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Mixing on rank-one transformations

by

Darren Creutz (Los Angeles, CA)
and Cesar E. Silva (Williamstown, MA)

Abstract. We prove that mixing on rank-one transformations is equivalent to “the
uniform convergence of ergodic averages (as in the mean ergodic theorem) over sub-
sequences of partial sums”. In particular, all polynomial staircase transformations are
mixing.

1. Introduction

1.1. Rank-one transformations. Rank-one transformations are
transformations “well-approximated” by a sequence of discrete spectrum
transformations, so it was very surprising when in 1970 Ornstein [Orn72]
showed the existence of rank-one mixing transformations. Rank-one mixing
transformations are mixing of all orders [Kal84], [Ryz93] and enjoy other re-
markable properties, see e.g. [Kin88]. Ornstein’s construction was stochastic
in nature: there is a class of rank-one transformations so that almost surely
a transformation in that class is mixing; however, it did not yield a deter-
ministic procedure for constructing one.

1.2. Staircase transformations. A few years later, Smorodinsky con-
jectured that a specific rank-one transformation, the classical staircase trans-
formation, is mixing. In 1992, Adams and Friedman [AF92] gave a determin-
istic algorithm involving a sequence of cutting and stacking constructions
that produced a mixing rank-one transformation, and later Adams [Ada98]
proved that Smorodinsky’s conjecture is true.

Informally, a staircase transformation is a cutting and stacking trans-
formation with a sequence {rn} of natural numbers such that at the nth
stage the nth column or stack is cut into rn subcolumns, and “spacers”
(see Section 3) are placed in a staircase fashion on the subcolumns before
stacking, i.e., the number of spacers in each subsequent subcolumn is in-
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creased by 1. Adams showed that the resulting staircase transformation is
mixing provided that r2n/hn → 0 as n → ∞ (which also implies that the
transformation is finite-measure-preserving), where hn denotes the number
of levels, or height, of the nth column. He then asked whether the mixing
property holds for every finite-measure-preserving staircase transformation
simply under the assumption that rn →∞.

In 2003, Ryzhikov wrote the authors a short email stating that in 2000
he gave a lecture where he proved that all staircases are mixing (Theo-
rem 4.1 below) [Ryz03] (giving a positive answer to Adams’ question); the
result presented here was developed independently of his work and indeed
we did not receive his proof sketch until after sending a preprint of this
paper to him in 2005. We would also like to thank Ryzhikov for asking a
question that clarified our writing of the definition of polynomial staircase
transformations. The application of our main theorem shows that polyno-
mial staircase transformations are mixing (Theorem 7.3). Specializing to
the case of linear polynomials shows that all staircase transformations are
mixing.

1.3. Restricted growth. The r2n/hn → 0 condition, a restriction on
the asymptotic growth of the spacers relative to the column height, was
generalized to all rank-one transformations and called “restricted growth”
in [CS04]. The staircase transformation of Smorodinsky’s conjecture is ob-
tained when rn = n+1; verifying that it satisfies the restricted growth condi-
tion is straightforward. In [CS04], the authors proved an equivalence between
mixing and a condition on the spacer sequence for rank-one transformations
with restricted growth. It followed that restricted growth rank-one trans-
formations with the sequence of spacers given by a polynomial satisfying
some general conditions (including the staircases of [Ada98]) are mixing.
Ornstein’s result also follows from that theorem.

1.4. Our result. In this paper we lift the restricted growth condition
from the theorems in [CS04]. We present a self-contained proof of a condi-
tion equivalent to mixing for rank-one transformations involving the uniform
convergence of certain averages of partial sums of the spacer sequence. Stair-
case and polynomial staircase transformations satisfy this condition.

2. Mixing properties

2.1. Dynamical systems. For our study, a dynamical system shall
mean a standard probability measure space (X,B, µ), and a transformation
T : X → X a map that is invertible, measurable and measure-preserving.
Throughout the paper, (X,µ) is [0, 1) under Lebesgue measure and B is the
algebra of Lebesgue measurable subsets.
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2.2. Mixing. A transformation T is mixing when for all A,B ∈ B,

lim
n→∞

µ(Tn(A) ∩B)− µ(A)µ(B) = 0;

{tn} is a mixing sequence (with respect to T ) when for all A,B ∈ B,

lim
n→∞

µ(T tn(A) ∩B)− µ(A)µ(B) = 0.

2.3. Ergodicity. A transformation T is ergodic when for all A ∈ B, if
T−1(A) = A then µ(A) = 0 or µ(A) = 1. The mean (von Neumann) ergodic
theorem states that T is ergodic if and only if for all B ∈ B,

lim
n→∞

� ∣∣∣∣ 1n
n−1∑
j=0

χB ◦ T−j
∣∣∣∣ dµ = 0,

where we write χB = 1B−µ(B) (1B being the characteristic function of the
set B). A transformation T is totally ergodic when for any ` ∈ N, ` 6= 0, the
transformation T ` is ergodic. (We use the notation N = {0, 1, 2, . . .} for the
natural numbers and ZN = {0, 1, . . . , N − 1} for the N -element subset of N
with the usual order.)

2.4. Ergodic sequences. Unless otherwise stated, the term sequence
shall mean a sequence in N that is strictly increasing. A sequence {an} is an
ergodic sequence (with respect to a transformation T ) when for all B ∈ B,

lim
n→∞

� ∣∣∣∣ 1n
n−1∑
j=0

χB ◦ T−aj
∣∣∣∣ dµ = 0.

2.5. Power ergodicity. We introduce the concept of power ergodicity,
all powers of an ergodic transformation being “uniformly” ergodic in the
sense that the ergodic averages converge uniformly (to the projection onto
the constants). Earlier results on specific rank-one mixing used precursors to
this notion, including the uniform Cesàro property in [AF92] (and implicitly
in [Ada98]) and power uniform ergodicity in [CS04].

Definition 2.1. A transformation T is power ergodic when for all B∈B,

lim
n→∞

sup
k∈N

� ∣∣∣∣ 1n
n−1∑
j=0

χB ◦ T−jk
∣∣∣∣ dµ = 0.

3. Rank-one transformations

3.1. Cutting and stacking. Begin with [0, 1), the only “level” in
the initial “column”. “Cut” it into r0 “sublevels”, pieces of equal length:
[0, 1/r0), [1/r0, 2/r0), . . . , [r0 − 1/r0, 1). Place an interval of the same length
“above” [1/r0, 2/r0), i.e., place [1, (r0 + 1)/r0) above [1/r0, 2/r0). Likewise,
place j “spacer” sublevels above each piece. Now, “stack” the resulting sub-
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columns from left to right by placing [0, 1/r0) at the bottom, [1/r0, 2/r0)
above it, the spacer level above that, [2/r0, 3/r0) above the spacer and so on,
ending with the topmost of the r0−1 spacers. This stack of h1 = r0+

∑r0−1
j=0 j

levels (of length 1/r0), the second column, defines a map

T0 :
[
0, 1 +

1
r0

r0−1∑
j=0

j − 1
r0

)
→
[

1
r0
, 1 +

1
r0

r0−1∑
j=0

j

)
that sends points directly up one level.

Repeat the process: cut the entire new column into r1 subcolumns of
equal width 1/r0r1, preserving the stack map on each subcolumn; place j
spacers (intervals not yet in the space, the same width as the subcolumns)
above each subcolumn (j ∈ Zr1); and stack the resulting subcolumns from
left to right. Our new column defines a map T1 that agrees with T0 where
it is defined and extends it to all but the topmost spacer of the rightmost
subcolumn. Iterating this process leads to a transformation T defined on all
but a Lebesgue measure zero set.

The transformations obtained in this manner are called staircase trans-
formations. More generally, one may place sn,j spacers above the jth sub-
column at the nth stage in place of the j spacers above. A transformation
created by cutting and stacking as just described (with a single column
resulting from each iteration) is a rank-one transformation. The reader is
referred to [Fer97] and [Fri70] for more details. Rank-one transformations are
measurable and measure-preserving under Lebesgue measure, and are com-
pletely defined by the doubly-indexed sequence {sn,j}{rn} where at the nth
step we cut into rn pieces and place sn,j spacers above each subcolumn (for
staircase transformations, sn,j = j). This {sn,j}{rn} is the spacer sequence for
the transformation and {rn} is the cut sequence. The height sequence {hn} is
the number of levels in each column: h0 = 1 and hn+1 = rnhn +

∑rn−1
j=0 sn,j .

It is well-known (and left to the reader) that if lim inf rn <∞ then the trans-
formation will be partially rigid hence cannot be mixing. We shall assume
from now on that lim rn =∞.

We write In,i to denote the ith level in the nth stack (i ∈ Zhn) where
In,0 is the bottom level and T (In,i) = In,i+1, and write Cn =

⋃hn−1
i=0 In,i to

denote the nth column and Sn = Cn+1 \ Cn to denote the spacers added.
We write I [j]

n,i for the jth sublevel of the ith level of the nth column, i.e.,

I
[0]
n,0 is the leftmost sublevel of the bottom level (I [0]

n,0 = In+1,0 becomes the
bottom level of the next column). Note that T is defined on a finite-measure
space if and only if

∑∞
n=0 µ(Sn) < ∞, and in that case T is isomorphic to

the transformation defined on [0, 1) obtained by cutting and stacking in the
same fashion as T but beginning with C0 = [0, 1/K) where K is the measure
of the space the original T is defined on.
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4. Mixing on staircase transformations. We shall first prove di-
rectly that staircase transformations are mixing, to illustrate the techniques
used. Staircases are the simplest mixing rank-one transformations and serve
as a model for the general case. As mentioned in the introduction, the fol-
lowing theorem was proved by Adams under a growth restriction [Ada98]
and announced in full generality by Ryzhikov in 2000 (unpublished).

