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On (A,m)-expansive operators

by

Sungeun Jung, Yoenha Kim, Eungil Ko and Ji Eun Lee (Seoul)

Abstract. We give several conditions for (A,m)-expansive operators to have the
single-valued extension property. We also provide some spectral properties of such opera-
tors. Moreover, we prove that the A-covariance of any (A, 2)-expansive operator T ∈ L(H)
is positive, showing that there exists a reducing subspaceM on which T is (A, 2)-isometric.
In addition, we verify that Weyl’s theorem holds for an operator T ∈ L(H) provided that
T is (T ∗T, 2)-expansive. We next study (A,m)-isometric operators as a special case of
(A,m)-expansive operators. Finally, we prove that every operator T ∈ L(H) which is
(T ∗T, 2)-isometric has a scalar extension.

1. Introduction. Let H be a separable complex Hilbert space and let
L(H) denote the algebra of all bounded linear operators on H. If T ∈ L(H),
then we shall use the notations σ(T ), σe(T ), σle(T ), σre(T ), σp(T ), σap(T ),
and σsu(T ) for the spectrum, essential spectrum, left essential spectrum,
right essential spectrum, point spectrum, approximate point spectrum, and
surjective spectrum of T , respectively.

Throughout this paper, fix a positive operator A ∈ L(H), and we denote

Bm
A (T ) :=

m∑
j=0

(−1)j
(
m

j

)
T ∗jAT j

for an operator T ∈ L(H) and a nonnegative integer m. We say that
T ∈ L(H) is (A,m)-expansive if Bm

A (T ) ≤ 0 for some positive integer m. In
particular, (I,m)-expansive operators are simply called m-expansive oper-
ators. Moreover, if Bm

A (T ) = 0, then T is said to be (A,m)-isometric. We
say that (A, 1)-isometric operators are A-isometric, while (I,m)-isometric
operators are m-isometric.

An operator T ∈ L(H) is called (A,m)-hyperexpansive if T is (A,n)-
expansive for all positive integer n ≤ m. An operator T ∈ L(H) is said to
be completely A-hyperexpansive if it is (A,n)-expansive for all positive inte-
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gers n. In the special case when T is (I,m)-hyperexpansive (resp. completely
I-hyperexpansive), we say that T is m-hyperexpansive (resp. completely hy-
perexpansive). When Bm

A (T ) ≥ 0, we say that T is (A,m)-contractive. If T is
(A,n)-contractive for all positive integers n, then T is said to be completely
A-contractive.

J. Agler showed in [1] that if T ∈ L(H) is subnormal, then ‖T‖ ≤ 1 if
and only if Bm

A (T ) ≥ 0 for all positive integers m. J. Agler and M. Stankus
extended these inequalities to the concept of m-isometric operators. In par-
ticular, they provided the structure of 2-isometric operators (see [2] and [3]
for more details). Since every 2-isometric operator is completely hyperexpan-
sive, several mathematicians have started investigating completely hyperex-
pansive operators (see [7] and [28] for more details). For this, it is important
to study m-expansive operators. We refer the reader to [14] for more infor-
mation about m-expansivity. Recently, O. Ahmed and A. Saddi introduced
the concept of (A,m)-isometric operators. They gave several generalizations
of well known facts on m-isometric operators according to semi-Hilbertian
space structures.

If T ∈ L(H) is m-expansive, then we have Bm
T ∗T (T ) = T ∗Bm

I (T )T ≤ 0,
which means that T is (T ∗T,m)-expansive. Hence it is natural to consider
(A,m)-expansive operators. In this paper, we give several conditions for
(A,m)-expansive operators to have the single-valued extension property.
We also provide some spectral properties of such operators. Moreover, we
prove that the A-covariance of any (A, 2)-expansive operator T ∈ L(H) is
positive, showing that there exists a reducing subspace M on which T is
(A, 2)-isometric. In addition, we verify that Weyl’s theorem holds for an
operator T ∈ L(H) provided that T is (T ∗T, 2)-expansive. We next study
(A,m)-isometric operators as a special case of (A,m)-expansive operators.
Finally, we prove that every operator T ∈ L(H) which is (T ∗T, 2)-isometric
has a scalar extension.

2. Preliminaries. An operator T ∈ L(H) is called upper semi-Fredholm
if it has closed range and dim ker(T ) < ∞, and T is called lower semi-
Fredholm if it has closed range and dim(H/ran(T )) <∞. When T is either
upper semi-Fredholm or lower semi-Fredholm, it is called semi-Fredholm.
The index of a semi-Fredholm operator T ∈ L(H) is defined by

ind(T ) := dim ker(T )− dim(H/ran(T )).

Note that ind(T ) is an integer or ±∞. We say that T is Fredholm if it is
both upper and lower semi-Fredholm. In particular, a Fredholm operator
T ∈ L(H) of index zero is called Weyl. The Weyl spectrum of T is given by
σw(T ) = {λ ∈ C : T − λ is not Weyl}. We say that Weyl’s theorem holds
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for T if

σ(T ) \ σw(T ) = π00(T )

where

π00(T ) := {λ ∈ iso(σ(T )) : 0 < dim ker(T − λ) <∞}

and iso(σ(T )) denotes the set of all isolated points of σ(T ). A hole in σe(T )
is a nonempty bounded component of C \ σe(T ), and a pseudohole in σe(T )
is a nonempty component of σe(T )\σle(T ) or of σe(T )\σre(T ). The spectral
picture of T is the structure consisting of σe(T ) and the collection of holes
and pseudoholes in σe(T ).

An operator T ∈ L(H) is said to have the single-valued extension property
at z0 if for every neighborhood G of z0 and any analytic function f : G→ H,
(T − z)f(z) ≡ 0 implies f(z) ≡ 0. An operator T ∈ L(H) is said to have
the single-valued extension property (or SVEP) if it has the single-valued
extension property at every z in C. For an operator T ∈ L(H) and a vector
x ∈ H, the set ρT (x) consists of elements z0 in C such that there exists an
analytic function f(z) defined in a neighborhood of z0, with values in H,
which satisfies (T − z)f(z) ≡ x. We let σT (x) := C \ ρT (x) and

HT (F ) := {x ∈ H : σT (x) ⊆ F},

where F is a subset of C.

An operator T ∈ L(H) is said to have Dunford’s property (C) if HT (F )
is closed for each closed subset F of C. An operator T ∈ L(H) is said to
have the property (β) if for every open subset G of C and every sequence fn :
G → H of H-valued analytic functions if (T − z)fn(z) converges uniformly
to 0 in norm on compact subsets of G, then so does fn(z).

