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On (A, m)-expansive operators
by

SUNGEUN JUNG, YOENHA KiM, EUNGIL KO and J1 EUN LEE (Seoul)

Abstract. We give several conditions for (A, m)-expansive operators to have the
single-valued extension property. We also provide some spectral properties of such opera-
tors. Moreover, we prove that the A-covariance of any (A, 2)-expansive operator T € L(H)
is positive, showing that there exists a reducing subspace M on which T is (A, 2)-isometric.
In addition, we verify that Weyl’s theorem holds for an operator T € £(#) provided that
T is (T*T,2)-expansive. We next study (A, m)-isometric operators as a special case of
(A, m)-expansive operators. Finally, we prove that every operator T" € L(H) which is
(T*T, 2)-isometric has a scalar extension.

1. Introduction. Let H be a separable complex Hilbert space and let
L(H) denote the algebra of all bounded linear operators on H. If T' € L(H),
then we shall use the notations o(T"), 0¢(T"), 01c(T), 0re(T), 0p(T), oap(T),
and o, (T) for the spectrum, essential spectrum, left essential spectrum,
right essential spectrum, point spectrum, approximate point spectrum, and
surjective spectrum of T, respectively.

Throughout this paper, fix a positive operator A € L(H), and we denote

m
B(T) =Y (~1) <m> T ATI

j=0 J
for an operator T' € L(H) and a nonnegative integer m. We say that
T € L(H) is (A, m)-expansive if B'}'(T) < 0 for some positive integer m. In
particular, (I, m)-expansive operators are simply called m-expansive oper-
ators. Moreover, if B} (T) = 0, then T is said to be (A, m)-isometric. We
say that (A, 1)-isometric operators are A-isometric, while (I,m)-isometric
operators are m-isometric.

An operator T' € L(H) is called (A, m)-hyperezpansive if T is (A, n)-

expansive for all positive integer n < m. An operator T' € L(H) is said to
be completely A-hyperexpansive if it is (A, n)-expansive for all positive inte-
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gers n. In the special case when 7' is (I, m)-hyperexpansive (resp. completely
I-hyperexpansive), we say that T is m-hyperezpansive (resp. completely hy-
perexpansive). When B (T') > 0, we say that T'is (A, m)-contractive. If T' is
(A, n)-contractive for all positive integers n, then T is said to be completely
A-contractive.

J. Agler showed in [1] that if T € £(#) is subnormal, then ||T|| < 1 if
and only if B"}(T') > 0 for all positive integers m. J. Agler and M. Stankus
extended these inequalities to the concept of m-isometric operators. In par-
ticular, they provided the structure of 2-isometric operators (see [2] and [3]
for more details). Since every 2-isometric operator is completely hyperexpan-
sive, several mathematicians have started investigating completely hyperex-
pansive operators (see [7] and [28] for more details). For this, it is important
to study m-expansive operators. We refer the reader to [14] for more infor-
mation about m-expansivity. Recently, O. Ahmed and A. Saddi introduced
the concept of (A, m)-isometric operators. They gave several generalizations
of well known facts on m-isometric operators according to semi-Hilbertian
space structures.

If T'e L(H) is m-expansive, then we have BJ. (T) = T*B}*(T)T < 0,
which means that 7" is (7T, m)-expansive. Hence it is natural to consider
(A, m)-expansive operators. In this paper, we give several conditions for
(A, m)-expansive operators to have the single-valued extension property.
We also provide some spectral properties of such operators. Moreover, we
prove that the A-covariance of any (A, 2)-expansive operator T' € L(H) is
positive, showing that there exists a reducing subspace M on which T is
(A, 2)-isometric. In addition, we verify that Weyl’s theorem holds for an
operator T € L(H) provided that T is (7T, 2)-expansive. We next study
(A, m)-isometric operators as a special case of (A4, m)-expansive operators.
Finally, we prove that every operator T' € L(#H) which is (T*T, 2)-isometric
has a scalar extension.

2. Preliminaries. An operator ' € L(H) is called upper semi-Fredholm
if it has closed range and dimker(7T') < oo, and T is called lower semi-
Fredholm if it has closed range and dim(# /ran(7")) < co. When T is either
upper semi-Fredholm or lower semi-Fredholm, it is called semi-Fredholm.
The index of a semi-Fredholm operator T' € L(H) is defined by

ind(T) := dimker(7T") — dim(# /ran(T)).

Note that ind(7") is an integer or +oo. We say that T" is Fredholm if it is
both upper and lower semi-Fredholm. In particular, a Fredholm operator
T € L(H) of index zero is called Weyl. The Weyl spectrum of T is given by
ow(T) ={X € C: T — X is not Weyl}. We say that Weyl’s theorem holds
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for T if
o(T) \ ow(T) = moo(T)
where
7o0(T) := {\ € iso(a(T)) : 0 < dimker(T — \) < oo}

and iso(c (7)) denotes the set of all isolated points of o(T"). A hole in o.(T)
is a nonempty bounded component of C\ o.(T), and a pseudohole in o.(T)
is a nonempty component of o¢(T")\ 07.(T") or of 6.(T") \ ore(T"). The spectral
picture of T' is the structure consisting of o.(7") and the collection of holes
and pseudoholes in o, (7).

