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Multilinear Calderón–Zygmund operators on
weighted Hardy spaces
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Abstract. Grafakos–Kalton [Collect. Math. 52 (2001)] discussed the boundedness of
multilinear Calderón–Zygmund operators on the product of Hardy spaces. Then Lerner et
al. [Adv. Math. 220 (2009)] defined A~p weights and built a theory of weights adapted to
multilinear Calderón–Zygmund operators. In this paper, we combine the above results and
obtain some estimates for multilinear Calderón–Zygmund operators on weighted Hardy
spaces and also obtain a weighted multilinear version of an inequality for multilinear
fractional integrals, which is related to the classical Trudinger inequality.

1. Introduction. Multilinear Calderón–Zygmund theory is a natural
generalization of the linear case. In recent years, many authors have been
interested in these topics ([5], [6], [4], [20], [15], [13], [21], [3] and [23]). Mul-
tilinear singular integral operators have recently attracted more and more
attention. The class of multilinear singular integral operators with standard
Calderón–Zygmund kernels provides the starting point of the theory. So we
first recall the definition of multilinear Calderón–Zygmund operators.

Definition 1 ([6]). Let T be a multilinear operator initially defined on
the m-fold product of the Schwartz space and taking values in the space of
tempered distributions,

T : S (Rn)× · · · ×S (Rn)→ S ′(Rn).

We say that T is an m-linear Calderón–Zygmund operator if for some 1 ≤
qj <∞, it extends to a bounded multilinear operator from Lq1 × · · · × Lqm
to Lq, where 1/q = 1/q1 + · · ·+ 1/qm, and there exists a function K, defined
off the diagonal x = y1 = · · · = ym in (Rn)m+1, satisfying

T (f1, . . . , fm)(x) =
�

(Rn)m

K(x, y1, . . . , ym)f1(y1) · · · fm(ym) dy1 · · · dym
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for all x 6∈
⋂m
j=1 supp fj ;

|K(y0, y1, . . . , ym)| ≤ A

(
∑m

k,l=0 |yk − yl|)mn
;(1.1)

|K(y0, . . . , yj , . . . , ym)−K(y0, . . . , y
′
j , . . . , ym)| ≤

A|yj − y′j |ε

(
∑m

k,l=0 |yk − yl|)mn+ε
,

(1.2)

for some ε > 0 and all 0 ≤ j ≤ m, whenever |yj−y′j | ≤ 1
2 max0≤k≤m |yj−yk|.

As in the linear theory, a certain amount of extra smoothness is required
for these operators to have such boundedness properties. We will assume
that K(y0, y1, . . . , ym) satisfies the following estimates:

(1.3) |∂α0
y0 · · · ∂

αm
ym K(y0, y1, . . . , ym)| ≤ Aα

(
∑m

k,l=0 |yk − yl|)mn+|α|

for all |α| ≤ N , where α = (α0, . . . , αm) is an ordered set of n-tuples of
nonnegative integers, |α| = |α0|+ · · ·+ |αm|, where |αj | is the order of each
multiindex αj , and N is a large integer to be determined later.

The initial work on these operators was done in [5], [6] by Coifman and
Meyer in the 70’s. Later on, the topic was taken up by several authors, in-
cluding Christ and Journé [4], Kenig and Stein [20], and Grafakos and Torres
[15]. This last work studied multilinear Calderón–Zygmund theory, includ-
ing the unweighted estimates of multilinear Calderón–Zygmund operators
in the weak and strong sense. Weighted settings were studied systematically
in [16]; it was shown that if T is an m-linear Calderón–Zygmund operator,
1/p1 + · · · + 1/pm = 1/p and p0 = min{pj} > 1, then T is bounded from
Lp1ω × · · · × Lpmω into Lpω, provided that the weight ω is in the class Ap0 .

In 2001, Grafakos and Kalton [13] proved the boundedness of multilinear
Calderón–Zygmund operators on products of Hardy spaces. They gave the
following result:

Theorem A ([13]). Let 1 < q1, . . . , qm, q <∞ be fixed indices satisfying
1
q1

+ · · ·+ 1
qm

=
1
q

and let 0 < p1, . . . , pm, p ≤ 1 be real numbers satisfying
1
p1

+ · · ·+ 1
pm

=
1
p
.

Suppose that K satisfies (1.3) with N = [n(1/p− 1)]. Let T be related to K
and assume that T admits an extension that maps Lq1 × · · · × Lqm into Lq

with norm B. Then T extends to a bounded operator from Hp1 × · · · ×Hpm

into Lp.
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Recently, the theory of weighted multilinear Calderón–Zygmund singular
integral operators was established in [21] by Lerner et al. New more refined
multiple maximal function

M(~f )(x) = sup
Q3x

m∏
i=1

1
|Q|

�

Q

|fi(yi)| dyi

was defined and used in [21] to characterize the class of A~p weights and to
obtain some weighted estimates for multilinear Calderón–Zygmund singular
integral operators. So let us recall the definition of A~p weights.