Theorem 4.1. Let T be a staircase transformation. Then T is mixing.

In what follows we shall first outline the ideas and then present the
formal proof. Consider a level I in the nth column defining a rank-one
transformation that is at least rn above the bottom. Look at T hn applied
to the jth sublevel of I. There are j spacers added above that subcolumn
so T hn will map the jth sublevel of I to the (j + 1)th sublevel of the level j
below I. This means that T hn maps I to a progression of 1/rn sized parts of
rn consecutive levels. So the characteristic function of T hn(I) is in fact an
average of characteristic functions of consecutive levels, which is to say that
it is of the form r−1

n

∑rn−1
j=0 1I ◦ T−j . The ergodicity of T then guarantees

that this quantity tends to zero so in fact the sequence {hn} will be mixing.
In what follows, this idea of turning a sequence into an ergodic type av-

erage will be the primary ingredient. We first establish that for an arbitrary
sequence, the mixing behavior is controlled by specific ergodic type averages.
We then prove that for staircase transformations, any ergodic type average
along arithmetic progressions tends to zero.

The following lemma formalizes our discussion of sublevels above:

Lemma 4.2. Let p ∈ N, i ∈ Zhp, j ∈ Zrp , and B a union of levels in Cp.
Then

(i) Ip,i =
rp−1⋃
j=0

I
[j]
p,i;

(ii) T khp+jk+
1
2
k(k−1)I

[j]
p,i = I

[j+k]
p,i ;

(iii) µ(I [j]
p,i ∩B) =

1
rp
µ(Ip,i ∩B).

Proof. (i) is immediate from the construction of rank-one transforma-
tions; (ii) follows from k applications of the fact that T hp+jI [j]

p,i = I
[j+1]
p,i ; and

for (iii), B is a union of levels in Cp so Ip,i ⊆ B or Ip,i ∩B = ∅.

The first step in our proof of mixing is the well-established result on the
height sequence:

Proposition 4.3 ([Ada98]). Let T be a staircase transformation with
height sequence {hn}. Then {hn} is mixing with respect to T .
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This a direct consequence of Theorem 3 in [CS04] applied to staircase
transformations; alternatively, it follows from the proof of mixing on “D1”
in Theorem 2.3 of Adams [Ada98] (the restricted growth condition is not
used in that part of the proof).

The following technical lemma, in combination with Lemma 4.2(ii),
shows that if we look at a block of ` consecutive sublevels of some level I
then after applying T khn and dropping the levels at the bottom of the col-
umn we are left with an ergodic type average of powers of T k exactly as
what occurs for hn but weighted by the size of the block `/rn.

Lemma 4.4. For p, k ∈ N, ` ∈ Zrp and c ∈ Zrp−`,

hp−1∑
i=0

∣∣∣∣ `−1∑
j=0

µ(T−jkI [j+c]
p,i ∩B)− µ(I [j]

p,i)µ(B)
∣∣∣∣

≤ `

rp

� ∣∣∣∣1`
`−1∑
j=0

χB ◦ T−jk
∣∣∣∣+

`2k

rphp
.

Proof. For i ≥ `k,

µ(T−jkI [j+c]
p,i ∩B) =

1
rp
µ(T−jkIp,i ∩B)

by Lemma 4.2(iii). And for i < `k,∣∣∣ `−1∑
j=0

µ(T−jkI [j+c]
p,i ∩B)− µ(I [j+c]

p,i )µ(B)
∣∣∣ ≤ `µ(I [0]

p,i) ≤
`

rphp

since µ(Cp) ≤ 1.

Consider now the ergodic type average of rn powers of T k(n), that is, let
k vary with n. It is clear from the construction of rank-one transformations
by columns that if k(n)hp ≤ tn ≤ (k(n) + 1)hp then the behavior of T tn
is controlled by that of T k(n)hp and T (k(n)+1)hp . The following proposition
states that if we know a priori that the ergodic type averages of the powers
of T k(n) tend to zero and furthermore that k(n) is small enough that we
may drop the bottom k(n) levels (these levels have vanishing measure),
then following the same procedure as above, T k(n)hp will be mixing and so
then will be the sequence {tn}.

Definition 4.5. In the context of a rank-one transformation with heights
{hn} and cuts {rn}, given t ∈ N, the unique p and k for t are the unique
numbers p, k ∈ N such that hp ≤ t < hp+1 and khp ≤ t < (k + 1)hp.

Note that since k < hp+1/hp and by the finite-measure-preserving prop-
erty hp+1/hprp = µ(Cp+1)/µ(Cp)→ 1, we have k/rp < hp+1/hprp → 1.
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In what follows, when we say “choose p and k” we shall mean the above
construction. In particular, we shall often assume that k ≤ rp and leave
to the reader to verify that in fact knowing k ≤ (1 + ε)rp for small ε
suffices.

Proposition 4.6. Let T be a staircase transformation with cut sequence
{rn} and height sequence {hn} and let {tn} be a sequence. Choose p(n) and
k(n) such that hp(n) ≤ tn < hp(n)+1 and k(n)hp(n) ≤ tn < (k(n) + 1)hp(n). If
rp(n)k(n)/hp(n) → 0 and for any B ∈ B,

lim
n→∞

� ∣∣∣∣ 1
rp(n)

rp(n)−k(n)−1∑
j=0

χB ◦ T−jk(n)

∣∣∣∣ dµ = 0

and likewise with k(n) replacing k(n) + 1, then {tn} is mixing with respect
to T .

Proof. The idea here is to write k(n) and hp as above; the proposition
then follows from the fact that T knhp sends a level in Cp to 1/rp parts of a
progression of rp−kn levels that are all kn apart so the ergodic type average
of the powers of T kn is exactly the condition needed.

We now make this precise. Here, and in the proofs below, we shall some-
times drop the explicit dependence on n: we write p = p(n) and k = k(n).
Pick m = m(n) such that tn = khp + m where 0 ≤ m < hp. Let A,B
be unions of levels in CN for some N ∈ N. For n such that p ≥ N , as in
Proposition 4.3,

|µ(T tnA ∩B)− µ(A)µ(B)|

≤
hp−1∑
i=0

|µ(T khp+mIp,i ∩B)− µ(Ip,i)µ(B)|

=
hp−m−1∑
i=0

|µ(T khpIp,i+m ∩B)− µ(Ip,i+m)µ(B)|

+
hp−1∑

i=hp−m
|µ(T (k+1)hpIp,i+m−hp ∩B)− µ(Ip,i+m−hp)µ(B)|

≤
hp−1∑
i=0

|µ(T khpIp,i ∩B)− µ(Ip,i)µ(B)|

+
hp−1∑
i=0

|µ(T (k+1)hpIp,i ∩B)− µ(Ip,i)µ(B)|.

Now by Lemma 4.2(i) and the triangle inequality,
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hp−1∑
i=0

|µ(T khpIp,i ∩B)− µ(Ip,i)µ(B)|

≤
hp−1∑
i=0

∣∣∣ rp−k−1∑
j=0

µ(T khpI [j]
p,i ∩B)− µ(I [j]

p,i)µ(B)
∣∣∣

+
hp−1∑
i=0

rp−1∑
j=rp−k

|µ(T khpI [j]
p,i ∩B)− µ(I [j]

p,i)µ(B)|

and T khpI [j]
p,i = T (k+j)hp+

1
2
j(j−1)Ip+1,i, so for j ≥ rp − k we have (k+ j)hp +

1
2j(j − 1) ≥ rphp = hp+1 − 1

2rp(rp − 1) so that in fact T khpI [j]
p,i = T hp+1I

[b]
p,a

for some a and b, and I
[b]
p,a is a level in Cp+1, hence

hp−1∑
i=0

rp−1∑
j=rp−k

∣∣µ(T khpI [j]
p,i ∩B)− µ(I [j]

p,i)µ(B)
∣∣

≤
hp+1−1∑
i=0

∣∣µ(T hp+1Ip+1,i ∩B)− µ(Ip+1,i)µ(B)
∣∣+

1
2
rp(rp − 1)µ(Ip+1,0)

≤
hp+1−1∑
i=rp+1

∣∣∣∣ 1
rp+1

rp+1−1∑
j=0

µ(T−jIp+1,i ∩B)− µ(Ip+1,i)µ(B)
∣∣∣∣

+
hp+1−1∑
i=rp+1

2
rp+1

µ(Ip+1,i) +
rp+1−1∑
i=0

µ(Ip+1,i) +
1
2
rp(rp − 1)µ(Ip+1,0)

≤
� ∣∣∣∣ 1
rp+1

rp+1−1∑
j=0

χB ◦ T−j
∣∣∣∣ dµ+

2
rp+1

+
rp+1

hp+1
+

1
2
rp(rp − 1)µ(Ip+1,0),

which approaches zero since 1
2rp(rp − 1)µ(Ip+1,0) = µ(Sp) → 0 and T is

ergodic.
For 1

2k(k − 1) ≤ i < hp, using Lemma 4.2(ii), we see that T khpI [j]
p,i =

T−jkI
[j+k]

p,i− 1
2
k(k−1)

so by Lemma 4.4,

hp−1∑
i=0

∣∣∣ rp−k−1∑
j=0

µ(T khpI [j]
p,i ∩B)− µ(I [j]

p,i)µ(B)
∣∣∣

≤
� ∣∣∣∣ 1
rp

rp−k−1∑
j=0

χB ◦ T−jk
∣∣∣∣ dµ+

(rp − k)2k
rphp

+
1
2
k(k − 1)

rp − k
rp

µ(Ip,0),
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Now
(rp − k)2k
rphp

≤ rpk

hp
→ 0 and

1
2
k(k − 1)

rp − k
rp

µ(Ip,0) ≤ k2

hp
≤ krp

hp
→ 0

as n→∞ by hypothesis and the integral goes to zero by the final hypothesis.
The above repeats similarly for the k + 1 part.