We say that T ∈ L(H) is scalar of order m if it possesses a spectral
distribution of order m, i.e., if there is a continuous unital homomorphism
of topological algebras

Φ : Cm0 (C)→ L(H)

such that Φ(z) = T , where as usual z stands for the identity function on C
and Cm0 (C) for the space of all m times continuously differentiable functions
with compact support. An operator is subscalar of order m if it is similar to
the restriction of a scalar operator of order m to an invariant subspace. The
following implications are well known (see [10] and [20] for more details):

scalar⇒ property (β)⇒ Dunford’s property (C)⇒ SVEP.

Let z be the coordinate in the complex plane C and let dµ(z) denote
the planar Lebesgue measure. Fix a complex separable Hilbert space H and
a bounded (connected) open subset U of C. We denote by L2(U,H) the
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Hilbert space of measurable functions f : U → H such that

‖f‖2,U =
( �

U

‖f(z)‖2 dµ(z)
)1/2

<∞.

The subspace of functions f ∈ L2(U,H) which are analytic in U , i.e., ∂̄f = 0,
is denoted by

A2(U,H) = L2(U,H) ∩ O(U,H),

where O(U,H) denotes the Fréchet space of H-valued analytic functions on
U with the uniform topology. The space A2(U,H) is a Hilbert space, called
the Bergman space for U .

For a fixed nonnegative integer m, the vector valued Sobolev space
Wm(U,H) with respect to ∂̄ and of order m is the space of those functions
f ∈ L2(U,H) whose derivatives ∂̄f, . . . , ∂̄mf in the sense of distributions
still belong to L2(U,H). Endowed with the norm

‖f‖2Wm =
m∑
i=0

‖∂̄if‖22,U ,

Wm(U,H) becomes a Hilbert space contained continuously in L2(U,H).
We remark that the linear operator M of multiplication by z on

Wm(U,H) is continuous and it has a spectral distribution

ΦM : Cm0 (C)→ L(Wm(U,H))

of order m defined by ΦM (ϕ)f = ϕf for ϕ ∈ Cm0 (C) and f ∈ Wm(U,H).
Therefore, M is a scalar operator of order m (see [26] for more details).

3. (A,m)-expansivity. In this section, we study (A,m)-expansive and
(A,m)-contractive operators. We first consider the single-valued extension
property for (A,m)-expansive operators.

Theorem 3.1. Let T ∈ L(H) and let 0 6∈ σp(A). Then the following
statements hold:

(i) Suppose that T is (A,m)-expansive for some positive integer m. If
m is even, then T has the single-valued extension property. If m is
odd, then T has the single-valued extension property at each λ0 ∈ C
with |λ0| ≤ 1 or |λ0| ≥ ‖T‖.

(ii) If T is (A,m)-contractive for some positive odd integer m, then T
has the single-valued extension property at each λ0 ∈ C with |λ0| ≥
min{1, ‖T‖}.

Proof. Let λ0 ∈ C and let D be any open neighborhood of λ0 in C.
Assume that f : D → H is any analytic function on D such that

(3.1) (T − λ)f(λ) ≡ 0 on D.
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From (3.1), it follows that (T j−λj)f(λ) ≡ 0 on D for all positive integers j.
This implies that

0 ≥ 〈Bm
A (T )f(λ), f(λ)〉 =

m∑
j=0

(−1)j
(
m

j

)
〈A1/2T jf(λ), A1/2T jf(λ)〉(3.2)

=
m∑
j=0

(−1)j
(
m

j

)
|λ|2j‖A1/2f(λ)‖2 = (1− |λ|2)m‖A1/2f(λ)‖2

for all λ ∈ D.
(i) Suppose that T is (A,m)-expansive for some even integer m. Since

m is even, we deduce from (3.2) that A1/2f(λ) ≡ 0 on D. Since 0 6∈ σp(A),
we have f(λ) ≡ 0 on D. Thus T has the single-valued extension property at
every λ0 ∈ C, i.e., T has the single-valued extension property.

Suppose that T is (A,m)-expansive for some odd integer m. If |λ0| ≤ 1,
then we can choose an open disk D0 in D so that |λ| < 1 for all λ ∈ D0.
Then (3.2) ensures that A1/2f(λ) ≡ 0 on D0, and so f(λ) ≡ 0 on D0 since
0 6∈ σp(A). By the identity theorem, f(λ) ≡ 0 on D. Hence T has the
single-valued extension property at λ0. If |λ0| ≥ ‖T‖, then there is an open
disk D1 in D such that T −λ is invertible for all λ ∈ D1, and so it is obvious
that f(λ) ≡ 0 on D by (3.1) and the identity theorem.

(ii) Suppose that T is (A,m)-contractive for some odd integer m. By
applying the proof of (i), it is enough to show that T has the single-valued
extension property at all λ0 with |λ0| ≥ 1. Fix such a λ0. Note that

0 ≥ −〈Bm
A (T )f(λ), f(λ)〉(3.3)

=

〈 m∑
j=0

(−1)m−j
(
m

j

)
A1/2T jf(λ), A1/2T jf(λ)

〉

=

m∑
j=0

(−1)m−j
(
m

j

)
|λ|2j‖A1/2f(λ)‖2 = (|λ|2 − 1)m‖A1/2f(λ)‖2

for all λ ∈ D. Since |λ0| ≥ 1, we can choose an open disk D0 in D so that
|λ| > 1 for all λ ∈ D0. Then (3.3) ensures that A1/2f(λ) ≡ 0 on D0. Since
0 6∈ σp(A), we have f(λ) ≡ 0 on D0. By the identity theorem, f(λ) ≡ 0
on D. Hence T has the single-valued extension property at λ0.

Corollary 3.2. Let m be a positive integer and let 0 6∈ σp(A). Then
the following assertions hold:

(i) If m > 1, then (A,m)-hyperexpansive operators have the single-
valued extension property. Moreover, every completely hyperexpan-
sive operator has the single-valued extension property.

(ii) Every (A,m)-isometric operator has the single-valued extension prop-
erty.
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Proof. (i) If T ∈ L(H) is (A,m)-hyperexpansive for some m > 1, then
it is (A, 2)-expansive, and thus it has the single-valued extension property
from Theorem 3.1. The latter assertion holds obviously.

(ii) From Theorem 3.1, it suffices to assume that m is odd. If T ∈ L(H)
is an (A,m)-isometric operator, then it is also (A,m + 1)-isometric by the
identity Bm+1

A (T ) = Bm
A (T )−T ∗Bm

A (T )T . Hence the conclusion follows from
Theorem 3.1.

The following corollary gives some immediate consequences of Theorem
3.1 and [20, Theorems 3.3.8, 3.3.9, Propositions 1.3.2, 1.2.16].

