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Multidimensional weak resolvents and spatial
equivalence of normal operators

by

MicHAL JAsiCZAK (Poznan)

Abstract. The aim of this paper is to answer some questions concerning weak re-
solvents. Firstly, we investigate the domain of extension of weak resolvents {2 and find a
formula linking (2 with the Taylor spectrum.

We also show that equality of weak resolvents of operator tuples A and B results
in isomorphism of the algebras generated by these operators. Although this isomorphism
need not be of the form
(1) X —U"XU,

where U is an isometry, for normal operators it is always possible to find a “large” subspace
on which unitary similarity holds. This observation is used to prove that the infinite
inflation of the spatial isomorphism between algebras generated by inflations of A and B,
respectively, does have the form (1).

These facts are generalized to other not necessarily commuting operators. We deal
mostly with the self-adjoint case.

1. Introduction. Let A be an operator on a Banach space X with the
dual space denoted by X*. The paper [13] (cf. also [12]) started a systematic
study of sets of weak resolvents, i.e. functions of the form ¢ — G(((—A)~1f),
where f € X and G € X*. It is natural to expect, especially in light of results
in local spectral theory, that the set of all functions of this form, denoted by
W (A), should contain some relevant information about the operator A.

It was proved that for cyclic operators acting on a finite-dimensional
space W (A) is a complete similarity invariant of A. The same characteriza-
tion was obtained for normal operators having spectra of zero area. It was
also shown that an operator is algebraic if and only if W (A) consists only of
meromorphic functions.

In fact, the study of weak resolvents had started earlier. In [11] it was
proved that if each weak resolvent of an operator A belongs to the Hardy
space H'(ID), then the spectral radius of A is less than one. This was gener-

2000 Mathematics Subject Classification: 47TB15, 47C05, 47L99.
Key words and phrases: weak resolvent, spatial isomorphism, Taylor spectrum.

[129]



130 M. Jasiczak

alized to tuples of operators and Taylor spectrum in [9]. It should be pointed
out that it is still not clear for which contractions weak resolvent sets are
contained in other Hardy spaces.

Let n > 1 be an integer and B be a unit ball in C*. We will denote by H a
Hilbert space and by B(H) the algebra of all bounded operators on H. In [15]
operator-valued Cauchy and Poisson kernels were defined. Let A € B(H)"
be a commuting n-tuple. Then the operator-valued Cauchy kernel is defined
by the formula

The Poisson kernel is given by
(2) P(A,¢) = C(A,Q)A%C(A%,Q),

where A% = 3" <o knoA** A" (for the definition of the numbers k, o see
[15]). Throughout the paper we use standard multi-index notation.

Assume that the Taylor spectrum of A is contained in the unit ball. For
functions in the ball algebra A(B) the following formula holds:

(3) F(A) = FOK(A, Q) do(¢),

S
where ¢ is the unique rotation-invariant normalized positive Borel measure
on S = 0B and K(A,() is the Cauchy or Poisson kernel. Accordingly, it is
natural to investigate properties of functions of the form

o(Q) = (K(A,Q)f.9), [fgeX,

which will thereafter be called multidimensional weak resolvents or briefly
weak resolvents of an n-tuple A of operators. For the operator-valued Cauchy
kernel we may and will consider weak resolvents for commuting n-tuples of
operators acting on a Banach space X.

It is the aim of this paper to give, at least partial, answers to some
problems posed in [8] and [13]. We will show that weak resolvents of n-tuples
of commuting operators cannot be used to investigate the Taylor spectrum.
We will prove a relation between the Taylor spectrum and the domain of
extension of each weak resolvent {2(A). This fact, generalizing results of [9],
shows that there exist plenty of operators for which (2(A) is the same but
whose Taylor spectra differ significantly.

We also investigate consequences of inclusions of the form W (A) C W(B)
for normal commuting operators. We deal mostly with the self-adjoint case.
This is again connected with questions posed in [13] and [8].

For operators Ay, ..., A, € B(H) we will denote by P(A) the image of
the homomorphism

ClZ1,...,Zs]) > p— p(A) € B(H)
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It is an easy consequence of the above-mentioned theorem of F.-H. Vasilescu,
in light of results in [13], that the homomorphism &: P(A) — P(B) defined
by p(A) — p(B) is bounded (homomorphisms of this kind are called spatial).

Thus, if W(A) = W(B) (this condition will be referred to as the resolvent
equality) then P(A) and P(B) are isomorphic as Banach algebras.

It is natural to ask about the form of this isomorphism. It is almost obvi-
ous that the operators A and B need not be unitarily equivalent. However,
we shall prove that for commuting normal operators the resolvent equality
results in equivalence of the operators on each maximal cyclic subspace. This
condition turns out to be also necessary for the weak resolvent equality to
hold.

