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Distances to spaces of affine Baire-one functions

by

Jiř́ı Spurný (Praha)

Abstract. Let E be a Banach space and let B1(BE∗) and A1(BE∗) denote the space
of all Baire-one and affine Baire-one functions on the dual unit ball BE∗ , respectively. We
show that there exists a separable L1-predual E such that there is no quantitative relation
between dist(f,B1(BE∗)) and dist(f, A1(BE∗)), where f is an affine function on BE∗ . If
the Banach space E satisfies some additional assumption, we prove the existence of some
such dependence.

1. Introduction. If K is a compact (Hausdorff) space, we write C(K)
for the space of all real-valued continuous functions on K and M(K) for
the space of all signed Radon measures on K. (By a Radon measure we
mean a complete measure that is inner regular with respect to compact
sets and is defined on a σ-algebra including all Borel subsets of K. A signed
measure is Radon if the total variation |µ| of µ is a Radon measure. We refer
the reader to [9, Section 416] for more information on Radon measures.)
Let M1(K) denote the set of all Radon probability measures on K. We
always consider M(K) endowed with the weak∗ topology. We say that a
function f : K → R is universally measurable if f is µ-measurable for every
µ ∈ M1(K). We denote the space of all bounded universally measurable
functions on K by Ub(K).

If X is a compact convex subset of a real locally convex space, let Ab(X)
and Ac(X) denote the spaces of all bounded affine functions on X and con-
tinuous affine functions on X, respectively. Any µ ∈ M1(X) has its unique
barycenter r(µ) ∈ X, i.e., the point x ∈ X satisfying f(x) = µ(f) for any
f ∈ Ac(X) (see [1, Proposition I.2.1]). We sometimes say that µ repre-
sents x. A function f : X → R is strongly affine (or satisfies the barycentric
formula) if f is universally measurable, µ(f) exists and f(r(µ)) = µ(f) for
any µ ∈ M1(X). We write Abf(X) for the space of all strongly affine func-
tions on X (i.e. functions satisfying the barycentric formula) and recall that
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it is easy to see that any strongly affine function is affine and bounded (see
the proof of [13, Satz 2.1(c)]).

By a result of B. Cascales, W. Marciszewski and M. Raja [5, Propo-
sition 4.1], dist(f, C(X)) = dist(f,Ac(X)) for any f ∈ Ab(X). If E is a
Banach space, its dual unit ball BE∗ endowed with the weak∗ topology is an
example of a compact convex set. Given an element x∗∗ ∈ E∗∗, let f denote
its restriction to BE∗ . By the fact above, dist(f, C(BE∗)) = dist(f,Ac(BE∗))
(see [5, Corollary 4.2]).

As a further step, a paper [2] by C. Angosto, B. Cascales and I. Namioka
investigates how to measure distance of a function to the space of Baire-one
functions. Let us recall that, given two topological spaces K and E, the
space B1(K,E) consists of all mappings f : K → E that can be obtained
as the pointwise limit of a sequence of continuous mappings from K to E.
If E = R, we write B1(K) for B1(K,R). If f : K → E is a mapping from a
topological space K to a metric space E, f is said to be ε-fragmented if for
any closed set F ⊂ K there exists a relatively open nonempty subset U of
F such that diam f(U) < ε (see [2, p. 105]). Then frag(f) is defined as

frag(f) = inf{ε > 0: f is ε-fragmented}
if such an ε > 0 exists, and frag(f) = ∞ otherwise. If f : K → R is a
function on a metrizable compact space, it follows from [2, Corollary 2.6]
that dist(f,B1(K)) = 1

2 frag(f).
If X is a compact convex set, let A1(X) stand for the space of all point-

wise limits of sequences of functions from Ac(X). By [20, Théorème 80] (see
also [7, p. 611]), B1(X) ∩ Ab(X) = A1(X), and any function in A1(X) is
a pointwise limit of a bounded sequence in Ac(X). If f ∈ Ab(X), following
the result on continuous functions we might ask whether dist(f,B1(X)) =
dist(f,A1(X)). The aim of our paper is to present an example that disproves
this. (We recall that a Banach space is an L1-predual if its dual is isometric
to a space L1(µ) for a suitable measure µ; see [7, p. 625].)

Theorem 1.1. There exists a separable L1-predual E with the following
property: for any ε > 0 there exists x∗∗ ∈ BE∗∗ such that the function
f = x∗∗|BE∗ satisfies

• f is strongly affine,
• dist(f,B1(BE∗)) < ε,
• dist(f,A1(BE∗)) ≥ 1/2.

If an L1-predual E satisfies an additional topological condition imposed
on the set extBE∗ of all extreme points of its dual unit ball BE∗ , we ob-
tain a quantitative relation between the distance to Baire-one functions and
the distance to affine Baire-one functions. We recall that a subset H of a
topological space K is said to be an H-set (or a resolvable set) if the char-
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acteristic function χH satisfies frag(χH) = 0 (see [14, §12]). We recall that
a mapping f : K → E between two topological spaces is Baire measurable
if f−1(U) is a Baire subset of K for any U ⊂ E open.

Theorem 1.2. Let E be an L1-predual such that the set of extreme points
of the dual unit ball is a Lindelöf H-set in the weak∗ topology. Let x∗∗ ∈ E∗∗
and f = x∗∗|BE∗ . If

• E is separable, or
• f is Baire measurable,

then dist(f,A1(BE∗)) ≤ 5 dist(f,B1(BE∗)).

We remark that, for a separable space E, the topological condition im-
posed on extBE∗ is equivalent to extBE∗ being of type Fσ. This can be seen
from the following two facts: a subset of a compact metrizable space is an
H-set if and only if it is both of type Fσ and Gδ (use [14, §26, X] and the
Baire category theorem); the set of extreme points in a metrizable compact
convex set is of type Gδ (see [1, Corollary I.4.4]).