Corollary 3.3. Let T ∈ L(H) be an (A,m)-expansive operator for
some even positive integer m and let 0 6∈ σp(A). Then the following state-
ments hold:

(i) f(T ) has the single-valued extension property and f(σT (x)) =
σf(T )(x) for any analytic function f on a neighborhood of σ(T ) and
any x ∈ H.

(ii) σ(T ) = σsu(T ) =
⋃
{σT (x) : x ∈ H}.

(iii) If F1 and F2 are disjoint closed sets in C, then HT (F1 ∪ F2) =
HT (F1)⊕HT (F2) as an algebraic direct sum.

In the following proposition, we give some spectral properties of (A,m)-
expansive operators.

Proposition 3.4. Let T ∈ L(H) be (A,m)-expansive for some positive
integer m and let 0 6∈ σap(A).

(i) If m is even, then σap(T )⊆∂D. Hence either σ(T )⊆∂D or σ(T )=D.
(ii) If m is odd, then σap(T ) ⊆ C \ D. In particular, T is injective and

ran(T ) is closed.

Proof. If λ ∈ σap(T ), then there is a sequence {xn}∞n=1 of unit vectors in
H such that limn→∞ ‖(T − λ)xn‖ = 0. Since limn→∞ ‖(T j − λj)xn‖ = 0 for
j = 1, . . . ,m, we have∣∣‖A1/2T jxn‖ − |λ|j‖A1/2xn‖

∣∣ ≤ ‖A1/2(T j − λj)xn‖ → 0 as n→∞
for j = 1, . . . ,m. In addition, we note that

0 ≥ 〈Bm
A (T )xn, xn〉 =

m∑
j=0

(−1)j
(
m

j

)
‖A1/2T jxn‖2

=
m∑
j=0

(−1)j
(
m

j

)
[(‖A1/2T jxn‖2 − |λ|2j‖A1/2xn‖2) + |λ|2j‖A1/2xn‖2]

=
m∑
j=0

(−1)j
(
m

j

)
(‖A1/2T jxn‖2 − |λ|2j‖A1/2xn‖2) + (1− |λ|2)m‖A1/2xn‖2
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for all n. Hence

0 ≥ (1− |λ|2)m lim sup
n→∞

‖A1/2xn‖2.

Since 0 6∈ σap(A), it must be the case that lim supn→∞ ‖A1/2xn‖ 6= 0, and
so

(3.4) (1− |λ|2)m ≤ 0.

(i) If m is even, then 0 ≤ (1−|λ|2)m ≤ 0 from (3.4), and so |λ| = 1. This
means that σap(T ) ⊆ ∂D, and so

∂σ(T ) ⊆ σap(T ) ⊆ ∂D.(3.5)

Suppose that σ(T ) 6⊆ ∂D. In order to show that σ(T ) = D, we first claim
that 0 ∈ σ(T ). Let λ ∈ σ(T )∩D. Since λ is an interior point of σ(T ) by (3.5),
we can choose the largest positive number r such that {z ∈ C : |z − λ| ≤ r}
⊆ σ(T ). Since r(T ) = max{|z| : z ∈ σ(T )} = max{|z| : z ∈ ∂σ(T )} = 1, it
follows that σ(T ) ⊆ D. Hence r ≤ 1 − |λ|. If r < 1 − |λ|, then there exists
z ∈ ∂σ(T ) with |z − λ| = r by the maximality of r. But this contradicts
(3.5). Thus r = 1− |λ|. That is,

(3.6) {z ∈ C : |z − λ| ≤ 1− |λ|} ⊆ σ(T ) for any λ ∈ σ(T ) ∩ D.

Since σ(T ) 6⊆ ∂D and σ(T ) ⊆ D, we can select a point λ0 ∈ σ(T ) ∩ D. It is
enough to assume that λ0 6= 0. If |λ0| < 1/2, then (3.6) implies that

0 ∈ {z ∈ C : |z − λ0| ≤ 1− |λ0|} ⊆ σ(T ).

Otherwise, take a positive integer N satisfying that 1/N < 1−|λ0|. If we set
λ1 := (|λ0| − 1/N)eiArgλ0 , then |λ0| − (1− |λ0|) < |λ0| − 1/N = |λ1| < |λ0|
and so λ1 ∈ {z ∈ C : |z−λ0| ≤ 1−|λ0|} ⊆ σ(T ) by (3.6). If |λ1| < 1/2, then
from (3.6),

0 ∈ {z ∈ C : |z − λ1| ≤ 1− |λ1|} ⊆ σ(T ).

Otherwise, put λ2 := (|λ0|−2/N)eiArgλ0 . Then |λ1|−(1−|λ1|) < |λ1|−1/N =
|λ2| < |λ1| and so λ2 ∈ {z ∈ C : |z − λ1| ≤ 1 − |λ1|} ⊆ σ(T ) by (3.6).
Repeating this procedure, we find a sequence {λn} where

|λn| = |λ0| − n/N and {z ∈ C : |z − λn| ≤ 1− |λn|} ⊆ σ(T )

for all n ≥ 1. Taking a positive integer n0 such that |λ0| − n0/N < 1/2, we
find that 0 ∈ σ(T ).

Choose the largest positive number s so that {z ∈ C : |z| ≤ s} ⊆ σ(T ).
Since σ(T ) ⊆ D, it follows that s ≤ 1. But, if s < 1, then we obtain a point
z ∈ ∂σ(T ) with |z| = s, which contradicts (3.5), and so s = 1. This means
that σ(T ) = D.

(ii) Suppose that m is odd. If |λ| < 1, then 0 < (1 − |λ|2)m ≤ 0 from
(3.4), which is a contradiction. Hence σap(T ) ⊆ C \ D.
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In particular, since 0 6∈ σap(T ) from (i) and (ii), it follows that T is
injective and ran(T ) is closed.

Remark. Let T ∈ L(H) be (A,m)-expansive for some even integer m
and let 0 6∈ σap(A). We observe that if T is not invertible, then σ(T ) = D
from Proposition 3.4. In addition, since 0 6∈ σ(I), Theorem 3.1 and Proposi-
tion 3.4 hold for m-expansive operators without any spectral assumptions.

Since every (A,m)-isometric operator is (A,m + 1)-isometric, one can
recapture the result in [4] that if T ∈ L(H) is an (A,m)-isometric operator
and 0 6∈ σap(A), then σap(T ) ⊆ ∂D and either σ(T ) ⊆ ∂D or σ(T ) = D.
From this, we get the following corollary.

