)c, zi ∈ Pi−1 for i = 2, . . . ,m and z ∈ Pm. Wemay assume that the Taylor series at zk of ea
h weak resolvent is 
onvergenton Pk, for ea
h k = 1, . . . ,m.
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e z1 ∈ P1, it follows from Lemma 1 that the Taylor series of C(A, ζ)xat z1 
onverges uniformly on 
ompa
t subsets of P1. The sum of this series,denoted by F1, satis�es for ζ ∈ P1 ∩Ω(A) the equation(6) (1− 〈A, ζ〉)nF1(ζ) = x.Both F1 and (1 − 〈A, ζ〉)n are antiholomorphi
. Therefore, (6) must alsobe satis�ed for ζ ∈ P1. Indu
tively, for ea
h k = 1, . . . ,m there exists anantiholomorphi
 fun
tion Fk : Pk → C satisfying the equation and whoseTaylor extension is 
onvergent, by Lemma 1, on the whole Pk. This provesthe lemma sin
e z belongs to Pm.If λ belongs to the boundary of the spe
trum of an operator A, then λ−Ais not a surje
tion. This is a 
onsequen
e of the fa
t that the boundary ofthe set of invertible elements of a Bana
h algebra 
onsists of topologi
alzero divisors. This argument also shows that for ζ ∈ ∂c(A) the operator
1 − 〈A, ζ〉 is a topologi
al zero divisor. Consequently, its range is a propersubspa
e of X. We will use this fa
t in the proof of the following lemma.Lemma 3. The set {x ∈ X : ∂c(A) \ c(A, x) 6= ∅} is of the �rst Baire
ategory.Proof. We may assume that c(A)c 6= Cn. Take a sequen
e λk whi
h isdense in ∂c(A) and de�ne Mk = {x ∈ X : λk /∈ c(A, x)}. It is easy to showthat

{x ∈ X : ∂c(A) \ c(A, x) 6= ∅} =
∞
⋃

k=1

Mk.Thus, it is enough to prove that ea
hMk is of the �rst 
ategory. Take x ∈Mk;then there is an open neighbourhood U of λk and an antiholomorphi
 fun
-tion F : U → X su
h that
(1− 〈A, z〉)nF (z) = x.Consequently, x belongs to the range of the operator 1−〈A, λk〉. Sin
e λk ∈

∂c(A), R(1 − 〈A, λk〉) is a proper subspa
e of X and by the open mappingtheorem, it is of the �rst Baire 
ategory. In other words, Mk is 
ontained ina set of the �rst 
ategory. This yields the desired 
on
lusion.Theorem 4. Ω(A) ∩ ∂c(A) = ∅. Consequently , Ω(A) = c(A)c.Proof. Lemma 3 shows that there exists x ∈ X su
h that ∂c(A) ⊂ c(A, x).On the other hand, from Proposition 2 we know that Ω(A) ⊂ c(A, x)c forea
h x ∈ X. Thus Ω(A) ∩ ∂c(A) = ∅.From the de�nition it follows that c(A)c ⊂ Ω(A). It is easy to show thatif there existed z ∈ Ω(A) \ c(A)c, then we 
ould �nd ζ ∈ Ω(A) ∩ ∂c(A).Remark 1. The previous theorem 
an be proved in a simpler way.Namely, one 
an take a dire
t route, applying the Bana
h�Steinhaus The-
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zakorem and mimi
king the proof of Proposition 2, to 
onstru
t an antiholo-morphi
 fun
tion F : V → B(X), V an open neighbourhood of z ∈ Ω(A),satisfying (5). It is the impression of the author that the proof presentedabove is more instru
tive.Remark 2. It is easy to observe that instead of the operator-valuedCau
hy kernel one 
an take any other operator-valued holomorphi
 or an-tiholomorphi
 kernel, for instan
e the Bergman kernel. We shall not pursuethis observation further. Instead, in the next se
tion we introdu
e the 
on
eptof a spatial isomorphism of �nitely generated subalgebras of B(H), whosedual preserves elementary fun
tionals. This notion allows us to relieve the
onsiderations from a parti
ular 
hoi
e of a kernel fun
tion.Remark 3. Assume now that A1, . . . , An and B1, . . . , Bn are tuples of
ommuting operators. We 
ould have de�ned weak resolvents as germs on
c(A)c (whi
h is open) of fun
tions of the form (4).From the previous theorem it would then follow that if WC(A1) =
WC(B1), then c(A1) = c(B1). It is obvious that 0 belongs to c(A)c forea
h A ∈ B(H). Consequently, if WC(A1) = WC(B1), then σ(A1) \ {0} =
σ(B1) \ {0}.From the equality WC(A1, . . . , An) = WC(B1, . . . , Bn) we 
an only inferthat c(A1, . . . , An) = c(B1, . . . , Bn). It is easy to show that there exist n-tuples A and B su
h that c(A) = c(B), but σT(A) 6= σT(B).3. Weak resolvents of normal operators. Assume that A1, . . . , Anand B1, . . . , Bn are 
ommuting n-tuples of operators on a Bana
h spa
e X. Itwas proved in [8℄ that the equality of the sets of one-dimensional weak resol-vents implies that the algebras generated by these operators are isomorphi
.The same holds true in the 
ase of multidimensional weak resolvents.Let f be an element of a Bana
h spa
e X and g ∈ X⋆. The symbol A⋆

