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Homomorphisms on algebras of Lipschitz functions
by

FERNANDA BOTELHO and JAMES JAMISON (Memphis, TN)

Abstract. We characterize a class of *x-homomorphisms on Lip, (X, B(H)), a non-
commutative Banach x-algebra of Lipschitz functions on a compact metric space and with
values in B(H). We show that the zero map is the only multiplicative #-preserving linear
functional on Lip, (X, B(H)). We also establish the algebraic reflexivity property of a class
of x-isomorphisms on Lip, (X, B(H)).

1. Introduction. We consider a compact metric space (X, d) and

sup @) = FWI OO}

(1.1)  Lip,(X,B(H)) = {f + X — B(H) oty d(@,y)

with the norm

1f(z) = fW)l
d(z,y)

The space B(H) represents the bounded operators on a separable complex
Hilbert space H. We set f*(x) = [f(z)]* for all z € X. Since ||f*[|« = ||f|l+
and [[fgll« < |[fll«llgll«, Lip, (X, B(H)) is a non-commutative Banach x-al-
gebra with identity.

We denote by Const, (X, B(H)) the x-subalgebra of all constant opera-
tor valued functions on X. This subalgebra is a C*-algebra. In this paper,
we derive a characterization of a class of x-algebra homomorphisms from
Lip, (X, B(H)) into Lip,(Y,B(H)), with X and Y compact metric spaces.
We recall that a x-homomorphism, 1, on Lip, (X, B(H)) is an algebra ho-
momorphism that satisfies ¥(f*) = ¢(f)* for all f.

Since it is not known whether *-homomorphisms in this setting are con-
tinuous we introduce a weaker continuity hypothesis, called “ps-continuity”.

11l = [Iflloc + sup
T#Y

DEFINITION 1.1. We say that a sequence of functions in Lip, (X, B(H)),
{fn}, is ps-convergent to f if ||(fn(x) — f(z))V|x — O for every x € X and
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v € H. We then write
o — f

We say that v is ps-continuous at f € Lip, (X, B(H)) if the sequence {¢(fy)}
is ps-convergent to ¥ ( f), for every sequence { f,, } which is ps-convergent to f:

fo =1 = ¥(fa) = ¥(f).

Furthermore, if v is a *-isomorphism, we say that ) is a ps-homeomorphism
if both ¢ and ¢)~! are ps-continuous.

We remark that if f,, — f relative to the norm || - ||, then

an_fHoo_)O and f, = f.

Our main theorem characterizes all ps-continuous *-homomorphisms be-
tween Lipschitz algebras of the type described in .

We first introduce some additional notation and terminology. We denote
by idx the function defined on X and everywhere equal to Idy, the identity
on H. We say that a *-homomorphism  : Lip, (X, B(H)) — Lip,(Y, B(H))
preserves constant functions if ¢ (Idyx) = Idy and

1 (Const, (X, B(H))) C Const.(Y, B(H)).

We also say that v fizes constant functions if 1)(A)(y) = A for every y € Y
and A € B(H), with A the constant function everywhere equal to A.

A family of partial isometries on H, say {Uq }aca, with H, denoting the
range of U,, is said to be orthogonally ranged if H, is orthogonal to Hg for
a # 3, and for each u € H, u = )" uq with us € Hy (cf. [I3] and [15]). We
also observe that the adjoint of U,, U} : Ho — H, satisfies U U = Idy,
and UXU, = Idy .

We denote by ( , ) the inner product in H. We now state our main result.

THEOREM 1.2. Let X and Y be compact metric spaces. If
Lip,(X,B(H)) — Lip,(Y,B(H)) is a ps-continuous x-algebra homomor-
phism that preserves constant functions then there exist a Lipschitz function
p:Y — X and a countable orthogonally ranged family of partial isometries
U,:H—H,n=1,2,..., such that

(12) () =Y Unf(eW)Uy  for all f € Lip,(X,B(H)) andy € Y.

The proof of this theorem uses the following characterization of *-homo-
morphisms on B(H), due to Molnar.