Corollary 3.5. Let T ∈ L(H) and let 0 6∈ σap(A). If both T and T ∗

are (A,m)-isometric for some positive integer m, then σ(T ) ⊆ ∂D.

Proof. If σ(T ) * ∂D, then 0 ∈ σ(T ) \ σap(T ) from Proposition 3.4, and

so ran(T ) 6= H. Hence 0 ∈ σap(T
∗). But this contradicts Proposition 3.4,

since T ∗ is (A,m)-isometric.

Next we deal with (A,m)-expansive operators which are complex sym-
metric. Recall that an operator C : H → H is called a conjugation if C is
antilinear (i.e., C(αx+ βy) = αCx+ βCy for all α, β ∈ C and all x, y ∈ H),
C is isometric (i.e., 〈Cx,Cy〉 = 〈y, x〉 for all x, y ∈ H), and C2 = I. We say
that an operator T ∈ L(H) is complex symmetric if there is a conjugation
C on H such that CTC = T ∗ (see [16] for more details).

Proposition 3.6. Let T ∈ L(H) be (A,m)-expansive for some positive
integer m and let 0 6∈ σp(A). If T is complex symmetric, then the following
assertions hold:

(i) If m is even, then both T and T ∗ have the single-valued extension
property.

(ii) If m is odd, then both T and T ∗ have the single-valued extension
property at each λ0 ∈ C with |λ0| ≤ 1 or |λ0| ≥ ‖T‖.

Proof. Since T is complex symmetric, there exists a conjugation C such
that CTC = T ∗. Since T is (A,m)-expansive, we get

0 ≥
〈
Cx,

m∑
j=0

(−1)j
(
m

j

)
T ∗jAT jCx

〉

=
m∑
j=0

(−1)j
(
m

j

)
〈Cx,CT jCACT ∗jx〉

=

〈 m∑
j=0

(−1)j
(
m

j

)
T j(CAC)T ∗jx, x

〉
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for all x ∈ H. This means that
∑m

j=0(−1)j
(
m
j

)
T j(CAC)T ∗j ≤ 0, and so T ∗

is (CAC,m)-expansive. In addition, note that CAC is a positive operator
with 0 6∈ σp(CAC). Thus we complete the proof by invoking Theorem 3.1.

Corollary 3.7. Let T ∈ L(H) be an (A,m)-expansive operator for
some odd positive integer m and 0 6∈ σap(A). If T is complex symmetric,
then σ(T ) ⊆ C \ D.

Proof. Let λ0 ∈ D. Since T and T ∗ have the single-valued extension
property at λ0 by Proposition 3.6, we deduce from [5, Corollary 2.50] that
λ0 6∈ σ(T ) \ σap(T ), that is, λ0 6∈ σ(T ) or λ0 ∈ σap(T ). But since σap(T ) ⊆
C \ D by Proposition 3.4, we see that λ0 6∈ σ(T ). Thus σ(T ) ⊆ C \ D.

We next verify that all powers of an (A,m)-expansive operator are again
(A,m)-expansive. As in [14], we define an operation � by

(T ∗mATm) � (T ∗kAT k) := T ∗m(T ∗kAT k)Tm

for all nonnegative integers m, k and extend this by linearity to (finite)
linear combinations of {T ∗mATm}∞m=0. Then it is easy to check that � is
commutative and associative. We denote B0

A(T ) := 0.

Lemma 3.8. For all operators T ∈ L(H) and all nonnegative integers
m, k, we have

Bk
A(T ) �Bm

A (T ) = Bm+k
A (T ).

Proof. We fix any nonnegative integer m and then use induction on k.
The given identity trivially holds for k = 0. If Bk

A(T ) � Bm
A (T ) = Bm+k

A (T )
for some positive integer k, then it follows that

Bk+1
A (T ) �Bm

A (T ) = Bk
A(T ) �B1

A(T ) �Bm
A (T ) = Bm+k

A (T ) �B1
A(T )

= Bm+k+1
A (T ),

which completes the proof.

Proposition 3.9. If T ∈ L(H) is (A,m)-expansive for some positive
integer m, then Tn is also (A,m)-expansive for every positive integer n.

Proof. Fix any positive integer n. We will use induction to show that

(3.7) Bm
A (Tn) =

m∑
j=0

(
m

j

)
(T ∗(n−1)jBm−j

A (Tn−1)T (n−1)j) �Bj
A(T )

for every positive integer m. Since

(3.8) B1
A(Tn) = B1

A(Tn−1) �A+ (T ∗n−1ATn−1) �B1
A(T ),

we see that (3.7) holds for m = 1. Assume that (3.7) is true for some positive
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integer m = k. Then from (3.8) and Lemma 3.8 we obtain

Bk+1
A (Tn) = Bk

A(Tn) �B1
A(Tn)

=
k∑
j=0

(
k

j

)
(T ∗(n−1)jBk−j

A (Tn−1)T (n−1)j) �Bj
A(T ) �B1

A(Tn−1)

+

k∑
j=0

(
k

j

)
(T ∗(n−1)jBk−j

A (Tn−1)T (n−1)j)�Bj
A(T )� (T ∗n−1ATn−1)�B1

A(T )

=
k∑
j=0

(
k

j

)(
T ∗(n−1)jBk+1−j

A (Tn−1)T (n−1)j) �Bj
A(T )

+
k∑
j=0

(
k

j

)(
T ∗(n−1)(j+1)Bk−j

A (Tn−1)T (n−1)(j+1)
)
�Bj+1

A (T )

=
k+1∑
j=0

(
k + 1

j

)(
T ∗(n−1)jBk+1−j

A (Tn−1)T (n−1)j) �Bj
A(T ),

which means that (3.7) is true for m = k + 1. Therefore, (3.7) holds for
all positive integers m and n. Note that So Bm

A (Tn) can be expressed as a
linear combination of terms of the form

T ∗r(Bm−j
A (Tn−1) �Bj

A(T ))T r

with nonnegative coefficients. Applying (3.7) to Bm−j
A (Tn−1), we have

Bm−j
A (Tn−1) =

m−j∑
i=0

(
m− j
i

)
(T ∗(n−2)iBm−j−i

A (Tn−2)T (n−2)i) �Bi
A(T ).

Then Bm
A (Tn) becomes a linear combination of terms of the form

T ∗r(Bm−j−i
A (Tn−2) �Bi

A(T ) �Bj
A(T ))T r

with nonnegative coefficients. Apply (3.7) to Bm−j−i
A (Tn−2) as well. By re-

peating this procedure, Bm
A (Tn) is finally expressed as a linear combination

of terms of the form

T ∗r(Bi1
A (T ) � · · · �Bij

A (T ))T r

with nonnegative coefficients and i1 + · · · + ij = m. From Lemma 3.8, we
have

T ∗r(Bi1
A (T ) � · · · �Bij

A (T ))T r = T ∗rB
i1+···+ij
A (T )T r = T ∗rBm

A (T )T r.

