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Interpolation methods of means and orbits

by

Mieczysław Mastyło (Poznań)

Abstract. Banach operator ideal properties of the inclusion maps between Banach
sequence spaces are used to study interpolation of orbit spaces. Relationships between
those spaces and the method-of-means spaces generated by couples of weighted Banach
sequence spaces with the weights determined by concave functions and their Janson se-
quences are shown. As an application we obtain the description of interpolation orbits
in couples of weighted Lp-spaces when they are not described by the K-method. We
also develop a connection between the method of means with a quasi-parameter and the
real method of interpolation generated by the Calderón–Lozanovsky space parameters.
Applications to interpolation of operators are also discussed.

1. Introduction. The ultimate goal of interpolation theory is the char-
acterization of all relative interpolation spaces with respect to given com-
patible couples of Banach spaces. A significant role in the study of interpola-
tion spaces is played by interpolation orbits (see [3], [29]). For many specific
couples a complete description of interpolation orbits has been achieved
through the work of many authors. In almost all known cases there is a
simple description in terms of the K-functional of the initial couples. Such
couples are called relative Calderón couples (or relative Calderón–Mityagin
couples) or K-monotone couples. Calderón couples therefore play an im-
portant role in interpolation theory, since for such couples we may obtain a
complete description of all their interpolation spaces (see [3]). Unfortunately
the class of Calderón couples is not large. We refer here to the remarkable
papers [6], [7] and [18], where Calderón couples of Banach lattices are studied
and many references are included.

Although recently great progress has been made in interpolation theory,
the problem of describing the interpolation orbits between couples which
are not relative Calderón remains a formidable one, even for classical cou-
ples of Banach spaces. We refer to [29], where certain positive results in
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this direction are presented. Let us remark that, for couples of Lp-spaces,
the results by Dmitriev [13] seem to have been overlooked. In fact [13] con-
tains a description of the interpolation orbits for certain couples of Lp-
spaces which are not Calderón couples. More precisely, Dmitriev described
interpolation orbits of any element from the couple (Lp0(u0), Lp1(u1)) into
(Lq0(w0), Lq1(w1)) in the following cases: 1 ≤ p0, p1 ≤ ∞ and q0 = q1 = 1,
1 ≤ p1, q0 ≤ ∞ and p0 = q1 = 1. Further, Ovchinnikov [30] obtained a
description of the interpolation orbits for elements with a quasi-power K-
functional. Recently a complete description of interpolation orbits in couples
of Lp-spaces was presented in the remarkable paper of Ovchinnikov [31].
The aim of this paper is to extend Ovchinnikov’s results to the setting

of couples of Banach lattices. More generally, the object of this paper is
to show how Banach operator ideals can be applied to study interpolation
orbits. Following [26], we use the Banach ideal of (E, 1)-summing operators
(cf. also [11]) to study interpolation of operators acting between abstract
real method spaces.
We present general results on the relationship between interpolation

methods of orbits and means. When specialized to Lp-spaces, our results
extend and simplify those of Ovchinnikov [31]. The main results of this pa-
per were circulated in the preprint [25].
Before sketching the content of the paper in more detail it will be use-

ful to establish some basic notation and definitions. For unexplained no-
tions from interpolation theory we refer to [1], [3]. Throughout the paper let
(Ω,Σ, µ) be a complete σ-finite measure space. Let L0(µ) denote, as usual,
the space of equivalence classes of real-valued measurable functions on Ω,
equipped with the topology of convergence in µ measure on sets of finite
measure. By a Banach lattice on Ω we mean a Banach space X which is a
subspace of L0(µ) such that there exists u ∈ X with u > 0 and if |f | ≤ |g|
µ-a.e., where g ∈ X and f ∈ L0(µ), then f ∈ X and ‖f‖X ≤ ‖g‖X .
In the special case when Ω = J and µ is the counting measure, where

J = −N ∪ {0} or J = Z or J = N ∪ {0}, a Banach lattice on Ω is called a
Banach sequence space on J.
If X is a Banach lattice on (Ω,µ) and w ∈ L0(µ) with w > 0 µ-a.e., we

define the weighted Banach lattice X(w) by setting

‖x‖X(w) := ‖xw‖X .