Although a spatial isomorphism need not be of the form X — U*XU,
where U is unitary or isometric on H, the condition W (A, A*) = W (B, B¥)
implies that @: p(A, A*) — p(B, B*) can be written in the form

B(p(A, A%)) = V*p(A), Ay,

where A(°°) denotes the infinite inflation of A and ¢ is the inclusion of a
Hilbert space H into the infinite orthogonal sum of copies of H. Again, this
fact is a necessary condition for the weak resolvent equality.

We generalize these theorems to other operators using elementary C*-
algebra techniques.

Acknowledgments. The author wishes to thank the referee for sugges-
tions which helped the author not only to improve the style of the paper but
also correct some mistakes.

2. Connection with Taylor spectrum. Let Aq,..., A, be commuting
operators acting on a Banach space X. Define

c(A):={ze€C":1—-(A,z) ¢ InvB(X)}.

DEFINITION 1. For f € X and g € X*, the function ¢ = ¢ 4: c(4)° = C
(U¢ denotes the complement of the set U) defined by

(4) P(Crs- -5 Gn) = (C(A, Q). 9)

is called a weak (Cauchy) resolvent of the operators A, ..., A,. The set of
all functions of this form will be denoted by W¢(A), or W(A) if no confusion
can occur.

Observe that, a priori, a function of the form (4) is well defined on ¢(A)°.
Obviously, it may happen that it can be extended, as an antiholomorphic
function, to a larger domain. A trivial example consists in taking f in a joint
invariant subspace of A and g € X* annihilating [P(A)f] (if S is a subset of
a Banach space, [S] stands for the closure of the span of S). Then ¢(¢) =
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(C(A,Q)f,g9) = 0 on ¢(A)° and ¢ can be extended as an antiholomorphic
function to the whole C™.

We will show that ¢(A)¢ is the largest set, in the sense of inclusion, on
which one can define every function from W (A). From the spectral mapping
property of the Taylor spectrum [5] it follows that

c(A)={z€C":1€0((A,z2))}
- {Z eC": ¢ € UT(A)a 1=Gz+--- +Cn2n}

Let U be an open connected set (domain) in C" with U N¢(A)¢ # () such
that for each weak resolvent f € W(A), there exists an antiholomorphic
function F': U — C which extends f. We denote by (2(A) the union of all
domains U satisfying the above-described condition. It follows that ¢(A4)¢ C
2(A). We investigate the reverse inclusion.

Let us also define a local version of ¢(A) denoted by ¢(A, x) (see also [6]
and [14]). We will say that z € C" does not belong to ¢(A, x) if there exists
an antiholomorphic function F': U, — X defined on an open neighbourhood
U, of z such that

(5) (1= {A,Q)"F(() ==

for ( € U, (in the terminology of [14] this function is A-associated to x).
From the definition it follows that the set ¢(A, x)¢ is open. We will need the
following lemma:

LEMMA 1. Let x, be elements of a Banach space X. The domain of
absolute convergence of the power series ) o2 is equal to the interior of
the set

oo
M Utz eC: suplé(wa)z®| < k).
cex* k=1 @
Proof. This follows from the Banach—Steinhaus theorem and the Abel
lemma (see for example [10]). =

PROPOSITION 2. If z € £2(A), then for each x € X there exists an open
neighbourhood V of z and an antiholomorphic function G such that

C(A,GK)=x for(eV.
In other words, 2(A)Nc(A,z) =0 for every x € X.

Proof. Let x € X. From the definition, for each z € {2(A) there exists
a domain U containing z and an antiholomorphic extension of each weak
resolvent to the domain U.

Choose open polydiscs Py = P(z1,71), ..., Py = P(2m, ry) with closures
contained in U with 21 € ¢(A)¢, z; € P,_j fori=2,...,m and z € P,,. We
may assume that the Taylor series at z; of each weak resolvent is convergent
on P, foreach k=1,...,m.
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Since z; € P, it follows from Lemma 1 that the Taylor series of C(A, {)x
at z; converges uniformly on compact subsets of P;. The sum of this series,
denoted by F1, satisfies for ( € P N §2(A) the equation

(6) (1= (A Q)" Fi(() =«
Both Fy and (1 — (A,())" are antiholomorphic. Therefore, (6) must also
be satisfied for ¢ € P;. Inductively, for each £ = 1,...,m there exists an

antiholomorphic function Fj: P, — C satisfying the equation and whose
Taylor extension is convergent, by Lemma 1, on the whole Pg. This proves
the lemma since z belongs to Pp,. =

If A belongs to the boundary of the spectrum of an operator A, then A— A
is not a surjection. This is a consequence of the fact that the boundary of
the set of invertible elements of a Banach algebra consists of topological
zero divisors. This argument also shows that for ( € dc(A) the operator
1 — (A, () is a topological zero divisor. Consequently, its range is a proper
subspace of X. We will use this fact in the proof of the following lemma.

LEMMA 3. The set {x € X: 0c(A) \ c(A,z) # 0} is of the first Baire
category.