Hence, if T is (A,m)-expansive, then Bm
A (T ) ≤ 0 and so Tn is also (A,m)-

expansive.
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Remark. From the proof of Proposition 3.9, we observe that every
power of an (A,m)-isometric operator is also (A,m)-isometric, where m
is any positive integer.

Next we consider (A, 2)-expansive operators. We define the A-covariance
operator for an (A, 2)-expansive operator T ∈ L(H) by

∆A(T ) := −B1
A(T ) = T ∗AT −A.

Theorem 3.10. Let T ∈ L(H). Then the following assertions are valid:

(i) If T is (A, 2)-expansive, then ∆A(T ) ≥ 0, i.e., T is (A, 1)-expansive.
(ii) If T is an invertible (A, 2)-expansive operator, then T is (A, 1)-

isometric.

Proof. (i) We first claim that

(3.9) T ∗kAT k ≤ k∆A(T ) +A

for all positive integers k ≥ 2. Since B2
A(T ) ≤ 0, we obtain

(3.10) T ∗2AT 2 ≤ 2T ∗AT −A = 2∆A(T ) +A.

Thus (3.9) is true for k = 2. Suppose that (3.9) holds for all integers l with
2 ≤ l ≤ k. Since T ∗∆A(T )T ≤ ∆A(T ) by the definition of (A, 2)-expansive
operators, we see from (3.10) that

T ∗k+1AT k+1 ≤ T ∗2[(k − 1)∆A(T ) +A]T 2 ≤ (k + 1)∆A(T ) +A.

Hence (3.9) holds for all positive integers k ≥ 2. So it follows that

〈∆A(T )x, x〉 ≥ 1

k
‖A1/2T kx‖2 − 1

k
〈Ax, x〉

for any x ∈ H and any positive integer k ≥ 2, which yields

〈∆A(T )x, x〉 ≥ lim sup
k→∞

1

k
‖A1/2T kx‖2 ≥ 0

for any x ∈ H, that is, ∆A(T ) ≥ 0. This means that T is (A, 1)-expansive
since B1

A(T ) = −∆A(T ).
(ii) If T is an invertible (A, 2)-expansive operator, then it is easy to see

that T−1 is (A, 2)-expansive as well. Thus ∆A(T−1) = T−1
∗
AT−1 − A ≥ 0

by (i). This implies that

T ∗AT −A = −T ∗(T−1∗AT−1 −A)T ≤ 0.

Since ∆A(T ) = T ∗AT −A ≥ 0 from (i), we conclude that T ∗AT = A.

We say that an operator T ∈ L(H) is purely (A, 1)-contractive if T is
(A, 1)-contractive and there is no nonzero reducing subspace of H on which
T is (A, 1)-isometric (see [29] for more details).

Corollary 3.11. If T ∈ L(H) is (A, 2)-expansive, then there exists
a unique closed subspace M ⊆ H reducing both T and ∆A(T ) such that
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T 2∗AT 2 − 2T ∗AT + A = 0 on M and TM⊥ is purely (∆A(T )|M⊥ , 1)-
contractive.

Proof. We see from Theorem 3.10 that ∆A(T ) ≥ 0. Moreover, we know
that T ∗∆A(T )T ≤ ∆A(T ), which means that T is (∆A(T ), 1)-contractive.
Hence it follows from [29, Proposition 2.1] that there exists a unique closed
subspaceM⊆H reducing both T and∆A(T ) such that T |M is (∆A(T )|M, 1)-
isometric, that is, T 2∗AT 2 − 2T ∗AT + A = 0 on M, and TM⊥ is purely
(∆A(T )|M⊥ , 1)-contractive.

Corollary 3.12. Let T ∈ L(H) be (A, 2)-expansive and suppose that
0 6∈ σ(∆T (A)). Then the following assertions are valid:

(i) T is similar to a contraction.
(ii) T ∗ is a (∆A(T )−1, 1)-contractive operator.

Proof. (i) We note that ∆A(T ) is an invertible positive operator from
Theorem 3.10. Then we obtain

(∆A(T )1/2T∆A(T )−1/2)∗(∆A(T )1/2T∆A(T )−1/2)

= ∆A(T )−1/2(T ∗∆A(T )T )∆A(T )−1/2

≤ ∆A(T )−1/2∆A(T )∆A(T )−1/2 = I.

This means that ∆A(T )1/2T∆A(T )−1/2 is a contraction. Hence T is similar
to a contraction.

(ii) Since T ∗∆A(T )T ≤ ∆A(T ) and ∆A(T ) ≥ 0 from Theorem 3.10 one

can define an operator T̂ ∈ L(ran(∆A(T ))) by the relation

T̂∆A(T )1/2x = ∆A(T )1/2Tx, x ∈ H.
Then

‖T̂∆A(T )1/2x‖2 = ‖∆A(T )1/2Tx‖2 ≤ ‖∆A(T )1/2x‖2

for all x ∈ H. Thus T̂ is a contraction on ran(∆A(T )). This implies that

T∆A(T )−1T ∗ = ∆A(T )−1/2T̂ (T̂ )∗∆A(T )−1/2 ≤ ∆A(T )−1,

and so T ∗ is (∆A(T )−1, 1)-contractive.

We now consider Weyl’s theorem for an operator T ∈ L(H) that is
(T ∗T, 2)-expansive. Recall that T ∈ L(H) is said to be hyponormal if T ∗T
≥ TT ∗.

Lemma 3.13. If T ∈ L(H) is a (T ∗T, 2)-expansive operator with 0 6∈
σ(T ∗T ), then it is isoloid, i.e., iso(σ(T )) ⊆ σp(T ).

Proof. Let λ ∈ iso(σ(T )). From Proposition 3.4, it suffices to assume
that σ(T ) ⊆ ∂D. In particular, T is invertible. Since T is (T ∗T, 1)-isometric
from Theorem 3.10, it is similar to an isometry by [25, Theorem 3.7], which
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is hyponormal. Since every hyponormal operator is isoloid, the proof is com-
plete.

Theorem 3.14. If T ∈ L(H) is a (T ∗T, 2)-expansive operator with 0 6∈
σ(T ∗T ), then Weyl’s theorem holds for T .

Proof. We write

T =

(
T1 T2

0 T3

)
on H = ran(T )⊕ ker(T ∗).