We also point out that the topological assumption in Theorem 1.2 is
satisfied when extBE∗ is an Fσ set. To see this, we first notice that extBE∗
is then a Lindelöf space. Second, we need to check that extBE∗ is an H-set
in BE∗ . To this end, assume that F ⊂ BE∗ is a nonempty closed set such that
both F ∩ extBE∗ and F \ extBE∗ are dense in F . By [25, Théorème 2], we
can write

extBE∗ =
∞⋂
n=1

(Hn ∪ Vn),

where Hn ⊂ BE∗ is closed and Vn ⊂ BE∗ is open, n ∈ N. Thus both
F \ extBE∗ and F ∩ extBE∗ are comeager disjoint sets in F , contradicting
the Baire category theorem. Hence extBE∗ is an H-set.

The following result presents a condition of a different type that still
yields a conclusion similar to that of Theorem 1.2.

Theorem 1.3. Let E be a Banach space not containing `1, x∗∗ ∈ E∗∗
and let f = x∗∗|BE∗ . Then dist(f,A1(BE∗)) ≤ 2 dist(f,B1(BE∗)).

If E above is assumed to be separable, any element x∗∗ ∈ E∗∗ is in
A1(BE∗) when restricted to BE∗ (see [18] or [3, Theorem II.1.3]) and thus
the inequality is vacuously satisfied (the author would like to thank M. Raja
for this important remark).

We also present a variant of [2, Theorem 2.5] for nonmetrizable compact
spaces needed for our purposes.

Theorem 1.4. Let K be a compact space and f : K → E be a function
from K to a Banach space E.
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(a) 1
2 frag(f) ≤ dist(f,B1(K,E)).

(b) If f is Baire measurable, then dist(f,B1(K,E)) ≤ frag(f).
(c) If f is Baire measurable and E = R, then dist(f,B1(K)) = 1

2 frag(f).

Our construction of a separable L1-predual in Theorem 1.1 is based upon
the notion of a simplicial function space. We recall that, given a compact
space K, a function space H is a subspace of C(K) that contains constants
and separates points of K. We use the construction from [23] to get the
desired example of Theorem 1.1.

Throughout, we follow the notation and definitions from [23].
We just recall that, given a function space H on a compact space K, the

state space S(H) of H is defined as

S(H) = {s ∈ H∗ : ‖s‖ = s(1) = 1}.
If S(H) is endowed with the weak∗ topology, it is a compact convex set.
The space K is homeomorphically embedded into S(H) via the evaluation
mapping φ : K → S(H) defined by

φ(x)(h) = h(x), h ∈ H, x ∈ K.
We denote

Ub(K) ∩H⊥⊥ = {f ∈ Ub(K) : µ(f) = 0 for all µ ∈ H⊥}
and X = S(H). Let π : M1(K) → X denote the restriction mapping. It
follows from [23, Theorem 2.5] that the formula

(1.1) If(s) = µ(f), π(µ) = s, s ∈ X, f ∈ Ub(K) ∩H⊥⊥,
defines an isometric isomorphism I : Ub(K) ∩H⊥⊥ → Abf(X). Moreover,

I(Bbα(K) ∩H⊥⊥) = Bbα(X) ∩ Abf(X), α ∈ [0, ω1).

To illuminate relations between compact convex sets and Banach spaces,
let us recall the following facts. If X is a compact convex set and E = Ac(X),
the state space S(Ac(X)) is affinely homeomorphic to X via the evalua-
tion mapping φ. The dual unit ball BE∗ equals co(φ(X) ∪ −φ(X)) and
the weak topology on E coincides with the topology of pointwise con-
vergence on Ac(X). Any function f ∈ Ab(X) has a unique extension to
E∗ = spanφ(X). This provides an identification of E∗∗ with Ab(X). More-
over, the weak∗ topology on E∗∗ coincides with the topology of pointwise
convergence on Ab(X).

A compact convex set X is a simplex if Ac(X) is an L1-predual
(for more information on simplices, see [1, Chapter II, §3], [4, Section 2.7],
[6, Chapter 6, §28], [7, Section 3], [15, Chapter 7, §20], [19, Chapter 10] or
[21, Chapter 6, §23]).

If E is a Banach space, a function f : BE∗ → R is the restriction of an
element of E if and only if f ∈ Ac(BE∗) and f(0) = 0.
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2. Construction of function spaces. We use the construction of a
function space from [23, Section 5]. For a fixed natural number m > 1,
let H0, . . . ,Hm be the simplicial function spaces on the metrizable com-
pact spaces K0, . . . ,Km constructed in [23, Inductive construction 5.2]. Let
{Fs : s ∈ N<N} and Fn = {Fn(k) : k ∈ N}, n = 0, . . . ,m, be the objects
defined there.

We recall from [23, Lemma 3.3] that {Fs : s ∈ N<N} is a family of sets
in K0 = [0, 1] with the following properties:

(a) F∅ = K0,
(b) {Fs∧n : n ∈ N} is a disjoint family of nonempty nowhere dense

perfect subsets of Fs,
(c)

⋃
{Fs∧n : n ∈ N} is dense in Fs,

(d) diamFs < 2−(s1+···+s|s|), s ∈ N<N.

We further demand that the family {Fs : s ∈ N<N} satisfies the following
stronger version of (c):

(e) both {Fs∧n : n odd} and {Fs∧n : n even} are dense in Fs, s ∈ N<N.

This family is used in [23, Inductive construction 5.2] for an inductive
construction of function spaces with increasing complexity. Roughly speak-
ing, the construction proceeds as follows.

