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Quadratic functionals on modules over complex

Banach ∗-algebras with an approximate identity

by

Dijana Ilǐsević (Zagreb)

Abstract. The problem of representability of quadratic functionals by sesquilinear
forms is studied in this article in the setting of a module over an algebra that belongs to
a certain class of complex Banach ∗-algebras with an approximate identity. That class in-
cludes C∗-algebras as well as H∗-algebras and their trace classes. Each quadratic functional
acting on such a module can be represented by a unique sesquilinear form. That form gen-
erally takes values in a larger algebra than the given quadratic functional does. In some
special cases, such as when the module is also a complex vector space compatible with
the vector space of the underlying algebra, and when the quadratic functional is positive
definite with values in a C∗-algebra or in the trace class for an H∗-algebra, the resulting
sesquilinear form takes values in the same algebra. In particular, every normed module
over a C∗-algebra, or an H∗-algebra, without nonzero commutative closed two-sided ideals
is a pre-Hilbert module. Furthermore, the representation theorem for quadratic functionals
acting on modules over standard operator algebras is also obtained.

Introduction. Let M be a right module over a ∗-ring R. Then a map-
ping Q : M → R is called a quadratic functional if it satisfies the parallelo-
gram law

Q(f + g) + Q(f − g) = 2Q(f) + 2Q(g) for all f, g ∈ M

and the homogeneity equation

Q(fa) = a∗Q(f)a for all f ∈ M and a ∈ R.

A biadditive form S : M × M → R is called sesquilinear if

S(fa, g) = a∗S(f, g), S(f, ga) = S(f, g)a for all f, g ∈ M and a ∈ R.

For every sesquilinear form S : M × M → R, the mapping Q : M → R
defined by Q(f) = S(f, f) is a quadratic functional. The question is if each
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quadratic functional can be represented by some sesquilinear form. More
precisely, for a given quadratic functional Q : M → R, does there exist
a sesquilinear form S : M × M → R satisfying S(f, f) = Q(f) for every
f ∈ M?

The solution of this problem is closely connected with the structure of
certain mappings, called Jordan ∗-derivations, on the underlying ring. An
additive mapping J defined on R is called a Jordan ∗-derivation if it satisfies

J(a2) = a∗J(a) + J(a)a for every a ∈ R.

For every u ∈ R, the mapping Ju : R → R given by Ju(a) = ua − a∗u
is an example of a Jordan ∗-derivation and it is called an inner Jordan ∗-
derivation. (Our definition of a Jordan ∗-derivation is, in a manner, reversed
in comparison with the one in [12] because we deal with right modules
instead of left ones. Therefore, the statements of some cited results are
adjusted to our case.)

Representability of quadratic functionals acting on modules over ∗-rings
with identity is dealt with in the Main Theorem of [13]. A simple consequence
of that result is the positive solution of the representability problem for
modules over any complex ∗-algebra with identity. It is based on the easily
verified fact that each Jordan ∗-derivation on a complex ∗-algebra with
identity is inner and uniquely represented. If we omit the assumption of the
existence of the identity, the class of algebras has to be restricted (observe
that the mapping J : A → A defined by J(a) = a− a∗ is a noninner Jordan
∗-derivation if A is a nonunital complex ∗-algebra). We are motivated by
the fact that closest to the algebras with identity are the algebras with an
approximate identity, and by the technique dealing with an approximate
identity consisting of projections, developed in [17]. In this paper we study
quadratic functionals on modules over a certain class of complex Banach
∗-algebras with an approximate identity.

We use the term Banach ∗-algebra for a ∗-algebra A together with a
complete submultiplicative norm ‖ · ‖ such that ‖a∗‖ = ‖a‖ for every a ∈ A.
An approximate identity for A is a generalized sequence {eα} of elements
of A having the property

lim
α

‖eαa − a‖ = lim
α

‖aeα − a‖ = 0 for every a ∈ A.

Obviously, if {eα} is an approximate identity for A, then so is {e∗α}.

In Section 1 it is shown how Jordan ∗-derivations of a large class of com-
plex ∗-algebras can be understood as inner ones in the context of double
centralizers. Section 2 contains the main results concerning representability
of quadratic functionals acting on modules over complex Banach ∗-algebras
with an approximate identity. They show the closeness to the correspond-
ing result in the case of complex ∗-algebras having an identity element. In
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Section 3 the representation theorem is established for quadratic function-
als on modules over standard operator algebras. Section 4 is devoted to an
application of the results of the previous sections to normed modules over
H∗-algebras and C∗-algebras.

1. Jordan ∗-derivations and double centralizers. Let A be a ring
(resp. an algebra). If the mappings T, S : A → A satisfy aT (b) = S(a)b for
all a, b ∈ A, then the pair (T, S) is called a double centralizer of A. For a ∈ A
we denote by La the left multiplication operator (defined by La(x) = ax for
every x ∈ A) and by Ra the right multiplication operator (which is given
by Ra(x) = xa for every x ∈ A); then (La, Ra) is an example of a double
centralizer of A.

Let us define:

L(A) = {La : a ∈ A},

LDC(A) = {T : A → A : there exists S : A → A such that

(T, S) is a double centralizer of A},

L(A) = {T : A → A : T (ab) = T (a)b for all a, b ∈ A}.

It is easy to verify that L(A), LDC(A) and L(A) are rings (resp. algebras).
Let us observe that LDC(A) is the ring (resp. the algebra) of all “the left
halves of double centralizers”. Since (La, Ra) is a double centralizer of A for
every a ∈ A, we have L(A) ⊆ LDC(A). Note that LDC(A) has an identity.
If A does not admit a left identity, then L(A) ( LDC(A).

Remark 1.1. If A is a ring such that Aa = 0 (where a ∈ A) implies
a = 0, then LDC(A) ⊆ L(A). This is in fact the statement of Observation 13
in [17], placed in the context of H∗-algebras. However, it holds in this more
general setting as can be seen from the proof in [17]. Furthermore, if A is
an H∗-algebra, then LDC(A) = L(A), but there is a C∗-algebra A such that
LDC(A) ( L(A) (for more details see the Remark and Example in [6]).