THEOREM 1.3 (cf. [14]). Let v : B(H) — B(H) be a continuous *-homo-
morphism. If 1 is spectrum non-increasing, then there is a countable orthog-
onally ranged family of partial isometries Uy, : H — H (n = 1,2,...) with
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range Hy such that v is of the form
(1.3) W(A) = U,AU; (A€ B(H)).

We also use the characterization of algebra homomorphisms on scalar
valued Lipschitz spaces due to Sherbert. Although we use Sherbert’s theo-
rem, our proof techniques are necessarily different to account for the non-
commutative setting.

THEOREM 1.4 (cf. [22]). Let X and Y be compact metric spaces. If i) :
Lip,(X) — Lip,(Y) is an algebra homomorphism then there ezists a unique
Lipschitz function ¢ : Y — X such that

(1.4) V(f)y) = flely))  for all f € Lip.(X) and y €Y.

If 9 : Lip,(X) — Lip,(Y) is an algebra isomorphism then ¢ is a lipeomor-
phism.

2. Proof of the main theorem. In this section we prove Theorem[I.2]
We first prove that a ps-continuous *-homomorphism that fixes constant
functions is a composition operator. For simplicity of notation we denote
a constant function everywhere equal to A € B(H) simply by A. We also
denote the resolvent set of an operator A by p(A4), i.e.

p(A) ={X € C: A— \ldy is invertible}.

ProroSITION 2.1. Let X and Y be compact metric spaces. Let i :
Lip, (X, B(H)) — Lip, (Y, B(H)) be a mapping that fizes constant functions.
If 1) is a ps-continuous x-homomorphism then there exists a unique Lipschitz
function ¢ 1Y — X such that

(2.1) b()y) = flely))  for all f € Lip(X,B(H)) andy €Y.
If ¢ : Lip, (X, B(H)) — Lip,(Y,B(H)) is a ps-homeomorphism and a *-iso-
morphism then ¢ is a lipeomorphism.

Proof. Given f € Lip,(X,B(H)) and y € Y we set

Apy ={r € X:0¢ p(f(x) —o(f)¥)}-

(i) Apy #0.

Suppose that Ay, = 0. For every x € X, 0 € p(f(z) — ¢¥(f)(y)).
Equivalently, f(x) — ¢(f)(y) is invertible. We define h : X — B(H) by
h(z) = [f(x) — ¥ (f)(y)] 7L Tt is easy to see that h € Lip, (X, B(H)). Firstly,
the continuity of h is a consequence of Theorem 10.11 in [I7]. Secondly,

[P (o) — h(z1)|l 1/ (x0) — f(z1)]]

< ||h]]%, sup < 00
d(zo, 1) | ||°ox07éz1 d(zo, 1)
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We set g(z) = f(x) — ¥ (f)(y). The function g € Lip, (X, B(H)) and hg =
Idx (with Idx(xz) = Idy, the identity operator on H). Therefore ¢(hg) =
Y(Idx) = Idg, but ¥(g)(y) = 0. This contradiction establishes (i).

(i) The family {As, : f € Lip,(X,B(H))} has the finite intersection

property.
Given a finite set of functions in Lip, (X, B(H)), say {f1,-.., fx}, we set
k
g(@) =Y file) = (S W [filz) = v (f)())-
i=1

It is clear that ¢ € Lip,(X,B(H)). Claim (i) asserts that Ay, # 0. There-
fore there exists x¢ such that 0 ¢ p(g(xo) — ¥ (g9)(y)). Since ¥ (g)(y) = 0 we
have 0 ¢ p(g(xo)). Furthermore, since g has range in the space of hermi-
tian operators, there must exist a sequence {v,} of unit vectors such that
llg(z0)vn|| — 0. We have

k
D ICfilwo) = w(fi) (w))onl?
1=1

k
= (D lfilwo) = ()@ filwo) = B @Non o0 ) < llglzo)vall
i=1
This implies that for every i, ||(fi(zo) =9 (fi)(y))vn|] — 0 and 0 € p(fi(xo) —
»(fi)(y)), that is, zg € ﬂle Ay, . This proves (ii).
(it)) Myerip, (x,B8(0)) Afy is a singleton.
The compactness of X and the finite intersection property of {Ay, : f €
Lip, (X, B(H))} imply that Ay = (Nperi, (x501)) Ay 1S non-empty. Now we

suppose that there exist x; and z in A,. We define f(x) = d(z,z1)Idx.