If P denotes the orthogonal projection of H onto ran(T ), then

〈T3(I − P )x, (I − P )x〉 = 〈(I − P )x, T ∗(I − P )x〉 = 0

for all x ∈ H, and so T3 = 0. Moreover, since T ∈ L(H) is (T ∗T, 2)-expansive,
T 3∗T 3 − 2T 2∗T 2 + T ∗T ≤ 0, which implies that

〈(T 2
1
∗
T 2
1 − 2T ∗1 T1 + I)Tx, Tx〉 = 〈(T 3∗T 3 − 2T 2∗T 2 + T ∗T )x, x〉 ≤ 0

for all x ∈ H, i.e., T1 is 2-expansive.

Claim. Weyl’s theorem holds for T1.

If σ(T1) ⊆ ∂D, then Theorem 3.10 shows that T1 is unitary and so
satisfies Weyl’s theorem by [9]. We now assume that σ(T1) 6⊆ ∂D. Since
σ(T1) = D from Proposition 3.4, it is evident that iso(σ(T1)) = ∅, which
ensures that

σ(T1) \ σw(T1) ⊇ ∅ = π00(T1).

Conversely, let λ ∈ σ(T1) \ σw(T1). Since T1 − λ is Weyl but not invertible,
it is easy to see that 0 < dim ker(T1 − λ) = dim ker(T ∗1 − λ) <∞. If λ is an
interior point of σ(T1), we can choose ε > 0 such that T1 − γ is Weyl but
not invertible for all γ ∈ C with |γ − λ| < ε (indeed, take A = T1 − λ and
Y = (T1 − γ)− (T1 − λ) in [11, Theorem XI.3.12]). Thus we get

0 < dim ker(T1 − γ) = dim ker(T ∗1 − γ) <∞ for all γ ∈ C with |γ − λ| < ε.

Since ran(T1−λ) has finite codimension and σp(T1−λ) contains a neighbor-
hood of 0, T1 does not have the single-valued extension property from [15,
Theorem 10]. However, this contradicts Theorem 3.1, and so λ ∈ ∂σ(T1) \
σw(T1). Hence it follows from [11, Theorem XI.6.8] that λ ∈ iso(σ(T1)).
Therefore λ ∈ π00(T1).

From the above claim, Weyl’s theorem holds for T1. Furthermore, since
T1 is (T ∗1 T1, 2)-expansive, it is isoloid by Lemma 3.13. Since the spectral
picture of a zero operator has no pseudoholes, from [21, Theorem 2.4] it
suffices to prove that Weyl’s theorem holds for T1 ⊕ 0. Every zero operator
is clearly isoloid, and so we conclude from [22, Corollary 11] that Weyl’s
theorem holds for T1 ⊕ 0. Thus Weyl’s theorem holds for T .
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Corollary 3.15. If T ∈ L(H) is a (T ∗T, 2)-expansive operator with
0 6∈ σ(T ∗T ), then the following statements hold:

(i) σw(f(T )) = f(σw(T )) for any analytic function f(z) on a neighbor-
hood of σ(T ).

(ii) Weyl’s theorem holds for f(T ) where f(z) is any analytic function
on σ(T ).

Proof. (i) Since 0 6∈ σ(T ∗T ), the operator T has the single-valued ex-
tension property from Theorem 3.1. Hence the conclusion follows from [5,
Corollary 3.72].

(ii) Since T is isoloid and satisfies Weyl’s theorem by Lemma 3.13 and
Theorem 3.14, we obtain

f(σw(T )) = f(σ(T ) \ π00(T )) = σ(f(T )) \ π00(f(T ))

from [23]. Since f(σw(T )) = σw(f(T )) by (i), it follows that

σw(f(T )) = σ(f(T )) \ π00(f(T )).

Hence Weyl’s theorem holds for f(T ).

4. (A,m)-isometries. In this section, we study (A,m)-isometries as
a special case of (A,m)-expansive operators. First, we give some spectral
properties of (A,m)-isometric operators.

Proposition 4.1. If T ∈ L(H) is an (A,m)-isometric operator for
some positive integer m and 0 6∈ σap(A), then σp(T )∗ ⊆ σp(T ∗) and σap(T )∗

⊆ σap(T ∗).

Proof. Let z ∈ σap(T ) and 0 6∈ σap(A). Then there exists a sequence {xn}
of unit vectors in H such that limn→∞ ‖(T − z)xn‖ = 0, and we can choose
δ > 0 such that ‖Axn‖ ≥ δ for all n. Since σap(T ) ⊆ ∂D from Proposition
3.4, we have

0 =

m∑
j=0

(−1)m−j
(
m

j

)
T ∗jAT jxn

=

m∑
j=0

(−1)m−j
(
m

j

)
T ∗jA(T j − zj)xn +

m∑
j=0

(−1)m−j
(
m

j

)
zjT ∗jAxn

=
m∑
j=0

(−1)m−j
(
m

j

)
T ∗jA(T j − zj)xn + zm

m∑
j=0

(−1)m−j
(
m

j

)
zm−jT ∗jAxn

=
m∑
j=0

(−1)m−j
(
m

j

)
T ∗jA(T j − zj)xn + zm(T ∗ − z)mAxn



(A,m)-expansive operators 17

for all n. Since limn→∞ ‖T ∗jA(T j−zj)xn‖ = 0 for j = 0, 1, . . . ,m, we obtain

‖(T ∗−z)mAxn‖=
1

|z|m

∥∥∥∥ m∑
j=0

(−1)m−j
(
m

j

)
T ∗jA(T j−zj)xn

∥∥∥∥→0 as n→∞.

Hence either z ∈ σap(T ∗) or limn→∞ ‖(T ∗ − z)m−1Axn‖ = 0. Since ‖Axn‖
≥ δ, we can show that z ∈ σap(T ∗) inductively. Similarly, σp(T )∗ ⊆ σp(T ∗).

Remark. Let T ∈ L(H) be (A,m)-isometric for some positive integer m
and let 0 6∈ σap(A). Fix λ ∈ D. Since σle(T ) ⊆ σap(T ) ⊆ ∂D from Proposition
3.4, we know that T − λ is semi-Fredholm. Since σp(T ) ⊆ ∂D, we see that
ind(T − λ) ≤ 0.

Next we examine the behavior of the A-covariance

∆A(T ) :=
(−1)m−1

(m− 1)!
Bm−1
A (T )

when T ∈ L(H) is (A,m)-isometric. As explained in [4], for any (A,m)-
isometric operator T , we have

(4.1) T ∗kAT k =
m−1∑
n=0

(−1)n

n!

(
k

n

)
Bn
A(T ).

The identity (4.1) yields the following lemma.