Proof. We may assume that ¢(A)¢ # C". Take a sequence A which is
dense in Jc(A) and define My, = {x € X: Ay ¢ c(A,z)}. It is easy to show
that

o0
{z € X: 0c(A)\ c(A,z) # 0} = | My
k=1
Thus, it is enough to prove that each My, is of the first category. Take x € Mjy;
then there is an open neighbourhood U of A\; and an antiholomorphic func-
tion F': U — X such that

(1—-(A,2))"F(2) = =.

Consequently,  belongs to the range of the operator 1 — (A, Ag). Since \; €
0c(A), R(1 — (A, \)) is a proper subspace of X and by the open mapping
theorem, it is of the first Baire category. In other words, M}, is contained in
a set of the first category. This yields the desired conclusion. u

THEOREM 4. 2(A) N dc(A) = 0. Consequently, 2(A) = c(A)°.

Proof. Lemma 3 shows that there exists z € X such that dc(A) C ¢(A4, z).
On the other hand, from Proposition 2 we know that 2(A) C ¢(A4,z)° for
each x € X. Thus _Q(A) Noc(A) = 0.

From the definition it follows that ¢(A)¢ C £2(A). It is easy to show that
if there existed z € £2(A) \ ¢(A)¢, then we could find ¢ € 2(A) N Ic(A). =

REMARK 1. The previous theorem can be proved in a simpler way.
Namely, one can take a direct route, applying the Banach—Steinhaus The-
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orem and mimicking the proof of Proposition 2, to construct an antiholo-
morphic function F: V — B(X), V an open neighbourhood of z € 2(A),
satisfying (5). It is the impression of the author that the proof presented
above is more instructive.

REMARK 2. It is easy to observe that instead of the operator-valued
Cauchy kernel one can take any other operator-valued holomorphic or an-
tiholomorphic kernel, for instance the Bergman kernel. We shall not pursue
this observation further. Instead, in the next section we introduce the concept
of a spatial isomorphism of finitely generated subalgebras of B(%), whose
dual preserves elementary functionals. This notion allows us to relieve the
considerations from a particular choice of a kernel function.

REMARK 3. Assume now that Ai,...,A, and By,..., B, are tuples of
commuting operators. We could have defined weak resolvents as germs on
¢(A)¢ (which is open) of functions of the form (4).

From the previous theorem it would then follow that if Wo(A;) =
We(By), then ¢(A;) = ¢(By). It is obvious that 0 belongs to ¢(A)° for
each A € B(H). Consequently, if W (A1) = We(By), then o(Ap) \ {0} =
o(B)\ {0}.

From the equality We(Ay,...,Ay) = Weo(By,. .., By) we can only infer
that c¢(A1,...,A,) = ¢(Bi1,...,By). It is easy to show that there exist n-
tuples A and B such that ¢(A) = ¢(B), but o (A) # or(B).

3. Weak resolvents of normal operators. Assume that Aq,..., A,
and By, ..., B, are commuting n-tuples of operators on a Banach space X. It
was proved in [8] that the equality of the sets of one-dimensional weak resol-
vents implies that the algebras generated by these operators are isomorphic.
The same holds true in the case of multidimensional weak resolvents.

Let f be an element of a Banach space X and g € X*. The symbol A%, o
will stand for the set of all elementary functionals acting on a subspace
A C B(X). Recall that a functional is called elementary if it is of the form
X — (X f,g). We will use the notation

P(Ay,...,Ay) = P(By,...,Bn)

if the map @ sending p(Ay,...,A,) to p(Bi,...,B,) extends to a bounded
algebra isomorphism. Equivalently, it can be said that P(Ay,..., A,) and
P(Bi,...,By) are spatially isomorphic. The fact that @ is an isomorphism
and the dual map

&*: P(By,...,Bn)" — P(Aq,..., Ay)"
maps P(B1, ..., By)y, onto P(Aq, ..., Ay)5, y Will be denoted by
P(Aq,...,A) = P(By,...,By).



Multidimensional weak resolvents 135

THEOREM 5. Assume that or(A),or(B) C B. The equality Wo(B) =
We(A) holds if and only if P(A) = P(B).

Proof. First of all, observe that if W(B) C W(A) then the mapping
&:p(A) — p(_B) is well defined. Define continuous bilinear operators a,b:
X x X* — C(B) by

a(f,g9) =(C(A, Q) f,9), b(f,g9)=(C(B,)f,9)

From the assumption it follows that the range of b is contained in the range
of a. Consequently, from the Grabiner theorem (see [8]) we infer that there
exists a constant ¢ such that for each { € C(B)*,

€00 <cll§oall
Fix a polynomial p € C[Z1,..., Z,] and let
&(f) =\ f(2)p(2)do(z) for f € C(B).