Remark 1.2. Following the proof of Observation 13 in [17], we can also
deduce that if A is a Banach algebra having the property that Aa = 0
(where a ∈ A) implies a = 0, then each element in LDC(A) is a bounded
linear operator.

The following result shows that each Jordan ∗-derivation acting on a
certain complex ∗-algebra is “close enough” to an inner one and can be
handled analogously.

Lemma 1.3. Let A be a complex ∗-algebra such that Aa = 0 (where

a ∈ A) implies a = 0 (which is equivalent to aA = 0 implying a = 0). For

each Jordan ∗-derivation J : A → A there exists a unique T ∈ LDC(A) such

that LJ(a) = TLa − La∗T for every a ∈ A.
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Proof. For each Jordan ∗-derivation J : A → A there exists a unique
double centralizer (T, S) of A such that J(a) = T (a)−S(a∗) for every a ∈ A
([2, Theorem 2.1]). For all a, b ∈ A,

LJ(a)(b) = J(a)b = (T (a) − S(a∗))b = T (a)b − S(a∗)b

= T (a)b − a∗T (b)
Rem. 1.1

= T (ab) − a∗T (b)

= TLa(b) − La∗T (b) = (TLa − La∗T )(b).

Therefore, LJ(a) = TLa − La∗T for every a ∈ A.
If T1 ∈ LDC(A) satisfies LJ(a) = T1La − La∗T1 for every a ∈ A and if

S1 : A → A is the mapping such that xT1(y) = S1(x)y for all x, y ∈ A, then

J(a)b = LJ(a)b = (T1La − La∗T1)(b) = T1(ab) − a∗T1(b)

Rem.1.1
= T1(a)b − a∗T1(b) = T1(a)b − S1(a

∗)b = (T1(a) − S1(a
∗))b

for all a, b ∈ A. Hence, J(a) = T1(a)−S1(a
∗) for every a ∈ A. The uniqueness

of such a representation implies T1 = T .

Remark 1.4. Clearly, if J : A → A is an inner Jordan ∗-derivation,
that is, if there exists u ∈ A such that J(a) = ua − a∗u for every a ∈ A,
then the unique T ∈ LDC(A) obtained in Lemma 1.3 is equal to Lu.

2. The representation theorem and its consequences. The main
theorem of this article is Theorem 2.1. Although it is related to a class of
Banach ∗-algebras, it is algebraic in spirit.

Theorem 2.1. Let (A, ‖ · ‖) be a complex Banach ∗-algebra with an

approximate identity {eα} such that

lim
α

‖eα
∗aeα − a‖ = 0 for every a ∈ A.

Let M be a right module over A. For each quadratic functional Q : M → A
there exists a unique mapping S : M × M → LDC(A) satisfying :

(i) S is biadditive,
(ii) S(fa, g) = La∗S(f, g) and S(f, ga) = S(f, g)La,
(iii) S(f, f) = LQ(f),

for all f, g ∈ M and a ∈ A. This mapping is given by

S(f, g)a =
1

4
(Q(f + g)a − Q(f − g)a)

+
i

4
lim
α

(Q(f(ieα) + g)a − Q(f(ieα) − g)a)

for all f, g ∈ M and a ∈ A.

Remark 2.2. Observe that Aa = 0 (where a ∈ A) implies a = 0, as well
as aA = 0 (a ∈ A) implies a = 0, since A has an approximate identity.
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Remark 2.3. If we identify A with L(A), then M can be understood as
a module over L(A). Therefore, we can say that S is a sesquilinear form on
M × M, not taking values in L(A), but in the larger algebra LDC(A).

Remark 2.4. Let (A, ‖ · ‖) be a complex Banach ∗-algebra with an
approximate identity {eα}. If the generalized sequence {Le∗

α

} consisting of
left multiplication operators is bounded, then

‖e∗αaeα − a‖ ≤ ‖e∗αaeα − e∗αa‖ + ‖e∗αa − a‖

= ‖Le∗
α

(aeα − a)‖ + ‖a∗eα − a∗‖

≤ ‖Le∗
α

‖ · ‖aeα − a‖ + ‖a∗eα − a∗‖ → 0,

so the assumptions of Theorem 2.1 are satisfied.

Examples of such algebras and approximate identities follow:

I. Clearly, {Le∗
α

} is bounded if {e∗α} is bounded. This is the case when
A is a C∗-algebra and {eα} is the canonical approximate identity for A (e.g.
[7, Theorem 3.1.1]).

II. Every H∗-algebra has an approximate identity {eα} consisting of pro-
jections ([5, Theorem 3.2], based on [1, Theorem 4.1]). Corollary 3.11 of
[15] implies boundedness of {Leα

} (more precisely, ‖Leα
‖ = 1 for every α)

although {eα} generally is not bounded. (For simplicity we use the term
“H∗-algebra” for “proper H∗-algebra”.)

III. The trace class associated with an H∗-algebra A is defined as the
set τ(A) = {xy : x, y ∈ A}. It is a self-adjoint two-sided ideal of A which is
dense in A and it can be equipped with a norm τ( · ) such that (τ(A), τ( · )) is
a Banach ∗-algebra. The inequality τ(xy) ≤ ‖x‖ · ‖y‖ holds for all x, y ∈ A.
These facts and more details concerning the trace class can be found in
[11] and [10]. An approximate identity {eα}, consisting of projections, for
an H∗-algebra is also an approximate identity for its trace class. Namely, if
a ∈ τ(A), then there exist x, y ∈ A such that a = xy, so

τ(eαa − a) = τ(eαxy − xy) = τ((eαx − x)y) ≤ ‖eαx − x‖ · ‖y‖ → 0,

τ(aeα − a) = τ(xyeα − xy) = τ(x(yeα − y)) ≤ ‖x‖ · ‖yeα − y‖ → 0.

Note that eα = e2
α ∈ τ(A) for every α. Furthermore, Lemma 5 of [11] implies

τ(Leα
(a)) ≤ ‖Leα

‖·τ(a) = τ(a) for every a ∈ τ(A) and every α; hence {Leα
}

is bounded.