X×Xwill stand for the set of all elementary fun
tionals a
ting on a subspa
e
A ⊂ B(X). Re
all that a fun
tional is 
alled elementary if it is of the form
X 7→ 〈Xf, g〉. We will use the notation

P(A1, . . . , An) ∼= P(B1, . . . , Bn)if the map Φ sending p(A1, . . . , An) to p(B1, . . . , Bn) extends to a boundedalgebra isomorphism. Equivalently, it 
an be said that P(A1, . . . , An) and
P(B1, . . . , Bn) are spatially isomorphi
. The fa
t that Φ is an isomorphismand the dual map

Φ⋆ : P(B1, . . . , Bn)⋆ → P(A1, . . . , An)⋆maps P(B1, . . . , Bn)⋆
X×X

onto P(A1, . . . , An)⋆
X×X

will be denoted by
P(A1, . . . , An) ≅ P(B1, . . . , Bn).



Multidimensional weak resolvents 135Theorem 5. Assume that σT(A), σT(B) ⊂ B. The equality WC(B) =
WC(A) holds if and only if P(A) ≅ P(B).Proof. First of all, observe that if W (B) ⊂ W (A) then the mapping
Φ : p(A) 7→ p(B) is well de�ned. De�ne 
ontinuous bilinear operators a, b :
X× X⋆ → C(B) by

a(f, g) = 〈C(A, ζ)f, g〉, b(f, g) = 〈C(B, ζ)f, g〉.From the assumption it follows that the range of b is 
ontained in the rangeof a. Consequently, from the Grabiner theorem (see [8℄) we infer that thereexists a 
onstant c su
h that for ea
h ξ ∈ C(B)⋆,
‖ξ ◦ b‖ ≤ c‖ξ ◦ a‖.Fix a polynomial p ∈ C[Z1, . . . , Zn] and let

ξp(f) =
\
S

f(z)p(z) dσ(z) for f ∈ C(B).Sin
e by (3), ξp(a(f, g)) = 〈p(A)f, g〉 (see [15℄), we obtain
‖p(B)‖ = ‖ξp ◦ b‖ ≤ c‖ξp ◦ a‖ = c‖p(A)‖for some c ∈ R+. This proves the 
ontinuity of the map Φ : p(A) 7→ p(B).Similarly we prove the 
ontinuity of Φ−1.Let f ∈ X, g ∈ X⋆ and assume again that W (B) ⊂W (A). It follows thatthere exist h ∈ X and k ∈ X⋆ su
h that

〈C(B, ζ)f, g〉 =
∑

α≥0

(n+ |α| − 1)!

(n− 1)!α!
〈Bαf, g〉ζα(7)

=
∑

α≥0

(n+ |α| − 1)!

(n− 1)!α!
〈Aαh, k〉ζα

= 〈C(A, ζ)h, k〉.This implies that 〈Bαf, g〉 = 〈Aαh, k〉 for ea
h α. Consequently,
〈Φ(p(A))f, g〉 = 〈p(A)h, k〉for ea
h polynomial p. This proves that the resolvent equality implies that Φ⋆maps P(B1, . . . , Bn)⋆

X×X
onto P(A1, . . . , An)⋆

X×X
. The 
onverse impli
ation
an be proved in the same manner.Signi�
antly, the reprodu
ing formula with Poisson integral 
an be ob-tained not only for polynomials or more generally for fun
tions belong-ing to the ball algebra but also for fun
tions of the form p + q, where

p, q ∈ C[Z1, . . . , Zn].Proposition 6. Let A1, . . . , An be 
ommuting operators on Hilbert spa
e
H with σT(A) ⊂ B. Then for any polynomials p, q ∈ C[Z1, . . . , Zn],

p(A) + q(A∗) =
\
S

(p(ζ) + q(ζ))P (A, ζ) dσ(ζ).
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zakProof. The method of proof is exa
tly the same as in [15℄.Assume now that σT(A) ⊂ B. One 
an de�ne a weak Poisson resolventin a similar manner using the operator-valued Poisson kernel (2) instead ofthe Cau
hy kernel, i.e. a weak Poisson resolvent is a fun
tion on B of theform
ψf,g(ζ) = 〈P (A, ζ)f, g〉,where f, g ∈ H. The set of all weak Poisson resolvents will be denoted by