S
Since by (3), &p(alf, 9)) = (p(A)f, g) (see [15]), we obtain

(Bl = lI&p 0 bll < ¢llép o all = cllp(A)]]
for some ¢ € R;. This proves the continuity of the map @: p(A4) — p(B).
Similarly we prove the continuity of .
Let f € X, g € X* and assume again that W(B) C W(A). It follows that
there exist h € X and k € X* such that

0 (CB.Ofg =3 DD pag e

= (n—1)la!
= n:;lal‘ ol <A°‘h k)¢ = (C(A, Q)h, k).
a>0

This implies that (B*f,g) = (A%h, k) for each . Consequently,
(@2(p(A))f,9) = (p(A)h, k)

for each polynomial p. This proves that the resolvent equality implies that &*
maps P(B1,...,Bp) 5y onto P(A1, ..., Ay)4 o The converse implication
can be proved in the same manner. =

Significantly, the reproducing formula with Poisson integral can be ob-
tained not only for polynomials or more generally for functions belong-
ing to the ball algebra but also for functions of the form p + §, where
p,q € (C[Zl, e Zn].

PROPOSITION 6. Let Ay, ..., A, be commuting operators on Hilbert space
H with op(A) C B. Then for any polynomials p,q € C|Z1,. .., Zy),

p(A) +a(A%) = [ (p(¢) +a(C)P(4,) do Q).

S
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Proof. The method of proof is exactly the same as in [15].

Assume now that or(A) C B. One can define a weak Poisson resolvent
in a similar manner using the operator-valued Poisson kernel (2) instead of
the Cauchy kernel, i.e. a weak Poisson resolvent is a function on B of the
form

%”,g(C) = <P(A7 C)fv g)a
where f,g € JH. The set of all weak Poisson resolvents will be denoted by
Wp(A).
Using the previous proposition, as in Theorem 5, one can prove that if

Aq,..., A, and By,..., B, are commuting operators on a Hilbert space X,
then from the inclusion Wp(B) C Wp(A) it follows that the mapping

P(A) +P(A7) 3 p(A) + q(A%) = p(B) + ¢(B") € P(B) + P(B")

is linear continuous and thus can be extended to a continuous linear map on

P(A) + P(A).

THEOREM 7. For commuting n-tuples A and B of operators acting on a
Hilbert space H such that op(A),or(B) C B the equality Wp(A) = Wp(B)
implies P(A) + P(A*) = P(B) + P(B*).

The proof follows the lines of the corresponding one for the Cauchy weak
resolvents. The only difference is in using Proposition 6 instead of power
series expansion in the proof that spatial isomorphism preserves elementary
functionals.

In [13] an example was given of a pair of normal operators having the
same sets of weak resolvents which are not similar on any reducing subspace.
In other words, for these operators, neither the isomorphism ¢ : P(4) —
P(B) nor its inverse is of the form X — U*XU, where U is unitary.

The symbol C*(A) will stand for the C*-algebra generated by the n-tuple
A= (4y,...,4,). To simplify the notation we shall sometimes write 2 for
this algebra. We will show that under the assumption €*(A) = C*(B) (by
Theorem 5 equivalent to W (A, A*) = W (B, B*), provided the Taylor spectra
of these tuples are contained in the unit ball) the map @ has the above form
on no maximal reducing subspace. We assume in this section that H is
separable.

Denote by E 4 the joint spectral measure of the n-tuple A = (Ay, ..., 4,)
(see [2] for its definition and properties). The basic decomposition of a normal
operator (cf. [7]) can also be carried out for commuting tuples of normal
operators acting on a separable Hilbert space. Namely, it can be shown that
there exist vectors xg,x1,... such that, if we define compactly supported
positive measures by

pie(A) = (Ea(A)zg, zk), keEN,
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then the operators Ay, ..., A, are jointly unitarily equivalent to the operators
M; = @M., ) given by

[o¢] o0
Mi: €D L?(ur) > ®xfr — Srzifi € D L (k).
k=0 k=0
The measures uj can be chosen in such a way that uy is absolutely contin-
uous with respect to ur_1 for £ € N. Thus there exist measurable functions
dpy/dpo € L'(uo) such that duy = (dug/duo)dpg. Observe that since the
measures [ are positive, the functions duy/dpg are nonnegative a.e. for

ke N.

PROPOSITION 8. Let A1,...,A, be normal commuting operators on a
separable Hilbert space H and let yo € J. Then there exists x € I such that
for each y € H the measure (E4(-)y,y) is absolutely continuous with respect
to (Ea(-)x,x) and

Yo € M(z) = Az.

Proof. The proof can be carried out as that of Lemma 7 on p. 913 in [7]. =

The space M(z) and the vector x, whose existence is proved in the above
proposition, are called mazimal relative to A. If C is any operator acting on
H, then we denote by C(*) its infinite inflation, i.e. C ® idg¢. This operator
acts on @;° H, the infinite orthogonal sum of copies of 3. This space will
thereafter be denoted by H(>). The symbol ¢ will stand for the inclusion
of H onto a fixed, say the first, component of H(). If C' = (C1,...,Cp)
is an n-tuple of operators acting on H, then C(>) stands for the n-tuple
(C’{OO), ceey 07(100)). This convention makes clear the meaning of the symbol

p(C®)), when p € C[Zy,. .., Z,)].