We take the sets of the first level in K0, i.e., {Fn : n ∈ N}, and create a
new compact space K1 by adding to K0 two copies of each Fn. We imagine
each point of Fn to be the average of two points “above” and “below” and
encode it in the definition of the new function space H1 on K1. For each
set Fn, we consider the sets of the second level {Fn∧k : k ∈ N} and transfer
them into the just created copies of Fn. These new sets form the family F1.

The second step splits up the sets from F1 and transfers the sets {Fs :
|s| = 3} of the third level into them. Proceeding inductively, we create
function spaces Hm on compact spaces Km, m = 0, 1, . . . .

Lemma 2.1. The following asertions hold:

(a) Hm is a simplicial function space with Ac(Hm) = Hm,
(b) Km \ ChHm Km =

⋃m−1
n=0

⋃
Fn.

Proof. Assertion (a) follows by inductive use of [23, Lemma 5.1(c),(e)],
and (b) from [23, Lemma 5.1(d)].

Let δ = (2m+ 1)−1.

Definition 2.2. We define inductively a function fm : Km → [−1, 1]
such that fm is constant on each element of Fn for every n ∈ {0, . . . ,m}.
The definition is as follows:
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• For x ∈ K0, we set

fm(x) =
{
δ, x ∈ Fs, s ∈ N is odd,
−δ, x ∈ K0 \

⋃
{Fs : s ∈ N is odd}.

• Assume that fm is defined on each K0, . . . ,Kn for some n ∈ {0, . . . ,
m − 1}. Let Fn = {Fn(k) : k ∈ N} be the enumeration of the family
Fn and let an(k) be the value of fm on Fn(k). Let

F (s, k,+), F (s, k,−), k ∈ N, s ∈ Nn+2,

be as in equations (8) of [23, Inductive construction 5.2]. Let Nn+2
odd

denote the set of all sequences s ∈ Nn+2 with sn+2 odd. Then we
define the function fm for

x ∈ Kn+1 \Kn =
∞⋃
k=1

(Fn(k)× {1/k}) ∪ (Fn(k)× {−1/k})

as

fm(x)

=


an(k) + 2δ, x ∈

⋃
{F (s, k,+): s ∈ Nn+2

odd },
an(k), x ∈ (Fn(k)× {1/k}) \

⋃
{F (s, k,+): s ∈ Nn+2

odd },
an(k)− 2δ, x ∈

⋃
{F (s, k,−) : s ∈ Nn+2

odd },
an(k), x ∈ (Fn(k)× {−1/k}) \

⋃
{F (s, k,−) : s ∈ Nn+2

odd }.
Lemma 2.3. The function fm from Definition 2.2 has the following prop-

erties:

(a) fm(Km) ⊂ [−1, 1],
(b) frag(fm) = 2δ,
(c) fm ∈ Bb2(Km) ∩H⊥⊥m ,
(d) dist(fm,Bb1(Km) ∩H⊥⊥m ) ≥ 1/2.

Proof. To verify (a), we notice that Definition 2.2 yields the following
fact: The greatest value of fm is δ + 2δm = 1 and the least value of fm is
−δ − 2δm = −1.

To prove (b), we note that Km can be written as

(2.1) Km = K0 ∪
m⋃
n=1

(Kn \Kn−1).

We show that fm|K0 and fm|Kn\Kn−1
, n = 1, . . . ,m, are 2δ-fragmented.

Obviously, fm|K0 is 2δ-fragmented. If n ∈ {1, . . . ,m}, Kn \ Kn−1 can be
written as a countable union of clopen subsets of Kn such that the restriction
of fm to each of them is 2δ-fragmented. Let F ⊂ Km be a closed set and
ε > 2δ. If F ⊂ K0, it is easy to find a relatively open subset of F with
diam fm(U) < ε. Otherwise we find the greatest index n ∈ {1, . . . ,m} such
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that F ∩ (Kn \ Kn−1) 6= ∅. Since Kn \ Kn−1 is an open subset of Kn−1,
there exists a relatively open subset U of F with diam fm(U) < ε. Hence
assertion (b) follows.

We start the proof of (c) by observing that it is enough to show that the
restriction of fm to any member of the partition from (2.1) is a Baire-two
function. This is easy on K0 and, as above, we find that every Kn \Kn−1,
n = 1, . . . ,m, is a countable union of clopen subsets of Kn and that the
restriction of fm to each member of this family is a Baire-two function.

For the second part of (c), the function fm is in A(Hm) by inductive
use of [23, Lemma 5.1(f)]. Indeed, fm|K0 ∈ A(H0) obviously. By Defi-
nition 2.2, fm|K1 satisfies equations (6) of [23, Key step 5.1], and thus
fm|K1 ∈ A(H1) by [23, Lemma 5.1(f)]. Proceeding inductively, we verify
that fm|Kn ∈ A(Hn) for every n ∈ {0, . . . ,m}. Since Hm is simplicial, [23,
Theorem 2.6(b2)] yields

f ∈ (Ac(Hm))⊥⊥ = H⊥⊥m .

To show (d), let g ∈ Bb1(Km) ∩ H⊥⊥m be arbitrary. We fix ε ∈ (0, δ) and
inductively find Fn ∈ Fn, n = 0, . . . ,m, such that

• |g − fm| > (n+ 1)δ − 3nε on Fn, n = 0, . . . ,m.

For n = 0, we find x ∈ K0 such that g|K0 is continuous at x0 (see
[14, §27, X]). Let U ⊂ K0 be a neighborhood of x such that diam g(U) < ε. It
follows from properties (d) and (e) of the system F0 and from Definition 2.2
that there exist F, F ′ ∈ F0 such that F ∪ F ′ ⊂ U and fm = δ on F and
fm = −δ on F ′. Hence it follows, by distinguishing the cases g(x) ≤ 0 and
g(x) ≥ 0, that there exists F0 ∈ F0 such that |g − fm| > δ − ε on F0.