WP (A).Using the previous proposition, as in Theorem 5, one 
an prove that if
A1, . . . , An and B1, . . . , Bn are 
ommuting operators on a Hilbert spa
e H,then from the in
lusion WP (B) ⊂WP (A) it follows that the mapping

P(A) + P(A∗) ∋ p(A) + q(A∗) 7→ p(B) + q(B∗) ∈ P(B) + P(B∗)is linear 
ontinuous and thus 
an be extended to a 
ontinuous linear map on
P(A) + P(A∗).Theorem 7. For 
ommuting n-tuples A and B of operators a
ting on aHilbert spa
e H su
h that σT(A), σT(B) ⊂ B the equality WP (A) = WP (B)implies P(A) + P(A∗) ≅ P(B) + P(B∗).The proof follows the lines of the 
orresponding one for the Cau
hy weakresolvents. The only di�eren
e is in using Proposition 6 instead of powerseries expansion in the proof that spatial isomorphism preserves elementaryfun
tionals.In [13℄ an example was given of a pair of normal operators having thesame sets of weak resolvents whi
h are not similar on any redu
ing subspa
e.In other words, for these operators, neither the isomorphism Φ : P(A) →
P(B) nor its inverse is of the form X 7→ U∗XU , where U is unitary.The symbol C∗(A) will stand for the C∗-algebra generated by the n-tuple
A = (A1, . . . , An). To simplify the notation we shall sometimes write A forthis algebra. We will show that under the assumption C∗(A) ≅ C∗(B) (byTheorem 5 equivalent toW (A,A∗) = W (B,B∗), provided the Taylor spe
traof these tuples are 
ontained in the unit ball) the map Φ has the above formon no maximal redu
ing subspa
e. We assume in this se
tion that H isseparable.Denote by EA the joint spe
tral measure of the n-tuple A = (A1, . . . , An)(see [2℄ for its de�nition and properties). The basi
 de
omposition of a normaloperator (
f. [7℄) 
an also be 
arried out for 
ommuting tuples of normaloperators a
ting on a separable Hilbert spa
e. Namely, it 
an be shown thatthere exist ve
tors x0, x1, . . . su
h that, if we de�ne 
ompa
tly supportedpositive measures by

µk(∆) = 〈EA(∆)xk, xk〉, k ∈ N,



Multidimensional weak resolvents 137then the operators A1, . . . , An are jointly unitarily equivalent to the operators
Mi = ⊕kMzi,k given by

Mi :

∞
⊕

k=0

L2(µk) ∋ ⊕kfk 7→ ⊕kzifk ∈
∞

⊕

k=0

L2(µk).The measures µk 
an be 
hosen in su
h a way that µk is absolutely 
ontin-uous with respe
t to µk−1 for k ∈ N. Thus there exist measurable fun
tions
dµk/dµ0 ∈ L1(µ0) su
h that dµk = (dµk/dµ0)dµ0. Observe that sin
e themeasures µk are positive, the fun
tions dµk/dµ0 are nonnegative a.e. for
k ∈ N.Proposition 8. Let A1, . . . , An be normal 
ommuting operators on aseparable Hilbert spa
e H and let y0 ∈ H. Then there exists x ∈ H su
h thatfor ea
h y ∈ H the measure 〈EA(·)y, y〉 is absolutely 
ontinuous with respe
tto 〈EA(·)x, x〉 and

y0 ∈M(x) := Ax.Proof. The proof 
an be 
arried out as that of Lemma 7 on p. 913 in [7℄.The spa
e M(x) and the ve
tor x, whose existen
e is proved in the aboveproposition, are 
alled maximal relative to A. If C is any operator a
ting on
H, then we denote by C(∞) its in�nite in�ation, i.e. C ⊗ idH. This operatora
ts on ⊕∞

0 H, the in�nite orthogonal sum of 
opies of H. This spa
e willthereafter be denoted by H(∞). The symbol ι will stand for the in
lusionof H onto a �xed, say the �rst, 
omponent of H(∞). If C = (C1, . . . , Cn)is an n-tuple of operators a
ting on H, then C(∞) stands for the n-tuple
(C

(∞)
1 , . . . , C

(∞)
n ). This 
onvention makes 
lear the meaning of the symbol

p(C(∞)), when p ∈ C[Z1, . . . , Zn].Lemma 9. If x is maximal relative to A then ιx is maximal relativeto A(∞).Proof. Observe that if EA is a spe
tral measure of the n-tuple A, then
E(∞) = E⊗ idH is a spe
tral measure of A(∞). Thus, if 〈E(∞)(∆)ιx, ιx〉 = 0for a Borel set ∆, then for any ⊕kxk ∈ H(∞) we obtain