Let us emphasize that a right module M over an algebra A is understood
as a right module M over the ring A. More precisely, it is not required that
M is a complex vector space. Clearly, a module over each unital complex
algebra is naturally equipped with the structure of a complex vector space
compatible with the structure of A. (Compatibility of these structures means
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that (λf)a = f(λa) = λ(fa) for all λ ∈ C, f ∈ M and a ∈ A.) In contrast to
that case, the following example shows that there exists a module over an
arbitrary complex normed algebra with an approximate identity, but with-
out an identity, which cannot be equipped with the structure of a complex
vector space compatible with the structure of the underlying algebra. This
example is inspired by the process of adjunction of an identity to an algebra
without an identity.

Example 2.5. Let A be a complex normed algebra without an identity,
but with an approximate identity {eα}. The set M = A × R endowed with
the coordinatewise defined addition

(a, λ) + (b, µ) = (a + b, λ + µ) for all a, b ∈ A and λ, µ ∈ R

is a right module over A under its action on A defined by

(a, λ)b = (ab + λb, 0) for all a, b ∈ A and λ ∈ R.

Assume that M is equipped with the structure of a complex vector space
compatible with the structure of A. Then we have

(i · (0, 1))eα = (0, 1)(ieα), that is, (i · (0, 1)
)
eα = (ieα, 0).

If we put i · (0, 1) = (u, η) ∈ M, then

(i · (0, 1))eα = (u, η)eα = (ueα + ηeα, 0)

and consequently

ueα + ηeα = ieα, that is, ueα = (i − η)eα.

The generalized sequence {ueα} is convergent to u ∈ A, hence so also is
{(i − η)eα}. For every a ∈ A,

ua = ( lim
α

(i − η)eα)a = (i − η) lim
α

eαa = (i − η)a,

au = a(lim
α

(i − η)eα) = (i − η) lim
α

aeα = (i − η)a.

Evidently, η 6= i because η ∈ R. Hence, 1
i−η

u is an identity in A, contradict-
ing the assumption that A is nonunital.

Proof of Theorem 2.1. Lemma 4 in [4] is related to the problem of repre-
sentability of positive definite quadratic functionals acting on a module over
an H∗-algebra. However, statements (i)–(iv) and (vi)–(vii) of that lemma
can be carried over to arbitrary (not necessarily positive definite) quadratic
functionals on a module over any algebra satisfying the assumptions of the
main theorem. Thus the mapping B : M × M → A given by

B(f, g) = Q(f + g) − Q(f − g)
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has the following properties:

(B1) B(f, f) = 4Q(f),
(B2) B(f, g) = B(g, f),
(B3) B(f, g + h) = B(f, g) + B(f, h),
(B4) B(fa, ga) = a∗B(f, g)a,
(B5) B(f + fa, g + ga) = B(f, g) + a∗B(f, g) + B(f, g)a + B(fa, ga),
(B6) B(fa, g) + B(f, ga) = a∗B(f, g) + B(f, g)a,

for all f, g, h ∈ M and a ∈ A. Let us mention that {eα} appears only in the
proof of (B5) where the assumption limα ‖e∗αaeα − a‖ = 0 is used.

For fixed f, g ∈ M, the mapping J : A → A defined by

J(a) = B(fa, g) − a∗B(f, g)

satisfies

a∗J(a) + J(a)a = a∗(B(fa, g) − a∗B(f, g)) + (B(fa, g) − a∗B(f, g))a

= (a∗B(fa, g) + B(fa, g)a) − (a∗2B(f, g) + a∗B(f, g)a)

(B6)
= (B(fa2, g) + B(fa, ga)) − (a∗2B(f, g) + a∗B(f, g)a)

(B4)
= (B(fa2, g) + a∗B(f, g)a) − (a∗2B(f, g) + a∗B(f, g)a)

= B(fa2, g) − a∗2B(f, g) = J(a2).

Hence, J is a Jordan ∗-derivation. According to Lemma 1.3, there exists a
unique T f,g ∈ LDC(A) such that

LB(fa,g) − La∗B(f,g) = T f,gLa − La∗T
f,g for every a ∈ A.

Let C : M × M → LDC(A) be the mapping given by

C(f, g) = T f,g.

Then

(BC) LB(fa,g) − La∗B(f,g) = C(f, g)La − La∗C(f, g)

for all f, g ∈ M and a ∈ A. Let us prove that the mapping C has the
following properties:

(C1) C(f, g) + C(g, f) = LB(f,g), specifically C(f, f) = 2LQ(f),
(C2) C(f + g, h) = C(f, h) + C(g, h) and

C(f, g + h) = C(f, g) + C(f, h),
(C3) C(fa, g) = C(f, g)La and C(f, ga) = La∗C(f, g),

for all f, g, h ∈ M and a ∈ A.
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Since

LB(f,g)a−a∗B(f,g) = La∗B(f,g)+B(f,g)a − 2La∗B(f,g)

(B6)
= LB(fa,g)+B(f,ga) − 2La∗B(f,g)

= (LB(fa,g) + LB(f,ga)) − 2La∗B(f,g)

= (LB(fa,g) − La∗B(f,g)) + (LB(f,ga) − La∗B(f,g))

(B2)
= (LB(fa,g) − La∗B(f,g)) + (LB(ga,f) − La∗B(g,f))

(BC)
= (C(f, g)La − La∗C(f, g)) + (C(g, f)La − La∗C(g, f))

= (C(f, g) + C(g, f))La − La∗(C(f, g) + C(g, f))

and considering the uniqueness of the representation from Lemma 1.3 (more
specifically, considering Remark 1.4), we obtain C(f, g)+ C(g, f) = LB(f,g).
If we put g = f and apply (B1), we get C(f, f) = 2LQ(f). For all f, g, h ∈ M
and a ∈ A,

LB(fa,g+h) − La∗B(f,g+h)

(B3)
= (LB(fa,g) + LB(fa,h)) − (La∗B(f,g) + La∗B(f,h))

= (LB(fa,g) − La∗B(f,g)) + (LB(fa,h) − La∗B(f,h))

(BC)
= (C(f, g)La − La∗C(f, g)) + (C(f, h)La − La∗C(f, h))

= (C(f, g) + C(f, h))La − La∗(C(f, g) + C(f, h)).

Therefore, the mapping C is additive in the second argument. Analogously
we get additivity in the first argument.