Assume now that the construction has been completed up to the nth
step for some n ∈ {0, . . . ,m− 1}. Hence we have Fn ∈ Fn such that

(2.2) |g − fm| > (n+ 1)δ − 3nε on Fn.

Let k ∈ N be the index of Fn in Fn; that is, Fn = Fn(k). Let an(k) denote
the value of fm on Fn(k). Then

(Fn(k)× {1/k}) ∪ (Fn(k)× {−1/k}) ⊂ Kn+1 ⊂ Km.

We find x = (x, 0) ∈ Fn(k) such that (x, 1/k) is a point of continuity of
the function g|Fn(k)×{1/k}.

Case 1. Assume first that

g(x, 1/k) ∈ (−∞, an(k)− nδ) ∪ (an(k) + (n+ 2)δ,∞).

If g(x, 1/k) ∈ (−∞, an(k) − nδ), we find a neighborhood U of x in Fn(k)
such that the same holds for all elements of U × {1/k}. By Definition 2.2
and properties of Fn+1 described above, there exists a set Fn+1 ∈ Fn+1 such
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that Fn+1 ⊂ U × {1/k} and

fm − g = an(k) + 2δ − g > an(k) + 2δ − (an(k)− nδ) = (n+ 2)δ on Fn+1.

Analogously, if g(x, 1/k) ∈ (an(k)+(n+2)δ,∞), again we find a neighbor-
hood U of x in Fn(k) such that the same holds for all elements of U×{1/k}.
By Definition 2.2 and properties (d) and (e) of Fn+1, there exists a set
Fn+1 ∈ Fn+1 such that Fn+1 ⊂ U × {1/k} and

g − fm = g − an(k) > an(k) + (n+ 2)δ − an(k) = (n+ 2)δ on Fn+1.

This finishes the inductive step in this case.

Case 2. Assume now that

g(x, 1/k) ∈ [an(k)− nδ, an(k) + (n+ 2)δ].

Let U be a neighborhood of x in Fn(k) such that

−3nε+ an(k)− nδ < g < an(k) + (n+ 2)δ + 3nε on U × {1/k}.
Let y = (y, 0) ∈ U be such that (y,−1/k) is a point of continuity of
g|Fn(k)×{−1/k}. We see from (2.2) that

|g(y, 0)− fm(y, 0)| > (n+ 1)δ − 3nε.

Case 2a. Assume first that

g(y, 0) < fm(y, 0)− (n+ 1)δ + 3nε = an(k)− (n+ 1)δ + 3nε.

Since g is Hm-affine, [23, equations (6) in Key step 5.1] yield

g(y,−1/k) = 2g(y, 0)− g(y, 1/k)
< 2an(k)− 2(n+ 1)δ + 2 · 3nε− (−3nε+ an(k)− nδ)
= an(k)− (n+ 2)δ + 3n+1ε.

By the continuity of g|Fn(k)×{−1/k} at (y,−1/k), there exists a neighborhood
V of y in Fn(k) such that V ⊂ U and

g < an(k)− (n+ 2)δ + 3n+1ε on V × {−1/k}.
By properties of Fn+1 and Definition 2.2, there exists Fn+1 ∈ Fn+1 such
that Fn+1 ⊂ V × {−1/k} and

g < an(k)− (n+ 2)δ + 3n+1ε = fm − (n+ 2)δ + 3n+1ε on Fn+1.

This finishes the inductive step in this case.

Case 2b. If

g(y, 0) > fm(y, 0) + (n+ 1)δ − 3nε = an(k) + (n+ 1)δ − 3nε,

[23, equations (6) in Key step 5.1] give

g(y,−1/k) = 2g(y, 0)− g(y, 1/k)
> 2an(k) + 2(n+ 1)δ − 2 · 3nε− (an(k) + (n+ 2)δ + 3nε)

= an(k) + nδ − 3n+1ε.
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By the continuity of g|Fn(k)×{−1/k} at (y,−1/k), there exists a neighborhood
V of y in Fn(k) such that V ⊂ U and

g > an(k) + nδ − 3n+1ε on V × {−1/k}.
By properties of Fn+1 and Definition 2.2, there exists Fn+1 ∈ Fn+1 such
that Fn+1 ⊂ V × {−1/k} and

g > an(k) + nδ − 3n+1ε = fm + (n+ 2)δ − 3n+1ε on Fn+1.

The inductive step is finished also in this case.
After the mth step of the construction we obtain a set Fm ∈ Fm such

that
|g − fm| > (m+ 1)δ − 3mε on Fm.

Thus

‖g − fm‖ > (m+ 1)δ − 3mε =
m+ 1
2m+ 1

− 3mε ≥ 1
2
− 3mε.

Since ε ∈ (0, δ) is arbitrary, ‖g−fm‖ ≥ 1/2. Hence dist(fm,Bb1(Km)∩H⊥⊥m )
≥ 1/2.

3. Auxiliary results

Lemma 3.1. Let ϕ : X → Y be a continuous surjection of a compact
space X onto a compact space Y and let g : Y → Z be a function from Y to
a metric space (Z, ρ). Then frag(g) = frag(g ◦ ϕ).

Proof. If frag(g) = ∞, then frag(g ◦ ϕ) ≤ frag(g). Assume that
frag(g) < ∞ and let ε > 0 be such that g is ε-fragmented. If F ⊂ X is
a nonempty closed set, let W ⊂ Y be an open set intersecting ϕ(F ) such
that diam g(W ∩ ϕ(F )) < ε. Then diam(g ◦ ϕ)(F ∩ ϕ−1(W )) < ε, and thus
frag(g ◦ ϕ) ≤ frag(g).