We find that 0 ¢ p(f(z1) — ¢(f)(y)) = p(=¢(f)(y)) and 0 & p(f(z2) —
¥(f)(y)). Then there exists a sequence of unit vectors, say {v,}, such that

|V (f)(y)vn|| — 0. We fix w € H, a vector of norm 1. For each n, let V,,
be a unitary operator such that Vv, = w. Thus ¢(f)V,, = V,o(f). Conse-
quently,

[ () Wwll = [[L(F) @) Vavnll = Vet (f ) W)onll = [[0(f) () vall — 0.
This implies that ¥(f)(y) is the zero function. Hence 0 ¢ p(f(x2)) and
x1 = x2. This proves (iii).

We denote by x, the only element in ﬂfeLip*(Xﬁ(H)) Ay, We define
¢:Y — X by o(y) = z,.

Let £ = {e;}ien be an orthonormal basis for H, and P; = e; ® e; a rank
one projection with range the span of e;. We now consider a real valued
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function A\ in Lip,(X) and set f(x) = A(x)P;. Since P;f = fP, = [ we
have Pas(£)(y) = w(f) ()P = w(f)(y). Moreover ¢(f)(ger = ¥, ake;
with a? = (U(f)(y)ex, e;). Therefore Pab(f)(y)er = ake; = PP afej. Thus
af =0 for j # i. Since ¥(f)(y)ex = aFe;, we also have ¥(f)(y)Pies, = 0 for
i # k. Hence af = 0 for i # k. This implies that 1 (f)(y) = a;(y)P;.
For a fixed 7, the map v induces an algebra homomorphism
7F 1 Lip,(X) — Lip(Y), A 7E(N),

given by 75 (\)(y) = (¥(AP;)(y)ei, ;). We use the superscript € to emphasize
the dependence on the orthonormal basis. Theorem asserts that there
exists a Lipschitz function goig 1Y — X such that

7 (N)(y) = At (1)
On the other hand, given g(z) = A(z)Idx, 0 ¢ p(g9(¢(y)) — ¥(g9)(y)). This
implies the existence of a sequence {v,,} of unit vectors such that

lim [[(g(o(y)) = ¥ (9)(¥))val = 0.

Similar techniques to those employed in the proof of claim (iii) allow us to

conclude that g(¢(y)) = ¥(9)(y). We set gn(z) = X(x) > P;; then g, — g.
The continuity assumption on 1 implies that 1(g,) — ¥(g). Therefore we
have

(2:2) »(gn)(y) = Z A5 ()P — Mep(y)) Idy .

We claim that
(%) ¢ (y) = ¢(y) for all i and y € Y.

Suppose that there exist i9 and 1y such that (pﬁ)(yo) # ¢(yo). Let A(z) =
d(zx, gp‘iso (0)). Equation 1) implies that

1%(gn) (yo)eio || = A((yo)) # 0.

This contradiction establishes claim (x). Moreover, this also implies that ¢
is Lipschitz and Tig is independent of the orthonormal basis. We conclude
that given a function of the form AP with A a scalar valued function in
Lip,(X) and P a projection on H, we have

P(AP)(y) = Ae(y)) P.