An operator T € L(H) is said to have the single-valued extension property
at zg if for every neighborhood G of zg and any analytic function f : G — H,
(T — z)f(2) = 0 implies f(z) = 0. An operator T' € L(H) is said to have
the single-valued extension property (or SVEP) if it has the single-valued
extension property at every z in C. For an operator T € L(H) and a vector
x € H, the set pr(x) consists of elements zy in C such that there exists an
analytic function f(z) defined in a neighborhood of zy, with values in H,
which satisfies (T' — z) f(z) = x. We let or(x) := C\ pr(x) and

Hrp(F):={zeH:or(z) C F},

where F'is a subset of C.

An operator T' € L(H) is said to have Dunford’s property (C) if Hr(F')
is closed for each closed subset F' of C. An operator 7" € L£(H) is said to
have the property () if for every open subset G of C and every sequence f,, :
G — H of H-valued analytic functions if (T' — z) f,(z) converges uniformly
to 0 in norm on compact subsets of G, then so does f,(z).

We say that T' € L(H) is scalar of order m if it possesses a spectral
distribution of order m, i.e., if there is a continuous unital homomorphism
of topological algebras

$: C™(C) — L(H)

such that @(z) = T', where as usual z stands for the identity function on C
and CJ"(C) for the space of all m times continuously differentiable functions
with compact support. An operator is subscalar of order m if it is similar to
the restriction of a scalar operator of order m to an invariant subspace. The
following implications are well known (see [10] and [20] for more details):

scalar = property () = Dunford’s property (C) = SVEP.

Let z be the coordinate in the complex plane C and let du(z) denote
the planar Lebesgue measure. Fix a complex separable Hilbert space H and
a bounded (connected) open subset U of C. We denote by L?(U,H) the
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Hilbert space of measurable functions f : U — H such that

1/2
120 = (JIFEIP du(z) " < oc.
U
The subspace of functions f € L?(U, H) which are analytic in U, i.e., df = 0,
is denoted by
A2(U,H) = L*(U,H) N O(U, H),

where O(U, H) denotes the Fréchet space of H-valued analytic functions on
U with the uniform topology. The space A%(U,H) is a Hilbert space, called
the Bergman space for U.

For a fixed nonnegative integer m, the vector valued Sobolev space
W™ (U, H) with respect to 0 and of order m is the space of those functions
f € L?>(U,H) whose derivatives 0f,...,0™f in the sense of distributions
still belong to L?(U,H). Endowed with the norm

m
1 Ifm =D 10 F13.0,
=0
W™ (U, H) becomes a Hilbert space contained continuously in L?(U, H).
We remark that the linear operator M of multiplication by z on
W™(U,H) is continuous and it has a spectral distribution
Dy Cy'(C) = LW™(U,H))

of order m defined by @y (p)f = @f for ¢ € CJ*(C) and f € W™(U,H).
Therefore, M is a scalar operator of order m (see [26] for more details).

3. (A, m)-expansivity. In this section, we study (A, m)-expansive and
(A, m)-contractive operators. We first consider the single-valued extension
property for (A, m)-expansive operators.

THEOREM 3.1. Let T € L(H) and let 0 & o,(A). Then the following
statements hold:

(i) Suppose that T is (A, m)-expansive for some positive integer m. If
m is even, then T has the single-valued extension property. If m is
odd, then T has the single-valued extension property at each Ay € C
with |Xo| <1 or |Xo| > || T

(ii) If T is (A, m)-contractive for some positive odd integer m, then T
has the single-valued extension property at each Ao € C with |A\g| >
min{1, | T}

Proof. Let A\g € C and let D be any open neighborhood of Ag in C.
Assume that f: D — H is any analytic function on D such that

(3.1) (T—N)f(AM)=0 onD.
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From (3.1)), it follows that (77 — M) f(\) = 0 on D for all positive integers j.
This implies that

(32) 0> (BRI, F0) =S (-1) (’j) (42T F(3), AY2T ()

Jj=0

m
= S (Y PIAO)E = (1= AT )
j=0 J
for all A € D.

(i) Suppose that T is (A, m)-expansive for some even integer m. Since
m is even, we deduce from that AY2f(\) =0 on D. Since 0 ¢ o,(A),
we have f(A\) =0 on D. Thus T has the single-valued extension property at
every A9 € C, i.e., T has the single-valued extension property.

Suppose that T" is (A, m)-expansive for some odd integer m. If |Ao| < 1,
then we can choose an open disk Dy in D so that |A| < 1 for all A € Dy.
Then ensures that AY2f(\) = 0 on Dy, and so f(A) = 0 on Dy since
0 & op(A). By the identity theorem, f(A) = 0 on D. Hence T has the
single-valued extension property at Ag. If [A\o| > |||, then there is an open
disk Dy in D such that T'— X is invertible for all A € D1, and so it is obvious
that f(A\) =0 on D by and the identity theorem.

(ii) Suppose that 1" is (A, m)-contractive for some odd integer m. By
applying the proof of (i), it is enough to show that T" has the single-valued
extension property at all A\g with |Ag| > 1. Fix such a A¢. Note that

(33) 0> —(BI(T)SO), FOV)
= (v (M) a0, A )

=0
=3 (—1ymd (m) APA2F)IP = (AP — 1™ A2 F() 2
j=0 J

for all A € D. Since |Ag| > 1, we can choose an open disk Dy in D so that
|A| > 1 for all A € Dy. Then ensures that AY2f(\) = 0 on Dy. Since
0 & op(A), we have f(A) = 0 on Dy. By the identity theorem, f(\) = 0
on D. Hence T has the single-valued extension property at Ag. m

COROLLARY 3.2. Let m be a positive integer and let 0 & o,(A). Then
the following assertions hold:

(i) If m > 1, then (A, m)-hyperezpansive operators have the single-
valued extension property. Moreover, every completely hyperexpan-
siwwe operator has the single-valued extension property.