To prove the opposite inequality, assume that frag(g ◦ϕ) <∞. Let ε > 0
be such that g ◦ ϕ is ε-fragmented and let H ⊂ Y be a nonempty closed
set. Using compactness and Zorn’s lemma, we find a closed set F ⊂ X such
that ϕ(F ) = H and F is a closed set which is a minimal set (with respect
to inclusion) with this property. Let U ⊂ X be an open set intersecting F
with diam(g ◦ ϕ)(U ∩ F ) < ε. Then H \ ϕ(F \ U) is a nonempty relatively
open subset of H (it is nonempty by the minimality of F ) satisfying

diam g(H \ ϕ(F \ U)) < ε.

Hence frag(g) ≤ frag(g ◦ ϕ), which concludes the proof.

Lemma 3.2. Let K be a metrizable compact space and let f ∈ Ub(K).
If f̂ : BM(K) → R is defined as f̂(µ) = µ(f), µ ∈ BM(K), then frag(f) =
frag(f̂).
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Proof. Let ε > 1
2 frag(f) be arbitrary. Using [2, Corollary 2.6], we find

a function g ∈ B1(K) such that ‖f − g‖ < ε. Without loss of generality we
may assume that ‖g‖ = ‖f‖. If ĝ : BM(K) → R is defined as

ĝ(µ) = µ(g), µ ∈ BM(K),

then ‖f̂ − ĝ‖ < ε. Hence dist(f̂ ,B1(BM(K))) < ε, and thus 1
2 frag(f̂) < ε. It

follows that frag(f̂) ≤ frag(f). Since the opposite inequality is obvious, the
proof is complete.

Lemma 3.3. If H is a function space on a metrizable compact space K
and f ∈ Ub(K) ∩H⊥⊥, then frag(f) = frag(If).

Proof. Let ε > frag(f) be arbitrary. If f̂ :M1(K)→ R is defined as

f̂(µ) = µ(f), µ ∈M1(K),

then frag(f̂) < ε by Lemma 3.2. Since π :M1(K) → S(H) is a continuous
surjection, Lemma 3.1 gives frag(If) < ε. Since ε > frag(f) is arbitrary,
frag(If) ≤ frag(f).

The opposite inequality follows from the fact that If ◦ φ = f .

The following fact is a variant of the argument in [19, p. 88].

Lemma 3.4. Let f : X → R be a convex function on a compact convex
set X such that frag(f) <∞. Then f is lower bounded.

Proof. Without loss of generality we may assume that 0 ∈ X. Assume
that there exists a sequence {xn} of points in X such that f(xn) → −∞.
We consider the set

S =
{
λ ∈ `1 :

∞∑
n=1

λ(n) ≤ 1, λ(n) ≥ 0 for each n ∈ N
}

with the weak∗ topology (as usual, the space `1 is identified with the dual
space of c0) and a mapping ϕ : S → X defined by

ϕ(λ) =
∞∑
n=1

λ(n)xn, λ ∈ S.

Then ϕ is a continuous affine mapping and, by Lemma 3.1,

frag(f ◦ ϕ) = frag(f |ϕ(S)) ≤ frag(f) = η <∞.
Since S is metrizable, [2, Corollary 2.6] yields the existence of a function
g ∈ B1(S) with ‖f ◦ ϕ− g‖ < η + 1.

By [14, §27, X], g has a point of continuity, and thus there exist a
nonempty open set U ⊂ S and C ∈ R such that g > C on U . We pick
λ ∈ U and find t ∈ (0, 1) with tλ ∈ U . If en, n ∈ N, denote the standard
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basic vectors in `1, then en → 0, and thus tλ + (1 − t)en ∈ U for all but
finitely many n ∈ N. For these indices, we obtain

C − η − 1 ≤ g(tλ+ (1− t)en)− η − 1 ≤ (f ◦ ϕ)(tλ+ (1− t)en)
≤ tf(ϕ(λ)) + (1− t)f(xn).

This contradiction finishes the proof.

We will need the following quantitative version of [7, Proposition 2.19].
We recall that

	∗ and
	
∗ denote the upper and lower integral, respectively

(see [8, 133I]).

Lemma 3.5. Let f : X → R be an affine function on a compact convex
set X and µ ∈M1(X). Then

f(r(µ))− frag(f) ≤
�
∗
f dµ ≤

�∗
f dµ ≤ f(r(µ)) + frag(f).

Proof. If frag(f) = ∞, the inequalities obviously hold. Otherwise we
may assume by Lemma 3.4 that f is bounded. Let x denote the barycenter
of µ. We start the proof by fixing η > frag(f). We define

(3.1) U =
{
U ⊂ X : U is open and there are compact convex sets

Kn ⊂ X such that µ
(
U \

∞⋃
n=1

Kn

)
= 0 and diam f(Kn) < η

}
.

Then V =
⋃
{U : U ∈ U} ∈ U . Indeed, V is obviously open. Since µ is

inner regular with respect to compact sets, there exists a sequence {Hk}
of compact sets such that µ(Hk) ↗ µ(V ). By compactness, we can cover
each Hk by a finite family {U1, . . . , Unk

} of sets contained in U . For every
k ∈ N and Ui, i = 1, . . . , nk, we find a countable family of compact convex
sets guaranteed by (3.1). Putting together all these families, we obtain a
countable family L of compact convex sets which covers µ-almost all of V
and diam f(K) < η for each K ∈ L.

Our aim is to prove that X ∈ U . To this end, let K be the family of all
closed convex subsets of X whose complement in X is contained in U . Let Z
be the intersection of K. By the argument above, Z is the smallest element
of K. Set

Y = {x ∈ Z : oscZ f(x) ≥ η}.
(Here oscZ f(x) denotes the oscillation of the function f |Z at the point x.)
Then Y is a closed convex subset of Z. If x ∈ Z\Y , then there exists an open
convex neighborhood U of x such that U ∩ Y = ∅ and diam f(U ∩ Z) < η.
Since U \ Z ∈ U and U ∩ Z contains U ∩ Z, we observe that U ∈ U . By the
properties of U , Y is a closed convex subset of Z whose complement in X
is contained in U . By the minimality of Z, we have Y = Z.