If X = (X0, X1) and Y = (Y0, Y1) are couples of Banach spaces, we let
L(X,Y ) be the Banach space of all linear operators T : X → Y (which
means, as usual, that T : X0 +X1 → Y0 + Y1 is linear and the restrictions
T |Xj are bounded mappings from Xj to Yj for j = 0, 1) equipped with the
norm

‖T‖X→Y := max {‖T‖X0→Y0 , ‖T‖X1→Y1}.
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The elements x ∈ X0 + X1 and y ∈ Y0 + Y1 are said to be orbitally
equivalent with respect to the couples X and Y if there exist linear operators
T : X → Y and S : Y → X such that Tx = y, Sy = x.
If A is a Banach couple and 0 6= a ∈ A0 + A1, then the interpolation

orbit Orb(a,A → X) of the element a in the couple X is a Banach space
consisting of all elements of the form x = Ta for some T : A→ X, equipped
with the norm

‖x‖ = inf{‖T‖A→X ; x = Ta}.

The K-functional is defined on X0 +X1 by

K(s, t, x;X) := inf{s‖x0‖X0 + t‖x1‖X1 ; x = x0 + x1}, s, t > 0.

In what follows, we write for short K(t, x;X) instead of K(1, t, x;X). The
Banach spaces X and Y , intermediate with respect to X and Y respectively,
are said to be relative K-monotone whenever x ∈ X and y ∈ Y0 + Y1
with K(t, y;Y ) ≤ K(t, x;X) for all t > 0 imply that y ∈ Y . If all relative
interpolation spaces with respect to X and Y are relative K-monotone, then
we say that interpolation is described by the K-method (or equivalently
that X and Y are relative Calderón couples). If this property holds for
X = Y , then X is said to be a Calderón couple. Clearly, X and Y are
relative Calderón couples provided for any x ∈ X0 + X1 and y ∈ Y0 + Y1
satisfying K(t, y;Y ) ≤ K(t, x;X) for all t > 0 there exists an operator
T : X → Y such that Tx = y. If there exists a constant λ, independent of x
and y, such that ‖T‖X→Y ≤ λ, we say that X and Y are relative uniform
Calderón couples.
It is well known that if X and Y are relative Calderón couples, then Y is

relatively complete, i.e., the Gagliardo (relative) completion Y c := (Y c
0 , Y

c
1 )

coincides with Y (see, e.g., [3], [8], [6]). Recall that if X is an intermediate
Banach space with respect to a coupleX, then itsGagliardo completionXc is
the Banach space of all limits inX0+X1 of sequences that are bounded inX.
Let us outline briefly the content of the paper. In Section 2, we study

the method of means determined by weighted Banach sequence spaces with
weights generated by concave functions and their Janson sequences. An
equivalent description in terms of the K-functional for these spaces is pre-
sented. Using a Carlson type inequality, we prove continuous inclusions be-
tween spaces generated by the method of means and the Calderón–Lozanov-
sky method applied to a certain class of couples of Banach lattices satisfying
upper or lower lattice estimates. Some applications are shown for weighted
Orlicz spaces. In particular, we show that the method of means generated
by a concave function ϕ and corresponding weighted ℓp0 and ℓp1-spaces ap-
plied to any couple of weighted Banach lattices (Lp0(w0), Lp1(w1)) spaces
coincides, up to equivalence of norms, with the Calderón–Lozanovsky space
ϕ(Lp0(w0), Lp1(w1)).
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In Section 3, we show applications of Banach operator ideals introduced
first in [26] to study interpolation of orbit spaces. Continuous inclusions
are shown between these spaces and corresponding spaces generated by the
method of means. As a consequence of these results, we provide new cou-
ples of Banach lattices which are not relative Calderón couples. Further,
we obtain the result of Ovchinnikov [31] on the description of interpolation
orbits in couples of weighted Lp-spaces when they are not described by the
K-method. We also discuss applications to interpolation of operators.

2. The methods of means and of Calderón–Lozanovsky. In this
section we shall deal with vector-valued Banach sequence spaces. Let E be
a Banach sequence lattice on J and let X be a Banach space. The vector
sequence x = {xn}n∈J in X is called strongly E-summable if the correspond-
ing scalar sequence {‖xn‖X} is in E. We denote by E(X) the set of all such
sequences in X. It forms a Banach space under pointwise operations, and a
natural quasi-norm given by

‖x‖E(X) = ‖{‖xn‖X}‖E .