(ii) Ewvery (A, m)-isometric operator has the single-valued extension prop-
erty.
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Proof. (i) If T € L(H) is (A, m)-hyperexpansive for some m > 1, then
it is (A, 2)-expansive, and thus it has the single-valued extension property
from Theorem The latter assertion holds obviously.

(ii) From Theorem it suffices to assume that m is odd. If T' € L(H)
is an (A, m)-isometric operator, then it is also (A, m + 1)-isometric by the
identity BZ'H(T) = B(T)—T*B'}'(T)T. Hence the conclusion follows from
Theorem B.1] =

The following corollary gives some immediate consequences of Theorem
and [20, Theorems 3.3.8, 3.3.9, Propositions 1.3.2, 1.2.16].

COROLLARY 3.3. Let T € L(H) be an (A, m)-expansive operator for
some even positive integer m and let 0 & o,(A). Then the following state-
ments hold:

(i) f(T) has the single-valued extension property and f(op(z)) =
oy () for any analytic function f on a neighborhood of o(T) and
any x € H.
(ii) o(T) = 05u(T) = U{or(z) : x € H}.
(iii) If Fy and Fy are disjoint closed sets in C, then Hp(Fy U Fy) =
Hp(Fy) @ Hp(F») as an algebraic direct sum.

In the following proposition, we give some spectral properties of (A, m)-
expansive operators.

PROPOSITION 3.4. Let T € L(H) be (A, m)-expansive for some positive
integer m and let 0 € o,p(A).
(i) Ifm is even, then 04,(T) COD. Hence either o(T) COD or o(T)=D.
(ii) If m is odd, then o4,(T) C C\ D. In particular, T is injective and
ran(T") is closed.
Proof. If X € 04,(T), then there is a sequence {z,}72; of unit vectors in

H such that lim, o |[(T — N)zy|| = 0. Since lim,, o [|(T7 — M)2,|| = 0 for
j=1,...,m, we have

JAY2 Tz, || — (N[ AY 22, ||| < JJAYH(T? = N)ap|| = 0 asn— oo

for j =1,...,m. In addition, we note that
m

0> (BY(T)an,wn) = > (1) <m) AT |2
: j
7=0

S () (VAT |2 — AP AY 2, |2) + AP AY 2, 2
7=0

> (-1 ( > (AT, | = AP AY 22, |1%) + (1 = |AP) ™| A2 |2
7=0
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for all n. Hence

0> (1—|A?)™limsup ||AY 2z, |2
n—o0

Since 0 & 0,4,(A), it must be the case that limsup,,_,. ||AY?x,|| # 0, and
SO

(3.4) (1—AP)™<o.

(i) If m is even, then 0 < (1 — |A|>)™ < 0 from (3.4)), and so |A| = 1. This
means that o,,(7") C 0D, and so

(3.5) 00(T) C 04p(T) C OD.

Suppose that o(T) € OD. In order to show that o(T) = D, we first claim
that 0 € o(T). Let A € o(T)ND. Since A is an interior point of o(T) by (3.5),
we can choose the largest positive number r such that {z € C: |z — \| < r}
C o(T). Since r(T) = max{|z| : z € o(T)} = max{|z| : z € do(T)} =1, it
follows that o(T) C D. Hence r < 1 — |A. If » < 1 — ||, then there exists
z € do(T) with |z — A] = r by the maximality of r. But this contradicts
(3-5). Thus r = 1 — |A|. That is,

(3.6) {zeC:|z= AN <1—=|N}Co(T) forany A€ o(T)ND.

Since o(T) € D and o(T) C D, we can select a point \g € o(T) ND. It is
enough to assume that Ag # 0. If |A\g| < 1/2, then (3.6) implies that

0e{zeC:lz—X| <1—|No|} Co(T).

Otherwise, take a positive integer N satisfying that 1/N < 1—|\g|. If we set
A= (|Ao| = 1/N)etAt8 then [Ao| — (1 — |Xo|) < [Xo| = 1/N = |\i| < | Ao
andso Ay € {z € C:|2—Xo| < 1—|Xo|} C o(T) by (3.6). If [A1]| < 1/2, then
from ,

0e{zeC:|lz— | <1—|\|} Ca(T).

Otherwise, put Aa := (|JA\o|—2/N)e*A™®_ Then |A;|—(1—|\1|) < |M\1]—1/N =
[A2] < |A1l and so Ap € {z € C: |z — 1] < 1—|\]|} € o(T) by (3.6).
Repeating this procedure, we find a sequence {\,} where

IAn| =1[No| = n/N and {ze€C:|z— X\, <1—|\|} Co(T)

for all n > 1. Taking a positive integer ng such that |\o| — ng/N < 1/2, we
find that 0 € o(T).

Choose the largest positive number s so that {z € C: |z] < s} C o(T).
Since o(T) C D, it follows that s < 1. But, if s < 1, then we obtain a point
z € 9o(T) with |z| = s, which contradicts (3.5), and so s = 1. This means
that o(T) = D.