〈E(∞)(∆)(⊕xk),⊕xk〉 =
∑

k

〈E(∆)xk, xk〉 = 0.Theorem 10. Assume that A1, . . . , An and B1, . . . , Bn are 
ommuting
n-tuples of normal operators on a Hilbert spa
e H. The following 
onditionsare equivalent :(i) C∗(A) ≅ C∗(B).(ii) If MA and MB are maximal subspa
es relative to A and B, then

A|MA
and B|MB

are jointly unitarily equivalent.
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zak(iii) There exist isometries V,W ∈ B(H(∞)) su
h that
p(A(∞), A(∞)∗) = V ∗p(B(∞), B(∞)∗)V,

p(B(∞), B(∞)∗) = W ∗p(A(∞), A(∞)∗)W.Proof. (i)⇒(ii). From the above-sket
hed model theory for normal oper-ators and Lebesgue dominated 
onvergen
e theorem it follows that for ea
hpolynomial p of 2n variables,
〈p(A)(⊕kfk),⊕kgk〉 =

∑

k

\
σ(A)

p(z, z)fk(z) gk(z) dµk(z)

=
\

σ(A)

p(z, z)

(

∑

k

fk(z) gk(z)
dµk

dµ0

)

dµ0(z),sin
e one 
an prove as in [13℄ that the series
∑

k

fk(z)gk(z)
dµk

dµ0
onverges absolutely in L1(µ0). It is known (
f. [3℄, [5℄) that for 
ommutingnormal operators A1, . . . , An the equality σT(A) = σA(A) holds. Therefore,we write σ(A) for any of the equivalent notions of spe
trum.Thus, for ea
h subspa
e MA, maximal relative to A, we 
an always �ndve
tors f ′, g′ ∈MA satisfying
〈p(A,A∗)f, g〉 = 〈p(A|MA

, A|∗MA
)f ′, g′〉.In other words,(8) C

∗(A) ≅ C
∗(A|MA

).Observe that if C∗(A) and C∗(B) are spatially isomorphi
, then σ(A) = σ(B).Denote this set by σ.From the previous observations and the assumption, it follows that thereexist ve
tors h, k ∈MB su
h that\
σ

p(z, z) dµA
0 =
\
σ

p(z, z)h(z)k(z)dµB
0for ea
h polynomial p. From the Stone�Weierstrass theorem it follows thatthe measure µA

0 is absolutely 
ontinuous with respe
t to µB
0 . Similarly weprove the inverse relation. Consequently, A|MA

and B|MB
are unitarily equiv-alent.(ii)⇒(i). From (8) it follows that it is enough to show that

C
∗(A|MA

) ≅ C
∗(B|MB

).This follows easily from the assumption, sin
e
〈p(A|MA

, A|∗MA
)f, g〉 = 〈p(B|MB

, B|∗MB
)Uf, Ug〉.
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ompose the spa
e H into redu
ing subspa
es of the form
Afi. Let µA

i , i ∈ N0, be the 
orresponding measures. Denote by Ai,j , i, j ∈ N0,the jth 
opy of the spa
e Afi in H(∞). Let Bi,j be the analogous de
ompo-sition of H for B su
h that B0,j is maximal relative to B for ea
h j ∈ N0.Let φ be any bije
tion between N0 × N0 and N0.From part (i)⇒(ii) of the proof, it follows that µA
i ≪ µA

0 ≪ µB
0 , i ∈ N.De�ne an operator Vi,j : Ai,j → B0,φ(i,j) by

Vi,jf =

√

dµA
i

dµB
0

f.Sin
e dµA
i /dµ

B
0 belongs to L1(µB

0 ), the operator Vi,j is an isometry. Conse-quently, the operator V = ⊕i,jVi,j is an isometry. Straightforward 
omputa-tion shows that for any polynomial
p(A(∞), A(∞)∗) = Φ(∞)(p(B(∞), B(∞)∗)) = V ∗p(B(∞), B(∞)∗)V.Similarly, we prove the existen
e of the isometry W .(iii)⇒(i). From the assumption it follows that the map p(A(∞), A(∞)∗) 7→

p(B(∞), B(∞)∗) extends to a bounded isomorphism of C∗(A) and C∗(B).Denote by ι : H → H(∞) the in
lusion onto the �rst 
omponent. By theassumption we have
〈p(A,A∗)f, g〉 = 〈p(A(∞), A(∞)∗)ιf, ιg〉 = 〈p(B(∞), B(∞)∗)V ιf, V ιg〉.Sin
e for ea
h ve
tor h ∈ H maximal relative to B, ιh is maximal relativeto B(∞), the 
on
lusion follows from (8).Example 11. In [13℄ an example was given of normal operators A,Bwhi
h satisfy the weak resolvent equality (i.e.W (A) = W (B) or equivalently