For exponents p1, . . . , pm, we will often write p for the number given by
1/p = 1/p1 + · · ·+ 1/pm, and ~p for the vector ~p = (p1, . . . , pm).

Definition 2 ([21]). Let 1≤p1, . . . , pm<∞. Given ~ω=(ω1, . . . , ωm), set

ν~ω =
m∏
j=1

ω
p/pj
j .

We say that ~ω satisfies the A~p condition if

(1.4) sup
Q

(
1
|Q|

�

Q

m∏
i=1

ω
p/pi
i

)1/p m∏
i=1

(
1
|Q|

�

Q

ω
1−p′i
i

)1/p′i
<∞.

When pi = 1, (|Q|−1
	
Q ω

1−p′i
i )1/p

′
i is understood as (infQ ωi)−1.

In particular, when m = 1, we note that A~p degenerates to the classical
Ap weight. Moreover, if m = 1 and pi = 1, then this class of weights coincides
with the classical A1 weights. It is well-known that if ω ∈ Ap for 1 < p <∞,
then ω ∈ Ar for all r > p and ω ∈ Aq for some 1 < q < p. We thus use
qω := inf{q > 1 : ω ∈ Aq} to denote the critical index of ω. We will refer to
(1.4) as the multilinear A~p condition.

A result in [21] can be stated as follows.

Theorem B ([21]). Let T be an m-linear Calderón–Zygmund operator,
satisfying (1.1), (1.2), 1/p = 1/p1 + · · · + 1/pm, let 1 < pi < ∞ and let ~ω
satisfy the A~p condition. Then

(1.5) ‖T (~f )‖Lpν~ω ≤ C
m∏
i=1

‖fi‖Lpiωi .

Weighted estimates for a class of multilinear fractional type operators
were proved in [3] and [23]. These results together with [21] answered an
open problem in [17], concerning the existence of multiple weights for which
weighted estimates like (1.5) hold.

On the other hand, in 1989, Strömberg and Torchinsky in [25] defined
weighted Hardy spaces and obtained the boundedness of Calderón–Zygmund
operators on them.
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We will use Garćıa-Cuerva’s atomic decomposition theory [9] for weighted
Hardy spaces.

Definition 3. Assume that ω ∈ Aq with critical index qω. Let [ · ] be the
greatest integer function. For s ∈ Z satisfying s ≥ [n(qω/p−1)], a real-valued
function a(x) is called a (p, q, s)-atom centered at x0 with respect to ω (or
an ω-(p, q, s)-atom centered at x0) if

(a) a ∈ Lqω(Rn) and is supported in a cube Q centered at x0;
(b) ‖a‖Lqω ≤ ω(Q)1/q−1/p;
(c)

	
Rn a(x)xα dx = 0 for every multi-index α with |α| ≤ s.

When q =∞, L∞ω will be taken to mean L∞ and ‖f‖L∞ω = ‖f‖∞.

Theorem C ([9]). Let w ∈ Aq, 0 < p ≤ 1 ≤ q ≤ ∞, and p 6= q. For each
f ∈ Hp

ω(Rn), there exist a sequence ai of ω-(p, q, [n(qw/p− 1)])-atoms, and
a sequence λi of real numbers with

∑
|λi|p ≤ C‖f‖pHp

ω
such that f =

∑
λiai

both in the sense of distributions and in the Hp
ω norm.

In view of Theorems A and B, it is natural to look for weighted results
on multilinear singular integral operators acting on weighted Hardy spaces.
The first aim of this paper is to give such results. Our first result is as
follows:

Theorem 1.1. Let 1 < q1, . . . , qm, q < ∞ and 0 < p1, . . . , pm, p ≤ 1
satisfy

1
q1

+ · · ·+ 1
qm

=
1
q

and
1
p1

+ · · ·+ 1
pm

=
1
p
.

Let T be an m-linear Calderón–Zygmund operator such that K satisfies
(1.1)–(1.3) with N = max1≤i≤m{[n((qi)ω/pi − 1)], [(qi/pi − 1)mn]}.

(i) If ω ∈ Aq1 ∩ · · · ∩Aqm, then

(1.6) ‖T (~f )‖Lpω ≤ C
m∏
i=1

‖fi‖Hpi
ω
.

