Monotone extenders for bounded c-valued functions

by

KAORI YAMAZAKI (Takasaki)

Abstract. Let c be the Banach space consisting of all convergent sequences of reals with the sup-norm, $C_\infty(A,c)$ the set of all bounded continuous functions $f : A \to c$, and $C_A(X,c)$ the set of all functions $f : X \to c$ which are continuous at each point of $A \subset X$. We show that a Tikhonov subspace A of a topological space X is strong Choquet in X if there exists a monotone extender $u : C_\infty(A,c) \to C_A(X,c)$. This shows that the monotone extension property for bounded c-valued functions can fail in GO-spaces, which provides a negative answer to a question posed by I. Banakh, T. Banakh and K. Yamazaki.

In this paper, vector spaces mean real vector spaces. Let X and Y be topological spaces. Then $C(X,Y)$ stands for the set of all continuous functions $f : X \to Y$. If Y is a topological vector space, the set of all bounded continuous functions $f : X \to Y$ is denoted by $C_\infty(X,Y)$, where $f : X \to Y$ is bounded if $f(X)$ is a bounded subset of Y, that is, for each 0-neighborhood U of Y there exists $r \in \mathbb{R}$ such that $f(X) \subset rU$. For $A \subset X$, a map $u : C(A,Y) \to C(X,Y)$ is called an extender if $u(f)|A = f$ for each $f \in C(A,Y)$. For a topological vector space Y, an extender $u : C(A,Y) \to C(X,Y)$ is said to be a conv-extender (resp. conv-extender) if $u(f)(X)$ is a subset of the convex hull (resp. the closed convex hull) of $f(A)$ for each $f \in C(A,Y)$. For a topological space Y with a partial order structure \leq, an extender $u : C(A,Y) \to C(X,Y)$ (or $u : C_\infty(A,Y) \to C(X,Y)$) is said to be monotone if $u(f) \leq u(g)$ for each $f,g \in C(A,Y)$ (or $f,g \in C_\infty(A,Y)$) with $f \leq g$. A vector space Y with a partial order structure \leq is called an ordered vector space if the following axioms are satisfied:

$$(O)_1 x \leq y \text{ implies } x + z \leq y + z \text{ for all } x,y,z \in Y;$$

$$(O)_2 x \leq y \text{ implies } \lambda x \leq \lambda y \text{ for all } x,y \in Y \text{ and all } \lambda > 0.$$
closed. Note that, for an ordered topological vector space Y, each linear \textit{conv}-extender $u : C(A,Y) \to C(X,Y)$ is monotone. As usual, $C(X)$ and $C_\infty(X)$ stand for $C(X,\mathbb{R})$ and $C_\infty(X,\mathbb{R})$, respectively.

Dugundji’s extension theorem \cite{6} states that for a metric space X, a closed subset A of X and a locally convex topological vector space Y, there exists a linear \textit{conv}-extender $u : C(A,Y) \to C(X,Y)$; this is an improvement of an earlier result by K. Borsuk \cite{4} that for a closed separable subset of a metric space X, there exists a norm-one linear extender $u : C_\infty(A) \to C_\infty(X)$. Now it is known that Dugundji’s extension theorem holds in some classes of generalized metric spaces X (C. J. R. Borges \cite{3}, I. S. Stares \cite{11}), but does not hold for all GO-spaces X. Indeed, for the Michael line $\mathbb{R}_\mathbb{Q}$, R. W. Heath and D. J. Lutzer \cite{9} show that there exists no linear \textit{conv}-extender $u : C(\mathbb{Q}) \to C(\mathbb{R}_\mathbb{Q})$; E. K. van Douwen \cite{5} extends it by showing that there is no monotone extender $u : C(\mathbb{Q}) \to C(\mathbb{R}_\mathbb{Q})$ (see also I. S. Stares and J. E. Vaughan \cite{12}). For related results on Dugundji extenders and retracts in GO-spaces, see G. Gruenhage, Y. Hattori and H. Ohta \cite{8}.