We extend this representation to functions of the form AA with A a real
valued Lipschitz function and A a hermitian operator in B(H). We use the
spectral representation for hermitian operators (see [6]) to set
M+-e
A= | XdB(\)

m
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with m = inf||v||:1 ||A’U||, M = SUpP||y||=1 ||AU||, 0 < e <1 and {E()\)
a spectral family of projections associated with A. We define E(Ay) =
E(\g) — E(Ag—1), with m = Xy < A1 < -+ < A\, = M + €. The sequence
{> 05— Ak E(Ak) b converges uniformly to A. The continuity assumption on
1 and the representation previously derived imply that ¥(f)(y) = A¢(y))A.
An arbitrary operator A has the representation

A+ A* A—A*
A= i
2 + 2;
as the linear combination of two hermitian operators. Therefore given a
complex valued Lipschitz function A and a bounded operator A on H, we

have

P(AA)(y) = Ae(y)) A

Now given a function f € Lip, (X, B(H)), f is clearly continuous relative
to the || || co- It is shown in [2] p. 224] (see also [11, Theorem 1.13, p. 9]) that
the tensor product space C(X) ® B(H), with the least crossnorm, is dense
in C(X,B(H)), the space of all continuous B(H) valued functions equipped
with the || - ||. Therefore, there exists a sequence {F,} in C(X) ® B(H)
that converges uniformly to f. We identify the space C(X) ® B(H) with all
the functions of the form ) ", A\;A; with A; € C(X). Each function F, is
represented as follows:

kn
Fuw) = 3 X (2)A7
=1

with A\ € C(X) and A} € B(H). Without loss of generality we may assume
that A? are Lipschitz functions (see [8, Theorem 6.8]). Once more, the ps-
continuity of 1 allows us to conclude that

V()W) = fle(y))

for every y € Y and f € Lip, (X, B(H)).

It is easy to show that ¢ is unique. This concludes the proof of the first
statement in the proposition.

If ¢ is an isomorphism then 1 and ¥~! are both composition operators
of the form

V() (y) = fle(y)) forall f € Lip,(X,B(H)) and y €,
Y g)(z) = g(\(z)) for all g € Lip,(Y,B(H)) andz € X,

where ¢ : Y — X and A : X — Y are Lipschitz functions. Hence ¢ o A = 1d
and A o ¢ = Id. Therefore ¢ is a lipeomorphism.

In the proof of Theorem we use the characterization of a class of
*-homomorphisms of B(H) due to Molnar (see Theorem [L.3). Moreover, we
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apply a basic result on x-homomorphisms between C*-algebras that we state
first.

THEOREM 2.2 (cf. [10, Theorems 4.1.8 and 4.1.9]). Suppose that C1 and
Cy are C*-algebras and ¢ is a x-homomorphism from Ci into Co. Then for
each A € Cy, sp(¢(A4)) Csp(A), [|o(A)|| < ||A]| and ¢(Cy) is a C*-subalgebra
Of CQ.

Proof of Theorem[1.3. We fix y € Y and define T}, : B(H) — B(H) by
Ty(A) = ¢¥(A)(y). It is clear that T}, is a *-homomorphism on B(H). In fact,
T, is independent of y, since 1) preserves constants. Theorem implies
that T} satisfies the hypotheses of Theorem Consequently, there exists
an orthogonally ranged family of partial isometries U, (n = 1,2,...) such
that T,,(A) = >, U, AU, for all y € Y. We now define 7 : B(H) — B(H) as
follows: 7(f)(y) = >_,, Unt(f)(y)Uy,. The mapping 7 is a *-homomorphism
that leaves invariant all the constant functions. Proposition applies and
so 7(f)(y) = f(p(y)) for some Lipschitz function ¢ : ¥ — X. Ergo,

V() ) =22, Unfle(y)Uy. =

REMARK 2.3. If ¢ is a *-isomorphism and a ps-homeomorphism, then
¢ is a lipeomorphism. Furthermore ¢(Idx) = Idy. In fact, for every A €
B(H), we denote by A the Lipschitz function everywhere equal to A. There
exists f4 € Lip,(X,B(H)) such that ¢(f4) = A. Therefore ¢(f4Idx)
= AyY(ldx) = ¢¥(Idx)A = A. For every y € Y we have AyY(Idx)(y) =
¥(Idx)(y)A = A. This implies that ¥ (Idx)(y) = Idy.