Lemma 4.2 ([4]). If T ∈ L(H) is (A,m)-isometric for some positive
integer m, then ∆A(T ) ≥ 0.

We apply Lemma 4.2 to generalize some results of [2].

Proposition 4.3. If T ∈ L(H) is an invertible (A,m)-isometric opera-
tor for some positive even integer m, then it is (A,m− 1)-isometric.

Proof. Since T−1 is (A,m)-isometric, Lemma 4.2 implies that ∆A(T−1)
≥ 0. Since m is even, we obtain

∆A(T ) = −T ∗m−1∆A(T−1)Tm−1 ≤ 0.

Hence ∆A(T ) = 0 again by Lemma 4.2.

Recall that an operator T ∈ L(H) is called finitely cyclic if there exist a
finite number of vectors x1, . . . , xn ∈ H such that∨

{T kxj : k = 0, 1, . . . , j = 1, . . . , n} = H.

For the case n = 1, we say that T is cyclic.

Proposition 4.4. If T ∈ L(H) is a finitely cyclic (A, 2)-isometric op-
erator, then ∆A(T ) = T ∗AT − I is compact.
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Proof. Let k be any positive integer. Since T is finitely cyclic, so is T k.
Hence there exist x1, . . . , xn ∈ H such that

ran(T k) ∪ span{x1, . . . , xn} = H,
and so ran(T k)⊥ ⊆ span{x1, . . . , xn}, which means that ran(T k)⊥ is finite-

dimensional. Let Pk denote the orthogonal projection ofH onto ran(T k), and

put Θk := ∆A(T ) − Pk∆A(T )Pk for any positive integer k. If x ∈ ran(T k),
then

Θkx = (I − Pk)∆A(T )x ∈ ran(T k)⊥ ⊆ span{x1, . . . , xn}.
Moreover, for any x ∈ ran(T k)⊥, we can write x =

∑n
j=1 ajxj for some

complex numbers a1, . . . , an, and so

Θkx =
n∑
j=1

ajΘkxj ∈ span{Θkx1, . . . , Θkxn}.

Therefore, each Θk has finite rank. Now let y ∈ ran(T k) be given with
y = T kx for some x ∈ H. Since T is (A, 2)-isometric, ∆A(T ) = T ∗∆A(T )T.
Thus we have

〈Pk∆A(T )Pky, y〉 = 〈∆A(T )y, y〉 = 〈T ∗k∆A(T )T kx, x〉(4.2)

= 〈∆A(T )x, x〉.
In addition, since it follows from (4.1) that T ∗kAT k = k∆A(T ) +A, we get

〈∆A(T )x, x〉 =
1

k
‖A1/2T kx‖2 − 1

k
‖A1/2x‖2.(4.3)

Since ∆A(T ) ≥ 0 by Lemma 4.2, we know that Pk∆A(T )Pk ≥ 0, and so
(4.2) and (4.3) yield

‖(Pk∆A(T )Pk)
1/2y‖2 = 〈Pk∆A(T )Pky, y〉 = 〈∆A(T )x, x〉

=
1

k
‖A1/2T kx‖2 − 1

k
‖A1/2x‖2 ≤ 1

k
‖A1/2‖2‖y‖2.

This gives limk→∞ ‖Pk∆A(T )Pk‖ = 0. Hence ∆A(T ) is the uniform limit of
the sequence {Θk} of operators of finite rank, and so ∆A(T ) is compact.

Next we show that every operator T ∈ L(H) which is (T ∗T, 2)-isometric
has a scalar extension.

Lemma 4.5. Every 2-isometric operator is subscalar of order 4.

Proof. Let T ∈ L(H) be 2-isometric and choose a positive number σ
with ‖T ∗T − I‖ ≤ σ. By [3, Proposition 5.12 and Theorem 5.80], T has a
Brownian unitary extension B of the form

B =

(
V σE

0 U

)
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where V is an isometry, U is unitary, and E is a Hilbert space isomorphism
onto ker(V ∗). Since V and U are hyponormal, B is subscalar of order 4
by [19]. Since T is the restriction of B to an invariant subspace, it is subscalar
of order 4.

Theorem 4.6. If T ∈ L(H) is (T ∗T, 2)-isometric, then it is subscalar
of order 8.

Proof. Since T is (T ∗T, 2)-isometric, T ∗3T 3−2T ∗2T 2+T ∗T = 0. Setting
M = ran(T ), we can write

T =

(
T1 T2

0 0

)
on H =M⊕M⊥

where T1 = T |M is 2-isometric and T2 is a bounded linear operator (see the
proof of Theorem 3.14). For any bounded open disk D in C containing σ(T ),
define the map V :M⊕M⊥ → H(D) by

V h = 1 ⊗̃ h
(
≡ 1⊗ h+ (T − z)W 8(D,M)⊕W 8(D,M⊥)

)
where

H(D) := W 8(D,M)⊕W 8(D,M⊥)/(T − z)W 8(D,M)⊕W 8(D,M⊥)

and 1⊗h denotes the constant function sending any z ∈ D to h ∈M⊕M⊥.

Claim. V is one-to-one and has closed range.

Let fn = fn,1 ⊕ fn,2 ∈W 8(D,M)⊕W 8(D,M⊥) and hn = hn,1 ⊕ hn,2 ∈
M⊕M⊥ be sequences such that

(4.4) lim
n→∞

‖(T − z)fn + 1⊗ hn‖⊕2
1W

8 = 0.

This implies that

(4.5)
lim
n→∞

‖(T1 − z)fn,1 + T2fn,2 + 1⊗ hn,1‖W 8 = 0,

lim
n→∞

‖zfn,2 − 1⊗ hn,2‖W 8 = 0.

By the definition of the norm for the Sobolev space, (4.5) implies that

(4.6)
lim
n→∞

‖(T1 − z)∂̄ifn,1 + T2∂̄
ifn,2‖2,D = 0,

lim
n→∞

‖z∂̄ifn,2‖2,D = 0,

for i = 1, . . . , 8. Since the zero operator is hyponormal, it follows from [26]
that

(4.7) lim
n→∞

‖(I − P )∂̄ifn,2‖2,D = 0 for i = 1, . . . , 6,

where P denotes the orthogonal projection of L2(D,H) onto A2(D,H).
Hence we deduce from (4.6) that

lim
n→∞

‖zP ∂̄ifn,2‖2,D = 0 for i = 1, . . . , 6.
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Since the zero operator has the property (β), we have

(4.8) lim
n→∞

‖P ∂̄ifn,2‖2,D0 = 0 for i = 1, . . . , 6,

where σ(T ) ( D0 ( D. Combining (4.7) and (4.8), we have

lim
n→∞

‖∂̄ifn,2‖2,D0 = 0 for i = 1, . . . , 6.