On extenders for bounded functions, R. W. Heath and D. J. Lutzer \cite{9} establish that for a closed subset A of a GO-space X, there exists a linear \textit{conv}-extender $u : C_\infty(A) \to C_\infty(X)$; van Douwen’s result \cite{5} shows that “\textit{conv}-extender” in the above cannot be strengthened to “\textit{conv}-extender”. For normed-space-valued functions, I. Banakh, T. Banakh and K. Yamazaki \cite[Theorem 4.1]{1} prove that a normed space Y is reflexive if and only if for every closed subset A of a GO-space X, there exists a linear \textit{conv}-extender $u : C_\infty(A,Y) \to C_\infty(X,Y)$. From these viewpoints, a natural further question arises: let Y be a non-reflexive normed space which is an ordered topological vector space; does there exist, for every closed subset A of every GO-space X, a monotone extender $u : C_\infty(A,Y) \to C_\infty(X,Y)$? The answer is “yes” for $Y = l_1$ \cite[Theorem 9.1]{1}, “no” for $Y = c_0$ \cite[Corollary 6.3]{1}), and for $Y = c$ the following is asked in \cite[Question 6.4]{1}: \textit{Is there a monotone extender $u : C_\infty(\mathbb{Q},c) \to C(\mathbb{R}_\mathbb{Q},c)$?} In this paper, we give a negative answer to this question (Corollary 4). In fact, we show that any subset A which is not strong Choquet in X fails to possess such monotone extenders (Corollary 3).

Let us recall some terminology. The symbol c_0 (resp. c) stands for the Banach space consisting of all sequences of reals that converge to 0 (resp. of all convergent sequences of reals) with the sup-norm and a partial order structure \leq, where for $x = (x_n)_{n \in \omega}$ and $y = (y_n)_{n \in \omega} \in c_0$ (or c, $x \leq y$ if $x_n \leq y_n$ for each $n \in \omega$. Recall from \cite{10} and \cite{2} that a Hausdorff space X is a \textit{generalized ordered space} (= GO-space) if X has a linear order structure and has a base of the topology consisting of order-convex sets. The \textit{Michael line} $\mathbb{R}_\mathbb{Q}$ is the set \mathbb{R} endowed with the topology $\{ U \cup V : U \in \tau, V \subset \mathbb{R} \setminus \mathbb{Q} \}$, where
\(\tau \) is the usual topology of \(\mathbb{R} \) and \(\mathbb{Q} \) is the set of all rational numbers. (\[7\])

The Michael line \(\mathbb{R}_\omega \) is a typical example of a GO-space.

As in [1], the relative strong Choquet game \(G_r(A,X) \) is played by two players, I and II, for a subset \(A \) of a topological space \(X \). Player I starts the game selecting a point \(a_0 \in A \) and a neighborhood \(U_0 \) of \(a_0 \) in \(X \). Player II responds with a neighborhood \(V_0 \subset U_0 \) of \(a_0 \) in \(X \). At the next inning player I selects a point \(a_n \in V_{n-1} \cap A \) and a neighborhood \(U_n \subset V_{n-1} \) of \(a_n \) in \(X \), while player II responds with a neighborhood \(V_n \subset U_n \) of \(a_n \) in \(X \). Thus players construct a sequence \(\{a_n\}_{n \in \omega} \) of points of \(A \) and sequences \(\{U_n\}_{n \in \omega} \) and \(\{V_n\}_{n \in \omega} \) of open sets of \(X \) such that \(a_n \in V_n \subset U_n \subset V_{n-1} \) for all \(n \in \mathbb{N} \). Player I declares the winner in the game \(G_r(A,X) \) if \(\emptyset \neq \bigcap_{n \in \omega} U_n \subset X \setminus A \). Otherwise, player II wins. If player II has a winning strategy in the game \(G_r(A,X) \), then the set \(A \) is said to be strong Choquet in \(X \). Note that \(\mathbb{Q} \) is not strong Choquet in \(\mathbb{R}_\omega \) ([1 Corollary 3.7]). Another important example of a subset which is not strong Choquet in the whole space is given in [12] (see [1, Remark 3.8]).