COROLLARY 2.4. Let X and Y be compact metric spaces. If ¢
Lip,(X,B(H)) — Lip,(Y,B(H)) is a x-algebra isomorphism that preserves
constant functions and v is a ps-homeomorphism, then there exist a lipeo-
morphism ¢ : Y — X and a unitary U : H — H such that

(23)  »(f)y) =Uf(e)U"  for dll f € Lip (X, B(H)) and y €Y.

Proof. The map v induces a *-isomorphism T' : B(H) — B(H). Corol-
lary 5.42 on page 143 in [3] asserts the existence of a unitary U such that
T(A) = UAU*. We define 7 as follows: 7(f)(y) = U*¥(f)(y)U. The map
7 fixes constant functions and then Proposition [2.1] applies. This completes
the proof. m

COROLLARY 2.5. Let X and Y be compact metric spaces. If 1
Lip,(X,B(H)) — Lip,(X,B(H)) is a ps-continuous *-algebra homomor-
phism that preserves constant functions then 1 is continuous.

Proof. Theorem asserts the existence of a Lipschitz function ¢ :
Y — X and a countable orthogonally ranged family of partial isometries
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U, : H — H, such that
ZU fley)Uy  for all f € Lip, (X,B(H)) and y € Y.

Hence we have

l(£) ()l = sup HZ Und (20U ()]

[oll<

Given v € H, v =), vy, with v, € H,, we have

HZ(zfnf(so(y))U;)(v)\f
<Z Unf (o) U (vn), Z U f(o(y)U} (Uk;)>
= Z Unf(())Up (vn), ka(so<y>>Uk (or))

= Z NUn (), F())Un () < || F () [J0]1*.

This implies || ( f )HOO < || f]loo- Similarly we show that L(¢(f)) < L(f)L(p).
We conclude that |[¢(f)]|« < max{1, L(©)}||f]«. =

REMARK 2.6. We observe that whenever ¢ is a contraction then v is
also a contraction, as for *-homomorphisms between C*-algebras (cf. Theo-

rem .

COROLLARY 2.7. If X is a compact metric space then every ps-homeo-
morphism and x-isomorphism on Lip, (X, B(H)) is continuous.

3. Multiplicative linear functionals on Lip,(X,B(H)). In this sec-
tion we show that the x-algebra Lip, (X, B(H)) has no nontrivial multiplica-
tive linear functionals. We denote by d¢ the point evaluation defined by
6e(f) = ().

We first prove that a s-homomorphism F : Lip, (X, B(H)) — B(H) such
that F'(Idy) = Idy is a point evaluation.

THEOREM 3.1. Let X be a compact metric space. For every x-homo-
morphism F : Lip,(X,B(H)) — B(H) that maps Idx to Idy, there exist
a unique £ € X and a family of orthogonally ranged partial isometries
Up: H — H, n = 1,2,..., such that F(f) = >, Unbe(f)Uy for all
f € Lip, (X, B(H)).

Proof. We consider a metric space Y equal to a single point, say Y = {y}.

We identify B(H) with Lip,(Y,B(H)). The homomorphism [ is identified
with F' : Lip, (X, B(H)) — Lip,(Y,B(H)) such that F(f)(y) = F(f). The
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function F is a s-homomorphism that satisfies the hypotheses of Theo-
rem [L.2l Therefore

F(f)(y) = Unfle)U;  forall f € Lip, (X, B(H)),

with ¢ : {y} — X. Weset { = p(y). m

THEOREM 3.2. The only multiplicative linear functional on the *-algebra
Lip, (X, B(H)) is the zero functional.