(ii) If ωi ∈ A1 for each i, then

(1.7) ‖T (~f )‖Lpν~ω ≤ C
m∏
i=1

‖fi‖Hpi
ωi
.

In order to state other results, let us first give some notations and defini-
tions. Denote by ~f the m-tuple (f1, . . . , fm) and by Iα the m-linear fractional
integral operator, and by M(~f ) the m-sublinear maximal function, defined
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as follows:

Iα(~f )(x) =
�
f1(x− θ1y) · · · fm(x− θmy)|y|α−n dy,

M(~f )(x) = sup
N>0

(ΩnNn)−1
�
|f1(x− θ1y)| · · · |f1(x− θmy)| dy,

where θk, k = 1, . . . ,m, are fixed, distinct and nonzero real numbers. Note
that if m = 1, then the above operators coincide with the classical fractional
integrals and Hardy–Littlewood maximal function.

In 1992, Grafakos [11] proved the Lp1 × · · · × Lpk boundedness for the
above class of multilinear fractional integrals Iα. He also proved two multilin-
ear versions of inequalities for multilinear fractional integrals related to the
classical Trudinger inequality. We give a weighted version of an inequality
in [11]:

Theorem 1.2. Let 0 < α < n and s = n/α be the harmonic mean of
p1, . . . , pm > 1. Let B be a ball of radius R in Rn, let fk ∈ Lpkωk(Rn) be
supported in B, and for any x ∈ B, let ν̃~ω =

∏m
k=1 ω

s/pk
k , ν̃~ω(x) ≥ 1, and

ωk ∈ As. Then for any γ < 1, there exists a constant C0(γ) depending only
on n, α, the θk’s and γ, such that

(1.8)
�

B

exp
(

n

ωn−1
γ

(
LIα(f1, . . . , fm)
‖f1‖Lp1ω1

· · · ‖fm‖Lpmωm

) n
n−α

ν̃~ω

)
dx

≤ C0(γ)
m∏
k=1

ωk(B)s/pk ,

where L =
∏
k |θk|n/pk .

Remark. We note that if ωk(x) = 1, then our result is the same as
Theorem 3 in [11]. We give an example of ν̃~ω: Let ωk(x) = (1 + |x|)αk ,
αk ≥ 0 (for each k); then ν̃~ω satisfies the conditions of Theorem 1.2.

Assume m = 1, ωk = 1. Trudinger [26] proved exponential integrability
of Iα(~f ) for α = 1, and Strichartz [24] for other α. In 1972, Hedberg [18]
gave a simpler proof for all α. In 1970, Hempel et al. [19] showed that if
γ > 1, then (1.8) cannot hold for α = 1, and later Adams [1] got the same
conclusion for all α; in the endpoint case γ = 1, (1.8) cannot hold either. In
1985, Chang and Marshall [2] proved a similar sharp exponential inequality
concerning the Dirichlet integral. For m ≥ 2, wk = 1, the result was obtained
by Grafakos [11] as already mentioned above.

2. Proof of Theorem 1.1. We need the following lemma:

Lemma 2.1. Let 0 < p ≤ 1. Then there is a constant C = C(p) such
that for all finite collections {Qk}mk=1 of cubes in Rn and all nonnegative
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functions gk ∈ Lω with supp gk ⊂ Qk we have

(2.1)
∥∥∥ m∑
k=1

gk

∥∥∥
Lpω
≤ C

∥∥∥∥ m∑
k=1

1
ω(Qk)

�

Qk

gk(x)ω(x) dxχQ̃k

∥∥∥∥
Lpω

.

where Q̃k denotes the cube with the same center and 2
√
n times the side

length of Qk, i.e. l(Q̃k) = 2
√
n l(Qk).

The proof of this lemma can be easily obtained by replacing Lp norm by
Lpω norm and (1/|Qk|)

	
Qk
gk(x) dx by (1/ω(Qk))

	
Qk
gk(x)ω dx in [13].

We will use the following facts:
(a) Let q ≥ 1 and ω ∈ Aq. Suppose a is an ω-(p,∞, s)-atom. Then

by the definition, a is supported in a cube Q, ‖a‖∞ ≤ ω(Q)−1/p, and	
Rn a(y)yα dy = 0 for any multi-index α with |α| ≤ s. From ‖a‖∞ ≤
ω(Q)−1/p we get

‖a‖Lqω ≤
( �
Q

|a(y)|qω(y) dy
)1/q

≤ ‖a‖∞ω(Q)1/q ≤ ω(Q)1/q−1/p,

which means that a is an ω-(p, q, s)-atom.
(b) From [10], we know that if ω ∈ Ap, p ≥ 1, then for any cube Q and

λ > 1,
ω(λQ) ≤ Cλnpω(Q),

where C does not depend on Q nor on λ.
Now, we begin to prove Theorem 1.1. First, we consider case (i). Observe

that if each ωi is in Api , then
m∏
i=1

Api ⊂ A~p,

so ω × · · · × ω ∈ A~q.
We use the atomic decomposition of Hp

ω spaces. Since T is bounded from
L2m×· · ·×L2m into L2, and since finite sums of atoms are dense in Hp

ω, we
will work with such sums and obtain estimates independent of the number
of terms in each sum.