(i) Suppose that m is odd. If |A| < 1, then 0 < (1 — [A|?)™ < 0 from
(3-4), which is a contradiction. Hence oq,(T) C C\ D.
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In particular, since 0 ¢ 04,(T") from (i) and (ii), it follows that T is
injective and ran(T") is closed. m

REMARK. Let T' € L(H) be (A, m)-expansive for some even integer m
and let 0 & o,,(A). We observe that if 7" is not invertible, then o(T) = D
from Proposition In addition, since 0 ¢ o(I), Theorem and Proposi-
tion hold for m-expansive operators without any spectral assumptions.

Since every (A, m)-isometric operator is (A, m + 1)-isometric, one can
recapture the result in [4] that if T € L(H) is an (A, m)-isometric operator
and 0 & 04p(A), then 04,(T) C D and either o(T) C ID or o(T) = D.
From this, we get the following corollary.

COROLLARY 3.5. Let T € L(H) and let 0 & o4p(A). If both T and T*
are (A, m)-isometric for some positive integer m, then o(T) C ID.
Proof. 1t o(T) ¢ 9D, then 0 € o(T) \ 04p(T) from Proposition and

so ran(T") # H. Hence 0 € 04,(T™). But this contradicts Proposition
since T* is (A, m)-isometric. m

Next we deal with (A, m)-expansive operators which are complex sym-
metric. Recall that an operator C' : ‘H — H is called a conjugation if C is
antilinear (i.e., C(ax + By) = aCx + BCy for all a, B € C and all 2,y € H),
C is isometric (i.e., (Cz,Cy) = (y,x) for all z,y € H), and C? = I. We say
that an operator T' € L(H) is complex symmetric if there is a conjugation
C on H such that CTC = T* (see [16] for more details).

PROPOSITION 3.6. Let T € L(H) be (A, m)-expansive for some positive
integer m and let 0 & o,(A). If T is complex symmetric, then the following
assertions hold:

(i) If m is even, then both T and T* have the single-valued extension
property.

(ii) If m is odd, then both T and T* have the single-valued extension
property at each Ao € C with |Ao| <1 or |Xo| > ||T.

Proof. Since T is complex symmetric, there exists a conjugation C' such
that CTC = T*. Since T is (A, m)-expansive, we get

0> <C’x,§:(—1)j (”f‘)T*jAchx>

j=0 J

_ i(—l)j (T) (Cz, CTICACT )

Em:(—nj <m> TI(CAC)Tz, x>
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for all € H. This means that Z}nzo(—l)j (";)Tj(CAC)T*j <0, and so T*
is (CAC, m)-expansive. In addition, note that CAC is a positive operator
with 0 ¢ 0,(CAC). Thus we complete the proof by invoking Theorem [3.1| m

COROLLARY 3.7. Let T € L(H) be an (A, m)-expansive operator for

some odd positive integer m and 0 & o4p(A). If T is complex symmetric,
then o(T) C C\ D.

Proof. Let Ao € D. Since T" and T™ have the single-valued extension
property at Ag by Proposition we deduce from [5, Corollary 2.50] that
Ao & o(T)\ 0ap(T), that is, A\g € o(T") or Ao € g4p(T). But since o4, (1) C
C\ D by Proposition we see that A\g € (7). Thus o(T) CC\D. =

We next verify that all powers of an (A, m)-expansive operator are again
(A, m)-expansive. As in [I4], we define an operation ¢ by

(T*™AT™) o (T** AT*) .= T*™(T** AT*)YT™

for all nonnegative integers m,k and extend this by linearity to (finite)
linear combinations of {T*"™AT™}>°_,. Then it is easy to check that ¢ is
commutative and associative. We denote BY(T) := 0.

LEMMA 3.8. For all operators T € L(H) and all nonnegative integers
m, k, we have

BY(T) o BY(T) = By *X(T).

Proof. We fix any nonnegative integer m and then use induction on k.
The given identity trivially holds for k = 0. If B5(T) o B}(T) = B'y™(T)
for some positive integer k, then it follows that

BiH(T) o BR(T) = BA(T) o By(T) o BY(T) = By *(T) o BY(T)
— Bzﬂ-k—l—l(T)
which completes the proof. =

PROPOSITION 3.9. If T € L(H) is (A, m)-expansive for some positive
integer m, then T™ is also (A, m)-expansive for every positive integer n.

Proof. Fix any positive integer n. We will use induction to show that

(3.7) BY(T™) = i <T> (T*(n—l)jBZl—j (Tnfl)T(nfl)j) o BQ(T)

J=0
for every positive integer m. Since

(3.8) BY(T™) = BL(T" Y o A+ (T*" L AT V) o BY(T),
we see that (3.7) holds for m = 1. Assume that (3.7 is true for some positive
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integer m = k. Then from (3.8)) and Lemma [3.8] we obtain

BEHH(T™) = BA(T™) o B4(T™)

J

Il

<
Il
o

(5) By By 0 By
J

_l’_

<§) (T B (T DI o B (T) o (TP AT ) 0 BY(T)

J

I
M=

(lﬁ) (T*(nfl)szJrlfj(Tn—l)T(n—l)j) o BA(T)

<.