Because

LB((fa)b,g) − Lb∗B(fa,g)

= (LB(f(ab),g) − L(ab)∗B(f,g)) + (L(ab)∗B(f,g) − Lb∗B(fa,g))

= (LB(f(ab),g) − L(ab)∗B(f,g)) − Lb∗(LB(fa,g) − La∗B(f,g))

(BC)
= (C(f, g)Lab − L(ab)∗C(f, g)) − Lb∗(C(f, g)La − La∗C(f, g))

= (C(f, g)La)Lb − Lb∗(C(f, g)La),

we conclude that C(fa, g) = C(f, g)La. Further,

C(f, ga)
(C1)
= LB(ga,f) − C(ga, f) = LB(ga,f) − C(g, f)La

(BC)
= La∗B(g,f) − La∗C(g, f) = La∗(LB(g,f) − C(g, f))

(C1)
= La∗C(f, g).



Quadratic functionals on modules 111

Finally, it is sufficient to define the mapping S : M × M → LDC(A) by

S(f, g) =
1

2
C(g, f).

We have

S(f(ieα), g)a = L−ie∗
α

S(f, g)a = −ieα
∗(S(f, g)a) → −iS(f, g)a,

S(g, f(ieα))a = S(g, f)Lieα
a = S(g, f)(ieαa) → iS(g, f)a,

which is obtained using the fact that the mapping S(g, f) is a bounded linear
operator (Remark 1.2). Thus

S(f, g)a =
1

2
(S(f, g)a + S(g, f)a) +

i

2
(−iS(f, g)a + iS(g, f)a)

=
1

4
(2S(f, g)a + 2S(g, f)a)

+
i

4
lim
α

(2S(f(ieα), g)a + 2S(g, f(ieα))a)

=
1

4
(S(f + g, f + g)a − S(f − g, f − g)a)

+
i

4
lim
α

(S(f(ieα) + g, f(ieα) + g)a − S(f(ieα) − g, f(ieα) − g)a)

=
1

4
(LQ(f+g)a − LQ(f−g)a) +

i

4
lim
α

(LQ(f(ieα)+g)a − LQ(f(ieα)−g)a)

=
1

4
(Q(f + g)a − Q(f − g)a)

+
i

4
lim
α

(Q(f(ieα) + g)a − Q(f(ieα) − g)a).

It remains to answer the question under what (necessary and sufficient)
conditions a quadratic functional taking values in A can be represented by
a sesquilinear form also taking values in A. We shall need the following
technical lemma:

Lemma 2.6. Let A, M , Q and S be as in Theorem 2.1. If for every pair

(f, g) ∈ M × M there exists (a unique) uf,g ∈ A such that

uf,ga = S(f, g)a for every a ∈ A,

then the mapping (f, g) 7→ uf,g is a unique A-valued sesquilinear form on

M × M satisfying uf,f = Q(f) for every f ∈ M.

Proof. Since S is a biadditive form, the mapping (f, g) 7→ uf,g is also
biadditive. Further,

ufa,gb = S(fa, g)b = La∗S(f, g)b = a∗(S(f, g)b) = a∗uf,gb for every b ∈ A,

so

ufa,g = a∗uf,g,
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and similarly

uf,gab = S(f, ga)b = S(f, g)Lab = S(f, g)(ab) = uf,gab for every b ∈ A,

so

uf,ga = uf,ga.

Finally,

uf,fa = S(f, f)a = LQ(f)a = Q(f)a for every a ∈ A,

which yields

uf,f = Q(f).

Proposition 2.7. Let A, {eα}, M and Q be as in Theorem 2.1. There

exists a unique sesquilinear form S : M ×M → A representing Q, that is, a

unique sesquilinear form satisfying S(f, f) = Q(f) for every f ∈ M, if and

only if for all f, g ∈ M the limit limα Q(f(ieα)+ g) ∈ A exists. In that case,

S(f, g) =
1

4
(Q(f + g) − Q(f − g)) +

i

4
lim
α

(Q(f(ieα) + g) − Q(f(ieα) − g)).

If Q(f)∗ = Q(f) for every f ∈ M, then S(f, g)∗ = S(g, f) for all f, g ∈ M.

Proof. Assume that, for all f, g ∈ M, the limit limα(Q(f(ieα)+g) exists
and that it is an element of A. The mapping from M×M to LDC(A) obtained

in Theorem 2.1 will be denoted by S̃. Define

S(f, g) =
1

4
(Q(f + g) − Q(f − g)) +

i

4
lim
α

(Q(f(ieα) + g) − Q(f(ieα) − g)).

For all f, g ∈ M we have S(f, g) ∈ A and S(f, g)a = S̃(f, g)a for every a ∈ A.
Lemma 2.6 implies that S is the unique sesquilinear form from M × M to
A with S(f, f) = Q(f) for every f ∈ M. If B : M ×M → A is defined as in
the proof of Theorem 2.1, then

S(f, g) =
1

4
B(f, g) +

i

4
lim
α

B(f(ieα), g).

If Q(f)∗ = Q(f) for every f ∈ M, then B(f, g)∗ = B(f, g) for all f, g ∈ M.
Now we have

S(f, g)∗ − S(g, f) =

(
1

4
B(f, g) −

i

4
lim
α

B(f(ieα), g)

)

−

(
1

4
B(g, f) +

i

4
lim
α

B(g(ieα), f)

)

(B2)
= −

i

4
lim
α

(B(f(ieα), g) + B(f, g(ieα)))

(B6)
= −

i

4
lim
α

(−ie∗αB(f, g) + iB(f, g)eα) = 0,

hence S(f, g)∗ = S(g, f) for all f, g ∈ M.
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Conversely, if Q can be represented by a sesquilinear form S : M × M
→ A, then

Q(f(ieα) + g) = S(f(ieα) + g, f(ieα) + g)

= e∗αS(f, f)eα + iS(g, f)eα − ie∗αS(f, g) + S(g, g)

→ S(f, f) + S(g, g) + iS(g, f) − iS(f, g) ∈ A.

As we are going to see, when M is equipped with the structure of a
complex vector space compatible with the structure of A, then each A-
valued quadratic functional on M can be represented by a unique A-valued
sesquilinear form on M ×M. This result can be considered a generalization
of the Jordan–von Neumann type theorem for modules over C∗-algebras
([18, Theorem 5.1]) to modules over a larger class of algebras. Let us note
that the above mentioned theorem is going to be generalized (in the case of
C∗-algebras as well as in the case of H∗-algebras) in Section 4 in yet another
sense.