Proof. Let F : Lip, (X, B(H)) — C be a *-homomorphism. Then
F(Idx) =0 or F(Idx) =1.
If F(Idyx) = 1, we define F : Lip, (X, B(H)) — B(H) by F(f) = F(f)Idy.
Theorem implies the existence of £ € X and a family of orthogonally
ranged partial isometries U, : H — H,, n =1,2,..., such that

(3.1) F(f) = Unbe()U;,
for all f € Lip,(X,B(H)). For every k we have
UL Y _(Unde(£)U;)Uk = URUrde()ULUy = F(f) Ldyy

Therefore 6¢(f) = F(f)Idy for every f € Lip,(X,B(H)). This shows that
F(Idx) = 0, and completes the proof. =

4. Some remarks on algebraic reflexivity of classes of *-isomor-
phisms on Lip(X, B(H)). Let X be a compact metric space which supports
an injective mapping into the complex numbers. We consider the class of
continuous *-isomorphisms on Lip(X, B(H)) such that each isomorphism
preserves the C*-subalgebra of constant functions. We denote this class
by CI(Lip(X,B(H))). We say that a ps-continuous s*-homomorphism ) on
Lip(X, B(H)) is locally in CI(Lip(X,B(H))) if for every f € Lip(X,B(H))
there exists an isomorphism T in CI(Lip(X, B(H))) such that

O(f) =Ti(f).

Furthermore we say that CI(Lip(X,B(H))) is algebraically reflexive if
every ps-continuous s-homomorphism on Lip(X, B(H)) that is locally in
CI(Lip(X,B(H))), is in CI(Lip(X, B(H))). For background on algebraic re-
flexivity we refer the reader to [9], [14], [16], [19], [20] and [21].

PropPOSITION 4.1. Let X be a compact metric space. If there exists
an injective mapping A : X — C, then CI(Lip(X,B(H))) is algebraically
reflexive.

Proof. Let 1 be a ps-continuous x-homomorphism on Lip(X, B(H)) that
preserves constant functions. We assume that for every f € Lip(X, B(H))
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there exists Ty € CI(Lip(X, B(H))) such that

O(f) =T (f)-

Theorem implies the existence of a Lipschitz function ¢ : Y — X and
a countable orthogonally ranged family of partial isometries U, : H — H,
n € A (a countable subset of the natural numbers), such that

41 D(f)@) = Unf(e(@)Uy, [ € Lip(X,B(H)), z € X.

neA

For each f, Corollary implies that there exist a lipeomorphism ¢y :
X — X and a unitary V; : H — H such that

(4.2) Ty(f)(x) = Vif(eos(x)Vy, [ e Lip(X,B(H)), z € X.

Let g be given by g(z) = \(x) Idy. We have

> Ung(o(@)Uys = Voglig )V
neA

This implies that ¢(z) = ¢4(x) for every x € X. Therefore ¢ is a lipeo-
morphism. Now we show that the family of orthogonally ranged partial
isometries must consist of a single element, U. Consequently, U must be
unitary.

We consider an orthonormal basis for H, {e;}ien. We define the con-
stant function f = e; ® e1, where e; ® ey represents the rank one operator
(e1 ®e1)(v) = (v,e1)ey.

Previous considerations imply that

(4.3) e1®e = U,:erl (%9 61V;Uk for k € A.
We set Wy, = Vi Uy. Given e; (with j # 1) we have
(e1®e1)(e;) = (UpVier ® e1ViUg)(ej).
Therefore 0 = (Wgej,e1)W;er. This implies that either Wye; = 0 or
(ej, Wier) = 0 for every j # 1.
We start by observing that Wje; # 0. Otherwise, (4.3) would imply

that e; = (Wyeq, e1)Wiier = 0. Therefore, for every k € A, W}'e; = aye; for
some scalar . Since

e1 = (e1, aper)ager,

it follows that |ag| = 1.

We have shown that U} Vye; = aye; for every k. This implies that Vie; =
> kea akUrer. Therefore,
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1= <Vf€1,Vf€1> = <ZakUkelaZO‘jUjel>

keA jeA

= Y o (Uper,Ujer) = > _(Uge, Upen).
kjeA keA

This previous equality is only possible if A reduces to a single point and
the family {Uy}rea consists of a single unitary operator, U. Thus we have
Y(f)(z) = Uf(e(x))U* with ¢ a lipeomorphism and U unitary. This implies
that v is in CI(Lip(X,B(H))). =
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