We can assume each fi, 1 ≤ i ≤ m, is a finite sum of Hpi
ω -atoms, fi =∑

k λi,kai,k, where ai,k are (pi,∞, s)-atoms, which means they are supported
in cubes Qi,k and |ai,k| ≤ ω(Qi,k)−1/pi . However, by the above fact (a),

‖ai,k‖Lqiω ≤ ω(Qi,k)1/qi−1/pi ,(2.2) �

Qi,k

ai,k(x)xα dx = 0, |α| ≤ s, s ≥ [n((qi)ω/pi − 1)].(2.3)
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Denote by ci,k and l(Qi,k) the center and the side length of Qi,k, and let
Q̃i,k = 8

√
nQi,k. Employing multilinearity we write

T (~f )(x) = T (f1, . . . , fm)(x)(2.4)

=
∑
k1

· · ·
∑
km

λ1,k1 · · ·λm,kmT (a1,k1 , . . . , am,km)(x).

For x ∈ Rn and fixed k1, . . . , km, we estimate

|T (~f )(x)| ≤ I1(x) + I2(x),

where

I1(x) =
∑
k1

· · ·
∑
km

|λ1,k1 | · · · |λm,km | |T (a1,k1 , . . . , am,km)(x)|χ
Q̃1,k1

∩···∩Q̃m,km
,

I2(x) =
∑
k1

· · ·
∑
km

|λ1,k1 | · · · |λm,km | |T (a1,k1 , . . . , am,km)(x)|χQ̃c1,k1∪···∪Q̃cm,km
.

First, let us discuss I1(x). For fixed k1, . . . , km, assume that Q̃1,k1 ∩ · · · ∩
Q̃m,km 6= ∅, since otherwise there is nothing to prove.

Suppose that Qi∗,ki∗ , i
∗ ∈ {1, . . . ,m}, has the smallest size among all

these cubes. We take a cube Gk1,...,km such that

Q̃1,k1 ∩ · · · ∩ Q̃m,km ⊂ Gk1,...,km ⊂ G̃k1,...,km ⊂
˜̃Q1,k1 ∩ · · · ∩

˜̃Qm,km
and

ω(Gk1,...,km) ≥ Cω(Qi∗,ki∗ ).

Here G̃k1,...,km denotes the cube with the same center and 8
√
n times the

side length of the cube Gk1,...,km .
By Hölder’s inequality, Theorem B, and (2.2), we have

(∗) 1
ω(Gk1,...,km)

�

Gk1,...,km

|T (a1,k1 , . . . , am,km)(x)|ω(x) dx

≤ 1
ω(Gk1,...,km)

ω(Gk1,...,km)1/q
′‖T (a1,k1 , . . . , am,km)(x)‖Lqω

≤ Cω(Gk1,...,km)−1/q
m∏
i=1

‖ai,ki‖Lqiω

≤ Cω(Gk1,...,km)−1/q
m∏
i=1

ω(Qi,ki)
1/qi−1/pi

≤ C
m∏
i=1

ω(Gk1,...,km)−1/qi

m∏
i=1

ω(Qi∗,ki∗ )
1/qi−1/pi = C

m∏
i=1

ω(Qi∗,ki∗ )
−1/pi .
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Using Lemma 2.1, we have

‖I1‖Lpω ≤ C
∥∥∥∑
k1

· · ·
∑
km

|λ1,k1 | · · · |λm,km |
m∏
i=1

ω(Qi∗,ki∗ )
−1/piχG̃k1,...,km

∥∥∥
Lpω

≤ C
∥∥∥ m∏
i=1

(∑
ki

|λi,ki |ω(Qi∗,ki∗ )
−1/piχG̃k1,...,km

)∥∥∥
Lpω

≤ C
∥∥∥ m∏
i=1

(∑
ki

|λi,ki |ω(Qi∗,ki∗ )
−1/piω(x)1/piχG̃k1,...,km

)∥∥∥
Lp

≤ C
m∏
i=1

∥∥∥(∑
ki

|λi,ki |ω(Qi∗,ki∗ )
−1/piω(x)1/piχG̃k1,...,km

)∥∥∥
Lpi

≤ C
m∏
i=1

(∑
ki

|λi,ki |
piω(Qi∗,ki∗ )

−1ω( ˜̃Qi∗,ki∗ )
)1/pi

= C

m∏
i=1

(∑
ki

|λi,ki |
pi
)1/pi

.