Proposition 2.8. Let A be as in Theorem 2.1. Let the right module

M over A be a complex vector space compatible with the structure of A. For

each quadratic functional Q : M → A there exists a unique sesquilinear form

S : M × M → A such that S(f, f) = Q(f) for every f ∈ M. Furthermore,

S(f, g) =
1

4
(Q(f + g) − Q(f − g)) +

i

4
(Q(if + g) − Q(if − g)).

If Q(f)∗ = Q(f) for every f ∈ M, then S(f, g)∗ = S(g, f) for all f, g ∈ M.

Proof. Denote the mapping from M×M to LDC(A) obtained in Theorem

2.1 by S̃. Let {eα} be as in Theorem 2.1. For all f, g ∈ M,

Q(f(ieα) + g)a − Q(f(ieα) − g)a = LQ(f(ieα)+g)a − LQ(f(ieα)−g)a

= S̃(f(ieα) + g, f(ieα) + g)a − S̃(f(ieα) − g, f(ieα) − g)a

= 2S̃(f(ieα), g)a + 2S̃(g, f(ieα))a = 2S̃((if)eα, g)a + 2S̃(g, (if)eα)a

= 2Le∗
α

S̃(if, g)a + 2S̃(g, if)Leα
a = 2e∗αS̃(if, g)a + 2S̃(g, if)(eαa)

→ 2S̃(if, g)a + 2S̃(g, if)a = S̃(if + g, if + g)a − S̃(if − g, if − g)a

= LQ(if+g)a − LQ(if−g)a = Q(if + g)a − Q(if − g)a.

Thus,

S̃(f, g)a =
1

4
(Q(f + g)a − Q(f − g)a) +

i

4
(Q(if + g)a − Q(if − g)a).

That is, if we define S(f, g) as in the statement of the proposition, then

S(f, g)a = S̃(f, g)a for every a ∈ A. According to Lemma 2.6, S is the
unique A-valued sesquilinear form representing Q.
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Note that if B : M × M → A is as in the proof of Theorem 2.1, then

S(f, g) =
1

4
B(f, g) +

i

4
B(if, g).

Since

B(if, g) = lim
α

e∗αB(if, g)eα
(B4)
= lim

α
B((if)eα, geα)

= lim
α

B(f(ieα), (−ig)(ieα))
(B4)
= lim

α
(ieα)∗B(f,−ig)(ieα)

= lim
α

e∗αB(f,−ig)eα = B(f,−ig)
(B3)
= −B(f, ig),

the assumption Q(f)∗ = Q(f), for every f ∈ M, implies

S(f, g)∗ − S(g, f) =

(
1

4
B(f, g) −

i

4
B(if, g)

)
−

(
1

4
B(g, f) +

i

4
B(ig, f)

)

(B2)
= −

i

4
(B(if, g) + B(f, ig)) = 0,

so S(f, g)∗ = S(g, f) for all f, g ∈ M .

The closeness of the representability problem in this case to the one
concerning modules over complex ∗-algebras with an identity is evident: the
corresponding formula in the case of modules over unital complex ∗-algebras
is

S(f, g) =
1

4
(Q(f + g) − Q(f − g)) +

i

4
(Q(if + g) − Q(if − g))

([13, Corollary 4]). Let us mention that, for simplicity of the proof of the rep-
resentation theorem in [18] (Theorem 4.3), Zalar introduced a two-parameter
generalization of a Jordan ∗-derivation called a Jordan ∗-derivation pair (for
his motivation see the beginning of Section 2 in [18]). The explicit formula
recovering the sesquilinear form that represents a given quadratic functional
indicates why we have decided to deal with a one-parameter mapping, that
is, with a Jordan ∗-derivation. Namely, the “real” part of the sesquilinear
form obtained is the same as in the unital case. However, the “imaginary”
part is a source of problems (because of the elements if)—this is the place
where we need a parameter from a Jordan ∗-derivation.

3. Quadratic functionals on modules over standard operator

algebras. We denote by H a (real or complex) Hilbert space. A standard

operator algebra is a (not necessarily self-adjoint) subalgebra of B(H) (the
algebra of all bounded linear operators on H) that contains the ideal F(H)
of finite rank operators. For example, HS(H) and K(H) (the algebra of
all Hilbert–Schmidt operators on H and the algebra of all compact linear
operators on H, respectively) are standard operator algebras. The following
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example, inspired by Molnár’s example in [6], is an example of a standard
operator algebra that is not self-adjoint.

Example 3.1. Let H be an infinite-dimensional Hilbert space. Choose
u ∈ B(H) such that the kernel of u∗ is infinite-dimensional and such that
u∗u = 1 (concretely, u is as in the Example of [6]). The algebra A =
F(H) + uB(H) is a standard operator algebra and u = 0 + u · 1 ∈ A. If
we assume that u∗ ∈ A, then there exist f ∈ F(H) and b ∈ B(H) having the
property u∗ = f + ub, that is, u = f∗ + b∗u∗. Multiplying this by u∗ from
the left, we get 1 = u∗f∗ + u∗b∗u∗ and 1 − u∗b∗u∗ = u∗f∗ ∈ F(H) follows.
However, 1− u∗b∗u∗ is the identity operator on the kernel of u∗, hence it is
not a finite rank operator. Therefore, u∗ /∈ A.

Lemma 3.2. Let A ⊆ B(H) be a standard operator algebra and let | · |
be a norm in H. There exists a generalized sequence {pα}, consisting of

projections in A, such that limα |pαapαξ−aξ| = 0 for every a ∈ A and every

ξ ∈ H.

Proof. There exists a generalized sequence {pα} consisting of finite rank
projections such that |pαη−η| → 0 for every η ∈ H. Thus {pα} ⊆ F(H) ⊆ A
and for every a ∈ A and every ξ ∈ H we have

|pαapαξ − aξ| ≤ |pαapαξ − pαaξ| + |pαaξ − aξ|

= |pαa(pαξ − ξ)| + |pαaξ − aξ|

≤ ‖pαa‖ · |pαξ − ξ| + |pαaξ − aξ|

≤ ‖a‖ · |pαξ − ξ| + |pα(aξ) − aξ| → 0,

where ‖ · ‖ denotes the operator norm on B(H).