Let \(Y \) be a topological space with a partial order structure. Then a continuous function \(\gamma : [0, \infty) \rightarrow Y \) is an \(\omega \)-increasing ray (resp. \(\omega \)-decreasing ray) if \(\gamma(n) \leq \gamma(t) \) (resp. \(\gamma(n) \geq \gamma(t) \)) for any integer \(n \in \omega \) and any real \(t \geq n \) ([1]). In order to improve [1 Theorem 6.1], we introduce key notions which are modifications of (almost) upper boundedness of \(\gamma(\omega) \) for an \(\omega \)-increasing ray \(\gamma \) appearing in [1]. For \(Y_0 \subset Y \), we say \(Y_0 \) has the \(\omega \)-decreasing intersection property in \(Y \) if for each increasing sequence \(\{y_n\}_{n \in \omega} \) in \(Y_0 \) and each decreasing sequence \(\{z_n\}_{n \in \omega} \) in \(Y_0 \) with \(y_n \leq z_n \) for each \(n \in \omega \), \(\bigcap_{n \in \omega} \{y \in Y : y_n \leq y \leq z_n\} \neq \emptyset \). We also say \(Y_0 \) has the almost \(\omega \)-decreasing intersection property in \(Y \) if for each \(\omega \)-increasing ray \(\gamma_1 : [0, \infty) \rightarrow Y_0 \), each \(\omega \)-decreasing ray \(\gamma_2 : [0, \infty) \rightarrow Y_0 \) with \(\gamma_1(r_1) \leq \gamma_2(r_2) \) for each \(r_1, r_2 \in [0, \infty) \), and each family \(\{G_{\alpha,n}^i\}_{n \in \omega} \) of \(G_\delta \)-sets of \(Y \) with \(\gamma_i(n) \in G_{\alpha,n}^i \), \(n \in \omega \), \(i = 1,2 \), it follows that \(\bigcap_{n \in \omega} \bigcup_{b_1 \in G_{\alpha,n}^1, b_2 \in G_{\alpha,n}^2} \{y \in Y : b_1 \leq y \leq b_2\} \neq \emptyset \).

For \(A \subset X \), \(C_A(X,Y) \) denotes the set of all functions \(f : X \rightarrow Y \) which are continuous at each point of \(A \).

Theorem 1. Let \(A \) be a Tikhonov subset of a topological space \(X \), \(Y \) a topological space with a partial order structure and \(Y_0 \subset Y \). If there exists a monotone extender \(u : C(A,Y_0) \rightarrow C_A(X,Y) \), then either \(A \) is strong Choquet in \(X \) or else \(Y_0 \) has the almost \(\omega \)-decreasing intersection property in \(Y \).

Proof. Let \(u : C(A,Y_0) \rightarrow C_A(X,Y) \) be a monotone extender. Assume \(Y_0 \) does not have the almost \(\omega \)-decreasing intersection property in \(Y \). Namely, there exist \(\omega \)-increasing ray \(\gamma_1 : [0, \infty) \rightarrow Y_0 \), an \(\omega \)-decreasing ray \(\gamma_2 : [0, \infty) \rightarrow Y_0 \) with \(\gamma_1(r_1) \leq \gamma_2(r_2) \) for each \(r_1, r_2 \in [0, \infty) \), and a
family \(\{G^i_n\}_{n \in \omega} \) of \(G^i \)-sets of \(Y \) with \(\gamma_i(n) \in G^i_n, n \in \omega, i = 1, 2 \), such that
\[
\bigcap_{n \in \omega} \bigcup_{b_1 \in G^1_n, b_2 \in G^2_n} \{y \in Y : b_1 \leq y \leq b_2\} = \emptyset.
\]
Set \(y_n = \gamma_1(n) \) and \(z_n = \gamma_2(n) \) for each \(n \in \omega \). For each \(n \in \omega \), take decreasing sequences \((O_m(y_n))_{m \geq n} \) and \((O_m(z_n))_{m \geq n} \) of open neighborhoods of \(y_n \) and \(z_n \), respectively, such that \(\bigcap_{m \geq n} O_m(y_n) \subset G^1_n \) and \(\bigcap_{m \geq n} O_m(z_n) \subset G^2_n \).

Now we describe a winning strategy of player II in the game \(G \). For \(a_0 \in A \) and a neighborhood \(U_0 \) of \(a_0 \) in \(X \), player II takes a neighborhood \(V_0 \) of \(a_0 \) in \(X \) with \(V_0 \subset U_0 \) and sets a function \(\lambda_0 \equiv 0 \) on \(A \). In the \(n \)th inning \((n > 0)\), for \(a_n \in V_{n-1} \cap A \) and a neighborhood \(U_n \subset V_{n-1} \) of \(a_n \), player II takes a continuous function \(\lambda_n : A \to [0,1] \) and a neighborhood \(V_n \) of \(a_n \) in \(X \) such that
\[
V_n \subset U_n, \quad a_n \in V_n \cap A \subset \lambda^{-1}_n(1) \subset \lambda^{-1}_n((0,1]) \subset U_n,
\]
for each \(k \leq n \). Indeed, since \(A \) is Tikhonov, take a continuous function \(\lambda_n : A \to [0,1] \) such that \(a_n \in \text{int}_A \lambda^{-1}_n(1) \subset \lambda^{-1}_n((0,1]) \subset U_n \). For each \(i \) with \(1 \leq i < n \), it follows from \(a_n \in U_n \cap A \subset V_i \cap A \subset \lambda^{-1}_i(1) \) that \(\lambda_i(a_n) = 1 \).