Throughout the paper a pair Φ = (Φ0, Φ1) of Banach sequence lattices
on J is called a parameter of the method of means if Φ0∩Φ1 ⊂ ℓ1. The space
JΦ(X) = JΦ0,Φ1(X) built by the method of means consists of all x ∈ X0+X1
which may be represented in the form

x =
∑

n

un (convergence in X0 +X1)

with {un} ∈ Φ0(X0) ∩ Φ1(X1). It is well known that JΦ(X) is a Banach
space under the norm

‖x‖J
Φ
(X) = inf max{‖{un}‖Φ0(X0), ‖{un}‖Φ1(X1)}

where the infimum is taken over all representations of x as above (see, e.g.,
[3], [19]).
In this paper we are interested in the special method of means generated

by weighted Banach sequence spaces determined by quasi-concave functions.
More precisely, let ϕ ∈ P (i.e., ϕ : [0,∞) × [0,∞) → [0,∞), t 7→ ϕ(1, t)
is a positive quasi-concave function on [0,∞) with ϕ(0, 0) = 0 and ϕ is
positively homogeneous). Assume that ϕ ∈ P0 (i.e., ϕ(1, t) → 0 as t → 0
and ϕ(t, 1) → 0 as t → 0). A sequence {tn}n∈J is called a fundamental
sequence for ϕ if the following equivalences hold for ̺(t) := ϕ(1, t) for t > 0:

̺(t) ≍
∑

n

̺(tn)min{1, t/tn} ≍ sup
n
̺(tn)min{1, t/tn},

or equivalently in terms of K-functionals,

̺(t) ≍ K(t, {̺(tn)}; ℓ1, ℓ1(1/tn)) ≍ K(t, {̺(tn)}; ℓ∞, ℓ∞(1/tn)).
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Here and throughout the paper, for positive functions f and g, we write
f ≍ g whenever f ≺ g and g ≺ f , where f ≺ g means that there is a
constant c > 0 such that f ≤ c g.
The construction of fundamental sequences for ϕ ∈ P0 may be realized

as follows (see [17]). For a given q > 1, we define inductively a sequence
{tn}n∈J with t0 = 1 (which is called the Janson sequence for ϕ (or ̺)) by

min

{
̺(tn+1)

̺(tn)
,
tn+1̺(tn)

tn̺(tn+1)

}
= q.

Note that for a given ϕ ∈ P0 Brudny̆ı and Krugljak used in [3] a little
different construction of a sequence {tn} with t0 = 1 (called the Brudny̆ı–
Krugljak sequence for ϕ (or ̺)):

̺(t2n)

t2n
= q

̺(t2n+1)

t2n+1
and ̺(t2n) = q̺(t2n−1)

with ̺(t) = ϕ(1, t) for t > 0 and proved that the sequence {t2n+1} is a
fundamental sequence for ϕ.
Assume that {tn}n∈J is a fundamental sequence for ϕ ∈ P0. From the

equivalences mentioned above, we infer in particular that {̺(tn)} ∈ ℓ1 +
ℓ1(1/tn), where ̺ = ϕ(1, ·). This implies that for any couple (E0, E1) of
Banach sequence spaces on J such that Ej →֒ ℓ∞ for j = 0, 1 we get

ℓ∞ →֒ E′0(̺(tn)) + E
′
1(̺(tn)/tn).

It follows by Köthe duality that (Φ0, Φ1) = (E0(1/̺(tn), E1(tn/̺(tn)) is a
parameter of the method of means. In this case the space JΦ(X) is denoted
by ϕ(X)E0,E1 . If E0 = ℓp0 and E1 = ℓp1 with 1 ≤ p0, p1 ≤ ∞, we write for
short ϕ(X)p0,p1 instead of ϕ(X)ℓp0 ,ℓp1 . Note that whenever ϕ(s, t) = s

1−θtθ,

0 < θ < 1 and {tn} = {2
n}, then ϕ(X)p0,p1 is the classical Lions–Peetre

method-of-means space Jθ,p0,p1(X) (see [22]). If E is a Banach sequence
lattice on Z and E0 = E1 = E, then JΦ0,Φ1(X) is the classical abstract
J-space, which is denoted by JE(X) (see [3], [8], [19]).
The following proposition is an abstract variant of a result presented

without proof in [13]. Since the result is not widely known, it seems worth-
while to set it out in detail here.