Theorem 3.3. Let A ⊆ B(H), dimH > 1, be a standard operator alge-

bra and let M be a right module over A. Then for each quadratic functional

Q : M → A there exists a sesquilinear form S : M ×M → B(H) having the

property S(f, f) = Q(f) for every f ∈ M.

Proof. In view of Lemma 3.2, the statements (B1)–(B6) from the proof
of Theorem 2.1 hold for any standard operator algebra (in (B5) we consider
B(f + fa, g + ga)ξ for an arbitrary ξ ∈ H and calculate in the same way).
Therefore, for fixed f, g ∈ M, the mapping J : A → A given by

J(a) = B(fa, g) − a∗B(f, g)

is a Jordan ∗-derivation (as in the proof of Theorem 2.1). We further argue as
in the proof of Theorem 2.1 again; we present the proof in full for the sake of
completeness. The Theorem in [14] implies that for each Jordan ∗-derivation
J : A → B(H) there exists a unique u ∈ B(H) such that J(a) = ua−a∗u for
every a ∈ A. Specifically, there is a unique uf,g ∈ B(H) having the property

B(fa, g) − a∗B(f, g) = uf,ga − a∗uf,g for every a ∈ A.
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From

(uf,g + ug,f )a − a∗(uf,g + ug,f ) = (uf,ga − a∗uf,g) + (ug,fa − a∗ug,f )

= (B(fa, g) − a∗B(f, g)) + (B(ga, f) − a∗B(g, f))

= (B(fa, g) − a∗B(f, g)) + (B(f, ga) − a∗B(f, g))

= (B(fa, g) + B(f, ga)) − 2a∗B(f, g)

= (a∗B(f, g) + B(f, g)a) − 2a∗B(f, g) = B(f, g)a − a∗B(f, g)

we get uf,g + ug,f = B(f, g). In particular, uf,f = 1
2B(f, f) = 2Q(f). Fur-

thermore,

B(fa, g + h) − a∗B(f, g + h)

= (B(fa, g) + B(fa, h)) − a∗(B(f, g) + B(f, h))

= (B(fa, g) − a∗B(f, g)) + (B(fa, h) − a∗B(f, h))

= (uf,ga − a∗uf,g) + (uf,ha − a∗uf,h)

= (uf,g + uf,h)a − a∗(uf,g + uf,h),

so uf,g+h = uf,g + uf,h. The same method gives us uf+g,h = uf,h + ug,h.
Since

B((fa)b, g) − b∗B(fa, g)

= (B(f(ab), g)− (ab)∗B(f, g)) + ((ab)∗B(f, g) − b∗B(fa, g))

= (B(f(ab), g)− (ab)∗B(f, g)) − b∗(B(fa, g) − a∗B(f, g))

= (uf,g(ab) − (ab)∗uf,g) − b∗(uf,ga − a∗uf,g) = (uf,ga)b − b∗(uf,ga),

we have ufa,g = uf,ga. We further obtain

uf,ga = B(ga, f) − uga,f = B(ga, f) − ug,fa

= a∗B(g, f) − a∗ug,f = a∗(B(g, f) − ug,f ) = a∗uf,g.

Finally, we define the mapping S : M × M → B(H) by

S(f, g) =
1

2
ug,f .

Remark 3.4. If A ⊆ B(H), dimH > 1, is a standard operator algebra,
then for every ξ ∈ H there exist a, b ∈ A satisfying a = a∗, aξ = ξ, ba = 0
and bb∗ = a2. (Namely, it is sufficient to define a as the orthogonal projection
on the subspace of H generated by ξ, then to take any η orthogonal to ξ
having the same norm as ξ and finally to define b : H → H by b(λη+̺) = λξ
for every scalar λ and every ̺ orthogonal to η.)

This is in fact the statement of Lemma 14 in [8], carried over from
the context of C∗-algebras to the context of standard operator algebras. It
enables us, arguing as in the proof of Lemma 15 in [8], to conclude that each
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positive definite mapping Q : M → A, where M is a right module over A,
satisfying Q(fa) = a∗Q(f)a (f ∈ M, a ∈ A) also satisfies the parallelogram
law. (The possibility of carrying over this result was independently observed
by D. Bakić in the case A = HS(H), dimH > 1.)

Note that, although it is required for Q to be positive definite, only
the fact Q(f)∗ = Q(f) for every f ∈ M is used in the proof. Hence, the
statement also holds for hermitian mappings. When H is complex, clearly
the assumption that Q is hermitian can be omitted as well.

Finally, a generalization of this result to an arbitrary H∗-algebra can be
obtained without difficulties (every H∗-algebra is the closure of the orthog-
onal sum of its minimal closed two-sided ideals, each of which is a topo-
logically simple H∗-algebra and the H∗-algebras HS(H) are the only topo-
logically simple H∗-algebras; see [1]). More precisely, if A is an H∗-algebra
with no nonzero commutative closed two-sided ideals, M is a right mod-
ule over A and Q : M → A is the mapping that satisfies Q(fa) = a∗Q(f)a
(f ∈ M, a ∈ A), then Q is a quadratic functional. The same is true in the case
when A is a C∗-algebra having the same property (see the above-mentioned
Lemma 15 of [8]).

4. Normed modules over H∗-algebras and C∗-algebras. The known
concept of a Hilbert module over an H∗-algebra or a C∗-algebra, which
arises as a generalization of a complex Hilbert space, can be extended to the
concept of a pre-Hilbert module over an H∗-algebra or a C∗-algebra, that is,
to a generalization of a complex pre-Hilbert space.

Let A be an H∗-algebra or a C∗-algebra. A pre-Hilbert A-module is a
right module H over A which is equipped with a generalized inner prod-
uct, that is, with a mapping [ ·, · ] on H × H, which is τ(A)-valued if A is
an H∗-algebra, or A-valued if A is a C∗-algebra, having the following prop-
erties:

(H1) [f, g + h] = [f, g] + [f, h] for all f, g ∈ H,
(H2) [f, ga] = [f, g]a for all f, g ∈ H and a ∈ A,
(H3) [f, g]∗ = [g, f ] for all f, g ∈ H,
(H4) [f, f ] ≥ 0 for every f ∈ H, and [f, f ] = 0 implies f = 0.