P(A) ≅ P(B)) but are not unitarily equivalent on any redu
ing subspa
e. Weinfer that the relation ≅ 
annot be extended from algebras A,B of operatorsto C∗-algebras generated by them.For the 
onvenien
e of the reader we des
ribe the example in detail.Let {rn : n ∈ N} and {sn : n ∈ N} be disjoint 
ountable subsets of (0, 1),ea
h dense in [0, 1]. Let µn (resp. νn) be 2−n times normalized Lebesguemeasure on the 
ir
le with 
entre 0 and of radius rn (resp. sn) for n ∈ N.Put µ =
∑

n∈N
µn and ν =

∑

n∈N
νn, so µ and ν are mutually singular. Let

A and B be multipli
ation by z on L2(µ) and L2(ν), respe
tively.It is easy to show that P(A) ≅ P(B). Observe that the C∗-algebras Aand B generated by A and B, respe
tively, are spatially isomorphi
. Indeed,the map whi
h sends a fun
tion f ∈ C(D) to the operator Mf ∈ B(L2(µ))of multipli
ation by f is a 
ontinuous ∗-isomorphism. Consequently, A ∼= B,although we have noti
ed that A 6≅ B.
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es on whi
h the n-tuples Aand B are unitarily equivalent. A simple example of a normal operator andits in�ation shows that one 
annot expe
t that the relevant unitaries 
an beextended onto the whole spa
e. We shall refer to this remark later.Although one 
annot expe
t to �nd an isometry satisfying Φ(·) =
U∗( · )U , a
ting on H, it is always possible to write Φ as a 
ompositionof a proje
tion π : H(∞) → H onto a �xed 
omponent, a map of the form
U∗( · )U , U being an isometry in B(H(∞)), and the in
lusion ι. In otherwords, by Theorem 10(iii), the following diagram 
ommutes:

H
ι1−−−−→ H(∞) V−−−−→ H(∞)

p(A)





y





y
p(A(∞),A(∞)∗)





y
p(B(∞),B(∞)∗)

H
π1←−−−− H(∞) V ∗

←−−−− H(∞)Su�
ient 
onditions for the equality P (K) = C(K) or
P(K) + P(K)∗ = C(K)to hold, where K ⊂ Cn, n > 1, is a 
ompa
t set, are mu
h more sophisti
atedthan in the one-dimensional 
ase. In this 
onne
tion it seems that a propergeneralization of Theorem 6.3 from [8℄ is the following fa
t, whi
h 
an beproved exa
tly like Theorem 10.Theorem 12. Let A and B be 
ommuting n-tuples of normal operators.Assume, additionally , that σ = σ(A) = σ(B) and that both P(A) and P(B)are Diri
hlet algebras on σ. The following 
onditions are equivalent :(i) P(A) + P(A∗) ≅ P(B) + P(B∗).(ii) If MA and MB are maximal subspa
es relative to A and B, then

A|MA
and B|MB

are unitarily equivalent.(iii) There exist isometries V,W ∈ B(H(∞)) su
h that
p(A(∞), A(∞)∗) = V ∗p(B(∞), B(∞)∗)V,

p(B(∞), B(∞)∗) = W ∗p(A(∞), A(∞)∗)W.We have proved that if n-tuples of normal operators A = (A1, . . . , An)and B = (B1, . . . , Bn) have the same sets of weak resolvents, then C∗(A) ≅

C∗(B). From Example 11 it follows that the existen
e of a spatial isomor-phism between C∗(A) and C∗(B) is not su�
ient for C∗(A) ≅ C∗(B). How-ever, as we intend to show, the 
ondition C∗(A) ∼= C∗(B) implies that the
losures, in the topology of uniform 
onvergen
e on 
ompa
t subsets of B,of the sets of weak resolvents are equal.
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ommuting n-tuples of operatorson a separable Hilbert spa
e. The algebras C∗(A) and C∗(B) are spatially iso-morphi
 if and only if A(∞) and B(∞) are strongly approximately equivalent.We will sket
h the proof for 
onvenien
e of the reader. However, themethod is exa
tly the same as for one operator (
f. Theorem 42.7 and Corol-lary 42.8 in [4℄).Proof. If A(∞) and B(∞) are strongly approximately equivalent, then itis easy to show that C∗(A(∞)) and C∗(B(∞)) are spatially isomorphi
. Onthe other hand, C∗(A(∞)) ∼= C∗(A).Assume now that C∗(A) and C∗(B) are spatially isomorphi
. Denote thespatial isomorphism by Φ. De�ne Ψ : C∗(A)→ C∗(B(∞)) by Ψ(T ) = Φ(T )(∞).Then Ψ is a ∗-homomorphism. It is enough to show that A(∞) and A(∞) ⊕
B(∞) are strongly approximately equivalent sin
e the same reasoning maybe applied to Ψ−1.De�ne a representation Υ : C∗(A(∞)) → C∗(B(∞)) by Υ (T (∞)) = Ψ(T ).Observe that Υ (C∗(A(∞)) ∩K) = Υ (0) = 0, where K denotes the ideal of
ompa
t operators on H(∞).Denote by id the trivial representation of C∗(A(∞)), whi
h, by the de�-nition, is a subalgebra of B(H(∞)). From the Voi
ules
u�Arveson theorem[1℄, [16℄ it follows that id and id⊕ Υ are strongly approximately equivalent.This proves the lemma.Theorem 14. Assume that C∗(A) and C∗(B) are spatially isomorphi
,where A and B are 
ommuting n-tuples of normal operators satisfying the
ondition σ(A), σ(B) ⊂ B. Then the 
losures of W (A) and W (B) in thetopology of uniform 
onvergen
e on 
ompa
t subsets of B are equal.Proof. Denote by Φ the spatial isomorphism whi
h maps C∗(A) onto
C∗(B). From Lemma 13 it follows that there exists a sequen
e of isometries
Un ∈ B(H(∞)) su
h that