Proposition 2.1. Let {tn}n∈J be a fundamental sequence for ϕ ∈ P0.
Assume that X = (X0, X1) is a Banach couple and E = (E0, E1) is a couple
of Banach sequence spaces on J with Ej →֒ ℓ∞ for j = 0, 1. Consider the
following conditions:

(i) x ∈ ϕ(X0, X1)E0,E1 .
(ii) There exist positive elements u ∈ E0 and v ∈ E1(tn) such that

K(t, x;X) ≤ K(t, aϕ; ℓ1(u), ℓ1(v))

for all t > 0, where aϕ = {ϕ(1, tn)}.
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Then (i) implies (ii), and (ii) implies (i) provided that X is relatively com-
plete.

Proof. (i)⇒(ii): Assume that x ∈ ϕ(X)E0,E1 and let ̺(t) = ϕ(1, t) for
t > 0. Then we have

x =
∑

n

xn (convergence in X0 +X1)

with {xn/̺(tn)} ∈ E0(X0) and {tnxn/̺(tn)} ∈ E1(X1).
Without loss of generality we may assume that xn 6= 0 for all n ∈ J. We

define sequences u = {un} and v = {vn} by setting un = {‖xn‖X0/̺(tn)}
and vn = {‖xn‖X1/̺(tn)} for n ∈ J. Then u ∈ E0 and v ∈ E1(tn). Since
E0 →֒ ℓ∞, E1 →֒ ℓ∞ and aϕ ∈ ℓ1 + ℓ1(1/tn), it follows that

∑

n

min{un, vn}̺(tn) <∞.

Further, we have

K(t, x;X) ≤
∑

n

K(t, xn;X) ≤
∑

n

min{‖xn‖X0 , t ‖xn‖X1}

=
∑

n

min

{
‖xn‖X0
̺(tn)

,
t ‖xn‖X1
̺(tn)

}
̺(tn) = K(t, aϕ; ℓ1(u), ℓ1(v)).

(ii)⇒(i): Assume that X = (X0, X1) is a relatively complete couple and
that x ∈ X0 +X1 satisfies

K(t, x;X) ≤ K(t, aϕ; ℓ1(u), ℓ1(v))

for any t > 0 and positive elements u = {un} ∈ E0 and v = {vn} ∈ E1(tn).
Since (ℓ1(u), ℓ1(v)) and (X0, X1) are relative uniform Calderón couples (see,
e.g., [3], [8]), there exists an operator T : (ℓ1(u), ℓ1(v))→ (X0, X1) such that
‖T‖ ≤ γ and x = Taϕ, where γ = γ(X) is the K-divisibility constant for X.
Clearly,

x =
∑

n

̺(tn)Ten (convergence in X0 +X1).

Put xn = ̺(tn)Ten for n ∈ J. Then we have

‖xn‖X0
̺(tn)

= ‖Ten‖X0 ≤ γun

and
tn‖xn‖X1
̺(tn)

= tn‖Ten‖X1 ≤ γtnvn.

Since {un} ∈ E0 and {vn} ∈ E1(tn), we have x ∈ ϕ(X0, X1)E0,E1 , and so
the proof is complete.

Corollary 2.2. Let {tn}n∈J be the Janson sequence for ϕ ∈ P0. If
X = (X0, X1) is a relatively complete Banach couple, then ϕ(X0, X1)E0,E1
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consists of all x ∈ X0 +X1 such that

{K(sn, x;X)} ∈ ϕ(G0, G1(1/sn))E0,E1

for a certain couple (G0, G1) of Banach sequence spaces on J with ℓ1 →֒
Gj →֒ ℓ∞ (j = 0, 1), where {sn} is the Janson sequence for K(·, x;X).

Proof. First let us note that if {sn}n∈J is the Janson sequence for ψ :=
K(·, x;X), then for any couple (G0, G1) of Banach sequence spaces on J

such that ℓ1 →֒ Gj →֒ ℓ∞ (j = 0, 1), we have

K(t, {ψ(sn)};G0, G1(1/sn)) ≍ ψ(t)

by known equivalences (see, e.g., [29])

K(t, {ψ(sn)}; ℓ1, ℓ1(1/sn)) ≍ K(t, {ψ(sn)}; ℓ∞, ℓ∞(1/sn)) ≍ ψ(t).