Secondly, we estimate I2(x). Let A be a nonempty subset of {1, . . . ,m},
of cardinality |A|, so 1 ≤ |A| ≤ m. Let Ac = {1, . . . ,m} \ A. If A =
{1, . . . ,m}, we define(⋂

i∈A
Q̃ci,ki

)
∩
( ⋂
i∈Ac

Q̃i,ki

)
=
⋂
i∈A

Q̃ci,ki .

Then

Q̃c1,k1 ∪ · · · ∪ Q̃
c
m,km =

⋃
A⊂{1,...,m}

((⋂
i∈A

Q̃ci,ki

)
∩
( ⋂
i∈Ac

Q̃i,ki

))
.

We set
EA =

(⋂
i∈A

Q̃ci,ki

)
∩
( ⋂
i∈Ac

Q̃i,ki

)
.

For fixed A, we assume that the side length of the cube Qi∗,ki∗ , i
∗ ∈

A, is the smallest among the side lengths of the cubes Qi,ki , i ∈ A. Let
PNci∗,ki∗

(x, y1, . . . , ym) be theNth order Taylor polynomial ofK(x, y1, . . . , ym)
with respect to the variable yi∗ at the point ci∗,ki∗ .

Since ai∗,ki∗ has zero vanishing moments up to N , by (1.3) we get

|T (a1,k1 , . . . , am,km)(x)| =
∣∣∣ �

(Rn)m−1

m∏
i=1, i 6=i∗

ai,ki(yi)
�

Rn
ai∗,ki∗ (yi∗)

× (K(x, y1, . . . , ym)− PNci∗,ki∗ (x, y1, . . . , ym)) d~y
∣∣∣
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≤ C
�

(Rn)m−1

m∏
i=1,i 6=i∗

|ai,ki(yi)|
�

Rn
|ai∗,ki∗ (yi∗)| |yi∗ − ci∗,ki∗ |

N+1

×
(
|x− ξ|+

m∑
j=1, j 6=i∗

|x− yj |
)−mn−N−1

d~y,

where ξ is between yi∗ and ci∗,ki∗ .
For x ∈ (

⋂
i∈A Q̃

c
i,ki

) ∩ (
⋂
i∈Ac Q̃i,ki),

|x− ξ| ≥ |x− ci∗,ki∗ | − |ξ − ci∗,ki∗ | ≥
1
2
|x− ci∗,ki∗ |

since x 6∈ Q̃i∗,ki∗ .
Similarly, |x− yi| ≥ 1

2 |x− ci,ki | for yi ∈ Qi,ki , i ∈ A \ {i∗}.
Note the following two facts:

(c) If a is an ω-(p,∞, s)-atom supported on a cube Q, and M > n, then
for any positive number b and c ∈ Rn,

�

Rn

|a(y)|
(b+ |y − c|)M

dy ≤ bnω(Q)−1/p
�

Rn

1
(1 + |y|)M

dy.

(d) By the definition, for ω ∈ Ap we have( �
Q

ω(y)1−p
′
dy
)p−1

≤ C|Q|p
( �
Q

ω(y) dy
)−1

.

Using Hölder’s inequality, (2.2) and (c)–(d) we obtain

|T (a1,k1 , . . . , am,km)(x)|

≤ C
∏
i∈A

(
‖ai,ki‖Lqiω

( �

Qi,ki

ω−q
′
i/qi
)1/q′i

)
|Qi∗,ki∗ |

(N+1)/n

×
(

1
2

∑
i∈A
|x− ci,ki |

)−mn−N−1+n(m−|A|) ∏
i∈Ac

ω(Qi,ki)
−1/pi

≤ C
∏
i∈A

(
ω(Qi,ki)

1/qi−1/pi
( �

Qi,ki

ω1−q′i
)(qi−1)/qi)

|Qi∗,ki∗ |
(N+1)/n

×
(∑
i∈A
|x− ci,ki |

)−mn−N−1+n(m−|A|) ∏
i∈Ac

ω(Qi,ki)
−1/pi

≤ C
∏
i∈A

(ω(Qi,ki)
1/qi−1/pi |Qi,ki |ω(Qi,ki)

−1/qi)|Qi∗,ki∗ |
(N+1)/n

×
(∑
i∈A
|x− ci,ki |

)−mn−N−1+n(m−|A|) ∏
i∈Ac

ω(Qi,ki)
−1/pi
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≤ C
∏
i∈A

(ω(Qi,ki)
−1/pi |Qi,ki |)|Qi∗,ki∗ |

(N+1)/n

×
(∑
i∈A
|x− ci,ki |

)−mn−N−1+n(m−|A|) ∏
i∈Ac

ω(Qi,ki)
−1/pi .