If A is an H∗-algebra, then for each positive a ∈ τ(A) there exists a
unique positive element b ∈ A such that b2 = a; if A is a C∗-algebra, such
a b ∈ A exists for each positive a ∈ A. In both cases, b is called the square
root of a. Specifically, for every f ∈ H the square root of [f, f ] exists and it
is denoted by |f |.

Each pre-Hilbert A-module (H, [ ·, · ]) is a metric space with respect to
the metric d : H×H → C given by d(f, g) =

∥∥|f−g|
∥∥ (where ‖·‖ denotes the
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norm in A). If this metric space is complete, then (H, [·, ·]) is called a Hilbert

A-module. Completeness and the existence of an approximate identity in A
enable us to equip each Hilbert A-module with the structure of a complex
vector space compatible with the structure of A (see Theorem 1 in [9] or
Exercise 15.A in [16], which are basically the same). However, there are
pre-Hilbert A-modules that lack this property. The following example is a
variation of Example 2.5.

Example 4.1. Let A be an H∗-algebra (or a C∗-algebra) such that there
exists x ∈ A with xv 6= x for every v ∈ A. The set A × R, endowed with
coordinatewise addition, is a right module over A under the action

(a, λ)b = (ab + λb, 0)

for all a, b ∈ A and λ ∈ R. Define

M = {(a, λ) ∈ A × R : xa + λx = 0}.

Obviously, M is closed with respect to addition. For all a, b ∈ A and λ ∈ R,
the equality xa + λx = 0 implies

x(ab + λb) + 0 · x = (xa + λx)b = 0 · b = 0,

so (ab + λb, 0) ∈ M, that is, (a, λ)b ∈ M for every (a, λ) ∈ M and every
b ∈ A. Hence, M is a submodule of A× R. Put H = (A× R)/M and define

((a, λ) + M) + ((b, µ) + M) = (a + b, λ + µ) + M

for all a, b ∈ A and λ, µ ∈ R and

((a, λ) + M)b = (ab + λb, 0) + M

for all a, b ∈ A and λ ∈ R. Under these operations, H is a right module
over A. We can equip it with the structure of a pre-Hilbert module over A
if we define

[(a, λ) + M, (b, µ) + M ] = (xa + λx)∗(xb + µx)

for all a, b ∈ A and λ, µ ∈ R. Assume that H has the structure of a complex
vector space compatible with the structure of A. Let {eα} be an approximate
identity for A. We have

(i · ((0, 1) + M))eα = ((0, 1) + M)(ieα),

that is,

(i · ((0, 1) + M))eα = (ieα, 0) + M.

If i · ((0, 1) + M) = (u, η) + M ∈ H, then

(i · ((0, 1) + M))eα = ((u, η) + M)eα = (ueα + ηeα, 0) + M.

Therefore,

(ueα + ηeα − ieα, 0) ∈ M for every α,



Quadratic functionals on modules 119

so

x(ueα + ηeα − ieα) = 0 for every α.

After taking limits, we get

xu = (i − η)x.

Since η ∈ R, we have η 6= i. If we define v = 1
i−η

u ∈ A, then xv = x,

contradicting our assumption. Hence, H is a pre-Hilbert module over an
H∗-algebra or a C∗-algebra A which cannot be equipped with the structure
of a complex vector space compatible with the structure of A.

Let (A, ‖ · ‖) be an H∗-algebra or a C∗-algebra. A normed A-module is
a right module H over A together with a mapping N : H → A having the
following properties:

(N1) N(f) ≥ 0 for every f ∈ H,
(N2) N(f) = 0 implies f = 0,
(N3) N(fa) = |N(f)a| for every f ∈ H and every a ∈ A,
(N4) ‖N(f + g)‖ ≤ ‖N(f)‖ + ‖N(g)‖ for all f, g ∈ H.

For every a ∈ A, |a| denotes the square root of a∗a. It can be easily
verified that

∥∥|a|
∥∥ = ‖a‖ for every a ∈ A. This equality and axiom (N3)

imply ‖N(fa)‖ = ‖N(f)a‖ for every f ∈ H and every a ∈ A, which will be
used later.

As before, H is understood to be a module over the ring A. Since

N(fa)2 = |N(f)a|2 = (N(f)a)∗(N(f)a) = a∗N(f)2a (f ∈ H, a ∈ A),

the mapping Q : H → A given by Q(f) = N(f)2 satisfies Q(fa) = a∗Q(f)a
for every f ∈ H and every a ∈ A. If A does not have nonzero commutative
closed two-sided ideals, then Q is a quadratic functional according to Remark
3.4, so the normed A-module (H, N) satisfies the parallelogram law

N(f + g)2 + N(f − g)2 = 2N(f)2 + 2N(g)2 (f, g ∈ H).

The notion of a normed module over an H∗-algebra was introduced by
B. Zalar in [17]. In that paper a generalization of the classical Jordan–von
Neumann theorem was obtained in the form of a characterization of pre-
Hilbert modules over H∗-algebras among normed modules over H∗-algebras
via the parallelogram law. However, as we have noticed, in a large class of
normed modules over H∗-algebras, the parallelogram law holds.

The analogous notion of a Finsler module in the case of C∗-algebras was
defined by N. C. Phillips and N. Weaver in [8], but requiring that H is a
Banach space with respect to the norm f 7→ ‖N(f)‖. They proved that every
Finsler A-module, when A is a C∗-algebra without nonzero commutative
closed two-sided ideals, arises from a unique Hilbert A-module.
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Remark 4.2. Zalar’s definition of a normed module over an H∗-algebra
also included the following continuity property:

(N5) If {fα} ⊆ H is a generalized sequence such that for all ε > 0 there
exists α0 such that for all α, β ≥ α0 we have ‖N(fα−fβ)‖ < ε, then
{N(fα)} is a generalized Cauchy sequence in A.