Now assume that x ∈ ϕ(X0, X1)E0,E1 . Then by Proposition 2.1, there exist
positive elements u ∈ E0 and v ∈ E1(tn) such that

K(t, x;X) ≤ K(t, aϕ; ℓ1(u), ℓ1(v))

where aϕ = {ϕ(1, tn)}. Combining the above relations, we find that

K(t, {ψ(sn)};G0, G1(1/sn)) ≺ K(t, aϕ; ℓ1(u), ℓ1(v)).

Now applying again Proposition 2.1, we obtain

{K(sn, x;X)} ∈ ϕ(G0, G1(1/sn))E0,E1 .

If we assume that the above relation holds for a certain couple (G0, G1)
of Banach sequence spaces on J with ℓ1 →֒ Gj →֒ ℓ∞ (j = 0, 1), then by
Proposition 2.1, we conclude that the inequality

K(t, {ψ(sn)};G
c
0, G1(1/sn)

c) ≤ K(t, aϕ; ℓ1(u), ℓ1(v))

holds for some u ∈ E0 and v ∈ E1(tn). This implies that

K(t, x;X) ≺ K(t, aϕ; ℓ1(u), ℓ1(v)),

and in consequence x ∈ ϕ(X0, X1)E0,E1 , by Proposition 2.1.

Further on we shall deal with the Calderón–Lozanovsky spaces. We show
that under certain geometrical conditions, continuous inclusions hold be-
tween the method-of-means spaces and the Calderón–Lozanovsky spaces. In
the case of Banach couples of Lp-spaces, we get precise equalities between
these spaces. Certain results in this direction were shown in [26].
We recall first that if X = (X0, X1) is a couple of Banach lattices on

(Ω,µ) and ψ ∈ P is a concave function then the Calderón–Lozanovsky space
ψ(X) = ψ(X0, X1) consists of all x ∈ L

0(µ) such that |x| = ψ(|x0|, |x1|) for
some xj ∈ Xj, j = 0, 1. The space ψ(X) is a Banach lattice equipped with
the norm (see [23])

‖x‖ = inf{max{‖x0‖X0 , ‖x1‖X1} : |x| = ψ(|x0|, |x1|), x0 ∈ X0, x1 ∈ X1}.

In what follows we need a variant of Carlson’s inequality (cf. [16], [20]).
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Proposition 2.3. Assume that q > 1, ϕ ∈ P0 and {tn}n∈J is the Janson

(respectively , the Brudny̆ı–Krugljak) sequence for ϕ. Then, for any finite
positive sequence {un} ∈ ℓ1(J), the following inequality holds with ̺(t) =
ϕ(1, t) for t > 0:

∑

n

un ≤
q − 1

q + 1
ϕ

(
sup
n

un
̺(tn)

, sup
n

tnun
̺(tn)

)

and respectively:
∑

n

un ≤
q − 1

q + 1
ϕ

(
sup
n

un
̺(t2n+1)

, sup
n

t2n+1un
̺(t2n+1)

)
.

Proof. Assume that {tn} is the Janson sequence for ϕ. Put

A := sup
n

un
̺(tn)

, B := sup
n

tnun
̺(tn)

.

There exists k ∈ J such that A/B ∈ [tk, tk+1). Since t 7→ ̺(t) is a non-
decreasing function and ϕ(1, tn) ≤ q

−1 ϕ(1, tn+1), we obtain
∑

n≤k

un ≤ A
∑

n≤k

ϕ(1, tn) ≤ A(1 + q
−1 + q−2 + · · ·)ϕ(1, tk)

≤
q

q − 1
Aϕ(1, B/A) =

q

q − 1
ϕ(A,B).

Similarly, by the fact that t 7→ ϕ(t−1, 1) is non-increasing and

ϕ(1, tn+1)

tn+1
≤
1

q

ϕ(1, tn)

tn
,

we get
∑

n>k

un ≤ B
∑

n>k

̺(tn)

tn
≤ B(q−1 + q−2 + · · ·)

ϕ(1, tk)

tk

≤
B

q − 1
ϕ(t−1k , 1) ≤

B

q − 1
ϕ(A/B, 1) =

1

q − 1
ϕ(A,B).

Since
∑

n un =
∑

n≤k un +
∑

n>k un, the above estimates yield the desired

inequality. If {tn} is the Brudny̆ı–Krugljak sequence the proof is similar.