Since Qi∗,ki∗ is the smallest cube among {Qi,ki}i∈A, and x ∈
⋂
i∈Ac Qi,ki , we

get

|T (a1,k1 , . . . , am,km)(x)|

≤ C
∏
i∈A

ω(Qi,ki)
−1/pi |Qi,ki | |Qi,ki |

N+1
n|A|

(|x− ci,ki |+ l(Qi,ki))
n+N+1

|A|

∏
i∈Ac

ω(Qi,ki)
−1/pi

≤ C
m∏
i=1

ω(Qi,ki)
−1/pi |Qi,ki | |Qi,ki |

N+1
n|A|

(|x− ci,ki |+ l(Qi,ki))
n+N+1

|A|
.

Hence, by Minkowski’s inequality and Hölder’s inequality, we deduce that

‖I2‖Lpω ≤ C
∥∥∥∥∑

k1

· · ·
∑
km

|λ1,k1 | · · · |λm,km |

×
∑

A⊂{1,...,m}

m∏
i=1

ω(Qi,ki)
−1/pi |Qi,ki | |Qi,ki |

N+1
n|A|

(|x− ci,ki |+ l(Qi,ki))
n+N+1

|A|
χEA

∥∥∥∥
Lpω

≤ C
∑

A⊂{1,...,m}

∥∥∥∥ m∏
i=1

(∑
ki

|λi,ki |
ω(Qi,ki)

−1/pi |Qi,ki | |Qi,ki |
N+1
n|A|

(|x− ci,ki |+ l(Qi,ki))
n+N+1

|A|

)
χEA

∥∥∥∥
Lpω

≤ C
∑

A⊂{1,...,m}

m∏
i=1

∥∥∥∥∑
ki

|λi,ki |
ω(Qi,ki)

−1/pi |Qi,ki | |Qi,ki |
N+1
n|A|

(|x− ci,ki |+ l(Qi,ki))
n+N+1

|A|
ω(x)1/piχEA

∥∥∥∥
Lpi

≤ C
m∏
i=1

(∑
ki

|λi,ki |
pi

∥∥∥∥ω(Qi,ki)
−1/pi |Qi,ki | |Qi,ki |

N+1
n|A|

(|x− ci,ki |+ l(Qi,ki))
n+N+1

|A|
ω(x)1/piχEA

∥∥∥∥pi
Lpi

)1/pi

,

where we used the pi-subadditivity of the Lpi quasi-norm. So we only have
to estimate

Ji :=
�

Rn

ω(Qi,ki)
−1|Qi,ki |pi |Qi,ki |

N+1
n|A| pi

(|x− ci,ki |+ l(Qi,ki))
npi+

N+1
|A| pi

χEA(x)ω(x) dx.

If i ∈ A, then

Ji ≤ C
∞∑
j=1

�

2jQ̃i,ki\2
j−1Q̃i,ki

ω(Qi,ki)
−1|Qi,ki |pi |Qi,ki |

N+1
n|A| pi

(|x− ci,ki |+ l(Qi,ki))
npi+

N+1
|A| pi

ω(x) dx
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≤ Cω(Qi,ki)
−1|Qi,ki |

pi |Qi,ki |
N+1
n|A| pi

∞∑
j=1

ω(2jQ̃i,ki)

(2j−1|Q̃i,ki |1/n)npi+
N+1
|A| pi

≤ Cω(Qi,ki)
−1|Qi,ki |

pi |Qi,ki |
N+1
n|A| pi

∞∑
j=1

2jnqiω(Q̃i,ki)

2(j−1)(npi+
N+1
|A| pi)|Q̃i,ki |

pi+
N+1
n|A| pi

≤ C.
To show the last inequality, we used N > mn(qi/pi − 1)− 1. If i ∈ Ac, then

Ji ≤ C
�

Q̃i,ki

ω(Qi,ki)
−1|Qi,ki |pi |Qi,ki |

N+1
n|A| pi

(|x− ci,ki |+ l(Qi,ki))
npi+

N+1
|A| pi

ω(x) dx

≤ Cω(Qi,ki)
−1|Qi,ki |

pi |Qi,ki |
N+1
n|A| pi

ω(Q̃i,ki)

(|Qi,ki |1/n)npi+
N+1
|A| pi

≤ C.

Thus we have

‖I2‖Lpω ≤ C
m∏
i=1

(∑
ki

|λi,ki |
pi
)1/pi

.