We now examine the case of a sequence where the k(n) derived as above
is not small enough to simply drop the bottommost levels:

Proposition 4.7. Let T be a staircase transformation with cut sequence
{rn} and height sequence {hn} and let {tn} be a sequence. Choose p(n)
and k(n), as usual, such that k(n)hp(n) ≤ tn < (k(n) + 1)hp(n). If there
exists a sequence {l(n)} such that l(n) → ∞, l(n)k(n)/hp(n) → 0 and
(l(n))/rp(n) → 0 and such that for any α(n, q) ∈ N indexed over

0 ≤ q < Qn =
⌈
rp(n) − k(n)

l(n)

⌉
with lim sup

n
sup
q

α(n, q)
k(n)

< 1

and α(n, q) ≤ α(n, q + 1) ≤ α(n, q) + 1,

lim
n→∞

1
Qn

Qn−1∑
q=0

� ∣∣∣∣ 1
l(n)

l(n)−1∑
j=0

χB ◦ T−j(k(n)+2−α(n,q))

∣∣∣∣ dµ = 0,

then {tn} is mixing with respect to T .

Proof. The idea here is to break the sublevels up into blocks of size small
enough that we can drop the bottommost levels for each block separately
and then apply our above methods to each block. Our lemma on blocks of
sublevels tells us that each block will be weighted by the size of the block,
so if each block’s ergodic type average tends to zero then the entire quantity
will tend to zero as well.

The reason we have been dropping the bottommost levels above is that
the behavior of the sublevels of those bottom levels is not to form an evenly
spaced progression on the levels but in fact to form two or more such pro-
gressions by “coming back through the top” of the column. This coming
back through the top can be avoided if we can ensure that the k(n) we are
using on a given block has the property that jk(n) is small compared to hn
for j = 0, . . . , l where l is the size of the block. The following proposition
states and proves this formally: if the blocks we use are of size l(n) and
for any k(n) − α corresponding to the number of hn’s we need to remove
when examining each block (α depends on the block), then if the ergodic
type average tends to zero, the original sequence will be mixing. The condi-
tions required on the l(n) are necessary to perform the step of dropping the
bottommost levels for each block (independently).



52 D. Creutz and C. E. Silva

Now we make this precise: as before, we shall drop the explicit mention
of n and write p = p(n), k = k(n), l = l(n), Q = Qn and α(·) = α(n, ·).
Let B be a union of levels in CN for some N ∈ N. Then, as in the proof of
Proposition 4.6, it suffices to show that

hp−1∑
i=0

∣∣∣ rp−k−1∑
j=0

µ(T khpI [j]
p,i ∩B)− µ(I [j]

p,i)µ(B)
∣∣∣→ 0

and similarly for k + 1. Now

hp−1∑
i=0

∣∣∣ rp−k−1∑
j=0

µ(T khpI [j]
p,i ∩B)− µ(I [j]

p,i)µ(B)
∣∣∣

≤
hp−1∑
i=0

Q−1∑
q=0

∣∣∣ l−1∑
j=0

µ(T khpI [j+ql]
p,i ∩B)− µ(I [j+ql]

p,i )µ(B)
∣∣∣+

hp−1∑
i=0

lµ(I [0]
p,i)

and
∑hp−1

i=0 lµ(I [0]
p,i) = (l/rp)µ(Cp) → 0 by hypothesis. For 0 ≤ q < Q,

choose α(q) = α(n, q) minimal such that qlk + 1
2k(k − 1) < α(q)

(
hp + ql +

k − 1
2

)
− 1

2α(q)2. This reasoning for this choice of α is that T khp acts like
an average of T−j(k−α) due to the fact that the spacer levels being added
are not small compared to hp, that is, T khp would push levels through k
times except that the spacers remove α of those times; we have chosen α

so that T khpI [ql]
p,i = TwI

[ql+k−α(q)]
p,i and w > 0, and α is minimal. The α(q)

are clearly nondecreasing and since lrp/hp → 0 (by hypothesis) we have
α(q + 1)− α(q) ≤ 1 for large n.

Since α(q) is chosen minimally, consider using 1
2k in the defining inequal-

ity for α(q): since ql ≤ Ql ≤ ((rp − k)/l + 1)l = rp − k + l we have

1
2
k

(
hp + ql + k − 1

2

)
− 1

4
k2 − qlk − 1

2
k(k − 1)

=
1
2
k

(
hp − ql −

1
2
− 3

4
k

)
≥ 1

2
k

(
hp − rp −

1
2

+
1
4
k − l

)
and since l/rp → 0 and rp/hp → 0, in the limit this quantity is nonnegative.
Therefore lim supα(q)/k ≤ 1/2 uniformly over q.

Set β(q) = α(q)hp − ql(k − α(q)) − 1
2(k − α(q))(k − α(q) − 1) so that

0 ≤ β(q) < hp + ql + k + 1/2. Then β(q) roughly corresponds to the height
in the column where applying T khp switches between acting like T (k−α(q))hp

and like T (k−α(q)−1)hp . For 0 ≤ j < l and 0 ≤ i < hp, by Lemma 4.2(ii),

T khpI
[j+ql]
p,i = T−j(k−α(q))+β(q)I

[j+ql+k−α(q)]
p,i .
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For 0 ≤ i < hp − β(q), we have

T−j(k−α(q))+β(q)I
[j+l+k−α(q)]
p,i = T−j(k−α(q))I

[j+ql+k−α(q)]
p,i+β(q) ,

and for hp − β(q) + ql − α(q) + k ≤ i < hp, we have

T−j(k−α(q))+β(q)I
[j+l+k−α(q)]
p,i = T−j(k−α(q))+hpI

[j+ql+k−α(q)]
p,i+β(q)−hp

= T−j(k−α(q)+1)I
[j+ql+k−α(q)+1]
p,i+β(q)−hp−ql−k+α(q).

Hence for each q,

hp−1∑
i=0

∣∣∣ l−1∑
j=0

µ(T khpI [j+ql]
p,i ∩B)− µ(I [j+ql]

p,i )µ(B)
∣∣∣

≤
hp−1∑
i=0

∣∣∣ l−1∑
j=0

µ(T−j(k−α(q))I
[j+ql+k−α(q)]
p,i ∩B)− µ(I [j+ql]

p,i )µ(B)
∣∣∣

+
hp−1∑
i=0

∣∣∣ l−1∑
j=0

µ(T−j(k−α(q)+1)I
[j+ql+k−α(q)+1]
p,i ∩B)− µ(I [j+ql]

p,i )µ(B)
∣∣∣

+ (ql + k − α(q))
l

rp
µ(Ip,0),

and since ql + k − α(q) ≤ rp,
Q−1∑
q=0

(ql + k − α(q))
l

rp
µ(Ip,0) ≤ Qlrp

rphp
≤ rp
hp
→ 0.

By Lemma 4.4,

Q−1∑
q=0

hp−1∑
i=0

∣∣∣ l−1∑
j=0

µ(T−j(k−α(q))I
[j+ql+k−α(q)]
p,i ∩B)− µ(I [j+ql+k−α(q)]

p,i )µ(B)
∣∣∣

≤
Q−1∑
q=0

l

rp

� ∣∣∣∣1l
l−1∑
j=0

χB ◦ T−j(k−α(q))

∣∣∣∣ dµ+
Q−1∑
q=0

l2(k − α(q))
rphp

.

Note that Q ≤ (rp − k)/l + 1 ≤ 2rp/l by hypothesis, so

Q−1∑
q=0

l2(k − α(q))
rphp

≤ l2Qk

rphp
≤ 2lk

hp
→ 0

by hypothesis, and applying the above also to the i ≥ hp−β(q)+ql+k−α(q)
case yields
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hp−1∑
i=0

∣∣∣ rp−k−1∑
j=0

µ(T khpI [j]
p,i ∩B)− µ(I [j]

p,i)µ(B)
∣∣∣

≤ 1
Q

Q−1∑
q=0

� ∣∣∣∣1l
l−1∑
j=0

χB ◦ T−j(k−α(q))

∣∣∣∣ dµ
+

1
Q

Q−1∑
q=0

� ∣∣∣∣1l
l−1∑
j=0

χB ◦ T−j(k−α(q)+1)

∣∣∣∣ dµ+ γ

where γ = γn → 0 is the sum of all the terms above that tend to zero. Thus
the above quantity goes to zero by the final hypothesis. Applying the entire
argument again to the k + 1 case implies that {tn} is mixing.

Remark 4.8. The α(q) range from 0 to R ≈ hp/Q (all quantities here
of course depend on n) and each particular value is taken on with approxi-
mately the same density over j. This is due to the fact that α(q) is roughly
jk/hp.

Having obtained our above results that mixing on sequences will follow
from convergence to zero of ergodic type averages of T k where k is allowed
to move with n (the number of terms being averaged), we now show that
such averages do in fact converge to zero.