LEMMA 9. If x is mazximal relative to A then tx is maximal relative
to A,

Proof. Observe that if E4 is a spectral measure of the n-tuple A, then
E(®) = E®idg is a spectral measure of A(>). Thus, if (E(®)(A)uz,1z) =0
for a Borel set A, then for any @z € H() we obtain

(B (A) (@), @xk) = > _(B(A)zp,21) = 0.
k

THEOREM 10. Assume that A1,..., A, and By,..., B, are commuting
n-tuples of normal operators on a Hilbert space H. The following conditions
are equivalent:

(i) C*(A) = e*(B).
(ii) If Ma and Mp are mazimal subspaces relative to A and B, then
Alm, and By, are jointly unitarily equivalent.
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(iii) There exist isometries V,W € B(H(>)) such that
p(A) ARy — yep(B(2) By,
p(B(OO)7B(OO)*) - W*p(A("O),A(OO)*)W_

Proof. (i)=-(ii). From the above-sketched model theory for normal oper-
ators and Lebesgue dominated convergence theorem it follows that for each
polynomial p of 2n variables,

(p(A) (@ fr) Brgr) = Y | p(2,2) fr(2) g (2) dps(2)

k. o(A)
:a(SA) p(2; 2 (ka >duo( );

since one can prove as in [13] that the series
dpg;
Z fulz d

converges absolutely in Ll(,ug). It is known (cf. [3], [5]) that for commuting
normal operators Ay, ..., A, the equality o7(A) = og(A) holds. Therefore,
we write o(A) for any of the equivalent notions of spectrum.

Thus, for each subspace M 4, maximal relative to A, we can always find
vectors [, g’ € M4 satisfying

(A, A") f,9) = (p(Alws, Al ) 9)-
In other words,
(8) C"(A) = € (Aln,)-

Observe that if C*(A) and C*(B) are spatially isomorphic, then o(A) = o(B).
Denote this set by o.

From the previous observations and the assumption, it follows that there
exist vectors h, k € Mp such that

Vp(z.2) dug) = \p(z, 2)h(2)k(2) duf

for each polynomial p. From the Stone—Weierstrass theorem it follows that
the measure ,u‘04 is absolutely continuous with respect to ,ugg. Similarly we
prove the inverse relation. Consequently, A|y, and B|y, are unitarily equiv-
alent.

(i1)=(i). From (8) it follows that it is enough to show that

C*(Alwm,) = C*(Blmp)-
This follows easily from the assumption, since
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(i)=(iii). Decompose the space H into reducing subspaces of the form
Af;. Let uf‘, i € Np, be the corresponding measures. Denote by A; ;, 4, j € No,
the jth copy of the space Af; in H(). Let B;,; be the analogous decompo-
sition of H for B such that By ; is maximal relative to B for each j € Np.
Let ¢ be any bijection between Ny x Ny and Ng.

From part (i)=(ii) of the proof, it follows that uf! < pf' < pf, i € N.
Define an operator V; ;: A;j — B g(; j) by

duf
dug

Vijf = f.

Since duf'/duf’ belongs to L'(uf), the operator Vi is an isometry. Conse-
quently, the operator V' = @; ;V; ; is an isometry. Straightforward computa-
tion shows that for any polynomial

PAC), A9 = g (B, BE)) = Vo p(BE), BED).

Similarly, we prove the existence of the isometry W.
(iii)=-(i). From the assumption it follows that the map p(A(®®), A(®)*)
p(B(*®), B(>)*) extends to a bounded isomorphism of €*(A) and €*(B).
Denote by ¢: H — H(°°) the inclusion onto the first component. By the
assumption we have

(p(A, A) f,9) = (p(AC), ALY, f1g) = (p(BO), BEIVLE, Vig).

Since for each vector h € H maximal relative to B, th is maximal relative
to B(™), the conclusion follows from (8).

EXAMPLE 11. In [13] an example was given of normal operators A, B
which satisfy the weak resolvent equality (i.e. W(A) = W (B) or equivalently
P(A) = P(B)) but are not unitarily equivalent on any reducing subspace. We
infer that the relation &= cannot be extended from algebras A, B of operators

to C*-algebras generated by them.

For the convenience of the reader we describe the example in detail.
Let {r,: n € N} and {s,: n € N} be disjoint countable subsets of (0, 1),
each dense in [0,1]. Let p, (resp. v,) be 27" times normalized Lebesgue
measure on the circle with centre 0 and of radius 7, (resp. s,) for n € N.
Put =3 cnyin and v =" Vp, so pand v are mutually singular. Let
A and B be multiplication by z on L?(u) and L?(v), respectively.