Hence, \(u(\gamma_1 \circ \sum_{i=0}^{k} \lambda_i)(a_n) = \gamma_1(k) = y_k \) and \(u(\gamma_2 \circ \sum_{i=0}^{k} \lambda_i)(a_n) = \gamma_2(k) = z_k \) for each \(k \leq n \). Since \(u(\gamma_1 \circ \sum_{i=0}^{k} \lambda_i) \) and \(u(\gamma_2 \circ \sum_{i=0}^{k} \lambda_i) \) are in \(C_A(X,Y) \), choose a neighborhood \(V_n \) of \(a_n \) in \(X \) such that \(u(\gamma_1 \circ \sum_{i=0}^{k} \lambda_i)(V_n) \subset O_n(y_k) \) and \(u(\gamma_2 \circ \sum_{i=0}^{k} \lambda_i)(V_n) \subset O_n(z_k) \) for each \(k \leq n \) and \(V_n \cap A \subset \lambda^{-1}_n(1) \).

Then the condition \(\emptyset \neq \bigcap_{n \in \omega} U_n \subset X \setminus A \) fails. To show this, assume on the contrary that there exists \(c \in \bigcap_{n \in \omega} U_n = \bigcap_{n \in \omega} V_n \subset X \setminus A \). By (3),
\[
u(\gamma_2 \circ \sum_{i=0}^{k} \lambda_i)(c) \in \bigcap_{n \geq k} O_n(z_k) \subset G^2_k,
\]
for each \(k \in \omega \). Define a continuous function \(s : A \to [0,\infty) \) by \(s(a) = \sum_{i \in \omega} \lambda_i(a) \) for each \(a \in A \); this is possible by (2) and the fact that \(\bigcap_{n \in \omega} U_n = \bigcap_{n \in \omega} V_n \subset X \setminus A \). Then we show \((\gamma_1 \circ \sum_{i=0}^{k} \lambda_i)(a) \leq (\gamma_1 \circ s)(a) \) for each \(a \in A \). Indeed, if \(\sum_{i=0}^{k} \lambda_i(a) \) is an integer, this follows from \(\gamma_1 \) being \(\omega \)-increasing. If \(\sum_{i=0}^{k} \lambda_i(a) \) is not an integer, the fact that \(\lambda^{-1}_n((0,1]) \subset \lambda^{-1}_n(1) \) for each \(n \in \mathbb{N} \) implies that \(\sum_{i=0}^{k} \lambda_i(a) = s(a) \). Similarly, \(\gamma_1 \circ \sum_{i=0}^{k} \lambda_i \leq \gamma_1 \circ s \leq \gamma_2 \circ s \leq \gamma_2 \circ \sum_{i=0}^{k} \lambda_i \) for each \(k \in \omega \). Since \(\gamma_1 \circ \sum_{i=0}^{k} \lambda_i, \gamma_1 \circ s, \) and \(\gamma_2 \circ \sum_{i=0}^{k} \lambda_i \) are in \(C(A,Y_0) \) and \(u \) is monotone, it follows that
Monotone extenders

21

u(γ₁ ∘ ∑ₖᵢ₌₀ λᵢ) ≤ u(γ₁ ∘ s) ≤ u(γ₂ ∘ ∑ₖᵢ₌₀ λᵢ) for each k ∈ ω. By (4),

u(γ₁ ∘ s)(c) ∈ ∩ₙ∈ω ∪ₜ₁∈G₁ₙ,ₜ₂∈G₂ₙ {y ∈ Y : b₁ ≤ y ≤ b₂}, a contradiction
to [1]. Hence A is strong Choquet in X. This completes the proof. ■

Lemma 2. Let Y be a topological vector space and an ordered vector
space, and Y₀ a convex subset of Y. If Y₀ has countable pseudo-character
in Y, the following conditions are equivalent:

(1) Y₀ has the almost ω-decreasing intersection property in Y;
(2) Y₀ has the ω-decreasing intersection property in Y.