We shall need the Block Lemma, our next statement, which tells us that
an ergodic type average of powers of T k will be dominated by an ergodic
type average of powers of T kq with proportionally fewer terms.

Lemma 4.9 (Block Lemma, [Ada98]). Let T be a measure-preserving
transformation and B ∈ B. Then for any R,L, q ∈ N,

� ∣∣∣∣ 1
R

R−1∑
j=0

χB ◦ T−j
∣∣∣∣ dµ ≤ � ∣∣∣∣ 1L

L−1∑
j=0

χB ◦ T−jq
∣∣∣∣ dµ+

qL

R
.

Proof. The main idea is to split the sum into blocks of size Lp and then
each Lp block into L blocks and use the measure-preserving property to
combine terms. Details are left to the reader.

The case when k(n) is bounded follows directly from the total ergodicity
of T (which holds since T has a mixing sequence). Our next proposition is
that if k(n)/n is bounded then the ergodic type averages of n consecutive
powers of k(n) converge to zero.

Proposition 4.10. Let T be a staircase transformation. Then for any
{kn} such that lim supn kn/n <∞ and any B ∈ B,

lim
n→∞

� ∣∣∣∣ 1n
n−1∑
j=0

χB ◦ T jkn
∣∣∣∣ dµ = 0.



Mixing on rank-one transformations 55

This follows from the proof of Lemma 2.2 in Adams [Ada98] (and appears
in [CS04]). The idea is to use the Block Lemma to multiply kn by a number
qn so that knqn ≈ hp for some p. Then the mixing behavior of hn will yield
the convergence of the average of (any number of terms of) consecutive
powers of T knqn , which by the Block Lemma dominates the average of powers
of T kn . We will need that kn/n is bounded to ensure that the terms in the
sum dropped by the Block Lemma (the pL/R term) are small.

The following two lemmas also follow from the proof of Lemma 2.2 in
[Ada98] (using the “Blum–Hanson” trick). The reader is referred to the
proof of Proposition 7.6 for a (combined) proof of Proposition 4.10 and the
following two lemmas in a slightly more general context.

Lemma 4.11. Let T be a staircase transformation with heights {hn} and
let {tn} and {pn} be sequences such that hpn ≤ tn < 2hpn. Then for any
ε > 0 there exists L such that for all sufficiently large n,

� ∣∣∣∣ 1L
L−1∑
d=0

χB ◦ T−dtn
∣∣∣∣ dµ < ε.

Lemma 4.12. Let T be a staircase transformation and {tn} a sequence
such that for any fixed d the sequence {dtn} is mixing with respect to T .
Then for any ε > 0, for sufficiently large n,

� ∣∣∣∣ 1n
n−1∑
j=0

χB ◦ T−jtn
∣∣∣∣ dµ < ε.

We now establish the final result needed to prove staircases are mixing:
that the ergodic type average of powers of T kn will converge to zero regard-
less of how fast kn grows. This property is of some independent interest and
is referred to as power ergodicity.

Proposition 4.13. Let T be a staircase transformation. Then T is
power ergodic.

Proof. For any k we find the largest p such that k ≈ xhp for some
positive integer x. The proof is by cases. In the case when x/rp is bounded
away from zero, we may use the Block Lemma to multiply k by q = rp/x
so that kq ≈ hp+1. In the case when xrp/hp is small, x/rp will be bounded
so the averages of the powers of T x will vanish. Then {kn} will be mixing
(Proposition 4.6) so its average must converge to zero.

Having disposed of these cases, if xrp/hp is bounded then we can pick l(n)
satisfying the conditions of Proposition 4.7 and so that x/l(n) is bounded.
Then Proposition 4.10 tells us the average of powers of T x vanishes, so by
Proposition 4.7, {k(n)} is mixing. The final case is when xrp/hp →∞. We
again find a sequence l(n) and break the average into blocks of size l(n) but
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in this case the values of α we obtain (as in the statement of Proposition 4.7)
will effectively take on all values. We then use that T is weak mixing to show
that the average of averages of powers of T x−α tends to zero and so again
{kn} is mixing.

Now we make this precise. Let {kn} be an arbitrary sequence. Write
kn = k = xhp +m as usual, dropping the n and picking p uniquely so that
hp ≤ k < hp+1 and then x and m accordingly.

Case 1a: lim infn x/rp = δ > 0. Pick a large fixed L and let z =
dhp+1/ke. Then by the Block Lemma,

� ∣∣∣∣ 1n
n−1∑
j=0

χB ◦ T jk
∣∣∣∣ dµ ≤ � ∣∣∣∣ 1L

L−1∑
l=0

χB ◦ T lzk
∣∣∣∣ dµ+

Lz

n

and hp+1/k ≤ rphp/xhp = rp/x ≤ 1/δ so since L is fixed the rightmost term
tends to zero as n → ∞. By Lemma 4.11 with t = zk (so that hp+1 ≤ t ≤
hp+1 + k) the above can be made arbitrarily small by taking L sufficiently
large.

Case 1b: limn xrp/hp = 0. Since lim supx/rp ≤ 1 by the construction
of the unique x and p, by Proposition 4.10 (using rp− x in place of n in the
proposition) we have

	
|(1/rp)

∑rp−x−1
j=0 χB ◦T−jx| dµ→ 0 (and also for x+1

in place of x) because we may assume rp−x→∞ as when (rp − x)/rp → 0
the claim is trivial (and of course rp → ∞ since k → ∞ hence p → ∞).
Then by Proposition 4.6 (using the hypothesis for this case) we find that
{kn} is mixing. For any fixed l the same argument shows that {lkn} is a
mixing sequence. The result follows from Lemma 4.11.

Case 2: lim supn xrp/hp < ∞ (and not Cases 1a or 1b). Let ∆ be the
limit supremum and δ the limit infimum of xrp/hp (so 0 < δ ≤ ∆ < ∞,
the δ = 0 case being covered by 1b and the ∆ = ∞ to be Case 3). Pick
ε = εn → 0 such that εhp/rp → ∞ (possible since T is finite-measure-
preserving) and such that εrp/x ≥ α > 0 for some α > 0 (requires that
x/rp → 0, which we may assume to be the case by dropping to a subse-
quence of the n and noting that the subsequence of n where this does not
tend to zero is covered by Case 1a above; specifically, fix ε > 0 and split
the sequence into the part where rp/hp < ε and where it is greater, handle
each separately and then take ε → 0). Set l = εhp/x (modify ε slightly so
that l is an integer). Then l = ln → ∞ and l/rp = εhp/xrp ≤ ε/δ → 0
and lx/hp = ε → 0. Note that x/l ≤ x∆/εrp ≤ ∞. Then by Proposi-
tion 4.10,

	
|(1/l)

∑l−1
j=0 χB ◦ T j(x+2−α(q))| dµ→ 0 for any α(q) satisfying the

requirements of Proposition 4.7. Proposition 4.7 in turn shows that {kn} is
mixing. Clearly the same argument works for a constant multiple {dkn} so
by Lemma 4.12 the result follows.
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Case 3: lim supn xrp/hp =∞ (and not Cases 1a, 1b or 2). Since x/hp ≤
rp/hp → 0 there exists l = ln →∞ such that xl/hp → 0. Then

l

rp
=

hp
xrp

lx

hp
→ 0.

SetQ = Qn = d(rp − x)/le → ∞ (recall we have eliminated Case 1b and may
drop to a subsequence since the subsequence along which this is bounded
will be covered by that case). Let α(q) be the sequence of values required in
Proposition 4.7. By the Block Lemma,

1
Q

Q−1∑
q=0

� ∣∣∣∣1l
l−1∑
j=0

χB ◦ T j(x+2−α(q))

∣∣∣∣ dµ
≤ 1
Q

Q−1∑
q=0

� ∣∣∣∣ 1L
L−1∑
j=0

χB ◦ T j(x+2−α(q))

∣∣∣∣ dµ+
L

l
.

For each fixed d 6= 0 the fact that T is weakly mixing implies that T d is
weakly mixing. There is then a density one sequence Jd such that T d is
mixing along Jd. Now α(q) takes on all integer values from 0 to Rn where
Rn → ∞ since Q = Qn → ∞, and takes on each particular value with
approximately the same density (see Remark 4.8). So for m ≤ R,

#{(q, r) ∈ ZQ × ZQ : α(q)− α(r) = m}

=
m∑
t=0

#{q ∈ ZQ : α(q) = t}#{r ∈ ZQ : α(r) = t−m} ≈ m
(
Q

R

)2

≤ Q2

R
.

Therefore
1
Q2

#{(q, r) ∈ ZQ × ZQ : α(q)− α(r) /∈ Jd} .
#(ZR \ Jd)

R
→ 0.

Then for each fixed d 6= 0 there is some Zd such that

1
Q

Q−1∑
q,r=0

∣∣µ(T d(α(q)−α(r))B ∩B)− µ(B)µ(B)
∣∣ < ε

for any Q ≥ Zd.
By the Hölder inequality and the measure-preserving property (repeat-

edly),(
1
Q

Q−1∑
q=0

� ∣∣∣∣ 1L
L−1∑
j=0

χB ◦ T j(x+2−α(q))

∣∣∣∣ dµ)4

≤
(

1
Q

Q−1∑
q=0

1
L2

L−1∑
j,t=0

µ(T (j−t)(x+2−α(q))B ∩B)− µ(B)µ(B)
)2
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≤
(

1
L2

L−1∑
j,t=0

� ∣∣∣∣ 1
Q

Q−1∑
q=0

χB ◦ T−(j−t)α(q)

∣∣∣∣ ◦ T (j−t)(x+2) dµ

)2

≤ 1
L2

L−1∑
j,t=0

1
Q2

Q−1∑
q,r=0

µ(T (j−t)(α(q)−α(r))B ∩B)− µ(B)µ(B).