34 J. Spurný

Then there is no open set W ⊂ X intersecting Z with diam f(W∩Z) < η.
Since η > frag(f), this implies that Z = ∅. Hence X ∈ U .

To finish the proof, we choose ε > 0. Let {Kn} be a sequence of compact
convex subsets of X such that

diam f(Kn) < η and µ
(
X \

∞⋃
n=1

Kn

)
= 0.

Let k ∈ N be such that

(3.2) µ(X \ (K1 ∪ · · · ∪Kk)) < ε

and let

En = Kn \
n−1⋃
i=1

Ki, n = 1, . . . , k, E0 = X \
k⋃

n=1

Kn,

λn = µ(En), n = 0, . . . , k.

Without loss of generality we may assume that λn > 0 for n = 1, . . . , k. We
define probability measures µn, n = 0, . . . , k, by

µn =
{

1
λn
µ|En if λn > 0,

εx if λn = 0.
Let xn be the barycenter of µn, n = 0, . . . , k. Then xn ∈ coEn ⊂ Kn,
n = 1, . . . , k. Obviously,

(3.3)
N∑
n=0

λn = 1,
k∑

n=0

λnxn = x,

k∑
n=0

λnµn = µ,

and

(3.4) f(x0)− 2‖f‖ ≤
�
∗
f dµ0 ≤

�∗
f dµ0 ≤ f(x0) + 2‖f‖.

Since diam f(Kn) < η, from (3.2)–(3.4) we obtain

�∗
f dµ = λ0

�∗
f dµ0 +

k∑
n=1

λn
�∗
f dµn

≤ λ0(f(x0) + 2‖f‖) +
k∑

n=1

�∗
En

f dµ

≤ λ0(f(x0) + 2‖f‖) +
k∑

n=1

�

En

(f(xn) + η) dµ

= λ0(f(x0) + 2‖f‖) +
k∑

n=1

λn(f(xn) + η)

≤ f
( k∑
n=0

λnxn

)
+ η + ε2‖f‖ = f(x) + η + ε2‖f‖.
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Letting ε→ 0, we obtain
	∗
f dµ ≤ f(x) + η. Since η is arbitrary,

	∗
f dµ ≤

f(x)+frag(f). Analogously we obtain the reverse inequality f(x)−frag(f) ≤	
∗ f dµ, which concludes the proof.

4. Proofs of the main results

Proof of Theorem 1.4. Let f : K → E be a mapping. To verify (a), we
notice that the proof of the inequality

1
2 σ- fragc(f) ≤ dist(f,B1(X,E))

in [2, Theorem 2.5] does not require any assumption on X (here σ-fragc(f)
is the index of σ-fragmentability defined in [2, Definition 1]). By [2, Theo-
rem 2.1], σ-fragc(f) = frag(f) for hereditarily Baire spaces and thus asser-
tion (a) follows.

For the proof of (b), assume that f is Baire measurable. We use [10,
Theorem 1] to deduce that the range f(K) is K-analytic, and thus separable.
Hence there exists α ∈ (0, ω1) such that f is Σα+1(Baire(K))-measurable.
By [22, Corollary 5.5], f is a mapping of Baire class α (i.e., f ∈ Cα(K,E)).
It follows that there exists a countable family F = {fn : n ∈ N} ⊂ C(K,E)
such that f ∈ Fα.

(We recall the following notation from [22, Definition 2.4]. If F is a family
of mappings from a set X to a topological space Y , we inductively define
Baire classes generated by F as follows: Let F0 = F and for each countable
ordinal α ∈ (0, ω1), let Fα be the family of all pointwise limits of sequences
from

⋃
β<αFβ.)

Let ϕ : K → EN be defined by

ϕ(x) = {fn(x)}n∈N, x ∈ K.

Then L = ϕ(K) is a compact metrizable space. Since, for x1, x2 ∈ K,
fn(x1) = fn(x2) for each n ∈ N implies f(x1) = f(x2), there exists a
mapping g : L→ E such that f = g◦ϕ. By Lemma 3.1, frag(f) = frag(g). By
[2, Theorem 2.5], for every η > frag(g), there exists a function h ∈ B1(L,E)
such that ‖g−h‖ < η. Then ‖f−h◦ϕ‖ < η, and hence dist(f,B1(K,E)) < η.
Since η > frag(f) is arbitrary, dist(f,B1(K,E)) ≤ frag(f).

If f is Baire measurable and E = R then we proceed as in the proof of
(b) and obtain, from Lemma 3.1 and [2, Theorem 2.5],

1
2 frag(f) = 1

2 frag(g) = dist(g,B1(Y )) ≥ dist(f,B1(X)).

This concludes the proof.

Theorem 4.1. There exists a metrizable simplex X with the following
property: for any ε > 0 there exists a strongly affine function f : X → [−1, 1]
such that frag(f) < ε and dist(f,A1(X)) ≥ 1/2.
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Proof. For each natural number m > 1, let (Km,Hm) be the function
space from Section 2 and let fm : Km → [−1, 1] be the function from
Definition 2.2. Let K =

⋃∞
m=2Km∪{x∞} be the one-point compactification

of the topological union of the spaces Km and let

H = {f ∈ C(K) : f |Km ∈ Hm, m > 1}.
It is easy to verify that (K,H) is a simplicial function space with ChHK =
{x∞}∪

⋃∞
m=2 ChHm Km and Ac(H) = H. If X denotes the state space of H,

we obtain a metrizable simplex (see [23, Theorem 2.6(a)]). We claim that X
has the required property.