Proof. (2)⇒(1) is obvious. To show (1)⇒(2), let \{yₙ\}ₙ∈ω be an increas-
ing sequence in Y₀ and \{zₙ\}ₙ∈ω a decreasing sequence in Y₀ with yₙ ≤ zₙ for
each n ∈ ω. Since Y₀ has countable pseudo-character in Y, we set G₁ₙ = \{yₙ\}
and G₂ₙ = \{zₙ\} for each n ∈ ω. Define γ₁, γ₂ : [0, ∞) → Y₀ by γ₁(r) =
(nᵣ + 1 − r)yₙᵣ + (r − nᵣ)yₙᵣ₊₁ and γ₂(r) = (nᵣ + 1 − r)zₙᵣ + (r − nᵣ)zₙᵣ₊₁,
where nᵣ ∈ ω with r ∈ [nᵣ, nᵣ + 1]. Then γ₁ and γ₂ are Y₀-valued continu-
ous, because Y₀ is convex and \{[n, n + 1] : n ∈ ω\} is a locally finite closed
collection in [0, ∞). It is easy to see that γ₁ is an ω-increasing ray and γ₂
is an ω-decreasing ray. To show γ₁(r) ≤ γ₂(s) for each r, s ∈ [0, ∞), fix
r, s ∈ [0, ∞) arbitrarily. Set n₀ = max\{nᵣ + 1, nₛ + 1\}. Then it follows from
(O)₁ and (O)₂ that

γ₁(r) = (nᵣ + 1 − r)yₙᵣ + (r − nᵣ)yₙᵣ₊₁ ≤ (nᵣ + 1 − r)yₙᵣ₊₁ + (r − nᵣ)yₙᵣ₊₁
 = yₙᵣ₊₁ ≤ yₙ₀ ≤ zₙ₀ ≤ zₙₛ₊₁ = (nₛ + 1 − s)zₙₛ₊₁ + (s − nₛ)zₙₛ₊₁
 ≤ (nₛ + 1 − s)zₙₛ + (s − nₛ)zₙₛ₊₁ = γ₂(s).

Since γ₁(n) = yₙ and γ₂(n) = zₙ for each n ∈ ω, it follows from (1) that
∩ₙ∈ω\{y ∈ Y : yₙ ≤ y ≤ zₙ\} ≠ ∅. ■

Corollary 3. A Tikhonov subspace A of a topological space X is strong
Choquet in X if there exists a monotone extender u : C∞(A, c) → CA(X, c).

Proof. Let Y = c and Y₀ = \{y ∈ c : 0 ≤ y ≤ 1\}, where 0 = (0, 0, . . .),
1 = (1, 1, . . .) ∈ c. Then Y₀ is convex and bounded in Y. Define yₙ, zₙ ∈ c,
n ∈ ω, by yₙ(m) = 1 if m = 2j + 1, j ≤ n − 1, j ∈ ω; yₙ(m) = 0
otherwise; zₙ(m) = 0 if m = 2j, j ≤ n − 1, j ∈ ω; zₙ(m) = 1 otherwise.
Then \{yₙ\}ₙ∈ω ⊂ Y₀ is increasing, \{zₙ\}ₙ∈ω ⊂ Y₀ is decreasing with yₙ ≤ zₙ
for each n ∈ ω, and ∩ₙ∈ω\{y ∈ c : yₙ ≤ y ≤ zₙ\} = ∅. By Lemma 2,
Y₀ does not have the almost ω-decreasing intersection property in c. Since
C(A, Y₀) ⊂ C∞(A, c), Theorem 1 completes the proof of Corollary 3. ■

Corollary 4. There is no monotone extender u : C∞(Q, c) → C(Rₜ, c).

Acknowledgments. This research was supported by the Ministry of
Education, Culture, Sports, Science and Technology, Grant-in-Aid for Young
Scientists (B), No. 19740027.
References

Kaori Yamazaki
Faculty of Economics
Takasaki City University of Economics
1300 Kaminamie, Takasaki
Gunma 370-0801, Japan
E-mail: kaori@tcue.ac.jp

Received December 3, 2009 (6760)