- 1

<
Il
o

_l’_

(I; ) (DU B (DU o BT

k

J

+
[y

o

<.

which means that (3.7) is true for m = k 4 1. Therefore, (3.7) holds for
all positive integers m and n. Note that So B’{'(1™) can be expressed as a
linear combination of terms of the form

T (B (T o BY(T)TT
with nonnegative coefficients. Applying 1' to BZ”_j (T 1), we have

m—j .
B;n*j(Tn—l) _ Z <m — ]) (T*(n—2)iB;nfjfi(Tn—2)T(n—2)i) o B%(T).
i
i=0
Then B'{'(T™) becomes a linear combination of terms of the form
T (BTN IT) 0 BY(T) 0 BA(T)T

with nonnegative coefficients. Apply 1D to Bzz_j _i(T”_Q) as well. By re-
peating this procedure, B{'(T") is finally expressed as a linear combination
of terms of the form

T*" (B (T) o ---o BY(T))T"
with nonnegative coefficients and i; + --- +7; = m. From Lemma we
have
T*" (B (T) oo BY(T))T" = T*" B} (T)T" = T*" B(T)T".
Hence, if T' is (A, m)-expansive, then B’}'(T") < 0 and so T™ is also (A, m)-
expansive. m
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REMARK. From the proof of Proposition [3.9, we observe that every
power of an (A, m)-isometric operator is also (A, m)-isometric, where m
is any positive integer.

Next we consider (A, 2)-expansive operators. We define the A-covariance
operator for an (A, 2)-expansive operator T € L(H) by
Ay (T) := —BY(T) = T* AT — A.
THEOREM 3.10. Let T € L(H). Then the following assertions are valid:
(i) If T is (A,2)-expansive, then As(T) > 0, i.e., T is (A, 1)-expansive.
(ii) If T is an invertible (A,2)-expansive operator, then T is (A,1)-
1sometric.

Proof. (i) We first claim that
(3.9) TFATF < kAL (T) + A
for all positive integers k > 2. Since B4(T) < 0, we obtain
(3.10) T*2AT? < 2T* AT — A = 2A,(T) + A.
Thus is true for k = 2. Suppose that holds for all integers [ with
2 <1 < k. Since T*A7(T)T < A4(T) by the definition of (A, 2)-expansive
operators, we see from that

T HATEY < T*2[(k — 1) AA(T) 4+ AJT? < (k + 1) AA(T) + A.

Hence holds for all positive integers k > 2. So it follows that

1 1
(Aa(T)z,z) > || AT e |? — +(Ax,z)
for any = € ‘H and any positive integer k > 2, which yields

(AA(T)z,7) > limsup ~ || AY2TFz|2 > 0
k—o0 k
for any x € H, that is, Aa(T") > 0. This means that T" is (A, 1)-expansive
since BY(T) = —A4(T).
(ii) If 7" is an invertible (A, 2)-expansive operator, then it is easy to see
that T~ is (A, 2)-expansive as well. Thus A(T~) =T 1"AT' -~ A >0
by (i). This implies that

T*AT — A= -T*(T" VAT ' - AT <0.
Since Ay (T) =T*AT — A > 0 from (i), we conclude that T*AT = A.

We say that an operator T € L(H) is purely (A,1)-contractive if T is
(A, 1)-contractive and there is no nonzero reducing subspace of  on which
T is (A, 1)-isometric (see [29] for more details).

COROLLARY 3.11. If T € L(H) is (A,2)-expansive, then there exists
a unique closed subspace M C H reducing both T and As(T) such that



14 S. Jung et al.

T?AT? — 2T*AT + A = 0 on M and Ty, is purely (Aa(T)|pe,1)-
contractive.

Proof. We see from Theorem that Aa(T) > 0. Moreover, we know
that T*A4(T)T < A4(T), which means that 7" is (A4(T"), 1)-contractive.
Hence it follows from [29], Proposition 2.1] that there exists a unique closed
subspace M CH reducing both T"and A 4(7T") such that T'| s is (Aa(T)|m, 1)-
isometric, that is, T?*AT? — 2T*AT + A = 0 on M, and T, is purely
(AA(T)| pqe, 1)-contractive. m

COROLLARY 3.12. Let T € L(H) be (A,2)-expansive and suppose that
0¢& o(Ar(A)). Then the following assertions are valid:

(i) T is similar to a contraction.
(i) T* is a (Aa(T)~1,1)-contractive operator.

Proof. (i) We note that A(T") is an invertible positive operator from
Theorem [3.10l Then we obtain

(Aa(T) PTAAT) ) (AA(D)PTAN(T) V)
= AA(T) " V2(T* Au(T)T) A p(T) /2
< AA(T)fl/ZAA(T)AA(T)fl/Q =1

This means that Ay (T)Y2TA4(T)~'/? is a contraction. Hence T is similar
to a contraction.

(i) Since T*AA(T)T < A4(T) and Ax(T) > 0 from Theorem one
can define an operator 7' € L(ran(A4(T"))) by the relation

TAANT) 2 = Ap(T)?Tz, x€H.
Then
ITAAT) 22))? = | Aa(D)*Tal* < ||Aa(T)2|?
for all z € H. Thus T is a contraction on ran(A4(T)). This implies that
TAANT) T = Au(T) " VPT(T) A(T) Y2 < Au(T) 7,

and so T* is (AA(T)~!, 1)-contractive. =

We now consider Weyl’s theorem for an operator ' € L(#) that is

(T*T,2)-expansive. Recall that T' € L(H) is said to be hyponormal if T*T
>TT*.