To see this, we fix ε > 0. Let m > 1 be a natural number satisfying
2(2m + 1)−1 < ε. If fm : Km → [−1, 1] is as in Definition 2.2, we define
f : K → [−1, 1] as

(4.1) f(x) =
{
fm(x), x ∈ Km,
0, otherwise.

Let I : Ub(K) ∩ H⊥⊥ → Abf(X) be the identification from (1.1). Since
frag(f) = 2(2m + 1)−1, frag(If) < ε by Lemma 3.3. If g is any function in
A1(X), it follows from [23, Theorem 2.5(f)] that I−1g ∈ Bb1(K)∩H⊥⊥. Then
I−1g|Km ∈ Bb1(Km) ∩ H⊥⊥m , and thus ‖f − I−1g‖ ≥ 1/2 by Lemma 2.3(d).
Hence ‖If − g‖ ≥ 1/2, and the proof is complete.

Proof of Theorem 1.1. Let (K,H) be the simplicial function space con-
structed in the proof of Theorem 4.1 and let X be the state space of H.
Then H is isometrically isomorphic to Ac(X) via the mapping I, and thus it
is a separable L1-predual (see [7, Proposition 3.23]). Given ε > 0, let m > 1
be a natural number with (2m + 1)−1 < ε and let f : K → [−1, 1] be the
function from (4.1). If π : BM(K) → BH∗ is the restriction mapping, let
f̂ : BH∗ → [−1, 1] be defined as

f̂(s) = µ(f), π(µ) = s, s ∈ BH∗ .

Obviously, f̂ is a restriction of an element from H∗∗ to BH∗ . By Lemmas 3.2
and 3.1,

dist(f̂ ,B1(BE∗)) = 1
2 frag(f̂) = (2m+ 1)−1 < ε.

By [23, Theorem 2.5(a)], f̂ ∈ Abf(BH∗). Finally,
1
2 ≤ dist(If,A1(S(H))) ≤ dist(f̂ ,A1(BH∗)).

This concludes the proof.

Proof of Theorem 1.2. Let E be an L1-predual such that extBE∗ is a
Lindelöf H-set and let f : BE∗ → R be the restriction of an element x∗∗ ∈
E∗∗. By [17, Theorem], there exists a simplex X, an isometric embedding
j : E → Ac(X) and a projection P : Ac(X) → j(E) of norm 1. Moreover,
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if E is separable, X can be chosen to be metrizable. Further, it is proved
in [17, Corollary III] that there exists an affine continuous surjection ϕ :
X → BE∗ such that

(1) ϕ(extX) = extBE∗ ∪ {0} and ϕ−1(extBE∗) ⊂ extX,
(2) ϕ|extX is injective,
(3) extX \ ϕ−1(extBE∗) is a singleton,
(4) j(e)(x) = (e|BE∗ ◦ ϕ)(x), e ∈ E, x ∈ X.

(In the notation of [17], the embedding j is denoted by T and ϕ is denoted
by q. Conditions (1), (2) and (3) are explicitly stated in [17, Corollary III],
condition (4) follows from the definitions of T on p. 175 and q on p. 176.)

We claim that extX is a Lindelöf H-set. To show this, we first ob-
serve that extX differs from the H-set ϕ−1(extBE∗) by a singleton (see (1)
and (3)), and thus it is an H-set. Second, let F ⊂ X \ extX be a compact
set. By (1), ϕ(F ) is disjoint from extBE∗ . Since extBE∗ is Lindelöf, [24,
Lemma 14] provides an Fσ set A with

extBE∗ ⊂ A ⊂ extBE∗ \ ϕ(F ).

If x0 ∈ X is the singleton extX \ϕ−1(extBE∗), then ϕ−1(A) is an Fσ set in
X satisfying

extX ⊂ ϕ−1(A) ∪ {x0} ⊂ X \ F.

By [24, Lemma 15], extX is a Lindelöf space.
If f is a Baire measurable function on BE∗ , then f ◦ϕ is Baire measurable

on X. If E is separable, X is metrizable. In both cases, Lemma 3.1 and
Theorem 1.4 give

dist(f ◦ ϕ,B1(X)) = 1
2 frag(f ◦ ϕ) = 1

2 frag(f) = dist(f,B1(BE∗)).

We fix η > dist(f,B1(BE∗)). Let g ∈ B1(X) satisfy ‖f ◦ϕ−g‖ < η. Without
loss of generality we may assume that ‖f ◦ ϕ‖ = ‖g‖. By [24, Theorem 1],
there exists a function h ∈ A1(X) such that h = g on extX and ‖h‖ = ‖g‖.

We claim that ‖h−f ◦ϕ‖ ≤ 3η. To this end, let x ∈ X be given. We find
a maximal measure µ ∈ M1(X) with r(µ) = x (see [1, Proposition I.2.1]).
If f is Baire measurable, the set

F = {x ∈ X : |h(x)− (f ◦ ϕ)(x)| ≤ η}

is a Baire set in X containing extX. By [1, Corollary I.4.12 and the subse-
quent Remark], µ(X \ F ) = 0. Hence, by Lemma 3.5,

h(x) = µ(h) =
�

F

h dµ ≤
�∗
F

f ◦ ϕdµ+ η ≤ (f ◦ ϕ)(x) + η + 2η.
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If E is separable, X is metrizable, and thus µ(X \ extX) = 0 (see [1, Co-
rollary I.4.12]). As above we obtain

µ(h) =
�

extX

h dµ ≤
�∗

extX

f ◦ ϕdµ ≤ (f ◦ ϕ)(x) + 3η.

Analogously,
h(x) ≥ (f ◦ ϕ)(x)− 3η.

Thus ‖h− f ◦ ϕ‖ ≤ 3η.
Since P : Ac(X)→ j(E) is a projection of norm 1, to any x ∈ X we can

assign a measure µx ∈ BM(X) such that

(4.2) Pf(x) = µx(f), f ∈ Ac(X).