Hold L fixed and pick n such that Q ≥ Zd for all −L ≤ d ≤ L (and
d 6= 0). Then the above is less than ε+ 1/L, which tends to zero. Hence by
Proposition 4.7 we see that {kn} is mixing. In fact, so also is any constant
multiple of {kn}, and the result follows by Lemma 4.12.

We are now ready to prove that staircases are mixing. By Proposition 4.7
this reduces to showing that ergodic type averages tend to zero and the above
tells us this is the case.

Proof of Theorem 4.1. Let {tn} be a sequence. Let {rn} be the cut
sequence and {hn} the height sequence for T and set p(n) and k(n) as usual.
Pick a sequence {ln} such that ln →∞, lnk(n)/hp(n) → 0 and ln/rp(n) → 0
(possible since k(n)/hp(n) ≤ rp(n)/hp(n) → 0). Since T is power ergodic
(Proposition 4.13), for any B ∈ B,

� ∣∣∣∣ 1
ln

ln−1∑
j=0

χB ◦ T−j(k(n)+2−α(n,q))

∣∣∣∣ dµ→ 0

for appropriate α(n, q). Then by Proposition 4.7, {tn} is mixing with respect
to T .

5. General rank-one transformations. We now establish the results
we obtained on staircases for general rank-one transformations. The meth-
ods follow the same strategy as above but with many additional technical
complications due to the fact that the spacer sequence is now arbitrary
and no longer arithmetical so tricks such as the Block Lemma are no longer
straightforward. The propositions below are direct analogues of those above.
The reader is encouraged to become familiar with the concepts in the case
of staircase transformations before reading the details of the general case.

5.1. Dynamical sequences. Dynamical sequences are the natural rep-
resentation of spacer sequences for rank-one transformations (see Section 3).

Definition 5.1. A dynamical sequence {sn,j}{rn} is a doubly indexed
collection of integers sn,j for n ∈ N and j ∈ Zrn where {rn} is a given
sequence, called the index sequence, which must have the property that
limn→∞ rn = ∞. The integer sn,j is the jth element of the dynamical se-
quence at the nth stage.
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5.2. Partial sums of dynamical sequences

Notation. Let {sn,j}{rn} be a dynamical sequence and n ∈ N, j ∈ Zrn ,
k ∈ Zrn−j . The kth partial sum of the jth element at the nth stage is

s
(k)
n,j =

k−1∑
z=0

sn,j+z.

Definition 5.2. Let {sn,j}{rn} be a dynamical sequence and k ∈ N. The

kth partial sum dynamical sequence is the dynamical sequence {s(k)n,j}{rn−k}
(n “begins” at the smallest value such that rn ≥ k) whose elements are the
kth partial sums of {sn,j}{rn}. Let {kn} be a sequence such that kn < rn
for all n. The {kn}th partial sum dynamical sequence of {sn,j}{rn} is the

dynamical sequence {s(kn)
n,j }{rn−kn}.

5.3. Spread out dynamical sequences

Definition 5.3. A dynamical sequence {sn,j}{rn} is spread out, which
will be written as sn,j →∞, when for every fixed M ∈ N,

lim
n→∞

1
r2n

#{j, k ∈ Zrn :
∣∣sn,j − sn,k∣∣ < M} = 0.

This property was referred to as a dynamical sequence being monotonic
in [CS04].

5.4. Ergodic dynamical sequences

Definition 5.4. A dynamical sequence {sn,j}{rn} is an ergodic dynam-
ical sequence (with respect to a transformation T ) when for all B ∈ B,

lim
n→∞

� ∣∣∣∣ 1
rn

rn−1∑
j=0

χB ◦ T−sn,j
∣∣∣∣ dµ = 0.

5.5. Mixing and ergodic dynamical sequences. The following is
a standard generalization of the Blum–Hanson theorem from sequences to
dynamical sequences.

Theorem 5.5. A transformation T is mixing if and only if every spread
out dynamical sequence is ergodic with respect to T .

Proof. Let T be a mixing transformation and {sn,j}{rn} a spread out
dynamical sequence. For any B ∈ B and any ε > 0 there exists M ∈ N such
that for all m ≥ M or m ≤ −M we have |µ(Tm(B) ∩ B)− µ(B)µ(B)| < ε.
As {sn,j}{rn} is spread out, there exists N ∈ N such that for all n ≥ N ,
#{(j, l) ∈ Zrn × Zrn : |sn,j − sn,l| < M} < εr2n. Then
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� ∣∣∣∣ 1
rn

rn−1∑
j=0

χB ◦ T−sn,j
∣∣∣∣2dµ

=
1
r2n

rn−1∑
j,l=0

µ(T sn,j−sn,lB ∩B)− µ(B)µ(B)

≤ 1
r2n

∑
|sn,j−sn,l|≥M

|µ(T sn,j−sn,lB ∩B)− µ(B)µ(B)|+ 1
r2n
εr2nµ(B)

<
1
r2n

∑
|sn,j−sn,l|≥M

ε+ εµ(B) < ε(1 + µ(B)).

Conversely, suppose T is not mixing. As mixing is equivalent to Rényi
mixing there exist B ∈ B, δ > 0 and a sequence {tm} such that µ(T tmB∩B)
− µ(B)µ(B) ≥ δ for all m. Define {sn,j}{rn} by rn = n and sn,j = tj . Then

� ∣∣∣∣ 1
rn

rn−1∑
j=0

χB ◦ T−sn,j
∣∣∣∣ dµ ≥ ∣∣∣∣ 1n

n−1∑
j=0

�

B

χB ◦ T−tj dµ
∣∣∣∣

=
∣∣∣∣ 1n

n−1∑
j=0

µ(T tjB ∩B)− µ(B)µ(B)
∣∣∣∣ ≥ δ.

Since {tm} is strictly increasing, {sn,j}{rn} is spread out.

5.6. Levels of rank-one transformations

Lemma 5.6. Let T be a rank-one transformation with levels {In,i},
heights {hn}, and spacers {sn,j}{rn}. Let p ∈ N, i ∈ Zhp, j ∈ Zrp, k ∈ Zrp−j,
t ∈ Zhp−i and B a union of levels in Cp. Then the following hold:

(i) Ip,i =
rp−1⋃
j=0

I
[j]
p,i;

(ii) T khp+s
(k)
p,j (I [j]

p,i) = I
[j+k]
p,i ;

(iii) µ(T t(I [j]
p,i) ∩B) =

1
rp
µ(T t(Ip,i) ∩B).

Lemma 5.7. For any p ∈ N, any Λ ⊆ Zhp, any Γ ⊆ N, any union B of
levels in Cp and any maps f : Γ → Z and g : Γ → Zrp,∑

i∈Λ

∣∣∣∑
j∈Γ

µ(T f(j)(I [g(j)]
p,i ) ∩B)− µ(I [g(j)]

p,i )µ(B)
∣∣∣

≤
� ∣∣∣∣ 1
rp

∑
j∈Γ

χB ◦ T f(j)

∣∣∣∣ dµ+ (sup
j∈Γ

f(j))
1
hp

#Γ

rp
.
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5.7. Mixing sequences

Proposition 5.8. Let T be a rank-one transformation with spacer se-
quence {sn,j}{rn} and heights {hn} and let k ∈ N. If {s(k)n,j}{rn−k} is ergodic
(with respect to T ) then {khn} is mixing (with respect to T ).

Proof. Let B be a union of levels in CN for some fixed N ∈ N. For any
sets Jn ⊆ Zrn−k, apply Lemmas 5.6(i) then 5.6(ii) and finally 5.7, for any
n ≥ N , to get

hn−1∑
i=0

|µ(T khn(In,i) ∩B)− µ(In,i)µ(B)|

≤
hn−1∑
i=0

∣∣∣ ∑
j∈Zrn−k\Jn

µ(T khn(I [j]
n,i) ∩B)− µ(I [j]

n,i)µ(B)
∣∣∣+

k

rn
+

# Jn
rn

=
hn−1∑
i=0

∣∣∣ ∑
j∈Zrn−k\Jn

µ(T−s
(k)
n,j (I [j+k]

n,i ) ∩B)− µ(I [j+k]
n,i )µ(B)

∣∣∣+
k

rn
+

# Jn
rn

≤
� ∣∣∣∣ 1
rn

rn−k∑
j=0

χB ◦ T−s
(k)
n,j

∣∣∣∣ dµ+
2k
rn

+ 2
# Jn
rn

+
1
hn

sup
j∈Zrn−k\Jn

s
(k)
n,j .

As {s(k)n,j}{rn−k} is ergodic with respect to T , we need only show that

there exist sets Jn ⊆ Zrn−k such that # Jn/rn → 0 and h−1
n supj /∈Jn s

(k)
n,j → 0.

Suppose not. Then there exists δ > 0 such that s(k)n,j ≥ δhn for at least δrn
values of j (for infinitely many n). But then at least k−1δrn values of j are
such that sn,j ≥ (δ/k)hn so µ(Sn) ≥ (δ2/k2)rnhnµ(In+1,0) = (δ2/k2)µ(Cn),
contradicting that T is defined on a finite-measure space.