It is easy to show that P(A) = P(B). Observe that the C*-algebras 2
and B generated by A and B, respectively, are spatially isomorphic. Indeed,
the map which sends a function f € C(D) to the operator My € B(L?(u))
of multiplication by f is a continuous *-isomorphism. Consequently, 2 = B,
although we have noticed that 2 %Z B.
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Theorem 10 implies that if the weak resolvent equality holds for normal
operators, then there always exist “large” subspaces on which the n-tuples A
and B are unitarily equivalent. A simple example of a normal operator and
its inflation shows that one cannot expect that the relevant unitaries can be
extended onto the whole space. We shall refer to this remark later.

Although one cannot expect to find an isometry satisfying &(-) =
U*(-)U, acting on H, it is always possible to write ¢ as a composition
of a projection m: H(®) — 3 onto a fixed component, a map of the form
U*(-)U, U being an isometry in B(3((>)), and the inclusion ¢. In other
words, by Theorem 10(iii), the following diagram commutes:

F —4 s gl Y, g()
p(A)l p(A(%2) Ale0)%) lp(Bwo),B(oo)*)
Ho gl gl
Sufficient conditions for the equality P(K) = C(K) or
P(K) +P(K)* = C(K)

to hold, where K C C", n > 1, is a compact set, are much more sophisticated
than in the one-dimensional case. In this connection it seems that a proper
generalization of Theorem 6.3 from [8] is the following fact, which can be
proved exactly like Theorem 10.

THEOREM 12. Let A and B be commuting n-tuples of normal operators.
Assume, additionally, that 0 = 0(A) = o(B) and that both P(A) and P(B)

are Dirichlet algebras on o. The following conditions are equivalent:

(i) P(A) + P(A*) = P(B) + P(B*).
(ii) If Ma and Mp are mazimal subspaces relative to A and B, then
Alm, and By, are unitarily equivalent.
(iii) There exist isometries V,W € B(H(>)) such that

p<A(oo)7A(oo)*) - V*p(B(OO),B(OO)*)V,
p(BY), BE) = Wp(ALS), AW,

We have proved that if n-tuples of normal operators A = (44,...,4,)
and B = (B, ..., By) have the same sets of weak resolvents, then C*(A) =
C*(B). From Example 11 it follows that the existence of a spatial isomor-
phism between C*(A) and €*(B) is not sufficient for €*(A) = C*(B). How-
ever, as we intend to show, the condition C*(A) = €*(B) implies that the
closures, in the topology of uniform convergence on compact subsets of B,
of the sets of weak resolvents are equal.



Multidimensional weak resolvents 141

LEMMA 13. Assume that A and B are commuting n-tuples of operators
on a separable Hilbert space. The algebras C*(A) and C*(B) are spatially iso-
morphic if and only if A and B(>) are strongly approzimately equivalent.

We will sketch the proof for convenience of the reader. However, the
method is exactly the same as for one operator (cf. Theorem 42.7 and Corol-
lary 42.8 in [4]).

Proof. If A(®) and B(®) are strongly approximately equivalent, then it
is easy to show that C*(A(™)) and €*(B(*)) are spatially isomorphic. On
the other hand, C*(A(>)) = *(A).

Assume now that €*(A) and C*(B) are spatially isomorphic. Denote the
spatial isomorphism by @. Define W: C*(A) — C*(B()) by ¥(T) = &(T)(>).
Then ¥ is a *-homomorphism. It is enough to show that A(>) and A ¢
B(®°) are strongly approximately equivalent since the same reasoning may
be applied to &1

Define a representation 7: €*(A(>)) — €*(B(*)) by Y (T(®)) = ¢(T).
Observe that 7(C*(A(™)) N K) = 7(0) = 0, where K denotes the ideal of
compact operators on H(o0),

Denote by id the trivial representation of C*(A(>)), which, by the defi-
nition, is a subalgebra of B(JH(>)). From the Voiculescu-Arveson theorem
[1], [16] it follows that id and id & T are strongly approximately equivalent.
This proves the lemma. =

THEOREM 14. Assume that C*(A) and C*(B) are spatially isomorphic,
where A and B are commuting n-tuples of normal operators satisfying the

condition o(A),o(B) C B. Then the closures of W(A) and W(B) in the

topology of uniform convergence on compact subsets of B are equal.

Proof. Denote by @ the spatial isomorphism which maps C*(A) onto
C*(B). From Lemma 13 it follows that there exists a sequence of isometries
U, € B(H()) such that

1905 (p(AC), AC)*)) — Tzp(ACD), AU, || — 0.
Consequently, for each ¢ € B, &, fi, Dgr € H(),
9)  HCB Q@ fr), gr) — (UrC(A™), QUn(@ 1), Bar)| — 0.
Take f,g € H. From (9) it follows that for each ( € B,
(C(B,Q)f.g) = lim (C(A™), YUntf, Untg).
Set @ fi' = Uptf and @9 = Uptg. Observe that the series

n n—dﬂk
Zk:fk () 9k (=) 0
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converges absolutely in Lq(u1). Therefore, as in Theorem 10,