In order to present the next results we need a generalization of the well
known notions of upper and lower p-estimates (cf. [21, pp. 82–84]). Let E be
a Banach sequence space on J. A Banach lattice X is said to satisfy an upper
(resp., a lower) E-estimate if the following continuous inclusions between
vector-valued Banach spaces hold:

E(X) →֒ X[ℓ∞],

respectively

X[ℓ1] →֒ E(X).
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The constants of the above embeddings are called the upper (resp., lower)
E-estimate constants and are denoted by uE (resp., lE).

Recall that ϕ ∈ P is called non-degenerate if the ranges of the functions
ϕ(·, 1) and ϕ(1, ·) coincide with (0,∞).

Theorem 2.4. Let (E0, E1) be Banach sequence spaces such that ℓ1 →֒
Ej →֒ ℓ∞ for j = 0, 1. Let X0 and X1 be Banach lattices on a measure
space (Ω,µ). Then the following continuous inclusions hold with constants
depending on the corresponding Ej-estimates:

(i) If Xj satisfies an upper Ej-estimate (j = 0, 1) and {tn} is the Janson
or Brudny̆ı–Krugljak sequence for ϕ ∈ P0, then

ϕ(X0, X1)E0,E1 →֒ ϕ(X0, X1).

(ii) If Xj satisfies a lower Ej-estimate (j=0, 1) and {tn} is the Brudny̆ı–
Krugljak sequence for non-degenerate ϕ ∈ P, then

ϕ(X0, X1) →֒ ϕ(X0, X1)E0,E1 .

Proof. (i) Fix q > 1 and assume without loss of generality that {tn}n∈J

is the Janson sequence for ̺ = ϕ(1, ·). Let x ∈ ϕ(X0, X1)E0,E1 with ‖x‖ < 1.
Then

x =
∑

n

un (convergence in X0 +X1)

with ‖{un/̺(tn)}‖E0(X0) ≤ 1 and ‖{tnun/̺(tn)}‖E1(X1) ≤ 1. This implies
that the above series is absolutely convergent inX0+X1. Thus, in particular,
{|un(ω)|} ∈ ℓ1 for almost all ω ∈ Ω. Since Xj satisfies an upper Ej-estimate
(j = 0, 1), we get

x0(·) := sup
n

|un(·)|

̺(tn)
∈ X0, x1(·) := sup

n

tn|un(·)|

̺(tn)
∈ X1,

with ‖xj‖Xj ≤ uEj , where uEj is the constant of the embedding Ej(Xj) →֒
Xj [ℓ∞], j = 0, 1. Combining these facts with the Carlson inequality we
obtain

‖x‖ ≤
∑

n

|un| ≤ Cϕ(x0, x1)

with C = (q + 1)/(q − 1). This shows that x ∈ ϕ(X0, X1) and ‖x‖ ≤
Cmax{uE0 , uE1}.

(ii) Let 0 ≤ x ∈ ϕ(X) and ‖x‖ϕ(X) < 1. Then x = ϕ(x0, x1) for some

0 ≤ xj ∈ Xj such that ‖xj‖Xj < 1, j = 0, 1. Since ϕ ∈ P0, it follows that the
support of x is contained in the intersection of the supports of x0 and x1.
Hence, we may assume without loss of generality that x, x0, x1 are not equal
to zero on the domain Ω.
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Let {tk} be the Brudny̆ı–Krugljak sequence for ϕ. Since ϕ is non-degene-
rate, {tk} is defined on Z. Define for any k ∈ Z,

Ak = {ω ∈ Ω; t2k ≤ x1(ω)/x0(ω) < t2k+2}

and

yk = xχAk , uk = x0χAk , vk = x1χAk .

It is easily seen that for any k ∈ Z, we have

yk ≤ q̺(t2k+1)uk

and

yk ≤
̺(t2k)

t2k
x1χAk ≤ q

̺(t2k+1)

t2k+1
vk.

This implies that for any integer n, we have

0 ≤
∑

k≤−n

yk ≤ ̺(t−2n+1)
∑

k≤−n

yk
̺(t2k+1)

≤ qϕ(1, t−2n+1)x0

and

0 ≤
∑

k≥n

yk ≤
̺(t2n+1)

t2n+1

∑

k≥n

t2k+1yk
̺(t2k+1)

≤ ϕ(t−12n+1, 1)x1.