‖Φ(∞)(p(A(∞), A(∞)∗))− U∗
np(A

(∞), A(∞)∗)Un‖ → 0.Consequently, for ea
h ζ ∈ B, ⊕kfk,⊕gk ∈ H(∞),(9) |〈C(B(∞), ζ)(⊕fk),⊕gk〉 − 〈U∗
nC(A(∞), ζ)Un(⊕fk),⊕gk〉| → 0.Take f, g ∈ H. From (9) it follows that for ea
h ζ ∈ B,

〈C(B, ζ)f, g〉 = lim
n→∞

〈C(A(∞), ζ)Unιf, Unιg〉.Set ⊕kf
n
k = Unιf and ⊕kg

n
k = Unιg. Observe that the series
∑

k

fn
k (z) gn

k (z)
dµk

dµ1
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onverges absolutely in L1(µ1). Therefore, as in Theorem 10,
〈C(A(∞), ζ)(⊕kf

n
k ),⊕kg

n
k 〉 =

∑

k

\
σ

C(z, ζ)fn
k (z) gn

k (z) dµk

=
\
σ

C(z, ζ)

{

∑

k

fn
k (z) gn

k (z)
dµk

dµ1

}

dµ1

= 〈C(A, ζ)f ′n, g
′
n〉,where f ′n, g′n are fun
tions in L2(µ1) satisfying

f ′n(z) g′n(z) =
∑

k

fn
k (z) gn

k (z)
dµk

dµ1
.This yields the desired 
on
lusion, sin
e by the Montel theorem the sequen
eof holomorphi
 fun
tions 〈C(A, ·)f ′n, g′n〉 
onverges uniformly on 
ompa
tsubsets of B.4. Generalizations to other operators. We 
ontinue the investiga-tion of impli
ations of the weak resolvent equality for other, not ne
essarilynormal, operators a
ting on a Hilbert spa
e. It is of interest what 
an besaid about spatial isomorphism su
h that the dual map also preserves ve
torstates. This fa
t will be denoted by A ≅s B. Theorem 10 and Proposi-tion 8 show that for normal operators, C∗(A) ≅ C∗(B) implies that for ea
h

g, h ∈ H there exist subspa
es MA ∋ g and MB ∋ h su
h that the restri
tionsof A and B to MA and MB, respe
tively, are unitarily equivalent. From thenext proposition it follows that this implies that C∗(A) ≅s C∗(B). The sym-bol C〈Z1, . . . , Z2n〉 stands for the algebra of non
ommutative polynomials of
2n variables.Proposition 15. Let H be a Hilbert spa
e. Assume that there exist fam-ilies of subspa
es HA

γ and HB
γ su
h that

H =
⋃

γ

H
A
γ =

⋃

γ

H
B
γand isometries Vγ : HA

γ → HB
γ and Wγ : HB

γ → HA
γ su
h that

p(A,A∗)|HA
γ

= V ∗
γ p(B,B

∗)Vγ and p(B,B∗)|HB
γ

= W ∗
γ p(A,A

∗)Wγfor all p ∈ C〈Z1, . . . , Z2n〉. Then C∗(A) ≅s C∗(B).Proof. Let f ∈ H. Then there exists γ su
h that f ∈ HA
γ . Thus

〈p(A,A∗)f, f〉 = 〈V ∗
γ p(B,B

∗)Vγf, f〉 = 〈p(B,B∗)Vγf, Vγf〉for ea
h polynomial p ∈ C〈Z1, . . . , Z2n〉. Similarly we prove the reverse in-
lusion.