Proposition 5.9. Let T be a rank-one transformation with height se-
quence {hn} and spacer sequence {sn,j}{rn} and let {tn} be a sequence.
Set p(n) and k(n) such that hp(n) ≤ tn < hp(n)+1 and k(n)hp(n) ≤ tn <
(k(n) + 1)hp(n). If there exists Jn ⊆ Zrp(n)−k(n) such that # Jn/rp(n) → 0

and h−1
p(n) supj /∈Jn s

(k(n))
n,j → 0 and for all B ∈ B,

� ∣∣∣∣ 1
rp(n)

rp(n)−k(n)−1∑
j=0

χB ◦ T
−s(k(n))

p(n),j

∣∣∣∣ dµ→ 0

then {tn} is mixing with respect to T .

Proof. Write tn = khp + m (with k = k(n), p = p(n) and m = m(n)
as before) and let A,B be unions of levels in CN for some N ∈ N. For
sufficiently large n, as in Proposition 4.3,



62 D. Creutz and C. E. Silva

|µ(T tnA ∩B)− µ(A)µ(B)| ≤
hp−1∑
i=0

|µ(T khpIp,i ∩B)− µ(Ip,i)µ(B)|

+
hp−1∑
i=0

|µ(T (k+1)hpIp,i ∩B)− µ(Ip,i)µ(B)|.

By Lemma 5.6(i),

hp−1∑
i=0

|µ(T khpIp,i ∩B)− µ(Ip,i)µ(B)|

≤
hp−1∑
i=0

∣∣∣ rp−k−1∑
j=0

µ(T khpI [j]
p,i ∩B)− µ(I [j]

p,i)µ(B)
∣∣∣

+
hp−1∑
i=0

rp−1∑
j=rp−k

|µ(T khpI [j]
p,i ∩B)− µ(I [j]

p,i)µ(B)|

and the second summand tends to zero as in Proposition 4.6.
By Lemmas 5.6(ii) and 5.7,

hp−1∑
i=0

∣∣∣ rp−k−1∑
j=0

µ(T khpI [j]
p,i ∩B)− µ(I [j]

p,i)µ(B)
∣∣∣

≤
� ∣∣∣∣ 1
rp

∑
j /∈Jn

χB ◦ T−s
(k)
p,j

∣∣∣∣ dµ+ (sup
j /∈Jn

s
(k)
p,j )

1
hp

+
# Jn
rp

≤
� ∣∣∣∣ 1
rp

rp−k−1∑
j=0

χB ◦ T−s
(k)
p,j

∣∣∣∣ dµ+ (sup
j /∈Jn

s
(k)
p,j )

1
hp

+ 2
# Jn
rp

.

The same reasoning holds for k + 1.

Definition 5.10. Fix T a rank-one transformation with spacer se-
quence {sn,j}{rn}. Let Q, p, k be positive integers and {Γq}Q−1

q=0 be a par-
tition of Zrp−k (that is, Γq ⊆ Zrp−k are disjoint and

⋃
Γq = Zrp−k). We say

(Q, p, k, {Γq}) respects the spacing arrangement at k of T when s
(k)
p,j ≤ s

(k)
p,j′

for all j ∈ Γq and j′ ∈ Γq′ whenever q ≤ q′.
Given sequences {pn}, {kn} and {Qn}, a sequence of partitions {Γn,q}Qn

that each individually respect the spacing arrangement of T at kn and also
have the property that Qn/rpn → 0 is said to respect the spacing arrange-
ment for T with block sizes {bn} when #Γn,q ≥ bn for a density one set
of q.
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Proposition 5.11. Let T be a rank-one transformation with spacer se-
quence {sn,j}{rn} and heights {hn} and let {tn} be a sequence. Set p(n) and
k(n) such that hp(n) ≤ tn < hp(n)+1 and k(n)hp(n) ≤ tn < (k(n) + 1)hp(n). If
there exists a sequence {Ln} such that

Ln
hpn

1
rpn

rpn−1∑
j=0

spn,j → 0 and Ln →∞

that also has the property that every sequence of partitions that respects the
spacing arrangement of T with block sizes {hpn/Ln} is ergodic with respect
to T , meaning

lim
n→∞

Qn−1∑
q=0

� ∣∣∣∣ 1
rp(n)

∑
j∈Γn,q

χB ◦ T
−s(k(n)+2−α(n,q))

p(n),j

∣∣∣∣ dµ = 0,

then {tn} is mixing with respect to T .

Proof. Let B be a union of levels in CN for some N ∈ N. Let n ∈ N be
such that tn ≥ hN . Set m = tn − khp (writing k = k(n) and p = p(n) and
so forth) so m ∈ Zhp . Set ε = εn = 1/Ln. Let Ψ = Ψn : Zrp−k → Zrp−k be

a map such that s(k)p,Ψ(j) ≤ s
(k)
p,Ψ(j+1) for all j ∈ Zrp−k−1. Set l(0) = 0 and

α(−1) = 0 and then proceed inductively to define l(q + 1) = ln(q + 1) and
α(q) = αn(q) given l(q) and α(q − 1) as follows: choose l(q + 1) to be the
smallest positive integer less than rp − k such that

s
(k−α(q−1)+1)
p,Ψ(l(q+1)) − s(k−α(q−1))

p,Ψ(l(q)) ≥ εhp
if such an integer exists and choose l(q + 1) = rp and set Qn = q + 1 if not.
Note that

Qn ≤
s
(k)
p,Ψ(rp−k−1)

εhp
≤
s
(rp)
p,0

εhp
=
rpµ(Sp)
εµ(Cp)

so Qn/rp → 0. Choose α(q) such that

(i) (α(q)− 1)hp + s
(α(q)−1)
p,Ψ(l(q))+k−α(q)+1 < s

(k)
p,Ψ(l(q));

(ii) s
(k)
p,Ψ(l(q)) ≤ α(q)hp + s

(α(q))
p,Ψ(l(q))+k−α(q).

The α(q) are clearly nondecreasing over q. Since

L

hp

1
rp

rp−1∑
j=0

sp,j → 0,

for large n we have α(q + 1)− α(q) ≤ 1.
Set β(q) = α(q)hp + s

(α(q))
p,Ψ(l(q))+k−α(q) − s

(k)
p,Ψ(l(q)) and note that 0 ≤ β(q)

< hp + sp,Ψ(l(q))+k−α(q). Set β′(q) = β(q) − sp,Ψ(l(q))+k−α(q) and note that
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β′(q) < hp. For all q ∈ Zq, define the sets

Γq = Γn,q = {j ∈ Zrp : s(k)p,Ψ(l(q)) ≤ s
(k)
p,j < s

(k)
p,Ψ(l(q+1))}

and the maps Ψ(q) = Ψ(n, q) : Zl(q+1)−l(q) → Γq by Ψ(q)(j) = Ψ(j + l(q))
for all j ∈ Zl(q+1)−l(q). As in Proposition 4.7, it suffices to show that

hp−1∑
i=0

∣∣∣ rp−1∑
j=0

µ(T khpI [j]
p,i ∩B)− µ(I [j]

p,i)µ(B)
∣∣∣→ 0

and likewise for k + 1. Note that
hp−1∑
i=0

∣∣∣ rp−k−1∑
j=0

µ(T−s
(k)
p,j (I [j+k]

p,i ) ∩B)− µ(I [j+k]
p,i )µ(B)

∣∣∣
=

hp−1∑
i=0

∣∣∣Q−1∑
q=0

∑
j∈Γq

µ(T−s
(k)
p,j (I [j+k]

p,i ) ∩B)− µ(I [j+k]
p,i )µ(B)

∣∣∣.
Now for any q ∈ Zq, any i ∈ Zhp and any j ∈ Γq, using Lemma 5.6(ii),

T−s
(k)
p,j (I [j+k]

p,i ) = T
−(s

(k)
p,j−s

(k)
p,Ψ(l(q))

)−s(k)
p,Ψ(l(q))(I [j+k]

p,i )

= T
−(s

(k)
p,j−s

(k)
p,Ψ(l(q))

)−s(k)
p,Ψ(l(q))

+α(q)hp+s
(α(q))
p,j+k−α(q)(I [j+k−α(q)]

p,i )

= T
−(s

(k)
p,j−s

(k)
p,Ψ(l(q))

)+β(q)(I [j+k−α(q)]
p,i ).

If i < hp − β(q) then

T−s
(k)
p,j (I [j+k]

p,i ) = T
−(s

(k−α(q))
p,j −s(k−α(q))

p,Ψ(l(q))
)(I [j+k−α(q)]

p,i+β(q) ).

If i ≥ hp − β′(q) then

T−s
(k)
p,j (I [j+k]

p,i )

= T
−(s

(k−α(q))
p,j −s(k−α(q))

p,Ψ(l(q))
)+β(q)−hp−sp,j+k−α(q)(I [j+k−α(q)+1]

p,i )

= T
−(s

(k−α(q)+1)
p,j −s(k−α(q)+1)

p,Ψ(l(q))
)+β(q)−hp−sp,Ψ(l(q))+k−α(q)(I [j+k−α(q)+1]

p,i )

= T
−(s

(k−α(q)+1)
p,j −s(k−α(q)+1)

p,Ψ(l(q))
)(I [j+k−α(q)+1]

p,i+β′(q)−hp )

as i + β′(q) − hp ≥ 0 because i ≥ hp − β′(q) and i + β′(q) − hp < i < hp
because β′(q) < hp.