(CA, O (@rfp) gy = Y1 C2, O i (2) g (2) dp

k o
4
-{cts o{ WACKEHC d—jj’“} dn
iy

C(A, Q) frs 9n)s

where f], gl are functions in Lo(u1) satisfying
7 — oy Ak
@) gn) =) (=) gi () i
k

This yields the desired conclusion, since by the Montel theorem the sequence
of holomorphic functions (C(A,-)f!,g!) converges uniformly on compact
subsets of B. m

4. Generalizations to other operators. We continue the investiga-
tion of implications of the weak resolvent equality for other, not necessarily
normal, operators acting on a Hilbert space. It is of interest what can be
said about spatial isomorphism such that the dual map also preserves vector
states. This fact will be denoted by A =3 B. Theorem 10 and Proposi-
tion 8 show that for normal operators, €*(A) = C*(B) implies that for each
g, h € H there exist subspaces M4 > g and Mp > h such that the restrictions
of A and B to M 4 and Mp, respectively, are unitarily equivalent. From the
next proposition it follows that this implies that C*(A) = €*(B). The sym-
bol C(Zy, ..., Zay,) stands for the algebra of noncommutative polynomials of
2n variables.

PROPOSITION 15. Let H be a Hilbert space. Assume that there exist fam-
ilies of subspaces U{,‘;‘ and 5{5 such that

o=ty =t
v v
and isometries V., J'C:;‘ — 9’(5 and W, : 9’(5 — U{,‘;‘ such that
DA A" gea = Vip(B, BV, and p(B, B")|ses = Wip(A, AW,
for allp € C(Z1,...,Za,). Then C*(A) =; C*(B).
Proof. Let f € H. Then there exists v such that f € 5‘(‘74. Thus
(A, ANV, f) = (Vip(B, BY)VAf, f) = (p(B, B)VL [, Vo f)

for each polynomial p € C(Zy,..., Zs,). Similarly we prove the reverse in-
clusion. =
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Let S and T be n-tuples of operators, not necessarily normal, acting on
a Hilbert space H. The symbol W*(S) stands for the smallest von Neumann
algebra generated by S. We write X’ to denote the commutant of the set
X C B(H) in B(H).

PROPOSITION 16. Assume that C*(A) =g C*(B). Then the map
®: p(A, A”) = p(B, BY),

where p € C(Z1, ..., Zay,), extends to a continuous x-homomorphism between
the SOT-closures of C*(A) and C*(B), when both these spaces are equipped
with either the SOT, WOT or norm topology. Furthermore, the dual of @
maps the set of vector states of W*(B) onto the set of vector states of W*(A),
i.e. W*(A) = W*(B).

Proof. For T = (SOT)lim T, with T,, € C*(A) and sup,, ||T,| < oo one
defines ¢(T') = (SOT)lim, ?(7,) (abusing the notation we use the same
symbol for @ and its extension). The limit exists, since, by assumption,

(10)  for all f € H there exists g € H satisfying (T'g,g) = (2(T)f, f)

for all T € C*(A). Consequently, condition (10) must also hold for T' €
W*(A). This implies that ¢ extends to a SOT-SOT and WOT-WOT con-
tinuous map between W*(A) and W*(B).

It is also easy to observe that @ and consequently its extension is mul-
tiplicative. Indeed, multiplication is separately SOT continuous. Therefore,

O(ST) = P(S)P(T) for S € P(A,A*) and T € ’.P(B,B*)SOT. Repeating
the argument shows that ¢(ST) = &(S)P(T) for S € T(A,A*)SOT and
TeP(B,.B) .

The fact that &: W*(A) — W*(B) is a *x-homomorphism follows from
norm continuity of @ and the fact that @|p4 4+) is a *-homomorphism. =

If A is a subspace of B(H), then an A-cyclic subspace of H is a space of
the form Ah, where h € 3. The orthogonal projection on this space will be
called a cyclic projection and denoted by [Ah]. We will use the symbol [Ah]
for the projection or its image. The next lemma is well known.

LEMMA 17. Let 2 be a C*-subalgebra of B(H). There exists a family of
unit vectors h~ such that
> [, =1.

~

One of the vectors hy can be chosen completely arbitrary.

Let S and T be n-tuples of operators acting on a Hilbert space. Observe
that neither S nor T has to be commutative.
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THEOREM 18. If C*(S) =; C*(T), then there exists a partial isometry V
such that

(11) p(S,S*) =V*p(T,T*)V

on its initial space. The initial or final space of V can be chosen to contain
a fixed arbitrary vector. If there exists an m-tuple A belonging to the centre
of W*(S) and vectors x., such that

Z[Ql’xw] =1

and C*(S)zy is dense in [A'x,], then there exists an isometry V satisfy-
ing (11). The symbol A stands for C*(A).