LEMMA 3.13. If T € L(H) is a (T*T,2)-ezpansive operator with 0 ¢
o(T*T), then it is isoloid, i.e., iso(c(T)) C op(T).

Proof. Let X € iso(o(T)). From Proposition it suffices to assume
that o(T") C 9D. In particular, T is invertible. Since T" is (T*T, 1)-isometric
from Theorem it is similar to an isometry by [25, Theorem 3.7], which
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is hyponormal. Since every hyponormal operator is isoloid, the proof is com-
plete. =

THEOREM 3.14. If T € L(H) is a (T*T,2)-expansive operator with 0 &
o(T*T), then Weyl’s theorem holds for T.

Proof. We write

(Tl Ty

0 T3> on H =ran(T) & ker(T™).

If P denotes the orthogonal projection of H onto ran(7"), then
(T5(I — P)z,(I — P)x) = (({ — P)z, T*(I — P)x) =0

for all z € H, and so T3 = 0. Moreover, since T € L(H) is (T*T, 2)-expansive,
T3T% — 2T%"T2 4+ T*T < 0, which implies that

(TFTE — 27Ty + )Tz, Tx) = (T*T% — 2T T? + T*T)z, ) < 0
for all x € H, i.e., T1 is 2-expansive.
CrAaM. Weyl’s theorem holds for Tj.

If o(Ty) C 0D, then Theorem shows that T} is unitary and so
satisfies Weyl’s theorem by [9]. We now assume that o(71) ¢ JD. Since
o(Th) = D from Proposition it is evident that iso(o(71)) = 0, which
ensures that

o(T1) \ ow(T1) 2 0 = meo(T1).

Conversely, let X\ € o(T1) \ 0w (T1). Since T1 — X is Weyl but not invertible,
it is easy to see that 0 < dimker(7T} — \) = dimker(T} — ) < oco. If ) is an
interior point of o(77), we can choose £ > 0 such that T3 — v is Weyl but
not invertible for all v € C with |y — A| < ¢ (indeed, take A = T7 — X and

Y = (Th — ) — (T1 — A) in [II, Theorem XI.3.12]). Thus we get
0 < dimker(7} —v) = dimker(7 —7) < oo for all v € C with |y — A\| < e.

Since ran(T} — A) has finite codimension and ¢, (77 — A) contains a neighbor-
hood of 0, 77 does not have the single-valued extension property from [15]
Theorem 10]. However, this contradicts Theorem and so A € do(T1) \
ow(T1). Hence it follows from [II, Theorem XI.6.8] that A\ € iso(o(T1)).
Therefore A € moo(11).

From the above claim, Weyl’s theorem holds for T7. Furthermore, since
Ty is (T7T1,2)-expansive, it is isoloid by Lemma Since the spectral
picture of a zero operator has no pseudoholes, from [2I, Theorem 2.4] it
suffices to prove that Weyl’s theorem holds for T} & 0. Every zero operator
is clearly isoloid, and so we conclude from [22, Corollary 11] that Weyl’s
theorem holds for 77 & 0. Thus Weyl’s theorem holds for T'. u
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COROLLARY 3.15. If T € L(H) is a (T*T,2)-expansive operator with
0¢& o(T*T), then the following statements hold:

(i) ow(f(T)) = flow(T)) for any analytic function f(z) on a neighbor-
hood of o(T).

(ii) Weyl’s theorem holds for f(T) where f(z) is any analytic function
on o(T).

Proof. (i) Since 0 ¢ o(T*T), the operator T" has the single-valued ex-
tension property from Theorem Hence the conclusion follows from [5]
Corollary 3.72].

(ii) Since T is isoloid and satisfies Weyl’s theorem by Lemma and
Theorem we obtain

flow(T)) = f(o(T) \ moo(T)) = o (f(T)) \ moo(f(T))
from [23]. Since f(0w(T)) = ow(f(T)) by (i), it follows that

)
ow(f(T)) = o(f(T)) \ moo(f(T))-
Hence Wey!’s theorem holds for f(7"). m

4. (A, m)-isometries. In this section, we study (A, m)-isometries as
a special case of (A, m)-expansive operators. First, we give some spectral
properties of (A, m)-isometric operators.

ProposiTION 4.1. If T € L(H) is an (A, m)-isometric operator for
some positive integer m and 0 & oqp(A), then op(T)* C 0,(T*) and o4p(T)*
C ogp(T™).

Proof. Let z € 04p(T) and 0 & 04, (A). Then there exists a sequence {x, }
of unit vectors in H such that lim,,_, || (T — z)z,|| = 0, and we can choose
d > 0 such that ||Az,| > J for all n. Since o4,(T") € 0D from Proposition

we have

3=0
- jio(_l)m] <7Jn) T AT — 29)a, + jf;)(—l)mj <1;L> 2T Az,
_ g)(—l)mf (Tj) T AT — )z, + 2™ jé(—l)mj (?)zij*f‘Axn
= i(—l)’”‘f (T) T A(T? — 29, + 2™(T* — 2)™ Ay,
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for all n. Since lim,, o0 || T*/ A(T9 — 27 )2,,|| = 0 for j = 0,1,...,m, we obtain

—0 asn—oo.