In conclusion, summing the estimates for I1 and I2, and taking the limit,
we obtain

‖T (~f )‖Lpν~ω ≤ C
m∏
i=1

‖fi‖Hpi
ωi
.

This completes the proof of Theorem 1.1(i).
For (ii), the procedure is similar; we only show the differences.
For I1(x), we take a cube Gk1,...,km such that ωi(Gk1,...,km) ≥ Cωi(Qi∗,ki∗ )

for each i. Thus
1

ν~ω(Gk1,...,km)

�

Gk1,...,km

|T (a1,k1 , . . . , am,km)(x)|ν~ω(x) dx

≤ Cν~ω(Gk1,...,km)−1/q
m∏
i=1

‖ai,ki‖Lqiωi

≤ C
( m∏
i=1

|Gk1,...,km |1/qi ess inf
x∈Gk1,...,km

ωi(x)1/qi
)−1

m∏
i=1

ω(Qi∗,ki∗ )
1/qi−1/pi

≤ C
( m∏
i=1

ωi(Gk1,...,km)1/qi
)−1

m∏
i=1

ω(Qi∗,ki∗ )
1/qi−1/pi ≤ C

m∏
i=1

ω(Qi∗,ki∗ )
−1/pi .

Hence, by Lemma 2.1,

‖I1‖Lpν~ω ≤ C
∥∥∥∑
k1

· · ·
∑
km

|λ1,k1 | · · · |λm,km |
m∏
i=1

ωi(Qi∗,ki∗ )
−1/piχG̃k1,...,km

∥∥∥
Lpν~ω
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≤ C
m∏
i=1

∥∥∥(∑
ki

|λi,ki |ωi(Qi∗,ki∗ )
−1/piωi(x)1/piχG̃k1,...,km

)∥∥∥
Lpi

≤ C
m∏
i=1

(∑
ki

|λi,ki |
pi
)1/pi

.

For I2(x),

|T (a1,k1 , . . . , am,km)(x)| ≤ C
m∏
i=1

ωi(Qi,ki)
−1/pi |Qi,ki | |Qi,ki |

N+1
n|A|

(|x− ci,ki |+ l(Qi,ki))
n+N+1

|A|

and so

‖I2‖Lpν~ω ≤ C
∥∥∥∥∑

k1

· · ·
∑
km

|λ1,k1 | · · · |λm,km |

×
∑

A⊂{1,...,m}

m∏
i=1

ωi(Qi,ki)
−1/pi |Qi,ki | |Qi,ki |

N+1
n|A|

(|x− ci,ki |+ l(Qi,ki))
n+N+1

|A|
χEA

∥∥∥∥
Lpωi

≤ C
m∏
i=1

(∑
ki

|λi,ki |
pi
)1/pi

.

This completes the proof of case (ii).

Remark. It is worth noting that our assumptions in Theorem 1.1 are
in a sense natural ones. In fact, if we want to show the estimate

‖T (~f )‖Lpν~ω ≤ C
m∏
i=1

‖fi‖Hpi
ωi

using the same procedure as in the proof of Theorem 1.1, then we have to
replace ω with ν~ω in (∗), and get

1
ν~ω(Gk1,...,km)

�

Gk1,...,km

|T (a1,k1 , . . . , am,km)(x)|ν~ω(x) dx

≤ Cν~ω(Gk1,...,km)−1/q
m∏
i=1

‖ai,ki‖Lqiωi .

So, we must require

ν~ω(Gk1,...,km)−1/q ≤ C0

m∏
i=1

ωi(Gk1,...,km)−1/qi .

However, by using Hölder’s inequality, we know
m∏
i=1

ωi(Gk1,...,km)−1/qi ≤ ν~ω(Gk1,...,km)−1/q.
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So, if C0 = 1, we get
m∏
i=1

ωi(Gk1,...,km)−1/qi = ν~ω(Gk1,...,km)−1/q,

and hence we obtain c1ω1 = · · · = cmωm (see [12, p. 10]). For convenience,
we assumed c1 = · · · = cm = 1 in case (i) of Theorem 1.1. Another possibility
for the case C0 > 1 is the assumption in Theorem 1.1(ii).

3. Proof of Theorem 1.2. We follow the proof of Theorem 3 in [11].
We only need to prove Theorem 1.2 for R = R0 with a constant C ′0(γ),
since if we can do this, we obtain it for other values of R with constant
C ′0(γ)(R/R0)n.

Let R0 = 1/P , where P = 2 min |θk|−1. We assume that the radius of B
is R0. Without loss of generality, we assume that fk ≥ 0 and ‖fk‖Lpkwk = 1.