Since P is identity on j(E), we obtain

µx(e|BE∗ ◦ ϕ) = (e|BE∗ ◦ ϕ)(x), x ∈ X, e ∈ E.
We use equality (4.2) to extend the domain of P to any bounded universally
measurable function on X.

We claim that

(4.3) |µx(h)− f(ϕ(x))| ≤ 5η, x ∈ X.
To verify this, let x ∈ X be given. We write

µx = a1µ1 − a2µ2, a1, a2 ≥ 0 with a1 + a2 ≤ 1, µ1, µ2 ∈M1(X),

and let x1, x2 ∈ X be the barycenters of µ1, µ2, respectively. Then

(4.4) ϕ(x) = a1ϕ(x1)− a2ϕ(x2).

Indeed, if e ∈ E is arbitrary, let ê denote its restriction to BE∗ . Let ϕ] :
M1(X)→M1(BE∗) denote the mapping induced by ϕ : X → BE∗ (see [9,
Theorems 418I and 418L]). Then

ê(ϕ(x)) = µx(ê ◦ ϕ) = a1µ1(ê ◦ ϕ)− a2µ2(ê ◦ ϕ)
= a1(ϕ]µ1)(ê)− a2(ϕ]µ2)(ê) = a1µ1(ê ◦ ϕ)− a2µ2(ê ◦ ϕ)
= a1ê(ϕ(x1))− a2ê(ϕ(x2)) = ê(a1ϕ(x1)− a2ϕ(x2)).

Hence (4.4) holds.
Further, by Lemma 3.5,

µ1(h) ≤
�∗
X

f ◦ ϕdµ1 + 3η =
�∗

BE∗

f d(ϕ]µ1) + 3η

≤ f(r(ϕ]µ1)) + 3η + 2η = f(ϕ(x1)) + 5η.

Analogously,
µ1(h) ≥ f(ϕ(x1))− 5η.

Hence
|µ1(h)− f(ϕ(x1))| ≤ 5η.
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Similarly we obtain
|µ2(h)− f(ϕ(x2))| ≤ 5η.

By combining these inequalities and (4.4) we have

|µx(h)− f(ϕ(x))| = |a1µ1(h)− a2µ2(h)− f(a1ϕ(x1)− a2ϕ(x2))|
= |a1(µ1(h)− f(ϕ(x1)))− a2(µ2(h)− f(ϕ(x2)))|
≤ 5η(a1 + a2) = 5η.

This gives (4.3).
If {hn} is a bounded sequence in Ac(X) pointwise converging to h, the

Lebesgue bounded convergence theorem implies that Phn → Ph. Since
Phn ∈ j(E), there exist elements en ∈ E, n ∈ N, such that

Phn = en|BE∗ ◦ ϕ, n ∈ N.

Then {en|BE∗} converges to a function e ∈ A1(BE∗). It follows that Ph =
e|BE∗ ◦ ϕ and, by (4.3),

‖e|BE∗ − f‖ = ‖e|BE∗ ◦ ϕ− f ◦ ϕ‖ = ‖Ph− f ◦ ϕ‖ ≤ 5η.

Hence dist(f,A1(BE∗)) ≤ 5η. Since η > dist(f,B1(BE∗)) is arbitrary, we
obtain

dist(f,A1(BE∗)) ≤ 5 dist(f,B1(BE∗)).

Theorem 4.2. Let X be a compact convex set such that Ac(X) does
not contain `1 and f : X → R be an affine function. Then dist(f,A1(X))
≤ 2 dist(f,B1(X)).

Proof. If dist(f,B1(X)) = ∞, the assertion obviously holds. We as-
sume that dist(f,B1(X)) < ∞ and fix η > dist(f,B1(X)). By Theorem 1.4
and Lemma 3.4, f is bounded. We find a function g ∈ B1(X) such that
‖f − g‖ < η. Without loss of generality we may assume that ‖g‖ = ‖f‖.
It is easy to find (see e.g. [16, Exercise 3.G.1]) sequences {un} and {ln} of
functions on X such that every un is upper semicontinuous, every ln is lower
semicontinuous and

−‖g‖ ≤ un ↗ g, ‖g‖ ≥ ln ↘ g.

We fix n ∈ N and x ∈ X. By [1, Corollary I.3.6], there exist measures
µ1, µ2 ∈M1(X) representing x such that

(un − η)∗(x) = µ1(un − η) and (ln + η)∗(x) = µ2(ln + η).

(We recall that f∗ and f∗ are the upper and lower envelopes of a function f ,
respectively; see [1, p. 4].) By [11, Theorem 4.2], f is universally measurable
and µ(f) = f(r(µ)) for every µ ∈ M1(X). (Here we use the identification
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of Ab(X) with (Ac(X))∗∗.) Hence

(un − η)∗(x) = µ1(un − η) <
�
f dµ1 = f(x),

(ln + η)∗(x) = µ2(ln + η) >
�
f dµ2 = f(x).

Since the upper envelope is an upper semicontinuous concave function
and the lower envelope is a lower semicontinuous convex function (see
[1, p. 4]), the Hahn–Banach theorem provides a function hn ∈ Ac(X) such
that

(un − η)∗ < hn < (ln + η)∗.

Since Ac(X) does not contain `1, Rosenthal’s theorem (see [12, p. 18])
provides a subsequence {hnk

} of {hn} that converges pointwise to a func-
tion h. Then h ∈ A1(X) and

g − η = lim
k→∞

unk
− η ≤ h ≤ lim

k→∞
lnk

+ η = g + η.

Since ‖g − f‖ < η, we obtain

‖f − h‖ < 2η.

Since η > dist(f,B1(X)) is arbitrary, the proof is finished.

Proof of Theorem 1.3. This follows from Theorem 4.2.
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