Multidimensional weak resolvents 143Let S and T be n-tuples of operators, not ne
essarily normal, a
ting ona Hilbert spa
e H. The symbol W∗(S) stands for the smallest von Neumannalgebra generated by S. We write X ′ to denote the 
ommutant of the set
X ⊂ B(H) in B(H).Proposition 16. Assume that C∗(A) ≅s C∗(B). Then the map

Φ : p(A,A∗) 7→ p(B,B∗),where p ∈ C〈Z1, . . . , Z2n〉, extends to a 
ontinuous ∗-homomorphism betweenthe SOT-
losures of C∗(A) and C∗(B), when both these spa
es are equippedwith either the SOT , WOT or norm topology. Furthermore, the dual of Φmaps the set of ve
tor states of W∗(B) onto the set of ve
tor states of W∗(A),i.e. W∗(A) ≅s W∗(B).Proof. For T = (SOT) limTα with Tα ∈ C∗(A) and supα ‖Tα‖ < ∞ onede�nes Φ(T ) = (SOT) limα Φ(Tα) (abusing the notation we use the samesymbol for Φ and its extension). The limit exists, sin
e, by assumption,(10) for all f ∈ H there exists g ∈ H satisfying 〈Tg, g〉 = 〈Φ(T )f, f〉for all T ∈ C∗(A). Consequently, 
ondition (10) must also hold for T ∈
W∗(A). This implies that Φ extends to a SOT-SOT and WOT-WOT 
on-tinuous map between W∗(A) and W∗(B).It is also easy to observe that Φ and 
onsequently its extension is mul-tipli
ative. Indeed, multipli
ation is separately SOT 
ontinuous. Therefore,
Φ(ST ) = Φ(S)Φ(T ) for S ∈ P(A,A∗) and T ∈ P(B,B∗)

SOT. Repeatingthe argument shows that Φ(ST ) = Φ(S)Φ(T ) for S ∈ P(A,A∗)
SOT and

T ∈ P(B,B∗)
SOT.The fa
t that Φ : W∗(A) → W∗(B) is a ∗-homomorphism follows fromnorm 
ontinuity of Φ and the fa
t that Φ|P(A,A∗) is a ∗-homomorphism.If A is a subspa
e of B(H), then an A-
y
li
 subspa
e of H is a spa
e ofthe form Ah, where h ∈ H. The orthogonal proje
tion on this spa
e will be
alled a 
y
li
 proje
tion and denoted by [Ah]. We will use the symbol [Ah]for the proje
tion or its image. The next lemma is well known.Lemma 17. Let A be a C∗-subalgebra of B(H). There exists a family ofunit ve
tors hγ su
h that

∑

γ

[Ahγ ] = I.One of the ve
tors hγ 
an be 
hosen 
ompletely arbitrary.Let S and T be n-tuples of operators a
ting on a Hilbert spa
e. Observethat neither S nor T has to be 
ommutative.
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zakTheorem 18. If C∗(S) ≅s C∗(T ), then there exists a partial isometry Vsu
h that(11) p(S, S∗) = V ∗p(T, T ∗)Von its initial spa
e. The initial or �nal spa
e of V 
an be 
hosen to 
ontaina �xed arbitrary ve
tor. If there exists an m-tuple A belonging to the 
entreof W∗(S) and ve
tors xγ su
h that
∑

γ

[A′xγ ] = Iand C∗(S)xγ is dense in [A′xγ ], then there exists an isometry V satisfy-ing (11). The symbol A stands for C∗(A).The most important step in the proof of this theorem is the following:Proposition 19. Let A = (A1, . . . , An) and B = (B1, . . . , Bn) be n-tuples of operators. Denote the C∗-algebras generated by these tuples by Aand B, respe
tively. Assume that
∑

γ

[A′ xγ ] = Ifor some ve
tors xγ. If C∗(A) ≅s C∗(B) then there exist ve
tors yγ su
h that
∑

γ

[B′ yγ ] = I,(12)
‖p(A,A∗)xγ‖ = ‖p(B,B∗)yγ‖.(13)In other words, if C∗(A) ≅s C∗(B) then for ea
h de
omposition of theHilbert spa
e H into A
′-
y
li
 subspa
es, there exists a 
orresponding de-
omposition into B

′-
y
li
 subspa
es.In the proof of Proposition 19 we will repeatedly make use of the followingwell known fa
ts.Lemma 20. Let C be a C∗-subalgebra of B(H). Then(i) The 
y
li
 proje
tions for C 
ommute with C.(ii) Conversely , if Q is a proje
tion in the 
ommutant C ′ and x ∈ R(Q)then Q ≥ [Cx].Proof of Proposition 19. From the assumption A = C∗(A) ≅s C∗(B) = Bit follows that Φ is a ∗-isomorphism between A
SOT and B

SOT. From the vonNeumann double 
ommutant theorem we know that these 
losures are A
′′and B

′′, respe
tively.Sin
e Φ is a ∗-isomorphism and the proje
tion [A′ xγ ] belongs to thedouble 
ommutant of A for ea
h γ, it follows that Φ([A′ xγ ]) is a proje
tion.Furthermore, {[A′ xγ ]} is a family of mutually orthogonal proje
tions and



Multidimensional weak resolvents 145thus its image under Φ has the same property. From the SOT 
ontinuity of
Φ we also have the equality