The most important step in the proof of this theorem is the following:

PRrROPOSITION 19. Let A = (Ay,...,A,) and B = (By,...,By) be n-
tuples of operators. Denote the C*-algebras generated by these tuples by A
and B, respectively. Assume that

Z[Ql' ) =1

.
for some vectors x. If C*(A) = C*(B) then there exist vectors y- such that

(12) Byl =1,

(13) Ip(A, A%)zy[| = [lp(B, Byl

In other words, if C*(A) =5 C*(B) then for each decomposition of the
Hilbert space H into A’-cyclic subspaces, there exists a corresponding de-
composition into B’-cyclic subspaces.

In the proof of Proposition 19 we will repeatedly make use of the following
well known facts.

LEMMA 20. Let C be a C*-subalgebra of B(H). Then

(i) The cyclic projections for C' commute with C.

(ii) Conversely, if Q is a projection in the commutant C' and x € R(Q)

then @Q > [Cx].

Proof of Proposition 19. From the assumption A = C*(A) =; C*(B) = B
it follows that @ is a *-isomorphism between ﬁSOT and %SOT. From the von
Neumann double commutant theorem we know that these closures are 2"
and B”, respectively.

Since @ is a *-isomorphism and the projection [2'z,] belongs to the

double commutant of 2 for each ~, it follows that ®([' z,]) is a projection.
Furthermore, {[2"z,]} is a family of mutually orthogonal projections and
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thus its image under @ has the same property. From the SOT continuity of
@ we also have the equality

S w) = 1.

By Proposition 16 there exist vectors y., such that
[Fzy || = [|2(F)ys
for any F' € W*(A). Thus we may write

gyl = llzo || = [ 24 ] 2y ]| = [|P(A 24 ])y5 -
It follows that y, belongs to the range of ®([']x,). Since the projections
([ z,]) belong to the double commutant of B we have ([U'z,]) > [B' y,].
Thus the projections [B'y,] are mutually orthogonal.
We will show that
B ] = B[ ).
Since [B’y,| € B” we may define a family of mutually orthogonal projections

by Q = @ 1[B’y,]. Observe that from the continuity of the *-isomorphism
&1 it follows that

1@z (I = 1B yy]us 1l = [yl = llzo I

In other words, z belongs to the range of Q for each ~. Thus, [’ z,] < Q.
Since the *-isomorphism @ preserves <, we get ([A'z,]) < P(Q,) = [B'y,],
which completes the proof. =

Proof of Theorem 18. 1t follows from the assumption that for each f € H
there exists h € H such that for any noncommutative polynomial p,
(S, S)f. f) = (p(T,T")g. 9)-

Thus the first part is trivial. Let V': €*(S)f — C*(T')g be a linear operator
which continuously extends the map p(S, S*)f — p(T,T*)g.

Straightforward computations yield
p(S,8%) =Vip(T,T")V

on C*(S)f. It remains to extend V onto the whole space H composing with
the projection on the closure of C*(S)f.

To prove the second part, denote by B the image of A under @. Observe
that

A =C"(A) = C"(B) =B,
since C*(5) = €*(T). By assumption there exist x,, such that

pLENEDS

v
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One can choose y, satisfying

> Byl =1 and ||p(S,5%)z,| = |p(T,T*)y,|

S
for p € C(Z1,...,Z2,). This can be done as in the proof of Proposition
19, but for the *-isomorphism which implements the equivalence relation
W*(S) =g W*(T'). It is now straightforward to complete the proof. =

Define 20 = €*(A) and B = C*(B). To complete the investigation of the
consequences of the weak resolvent equality one would also need to under-
stand when 2 = 98 implies that 2 =4 8.

THEOREM 21. Let A, B be C*-algebras generated by n-tuples A and B,
respectively. Assume that both 2L and B are irreducible. If A = B, then
A =, B. Consequently, there exists a unitary operator U such that

p(S,5%) =Up(T,T")U.
Proof. We have to show that for each f € H there exists k € H such that
(14) (af, f) = (D(a)k, k)

for each a € 2. The converse implication could be proved similarly. By as-
sumption, for each f € H, which obviously may be assumed not to be 0, there
exist g,h € H such (af, f) = (P(a)g, h) for every a € 2. Take any b € B.
Since @ is an isomorphism, there exists a € 2 such that b = @(a). Then

(15) (b*bg, h) = (®(a*a)g. h) = (a*af, f) = [laf||* = 0.

If g and h are linearly dependent, say h = ag, a € C, then from (15) it

follows easily that o € R . Consequently, defining k = \/a' g we obtain (14).
Assume now that g and h are linearly independent, hence each is non-

zero. From the Kadison transitivity theorem it follows that there exists c € 8B
such that cg = g and ch = —g. Thus

0 < <C*Cg) h> = <Cg,Ch> = _||g||2

Consequently, g and h have to be linearly dependent. This proves the first
part of the theorem.

Since the dual map of @ preserves vector states, the proof of the second
part is exactly the same as the proof of Theorem 18. Just notice that if S
is irreducible, then each non-zero vector is cyclic. Consequently, the partial
isometry can be extended onto the whole space and has dense image.
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