If hp − β(q) ≤ i < hp − β′(q) then, as above,

T−s
(k)
p,j (I [j+k]

p,i ) = T
−(s

(k−α(q))
p,j −s(k−α(q))

p,Ψ(l(q))
)+β(q)−hp−sp,j+k−α(q)(I [j+k−α(q)+1]

p,i )

= T
−(s

(k−α(q)+1)
p,j −s(k−α(q))

p,Ψ(l(q))
)(I [j+k−α(q)+1]

p,i+β(q)−hp ).
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Applying the first case and Lemma 5.7, then the fact that T is measure-
preserving, we get

Qn−1∑
q=0

hp−β(q)∑
i=0

∣∣∣ ∑
j∈Γq

µ(T−s
(k)
p,j (I [j+k]

p,i ) ∩B)− µ(I [j+k]
p,i )µ(B)

∣∣∣
≤

Qn−1∑
q=0

� ∣∣∣∣ 1
rp

∑
j∈Γq

χB ◦ T
−(s

(k−α(q))
p,j −s(k−α(q))

p,Ψ(l(q))
)

∣∣∣∣ dµ
+
Qn−1∑
q=0

(sup
j∈Γq

s
(k−α(q))
p,j − s(k−α(q))

p,Ψ(l(q)) )
1
hp

#Γq
rp

≤
Qn−1∑
q=0

� ∣∣∣∣ 1
rp

∑
j∈Γn,q

χB ◦ T−s
(k−α(q))
p,j

∣∣∣∣ dµ+ ε.

Similarly for the second and third cases above (with k + 1 replacing k).
Combining these three cases and letting n→∞, we have the result.

6. Mixing theorem

Theorem 6.1. For a rank-one transformation T , the following are equiv-
alent:

(i) T is a mixing transformation;
(ii) T is “rank-one uniform mixing”: for all B ∈ B,

lim
n→∞

sup
hn≤t<hn+1

hn−1∑
i=0

|µ(T tIn,i ∩B)− µ(In,i)µ(B)| = 0;

(iii) every sequence of partitions that respects the spacing arrangement
of T with block sizes tending to infinity is ergodic with respect to T .

Proof. (ii)⇒(i) follows as in the proofs of our propositions. (iii)⇒(ii)
follows as in Proposition 5.11. Finally, (i)⇒(iii) follows since if not then
for some sequence of partitions that respect the spacing arrangement of T
there is some {q(n)} with #Γn,q(n) →∞ (as Qn/rn → 0) and the dynamical

sequence {s(k(n))
n,j }Γn,q(n)

is not ergodic with respect to T so, by Theorem 5.5,
T cannot be mixing.

7. Polynomial staircase transformations

7.1. Polynomial power ergodicity. The term polynomial shall mean
polynomials with rational coefficients that map integers to integers.
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Proposition 7.1. Let T be a power ergodic transformation. Then for
any sequence of polynomials {pn} of bounded degree and all B ∈ B,

lim
n→∞

� ∣∣∣∣ 1n
n−1∑
j=0

χB ◦ T−pn(j)

∣∣∣∣ dµ = 0.

Lemma 7.2 (van der Corput’s inequality). For any complex numbers an
such that |an| ≤ 1 and any N,L ∈ N,∣∣∣∣ 1

N

N−1∑
n=0

an

∣∣∣∣2 ≤ N + L

N

(
1
L

+ 2 Re
[

1
L

L−1∑
l=1

L− l
L

1
N

N−l−1∑
n=0

an+lan

])
.

Proof of Proposition 7.1. Induct on the degree D of the polynomials.
Assume the condition holds for all {pn} of degree less than D. Note that
the D = 1 case corresponds to power ergodicity. Let {pn} be a sequence of
polynomials of degree D. Let B ∈ B. Fix ε > 0. Fix L ∈ N such that 1/L < ε.
For n ∈ N and 0 < l < L, set Pn,l(j) = pn(j + l) − pn(j). Write pn(j) =∑D

a=0 cn,aj
a for cn,a ∈ Q. Then Pn,l(j) =

∑D−1
b=0

(∑D
a=b+1 cn,a

(
a
b

)
la−b

)
jb is

a polynomial in j of degree D − 1. By the inductive hypothesis, for each
0 < l < L, there exists Nl ∈ N such that for all n ≥ Nl,

� ∣∣∣∣ 1n
n−1∑
j=0

χB ◦ T−Pn,l(j)
∣∣∣∣ dµ < ε.

Set N0 = dL/εe so l/n < ε for all 0 < l < L and n ≥ N0. For n ≥
max0≤l<LNl,∣∣∣∣ 1n

n−l−1∑
j=0

(µ(T−pn(j+l)+pn(j)B ∩B)− µ(B)µ(B))
∣∣∣∣

≤
� ∣∣∣∣ 1n

n−1∑
j=0

χB ◦ T−Pn,l(j)
∣∣∣∣ dµ+

l

n
< 2ε.

By Hölder’s inequality and van der Corput’s inequality,[ � ∣∣∣∣ 1n
n−1∑
j=0

χB ◦ T−p(j)
∣∣∣∣ dµ]2

≤ n+ L

n

(
1
L

+
2
L

L−1∑
l=1

L− l
Ln

n−l−1∑
j=0

(µ(T−pn(j+l)+pn(j)B ∩B)− µ(B)µ(B))
)

< (1 + ε)
(
ε+

2
L

L−1∑
l=1

L− l
L

2ε
)
≤ 5ε(1 + ε).
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7.2. Polynomial staircase transformations. Let {pn} be a sequence
of polynomials with bounded degree and uniformly bounded coefficients.
A rank-one transformation with spacer sequence {sn,j}{rn} given by sn,j =
pn(j) is a polynomial staircase transformation when the polynomials are
such that for every L ∈ N,

lim sup
n→∞

1
rn

#{j ∈ Zrn : L divides pn(j + 1)− pn(j)} < 1.

A staircase transformation is then a linear polynomial staircase transforma-
tion.

Theorem 7.3. Polynomial staircase transformations are mixing.

Proposition 7.4 (Furstenberg). Let {pn} be a sequence of polynomials
of bounded degree and uniformly bounded coefficients. Then a dynamical
sequence {sn,j}{rn} given by sn,j = pn(j) is ergodic with respect to any totally
ergodic transformation.

Proof. Since

� ∣∣∣∣ 1
rn

rn−1∑
j=0

χB ◦ T−pn(j)

∣∣∣∣ dµ =
� ∣∣∣∣ 1
rn

rn−1∑
j=0

zpn(j)

∣∣∣∣ dσB(z)

where σB is the spectral measure of B under T , the result follows from
Weyl’s theorem on the equidistribution of polynomial sequences (that
n−1

∑n−1
j=0 z

pn(j) → 0 for all z ∈ S1 \Q).

Proposition 7.5. Let T be a rank-one transformation with spacer se-
quence {sn,j}{rn} such that for each L ∈ N, L 6= 1,

lim sup
n→∞

1
rn

#{j ∈ Zrn−1 : L divides sn,j+1 − sn,j} < 1.

Then T is totally ergodic.

Proof. Suppose TL is not ergodic for some L ∈ N, L 6= 0, 1. Then there
exists B ∈ B, 0 < µ(B) < 1, such that TLB = B. We may assume L is
minimal so there exists δ > 0 such that µ(T lB∩B) < (1−δ)µ(B) for all 0 <
l < L. Define ρn : ZL → [0, 1] by ρn(l) = r−1

n #{j ∈ Zrn : sn,j = l mod L}.
By hypothesis there exists δ1 > 0 such that #{j ∈ Zrn : L divides sn,j+1 −
sn,j} ≥ δ1rn for all sufficiently large n. So for at least δ1rn values of j,
sn,j+1 6= sn,j mod L. Hence ρn(l) ≤ 1 − δ1 for all 0 ≤ l < L. Let {hn} be
the height sequence for T . For any ε > 0 there exists N ∈ N such that for
all n ≥ N there exists a union Bn of levels in Cn such that µ(B 4 Bn) < ε
(here 4 denotes symmetric difference). Write Bn =

⋃
i∈Λn In,i. Since L is

fixed, L/hn → 0 so we may assume that T lBn, 0 ≤ l < L, is a union of
levels in Cn. Set wn, vn such that hn = wnL+ vn for some 0 ≤ vn < L. Set
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B′n = T vnBn. Then B′n is a union of levels in Cn. Hence

µ(TwnLB ∩B) < µ(T hnBn ∩ T vnBn) + 2ε =
∑
i∈Λn

rn−1∑
j=0

µ(T hnI [j]
n,i ∩B

′
n) + 2ε

≤ 1
rn

rn−1∑
j=0

µ(T−sn,jBn ∩B′n) + 2
(
ε+

1
rn

+ µ(Sn)
)

=
L−1∑
l=0

ρn(l)µ(T−l−vnBn ∩Bn) + 2
(
ε+

1
rn

+ µ(Sn)
)

<
L−1∑
l=0

ρn(l)µ(T−lB ∩B) + 2
(

2ε+
1
rn

+ µ(Sn)
)

≤ (1− δ1)µ(B) + δ1(1− δ)µ(B) + 2
(

2ε+
1
rn

+ µ(Sn)
)

since ρn(l) ≤ 1 − δ1 for 0 ≤ l < L and µ(T lB ∩ B) ≤ (1 − δ)µ(B) for
0 < l < L. Then |µ(TwnLB ∩B) < (1− δδ1)µ(B) + 4ε+ 2/rn + 2µ(Sn). But
TwnLB = B is then a contradiction.