* = \m 1 = m—i [T %] . .
|(T*—%2) Amn|]:|z|mH;)(—1) J(j)TJA(TJ—zJ)mn

Hence either Z € 04, (T*) or limy, o0 || (T* — 2)™ L Az,|| = 0. Since || Az, ||
> §, we can show that Z € o4, (1) inductively. Similarly, o, (T)* C 0,(T*). =
REMARK. Let T' € L(H) be (A, m)-isometric for some positive integer m
and let 0 & oqp(A). Fix A € D. Since 05(T") C 04,(T") € 9D from Proposition
we know that 7" — X is semi-Fredholm. Since 0, (7") C JD, we see that
ind(T — \) < 0.
Next we examine the behavior of the A-covariance
(_1)m—1
(m—1)!
when T € L(H) is (A, m)-isometric. As explained in [4], for any (A, m)-
isometric operator T, we have

m—1 n
(4.1) T AT =) (=1 (k)Bg(T).

Aa(T) == By ~H(T)

n! n
n=0

The identity (4.1]) yields the following lemma.

LemMA 4.2 (M]). If T € L(H) is (A, m)-isometric for some positive
integer m, then Aa(T) > 0.

We apply Lemma to generalize some results of [2].

PROPOSITION 4.3. If T € L(H) is an invertible (A, m)-isometric opera-
tor for some positive even integer m, then it is (A, m — 1)-isometric.

Proof. Since T~! is (A, m)-isometric, Lemma implies that A4 (T~ 1)
> 0. Since m is even, we obtain

AA(T) = =T A (T HT™ L <0,
Hence A4(T) = 0 again by Lemma ]

Recall that an operator T' € L(H) is called finitely cyclic if there exist a
finite number of vectors z1,...,x, € H such that

VAiTrz; i k=0,1,...,5=1,....,n} =H.
For the case n = 1, we say that T is cyclic.

PROPOSITION 4.4. If T € L(H) is a finitely cyclic (A,2)-isometric op-
erator, then Ax(T) =T*AT — I is compact.
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Proof. Let k be any positive integer. Since T is finitely cyclic, so is T*.

Hence there exist x1,...,x, € H such that
ran(T*) Uspan{zy,...,z,} = H,
and so ran(T*)*+ C span{zy,...,2,}, which means that ran(7T*)* is finite-

dimensional. Let P denote the orthogonal projection of H onto ran(7%), and
put O := As(T) — P, AA(T) Py for any positive integer k. If z € ran(T*),
then

Opz = (I — Pp)AA(T)z € ran(T*)* C spanf{zy, ...,z }.

Moreover, for any = € ran(T*)*, we can write z = >_
complex numbers ay,...,a,, and so

n

j=1ajx; for some

n
Opx = Z a;Orx; € span{Oyx1,...,O0kx,}.

J=1

Therefore, each Oy has finite rank. Now let y € ran(T*) be given with
y = T*z for some x € H. Since T is (A, 2)-isometric, As(T) = T*Aa(T)T.
Thus we have

(4.2) (PeAA(T) Py, y) = (Aa(T)y,y) = (T A(T)T*z, )

= (Aa(T)z, z).
In addition, since it follows from (4.1)) that T** AT* = kAL(T) + A, we get

1 1
(4.3) (Aa(T)z, ) = EHAWTI“%‘H2 - %HAI/Q?EHQ-
Since A4(T) > 0 by Lemma we know that PyAs(T)P, > 0, and so
[E2) and (L3) yield
I(PeAA(T)P) Pyl* = (PeAA(T) Pry.y) = (Aa(T), )
1 1 1
= TIAYT | — LAY < LAy

This gives limy_,o0 || P Aa(T) Pkl = 0. Hence A4(T) is the uniform limit of
the sequence {Oy} of operators of finite rank, and so A4(T) is compact. m

Next we show that every operator 7' € L£L(H) which is (7T, 2)-isometric
has a scalar extension.

LEMMA 4.5. Every 2-isometric operator is subscalar of order 4.

Proof. Let T € L(H) be 2-isometric and choose a positive number o
with | T*T — I|| < 0. By [3, Proposition 5.12 and Theorem 5.80], T" has a
Brownian unitary extension B of the form

B (V 0E>
0 U
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where V' is an isometry, U is unitary, and F is a Hilbert space isomorphism
onto ker(V*). Since V and U are hyponormal, B is subscalar of order 4
by [19]. Since T is the restriction of B to an invariant subspace, it is subscalar
of order 4. m

THEOREM 4.6. If T € L(H) is (T*T,2)-isometric, then it is subscalar
of order 8.

Proof. Since T is (T*T, 2)-isometric, T*3T3 — 27272 4 T*T = 0. Setting
M =ran(T'), we can write

Ty T
T:<01 02> onH=MaM*

where T1 = T'|p is 2-isometric and T» is a bounded linear operator (see the
proof of Theorem [3.14]). For any bounded open disk D in C containing o(7),
define the map V : M @& M+ — H(D) by

Vh=1&h (=1&@h+ (T — 2)WS(D, M) & W8(D, ML)

where
H(D) :=W8D, M) @ W8(D, M) /(T — 2)W8(D, M) © W8(D, ML)
and 1®h denotes the constant function sending any z € D to h € M@ M*,

CrLAM. V is one-to-one and has closed range.