Combining the above estimates, we get

∥∥∥x−
N∑

k=−M

yk

∥∥∥
X0+X1

≤
∥∥∥
−M−1∑

k=−∞

yk

∥∥∥
X0
+
∥∥∥
−∞∑

k=N+1

yk

∥∥∥
X1

≤ qϕ(1, t−2(M+1)+1) + qϕ(t
−1
2(N+1), 1)

for any positive integers M and N . Since ϕ is non-degenerate, t−M → 0 as
M →∞ and tN →∞ as N →∞. This implies that the series

∑
n xn with

x2n := 0 and x2n+1 := yn converges to x in X0 + X1. Further, by the fact
that {An} is a sequence of pairwise disjoint measurable subsets whose union
is equal to Ω, we have

∑

n

|xn|

̺(tn)
=
∑

n

yn
̺(t2n+1)

≤
∑

n

un ≤ qx0

and
∑

n

tn|xn|

̺(tn)
=
∑

n

t2n+1yn
̺(t2n+1)

≤ q
∑

n

vn ≤ qx1.

Now assume that Xj satisfies a lower Ej-estimate (j = 0, 1). Combining
the above estimates, we obtain

{xn/̺(tn)} ∈ E0 and {tnxn/̺(tn)} ∈ E1.

Since xn ∈ X0 ∩X1, we get x ∈ ϕ(X0, X1)E0,E1 .
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Corollary 2.5. Let (LM0(w0), LM1(w1)) be a couple of weighted Orlicz
spaces and ϕ ∈ P0. Then the following statements are true:

(i) If Mj is submultiplicative for j = 0, 1 (i.e., Mj(st) ≤ CMj(s)Mj(t)
for some C > 0 and all s, t > 0) then

ϕ(LM0(w0), LM1(w1))ℓM0 ,ℓM1 →֒ ϕ(LM0(w0), LM1(w1)).

(ii) If Mj is supermultiplicative for j=0, 1 (i.e.,Mj(st) ≥ CMj(s)Mj(t)
for some C > 0 and all s, t > 0) then

ϕ(LM0(w0), LM1(w1)) →֒ ϕ(LM0(w0), LM1(w1))ℓM0 ,ℓM1 .

Proof. It follows by [11] that if an Orlicz functionM is submultiplicative
(resp., supermultiplicative), then any weighted Orlicz space LM (w) satisfies
an upper (resp., a lower) ℓM -estimate. Apply the previous proposition to
get what we want.

Since any Lp-space with 1 ≤ p ≤ ∞ satisfies both a lower p-estimate
and an upper p-estimate for any 1 ≤ p ≤ ∞, the following corollary is an
immediate consequence of Theorem 2.4. We note that this result was also
obtained in [31]; however the proof was more complicated. Namely, it used
the K-divisibility property and the Bennett–Carl result which says that the
inclusion map ℓp →֒ ℓ∞ is (p, 1)-summing for any 1 ≤ p <∞ (see [1]).

Corollary 2.6. For any couple (Lp0(w0), Lp1(w1)) of weighted Lp-spa-
ces and any ϕ ∈ P0,

ϕ(Lp0(w0), Lp1(w1))p0,p1 = ϕ(Lp0(w0), Lp1(w1))

with constants of equivalence of norms independent of ϕ.

It is well known (see, e.g., [28]) that for any ϕ ∈ P and any couple
(Lp0(w0), Lp1(w1)) on (Ω,µ) with 1 ≤ p0 < p1 ≤ ∞ the Calderón–Lozanov-
sky space ϕ(Lp0(w0), Lp1(w1)) coincides up to equivalence of norms with the
generalized Orlicz space of all f ∈ L0(µ) such that\

Ω

M((w
1/p0
1 w

−1/p1
0 )q|f |/λ)(w0/w1)

q dµ <∞

for some λ > 0. Here 1/q = 1/p0 − 1/p1 and M is an Orlicz function such
that M−1(t) ≍ ϕ(t1/p0, t1/p1) for t > 0.
We conclude this section by showing how Proposition 2.1 and Corollary

2.6 may be applied to prove a variant of the Lions–Peetre formula which
describes certain method-of-means spaces as the corresponding K-method
spaces generated by a quasi-power function parameter. We note that this
kind of result has also been proved in a quite different way by Fan [14]
for integral variants of the abstract K- and J-methods of interpolation.
Recall that if X = (X0, X1) is a couple of Banach spaces and E is a Banach
sequence space on Z such that {min(1, 2n)} ∈ E, then theK-method space is
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a Banach spaceXE which consists of all x ∈ X0+X1 such that {K(2
n, x;X)}

∈ E. The space is equipped with the norm ‖x‖ = ‖{K(2n, x;X)}‖E.
In order to present the final result of this section, we also recall that a

function ϕ ∈ P is called a quasi-power (written ϕ ∈ P+−) if the dilatation
indices δ̺ and γ̺ of the function ̺ = ϕ(1, ·) satisfy 0 < δ̺ ≤ γ̺ < 1 (see,
e.g., [17], [19]).