Proposition 7.6. Let T be a rank-one transformation with spacer se-
quence {sn,j}{rn} such that for each fixed k, the partial sum sequence

{s(k)n,j}{rn−k} is ergodic with respect to T . Then for any sequence {kn} such
that lim sup kn/n <∞ and any B ∈ B,

lim
n→∞

� ∣∣∣∣ 1n
n−1∑
j=0

χB ◦ T jkn
∣∣∣∣ dµ = 0.

Proof. First, let {tn} be a sequence such that hn ≤ tn ≤ dhn for some
fixed integer d. Write tn = xnhn+mn for some 0 ≤ mn < hn and 1 ≤ xn ≤ d.
Then for any level In,i with i < hn −mn we see that

T tnIn,i = T xnhnIn,i+mn,

and for In,i with i ≥ hn −mn,

T tnIn,i = T (xn+1)hnIn,i+mn−hn .

For any union B of levels in some CN and any n ≥ N let Bx be the levels in
I ∈ Cn∩B such that T tnI = T xhnI ′ for some level I ′. Then B is the disjoint
union of Bx for 1 ≤ x ≤ d + 1. By Proposition 5.8, the sequence {xhn} is
mixing since the partial sum sequence {s(k)n,j}{rn−k} is ergodic with respect to
T for each fixed x; in fact, as can be seen from the proof of Proposition 5.8,

µ(T xhnA ∩B)− µ(A)µ(B)→ 0
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uniformly over all collections A of levels in Cn. Since there are only d choices
of x this means that {tn} is mixing.

Now, let {kn} be a (not necessarily increasing) sequence such that kn/n
is bounded. Fix p, q and x such that hp ≤ k < hp+1 ≤ kq < 2hp+1 and
xhp ≤ k < (x+ 1)hp (again we drop the n subscripts for clarity). Let B ∈ B
and ε > 0. Choose L such that 1/L < ε (L not depending on n). Note that

q

n
=
qk2

nk2
≤ 2hp+1

h2
p

k

n
→ 0

since hp+1/h
2
p ≈ rp/hp → 0 as T is finite-measure-preserving. By the Block

Lemma,

� ∣∣∣∣ 1n
n−1∑
j=0

χB ◦ T−jk
∣∣∣∣ dµ ≤ � ∣∣∣∣ 1L

L−1∑
l=0

χB ◦ T−lkq
∣∣∣∣ dµ+

qL

n
.

Now tn = xknqn satisfies the requirements above so {xknqn} is a mixing
sequence for each fixed x. Then, by Hölder’s inequality,( � ∣∣∣∣ 1L

L−1∑
l=0

χB◦T−lkq
∣∣∣∣ dµ)2

=
1
L

L−1∑
x=−L+1

L− x
L

(µ(T xknqnB∩B)−µ(B)µ(B))

and each term where x 6= 0 tends to zero by the mixing of the sequence, and
the x = 0 term contributes at most 1/L < ε.

Proof of Theorem 7.3. Let T be a polynomial staircase transformation.
Then T is totally ergodic by Proposition 7.5. Let {pn} be the polynomials
defining the spacer sequence {sn,j}{rn} of degree at most D ∈ N and let
{cn,a} for a ∈ ZD+1 be the coefficients of the {pn}. Then, for any j ∈ Zrn
and k ∈ Zrn−j ,

s
(k)
n,j =

k−1∑
z=0

pn(j + z) =
k−1∑
z=0

D∑
a=0

cn,a(j + z)a =
k−1∑
z=0

D∑
a=0

a∑
b=0

cn,a

(
a

b

)
jbza−b

=
D∑
b=0

( k−1∑
z=0

D∑
a=b

cn,a

(
a

b

)
za−b

)
jb = pn,k(j)

are polynomials of degree at most D in j with lead coefficients kcn,D.
Assume now that T is power ergodic. Then T is polynomial power er-

godic by Proposition 7.1. For any {kn} and {Γn,q}, {Ψn,q}, {αn,q}{Qn} as in

Proposition 5.11, each {s(kn−αn,q)n,Ψn,q(j)
}{#Γn,q} is itself a polynomial sequence

(details are left to the reader) of degree at most D. Since Qn/rn → 0, we
see that #Γn,q → ∞ uniformly over a density one set of q; consequently,
the averages over the sets Γn,q tend uniformly to zero by polynomial power
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ergodicity. Proposition 5.11 then gives the result. It only remains to show
that T is power ergodic.

Proposition 7.7. Let T be a polynomial staircase transformation. Then
T is power ergodic.

Proof. For each fixed k ∈ N the pn,k are ergodic (Proposition 7.4) since
the coefficients of pn,k are uniformly bounded when k is fixed (see the proof
above for an expression for the coefficients). Then by Proposition 7.6 the
case when lim supn kn/n < ∞ is done. Write k = kn = xhp + m as usual.
Cases 1a and 1b from Proposition 4.13 carry over directly (using Proposi-
tion 7.6). Hence we may assume that lim infn xrp/hp > 0 and x/rp → 0.
Pick ln as in Case 3 of Proposition 4.13 and Qn and α(q) as well (note that
lim supn hp/xrp <∞ is enough for that construction).

Then, using the techniques of the proof of Proposition 7.1 (applying
van der Corput’s lemma d − 1 times where d is the degree of the polyno-
mials defining the spacer sequence), for any Γn,q an appropriate subset of
{s(x)p,j }{rp−x} and any appropriate α(q) = α(n, q),

� ∣∣∣∣ 1
#Γn,q

∑
j∈Γn,q

χB ◦ T−s
(x+2−α(q))
p,j

∣∣∣∣ dµ
≤
( � ∣∣∣∣ 1

ln

ln−1∑
j=0

χB ◦ T j(x+2−α(q))z(q)

∣∣∣∣ dµ)δ + ε

for some δ > 0, integers z(q) = z(n, q) and ε = εn → 0. By the Block Lemma
we may replace ln by some large fixed L (with error L/ln → 0).

Now α(q) take on all integer values in an interval of length arbitrarily
large, so as in the proof of Proposition 4.13 Case 3, using that T is weak mix-
ing (so T d is weak mixing for all fixed d 6= 0) we find that the quantity above
tends to zero when averaged over q. The result then follows as in Proposition
4.13 Case 3 (details here have been left to the reader as everything follows
from techniques previously used in the paper).

8. Specific examples

8.1. Criterion for finite measure on rank-one transformations

Proposition 8.1. A rank-one transformation with heights {hn} and
spacer sequence {sn,j}{rn} is defined on a finite measure space if and only if

∞∑
n=0

s̄n
hn

<∞ where s̄n =
1
rn

rn−1∑
j=0

sn,j .
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Proof. Let T , {sn,j}{rn}, {s̄n}, and {hn} be as above and let (X,µ) be
the space T is defined on. Let {Cn} denote the columns of the construction
as sets, {In} the base levels of the columns, and {Sn} the spacers added (so
Sn = Cn+1 \ Cn and S0 = C0). We see that

µ(Sn) =
rn−1∑
j=0

sn,jµ(In+1) =
(

1
rn

rn−1∑
j=0

sn,j

)
µ(In) =

s̄n
hn

µ(Cn)

and so
∞∑
n=0

µ(Sn) = µ(C0)
∞∏
n=0

(
1 +

s̄n
hn

)
.

8.2. Specific examples of mixing transformations

Theorem 8.2. For D ∈ N and δ ∈ R+, let TD,δ be the rank-one trans-
formation with spacer sequence {sn,j}{rn} given by sn,j = jD and rn =

bh1/(D+δ)
n c (where {hn} is the heights for TD,δ). Then TD,δ is a mixing trans-

formation.

Proof. By Theorem 7.3, we need only show the transformations are de-
fined on a finite measure space. Let D ∈ N and δ ∈ R+. Let {sn,j}{rn} be the
spacers and {hn} the heights for TD,δ. Now,

∑rn−1
j=0 sn,j =

∑rn−1
j=0 jD ≈ rD+1

n .
Since hn+1 = rnhn +

∑rn−1
j=0 sn,j , we see that hn ≥

∏n−1
z=0 rz ≥ 2n. Then

∞∑
n=0

s̄n
hn
≈
∞∑
n=0

1
rnhn

rD+1
n =

∞∑
n=0

rDn
hn
≈
∞∑
n=0

h(D)/(D+δ)−1
n

≤
∞∑
n=0

(2δ/(D+δ))−n <∞

by the convergence of geometric series. Proposition 8.1 completes the
proof.

8.3. Ornstein’s transformation. The original construction of rank-
one mixing transformations, due to Ornstein [Orn72], involved placing spacer
levels randomly using a uniform distribution so that almost surely the re-
sulting transformation is mixing. The uniform distribution can be equally
well interpreted as meaning that the spacer sequence almost surely has the
property that the averages in Theorem 6.1 tend uniformly to zero so that
mixing for these transformations follows from our theorem. The reader is
referred to [CS04] for details.

8.4. A note on restricted growth. The restricted growth condition
in [CS04] is equivalent to rns̄n/hn → 0 for polynomial staircase transforma-
tions (details are left to the reader) and to Adams’ condition r2n/hn → 0
for staircase transformations. For TD,δ, we see that rns̄n/hn ≈ rD+1

n /hn ≈
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h
(D+1)/(D+δ)−1
n = h

(1−δ)/D+δ
n and so TD,δ has restricted growth if and only

if δ > 1. Hence, the theorems of [CS04] and [Ada98] apply only to TD,δ with
δ > 1.

Acknowledgments. The authors would like to thank the referee for
many helpful suggestions, and in particular for suggesting that first proving
the special case for staircases and then generalizing makes for a more read-
able paper than the original exposition which directly proved the general
case.
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