∑

γ

Φ([A′ xγ ]) = I.By Proposition 16 there exist ve
tors yγ su
h that
‖Fxγ‖ = ‖Φ(F )yγ‖,for any F ∈W∗(A). Thus we may write

‖yγ‖ = ‖xγ‖ = ‖[A′ xγ ]xγ‖ = ‖Φ([A′ xγ ])yγ‖.It follows that yγ belongs to the range of Φ([A′]xγ). Sin
e the proje
tions
Φ([A′xγ ]) belong to the double 
ommutant of B we have Φ([A′xγ ]) ≥ [B′ yγ ].Thus the proje
tions [B′ yγ ] are mutually orthogonal.We will show that

[B′ yγ ] = Φ[A′ xγ ].Sin
e [B′ yγ ] ∈ B
′′ we may de�ne a family of mutually orthogonal proje
tionsby Qγ = Φ−1[B′ yγ ]. Observe that from the 
ontinuity of the ∗-isomorphism

Φ−1 it follows that
‖Qγxγ‖ = ‖[B′ yγ ]yγ‖ = ‖yγ‖ = ‖xγ‖.In other words, xγ belongs to the range of Qγ for ea
h γ. Thus, [A′ xγ ] ≤ Qγ .Sin
e the ∗-isomorphism Φ preserves ≤, we get Φ([A′xγ ]) ≤ Φ(Qγ) = [B′yγ ],whi
h 
ompletes the proof.Proof of Theorem 18. It follows from the assumption that for ea
h f ∈ Hthere exists h ∈ H su
h that for any non
ommutative polynomial p,
〈p(S, S∗)f, f〉 = 〈p(T, T ∗)g, g〉.Thus the �rst part is trivial. Let V : C∗(S)f → C∗(T )g be a linear operatorwhi
h 
ontinuously extends the map p(S, S∗)f 7→ p(T, T ∗)g.Straightforward 
omputations yield

p(S, S∗) = V ∗p(T, T ∗)Von C∗(S)f . It remains to extend V onto the whole spa
e H 
omposing withthe proje
tion on the 
losure of C∗(S)f .To prove the se
ond part, denote by B the image of A under Φ. Observethat
A = C

∗(A) ≅s C
∗(B) = B,sin
e C∗(S) ≅s C∗(T ). By assumption there exist xγ su
h that

∑

γ

[A′xγ ] = I.
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zakOne 
an 
hoose yγ satisfying
∑

γ

[B′yγ ] = I and ‖p(S, S∗)xγ‖ = ‖p(T, T ∗)yγ‖for p ∈ C〈Z1, . . . , Z2n〉. This 
an be done as in the proof of Proposition19, but for the ∗-isomorphism whi
h implements the equivalen
e relation
W∗(S) ≅s W∗(T ). It is now straightforward to 
omplete the proof.De�ne A = C∗(A) and B = C∗(B). To 
omplete the investigation of the
onsequen
es of the weak resolvent equality one would also need to under-stand when A ≅ B implies that A ≅s B.Theorem 21. Let A,B be C∗-algebras generated by n-tuples A and B,respe
tively. Assume that both A and B are irredu
ible. If A ≅ B, then
A ≅s B. Consequently , there exists a unitary operator U su
h that

p(S, S∗) = U∗p(T, T ∗)U.Proof. We have to show that for ea
h f ∈ H there exists k ∈ H su
h that(14) 〈af, f〉 = 〈Φ(a)k, k〉for ea
h a ∈ A. The 
onverse impli
ation 
ould be proved similarly. By as-sumption, for ea
h f ∈ H, whi
h obviously may be assumed not to be 0, thereexist g, h ∈ H su
h 〈af, f〉 = 〈Φ(a)g, h〉 for every a ∈ A. Take any b ∈ B.Sin
e Φ is an isomorphism, there exists a ∈ A su
h that b = Φ(a). Then(15) 〈b∗bg, h〉 = 〈Φ(a∗a)g, h〉 = 〈a∗af, f〉 = ‖af‖2 ≥ 0.If g and h are linearly dependent, say h = αg, α ∈ C, then from (15) itfollows easily that α ∈ R+. Consequently, de�ning k =
√
α g we obtain (14).Assume now that g and h are linearly independent, hen
e ea
h is non-zero. From the Kadison transitivity theorem it follows that there exists c ∈ Bsu
h that cg = g and ch = −g. Thus

0 ≤ 〈c∗cg, h〉 = 〈cg, ch〉 = −‖g‖2.Consequently, g and h have to be linearly dependent. This proves the �rstpart of the theorem.Sin
e the dual map of Φ preserves ve
tor states, the proof of the se
ondpart is exa
tly the same as the proof of Theorem 18. Just noti
e that if Sis irredu
ible, then ea
h non-zero ve
tor is 
y
li
. Consequently, the partialisometry 
an be extended onto the whole spa
e and has dense image.
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