Let f, = fu1 ® fa2 € WE(D, M) @ W8(D, M*) and hy, = hy1 ® hno €
M & M~ be sequences such that

(4.4) nlgrolo (T —2)fn+1® hnH@fwa =0.
This implies that

(4.5) Jim [[(T1 = 2)fag + Tofaz +1@ haallws =0,
5
lim ||zfn2 —1® hyallws = 0.

n—o0

By the definition of the norm for the Sobolev space, (4.5)) implies that
lim ||(Ty — 2)0" fa,1 + 120" fa2ll2,0 =0,
n—oo

(4.6) M
lim |20 fn2/|2,0 = 0,
n—oo
for i = 1,...,8. Since the zero operator is hyponormal, it follows from [26]
that
(4.7) lim ||(I — P)d"fualop =0 fori=1,...,6,
n—oQ

where P denotes the orthogonal projection of L?(D,H) onto A%(D,H).
Hence we deduce from (|4.6]) that

lim ||zPd' f, 2
n—oo

op=0 fori=1,...,6.
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Since the zero operator has the property (), we have
(4.8) lim ||PO fnallo.p, =0 fori=1,...,6,
n—oo
where o(T') € Dy € D. Combining (4.7) and (4.8), we have
lim [0 fn2
n—oo
Thus (4.6) ensures that
lim ||(Ty — 2)0' fu1ll2p, =0 fori=1,...,6.
n—oo

20, =0 fori=1,...,6.

Since T is 2-isometric, it is subscalar of order 4 by Lemma [4.5] Then an
application of some results of [13] yields

lim (|0 fo1ll2p, =0 fori=1,2,
n—oo

which gives

lim 120 fuill2.p, =0 fori=1,2.
By [26], we get
(4.9) Jim [|(I = P) fnll2,0, = 0.

Therefore , , and imply that

lim ||(T — 2)Pfn + 1®hy|l2.p, =0

n—o0
where Pf,, := Pf,1 ® Pfn2. Let I' be a closed curve in Dy surrounding
o(T). Then lim, o0 || Pfn(2) + (T — 2)~thy|| = 0 uniformly on I'. Applying
the Riesz—Dunford functional calculus, we obtain

lim =0.
n—oo

1
— \ Pfn(2)d hy,
271'1'1& fu(z) dz +

But 5§, Pfu(z) dz = 0 by Cauchy’s theorem and hence limy, o || || = 0,
which completes the proof of our claim.

Now the class of a vector f or an operator S on H(D) will be de-
noted by f, respectively S. Let M be the operator of multiplication by z
on W8(D,H). As noted in Section 2, M is a scalar operator of order 8
and has a spectral distribution @,;. Since the range of T' — z is invariant
under M, M can be well-defined. Moreover, consider the spectral distribu-
tion @y : C§(C) — W8(D, M) @ W8(D, M) given by &p(¢)f = @f for
¢ € C§(C) and f € W8(D, M) ® W8(D, M=). Then the spectral distribu-

tion @y of M _commutes with T' — 2, and so M is still a scalar operator of
order 8 with @,; as a spectral distribution. Since

VIh=1@Th=>@h=M1®h)=MVh

for all h € M ® M*, we have VT = MV.In particular, ran(V') is invariant
for M. Furthermore, ran(V) is closed by the above claim. So ran(V) is
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an invariant_subspace of the scalar operator M. Since T is similar to the
restriction M ]ran(v), we conclude that T is subscalar of order 8. m

Recall that an operator X € L(H, K) is called a quasiaffinity if it has triv-
ial kernel and dense range. An operator S € £(H) is said to be a quasiaffine
transform of an operator T' € L(K) if there is a quasiaffinity X € L(H, K)
such that XS = TX. Furthermore, operators S € L(H) and T € L(K) are
quasisimilar if there are quasiaffinities X € L(H,K) and Y € L(K,H) such
that XS =TX and SY =YT.

For an operator T' € L(H), we define a spectral mazimal space of T to
be a T-invariant subspace M of H with the property that M contains any
T-invariant subspace N of H such that o(T'|x) C o(T|m).-

COROLLARY 4.7. If T € L(H) is (T*T,2)-isometric, then the following
statements hold:

(i) If T € L(H) is (T*T,2)-isometric, then it has a nontrivial invariant
subspace.

(ii) T has the property (), Dunford’s property (C), and the single-
valued extension property.

(i) Hr(F) is a spectral mazimal subspace of T and o(T|g.(r)) C
o(T)NF for any closed set F in C.

(iv) If S € L(H) is an (S*S,2)-isometric operator that is quasisimilar
to T, then o(S) = o(T) and 0.(S) = o.(T).

Proof. (i) By the proof of Theorem 4.6 we put

T= (1(;1 j;) on H = ran(T) @ ker(T™)

where T = T|——7= is 2-isometric and T3 is a bounded linear operator.
ran(T")

From [2], either o(T}y) C dD or o(T1) = D. If o(T1) C 9D, then T is unitary
by [2]. Thus T} has a nontrivial invariant subspace, and so is T clearly. If
o(Ty) = D, then we get from [I7] that o(T) = o(T1) U {0} = D. Then
o(T) has nonempty interior. Since T is subscalar by Theorem it has a
nontrivial invariant subspace from [12].

(ii) From section one, it suffices to prove that 7" has the property (53).
Since the property () is transmitted from an operator to its restrictions to
closed invariant subspaces, we are reduced by Theorem to the case of a
scalar operator. Since every scalar operator has the property (3) (see [20]),
T has the property (3).

(iii) Since T" has Dunford’s property (C) by (ii), the assertion follows
from [10].

(iv) The proof follows from (ii) and [27]. =
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