In [3] it is proved that this axiom can be omitted. An important role in the
proof is played by the inequality (see the proof of [3, Step 7])

τ(N(f)2 − N(g)2) ≤ ‖N(f − g)‖(‖N(f)‖ + ‖N(g)‖) for all f, g ∈ H

that holds in any normed module (H, N) over an H∗-algebra (A, ‖ · ‖) satis-
fying the parallelogram law (in light of Remark 3.4, in any normed module
over an H∗-algebra without nonzero commutative closed two-sided ideals).
Using Akemann’s theorem from [8], an analogous inequality can be obtained
in any normed module (H, N) over an arbitrary C∗-algebra (A, ‖·‖). Namely,
as in [8, Corollary 5], for all f, g ∈ H and a ∈ A with a ≥ 0, ‖a‖ ≤ 1,
∣∣‖aN(f)2a‖−‖aN(g)2a‖

∣∣ =
∣∣‖(N(f)a)∗(N(f)a)‖ − ‖(N(g)a)∗(N(g)a)‖

∣∣

=
∣∣‖N(f)a‖2 − ‖N(g)a‖2

∣∣

=
∣∣‖N(f)a‖ − ‖N(g)a‖

∣∣ · (‖N(f)a‖+‖N(g)a‖)

=
∣∣‖N(fa)‖ − ‖N(ga)‖

∣∣ · (‖N(f)a‖+‖N(g)a‖)

(N4)

≤ ‖N(fa − ga)‖ · (‖N(f)a‖ + ‖N(g)a‖)

= ‖N(f − g)a‖ · (‖N(f)a‖ + ‖N(g)a‖)

≤ ‖N(f − g)‖ · (‖N(f)‖ + ‖N(g)‖).

Finally, Theorem 4 of [8] implies

‖N(f)2 − N(g)2‖ ≤ ‖N(f − g)‖ · (‖N(f)‖ + ‖N(g)‖) for all f, g ∈ H.

This inequality and the corresponding one in the case of H∗-algebras will be
used in the proof of the following lemma.

Lemma 4.3. Let (A, ‖·‖) be an H∗-algebra or a C∗-algebra, without non-

zero commutative closed two-sided ideals. Let (H, N) be a normed A-module.

If {eα} is an approximate identity for A, then, for all f, g ∈ H, a generalized

sequence {N(f(ieα) + g)2} converges in (τ(A), τ( · )) if A is an H∗-algebra

or in (A, ‖ · ‖) if A is a C∗-algebra.

Proof. Note that the right sides of the inequalities in Remark 4.2 are
equal in the case of H∗-algebras and in the case of C∗-algebras. Namely, in
both cases the right-hand side is equal to

‖N(f − g)‖ · (‖N(f)‖ + ‖N(g)‖).

Inserting f(ieα)+g and f(ieβ)+g instead of f and g in the above expression,
we conclude that for all ε > 0 there exists α0 such that for all α, β ≥ α0 we
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have

‖N(f(ieα) − f(ieβ))‖ · (‖N(f(ieα) + g)‖ + ‖N(f(ieβ) + g)‖)

= ‖N(f(ieα − ieβ))‖ · (‖N(f(ieα) + g)‖ + ‖N(f(ieβ) + g)‖)

(N4)

≤ ‖N(f(ieα − ieβ))‖ · (‖N(f(ieα))‖ + ‖N(f(ieβ))‖ + 2‖N(g)‖)

= ‖N(f)(ieα − ieβ)‖ · (‖N(f)(ieα)‖ + ‖N(f)(ieβ)‖ + 2‖N(g)‖)

= ‖N(f)eα − N(f)eβ‖ · (‖N(f)eα‖ + ‖N(f)eβ‖ + 2‖N(g)‖) < ε.

Thus the left sides of the inequalities from Remark 4.2 are also less than ε.
If A is an H∗-algebra, this implies that {N(f(ieα) + g)2} is a generalized
Cauchy sequence in (τ(A), τ( · )) and thus converges. If A is a C∗-algebra,
then {N(f(ieα) + g)2} is a generalized Cauchy sequence in (A, ‖ · ‖) and is
therefore convergent.

Theorem 4.4. Let A be an H∗-algebra or a C∗-algebra, without nonzero

commutative closed two-sided ideals. Then the class of normed A-modules

coincides with the class of pre-Hilbert A-modules.

Proof. Let (H, [ ·, · ]) be a pre-Hilbert A-module. If we put N(f) = |f |,
then (H, N) is a normed A-module. When A is an H∗-algebra, this statement
is in fact Theorem 12 in [17]. When A is a C∗-algebra, axioms (N1)–(N3)
can be verified in the same way as in the case of an H∗-algebra. Axiom (N4)
can be obtained by simple calculation using the Cauchy–Schwarz inequality
that holds in any pre-Hilbert module over a C∗-algebra (e.g. [16, Corollary
15.1.4]).

Conversely, let (H, N) be a normed A-module and let {eα} be an approx-
imate identity for A. The quadratic functional Q defined by Q(f) = N(f)2

for every f ∈ H is τ(A)-valued if A is an H∗-algebra, or A-valued if A is
a C∗-algebra. Lemma 4.3 implies that Q satisfies the assumption of Propo-
sition 2.7. Therefore there exists a sesquilinear form S on H × H, with
values in τ(A) if A is an H∗-algebra or in A if A is a C∗-algebra, satisfy-
ing S(f, f) = Q(f) for every f ∈ H. Note that S(f, g)∗ = S(g, f) for all
f, g ∈ H since Q(f)∗ = Q(f) for every f ∈ H. If we define [f, g] = S(f, g)
for all f, g ∈ H, then axioms (H1)–(H3) obviously hold. Furthermore,

[f, f ] = S(f, f) = Q(f) = N(f)2 = N(f)∗N(f) ≥ 0

and

[f, f ] = 0 ⇒ N(f)∗N(f) = 0 ⇒ N(f) = 0 ⇒ f = 0.

Hence (H, [·, ·]) is a pre-Hilbert A-module.
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This result is, in fact, obtained by combining the algebraic approach
from [17] with the analytic approach from [8] and it generalizes Zalar’s
main theorem in [17] in the case of H∗-algebras and Corollary 18 in [8] in
the case of C∗-algebras (compare with Theorem 5.1 in [18]). Let us mention
that for the existence of a unique generalized inner product representing
a Finsler norm, when the parallelogram law holds, Proposition 2.8 can be
used.
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