Now, fix x ∈ B. The following estimate is known from [11, p. 53]:

(3.1) Iα(~f )(x) ≤ CδαM(~f )(x) +
�

|y|≥δ

∏
fk(x− θky)|y|α−ndy.

Since all fk are supported in the ball B and x ∈ B, the integral in (3.1) is
over the set {y : δ ≤ |y| ≤ PR0 = 1}. For any x ∈ B with ν̃~ω(x) ≥ 1, we
deduce by Hölder’s inequality that

�

δ≤|y|≤1

m∏
k=1

fk(x− θky)|y|α−n dy

≤
( �

δ≤|y|≤1

∏
(fk(x− θky))s dy

)1/s( �

δ≤|y|≤1

(|y|α−n)s
′
dy
)1/s′

≤
( �

δ≤|y|≤1

m∏
k=1

(fk(x− θky))sν̃~ω(x− θky) dy
)1/s( �

δ≤|y|≤1

(|y|α−n)
n

n−α dy
)n−α

n

≤
m∏
k=1

( �

δ≤|y|≤1

(fk(x− θky))pkωk(x− θky) dy
)1/pk

( �

δ≤|y|≤1

|y|−n dy
)n−α

n

≤ L−1
m∏
k=1

‖fk‖Lpkωk

( �

δ≤|y|≤1

|y|−n dy
)n−α

n = L−1

(
ωn−1 ln

1
δ

)n−α
n

.

Thus we have

(3.2) Iα(~f )(x) ≤ CδαM(~f )(x) + L−1

(
ωn−1 ln

1
δ

)n−α
n

.
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Picking δ = 1, we get Iα(~f )(x) ≤ CM(~f )(x) for all x ∈ B. Hence

δ = ε(Iα(~f )(x)(CM(~f )(x))−1)1/α

will satisfy δ ≤ 1 for all ε ≤ 1. Thus using (3.2), we obtain

Iα(~f )(x) ≤ CδαM(~f )(x) + L−1

(
ωn−1

n
ln
(

(CM(f)(x))n/α

εnIα(f)(x)n/α

))n−α
n

.

Simple computation gives

(3.3)
ωn−1

n
γ(LIα(~f )(x))n/(n−α) ≤ ln

(CM(f)(x))n/α

εnIα(~f )(x)n/α
,

where γ = (1−εα)n/(n−α). We multiply both sides of (3.3) by ν̃~ω, exponenti-
ate and integrate over the set B1 = {x ∈ B : Iα(f)(x) ≥ 1}. Using ωk ∈ As
and denoting the Hardy–Littlewood maximal function by M̄ , we obtain
�

B1

exp
(ωn−1

n
γ(LIα(~f )(x))n/(n−α)ν̃~ω(x)

)
dx

≤ 1
εn

�

B1

(CM(~f )(x))n/α
∏m
k=1 ω

s/pk
k

Iα(~f )(x)n/α
dx ≤ C1

εn

�

B1

(M(~f )(x))s
∏

ωk(x)s/pk dx

≤ C1

εn

�

B1

m∏
k=1

(M̄(fpk/sk )(x))s
2/pk

∏
ωk(x)s/pk dx

≤ C1

εn

m∏
k=1

( �

B1

(M̄(fpk/sk )(x))sωk(x) dx
)s/pk

≤ C2

εn

m∏
k=1

(‖fpk/sk ‖Lsωk (B1))
s2/pk =

C2

εn

m∏
k=1

( �

B1

(fpk/sk (x))sωk(x) dx
)s/pk

=
C2

εn

m∏
k=1

( �

B1

fpkk (x)ωk(x) dx
)s/pk

=
C2

εn

m∏
k=1

‖fk‖sLpkωk
.

Using the same method over the set B2 = B \B1, we easily obtain

(3.4)
�

B2

exp
(
ωn−1

n
γ(LIα(~f )(x))n/(n−α)ν̃~ω(x)

)
dx

≤ en/ωn−1Ln/(n−α)
ν̃~ω(B2) ≤ C3

m∏
k=1

ωk(B2)s/pk = C4.

Combining the integrals over B1 and B2, we get the required inequality
(1.8) with a constant C ′0(γ) = max(C2, C4)(1 + (1 − γ(n−α)/n))−n/α, and
C0(γ) = C ′0

∏m
k=1 ωk(B2)−s/pk .
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[4] M. Christ and J.-L. Journé, Polynomial growth estimates for multilinear singular
integral operators, Acta Math. 159 (1987), 51–80.

[5] R. R. Coifman and Y. Meyer, On commutators of singular integrals and bilinear
singular integrals, Trans. Amer. Math. Soc. 212 (1975), 315–331.
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