Thus (4.6) ensures that

lim
n→∞

‖(T1 − z)∂̄ifn,1‖2,D0 = 0 for i = 1, . . . , 6.

Since T1 is 2-isometric, it is subscalar of order 4 by Lemma 4.5. Then an
application of some results of [13] yields

lim
n→∞

‖∂̄ifn,1‖2,D0 = 0 for i = 1, 2,

which gives
lim
n→∞

‖z∂̄ifn,1‖2,D0 = 0 for i = 1, 2.

By [26], we get

(4.9) lim
n→∞

‖(I − P )fn,1‖2,D0 = 0.

Therefore (4.5), (4.7), and (4.9) imply that

lim
n→∞

‖(T − z)Pfn + 1⊗hn‖2,D0 = 0

where Pfn := Pfn,1 ⊕ Pfn,2. Let Γ be a closed curve in D0 surrounding
σ(T ). Then limn→∞ ‖Pfn(z) + (T − z)−1hn‖ = 0 uniformly on Γ . Applying
the Riesz–Dunford functional calculus, we obtain

lim
n→∞

∥∥∥∥ 1

2πi

�

Γ

Pfn(z) dz + hn

∥∥∥∥ = 0.

But 1
2πi

	
Γ Pfn(z) dz = 0 by Cauchy’s theorem and hence limn→∞ ‖hn‖ = 0,

which completes the proof of our claim.
Now the class of a vector f or an operator S on H(D) will be de-

noted by f̃ , respectively S̃. Let M be the operator of multiplication by z
on W 8(D,H). As noted in Section 2, M is a scalar operator of order 8
and has a spectral distribution ΦM . Since the range of T − z is invariant
under M , M̃ can be well-defined. Moreover, consider the spectral distribu-
tion ΦM : C8

0 (C) → W 8(D,M) ⊕W 8(D,M⊥) given by ΦM (ϕ)f = ϕf for
ϕ ∈ C8

0 (C) and f ∈ W 8(D,M) ⊕W 8(D,M⊥). Then the spectral distribu-

tion ΦM of M commutes with T − z, and so M̃ is still a scalar operator of
order 8 with Φ̃M as a spectral distribution. Since

V Th = 1̃⊗ Th = z̃ ⊗ h = M̃(1̃⊗ h) = M̃V h

for all h ∈M⊕M⊥, we have V T = M̃V . In particular, ran(V ) is invariant

for M̃ . Furthermore, ran(V ) is closed by the above claim. So ran(V ) is
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an invariant subspace of the scalar operator M̃ . Since T is similar to the
restriction M̃ |ran(V ), we conclude that T is subscalar of order 8.

Recall that an operatorX ∈ L(H,K) is called a quasiaffinity if it has triv-
ial kernel and dense range. An operator S ∈ L(H) is said to be a quasiaffine
transform of an operator T ∈ L(K) if there is a quasiaffinity X ∈ L(H,K)
such that XS = TX. Furthermore, operators S ∈ L(H) and T ∈ L(K) are
quasisimilar if there are quasiaffinities X ∈ L(H,K) and Y ∈ L(K,H) such
that XS = TX and SY = Y T .

For an operator T ∈ L(H), we define a spectral maximal space of T to
be a T -invariant subspace M of H with the property that M contains any
T -invariant subspace N of H such that σ(T |N ) ⊆ σ(T |M).

Corollary 4.7. If T ∈ L(H) is (T ∗T, 2)-isometric, then the following
statements hold:

(i) If T ∈ L(H) is (T ∗T, 2)-isometric, then it has a nontrivial invariant
subspace.

(ii) T has the property (β), Dunford’s property (C), and the single-
valued extension property.

(iii) HT (F ) is a spectral maximal subspace of T and σ(T |HT (F )) ⊆
σ(T ) ∩ F for any closed set F in C.

(iv) If S ∈ L(H) is an (S∗S, 2)-isometric operator that is quasisimilar
to T , then σ(S) = σ(T ) and σe(S) = σe(T ).

Proof. (i) By the proof of Theorem 4.6, we put

T =

(
T1 T2

0 0

)
on H = ran(T )⊕ ker(T ∗)

where T1 = T |
ran(T )

is 2-isometric and T2 is a bounded linear operator.

From [2], either σ(T1) ⊆ ∂D or σ(T1) = D. If σ(T1) ⊆ ∂D, then T1 is unitary
by [2]. Thus T1 has a nontrivial invariant subspace, and so is T clearly. If
σ(T1) = D, then we get from [17] that σ(T ) = σ(T1) ∪ {0} = D. Then
σ(T ) has nonempty interior. Since T is subscalar by Theorem 4.6, it has a
nontrivial invariant subspace from [12].

(ii) From section one, it suffices to prove that T has the property (β).
Since the property (β) is transmitted from an operator to its restrictions to
closed invariant subspaces, we are reduced by Theorem 4.5 to the case of a
scalar operator. Since every scalar operator has the property (β) (see [26]),
T has the property (β).

(iii) Since T has Dunford’s property (C) by (ii), the assertion follows
from [10].

(iv) The proof follows from (ii) and [27].



22 S. Jung et al.

Acknowledgements. The authors wish to thank the referee for a care-
ful reading and valuable comments on the original draft. This work was sup-
ported by Basic Science Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Education, Science,
and Technology (2009-0087565).

References

[1] J. Agler, Hypercontractions and subnormality, J. Operator Theory 13 (1985), 203–
217.

[2] J. Agler and M. Stankus, m-isometric transformations of Hilbert space I, Integral
Equations Operator Theory 21 (1995), 383–429.

[3] J. Agler and M. Stankus, m-isometric transformations of Hilbert space II, Integral
Equations Operator Theory 23 (1995), 1–48.

[4] O. A. M. S. Ahmed and A. Saddi, A-m-Isometric operators in semi-Hilbertian
spaces, Linear Algebra Appl., to appear.

[5] P. Aiena, Fredholm and Local Spectral Theory with Applications to Multipliers,
Kluwer, 2004.

[6] P. Aiena and O. Monsalve, Operators which do not have the single-valued extension
property, J. Math. Anal. Appl. 250 (2000), 435–448.

[7] A. Athavale, On completely hyperexpansive operators, Proc. Amer. Math. Soc. 124
(1996), 3745–3752.

[8] S. K. Berberian, The Weyl spectrum of an operator, Indiana Univ. Math. J. 20
(1970), 529–544.

[9] L. A. Coburn, Weyl’s theorem for nonnormal operators, Michigan Math. J. 13
(1966), 285–288.
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