Theorem 2.7. Let (X0, X1) be a Banach couple. Let ϕ(X0, X1)p0,p1 be
generated by ϕ ∈ P+− and the fundamental sequence {2n}n∈Z. Then

ϕ(X0, X1)p0,p1 = (X0, X1)ϕ(ℓp0 ,ℓp1(2−n)).

Proof. We show the following claim: ϕ ∈ P+− implies ϕ(ℓp0 , ℓp1(2
−n))

is a parameter of the real method (for definition see, e.g., [29, p. 432]). In
fact, it may be easily shown that ϕ ∈ P+− implies that

ϕ(s, t) ≍ ψ(s1−θ0tθ0 , s1−θ1tθ1)

for some ψ ∈ P and 0 < θj < 1, j = 0, 1. This yields

ϕ(ℓp0 , ℓp1(2
−n)) = ψ(ℓpθ0 (2

−nθ0), ℓpθ1 (2
−nθ1))

where 1/pθj = (1−θj)/p0+θj/p1 for j = 0, 1. Since ℓpθj (2
−nθj) is a parameter

of the real method, the claim is established by the well known interpolation
theorem for positive operators between Calderón–Lozanovsky spaces (see,
e.g., [24]).
Now, we recall that if Φ = (Φ0, Φ1) is a couple of Banach sequence spaces

on Z which is a parameter for the method of means, then by Theorem 4.2.33
in [3], it follows that for any Banach couple X,

JΦ(X) = JE(X),

where E = JΦ(ℓ1, ℓ1(2
−n)). This implies a continuous inclusion

ϕ(X0, X1)p0,p1 →֒ JE(X0, X1),

with E := ϕ(ℓ1, ℓ1(2
−n))p0,p1 . In consequence, by Corollary 2.6, we obtain

E →֒ ϕ(ℓp0, ℓp1(2
−n))p0,p1 = ϕ(ℓp0 , ℓp1(2

−n)).

Combining the above remarks with the well known fact (see, e.g., [8] or [3])
that the classical K-method as well as J-method determined by the same
parameter of the real method generate the same interpolation spaces, we
get a continuous inclusion

ϕ(X0, X1)p0,p1 →֒ (X0, X1)ϕ(ℓp0 ,ℓp1 (2−n)).

To end the proof we only need to show the reverse inclusion for a rela-
tively complete Banach couple (X0, X1) (in fact we only need to show this
for the couple (ℓ∞, ℓ∞(2

−n)), by the co-orbital description of the K-method
of interpolation for this couple). Thus, assume that (X0, X1) is relatively
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complete. Fix x ∈ (X0, X1)ϕ(ℓp0 ,ℓp1(2−n)). Then apply Corollary 2.6 to ob-
tain

ξ := {K(2n, x;X)} ∈ ϕ(ℓp0 , ℓp1(2
−n))p0,p1 .

Now, we invoke Proposition 2.1 to conclude that since (ℓp0 , ℓp1(2
−n)) is rel-

atively complete, there exist positive elements u ∈ ℓp0 and v ∈ ℓp1(2
n) such

that
K(t, ξ; ℓp0, ℓp1(2

−n)) ≤ K(t, aϕ; ℓ1(u), ℓ1(v))

for all t > 0, where aϕ = {ϕ(1, 2
n)}.

Since

K(t, x;X) ≍ K(t, ξ; ℓ∞, ℓ∞(2
−n)) ≤ K(t, ξ; ℓp0 , ℓp1(2

−n)),

we obtain
K(t, x;X) ≤ K(t, aϕ; ℓ1(u), ℓ1(v))

with u ∈ ℓp0 and v ∈ ℓp1(2
n). It then follows from Proposition 2.1 that

x ∈ ϕ(X0, X1)p0,p1 . This leads to the desired conclusion.

3. Interpolation orbits. In this section we use Banach operator ideals
to study interpolation orbits. In particular, Banach operator ideal properties
of inclusion maps between Banach sequence spaces allow us to get continuous
inclusions between the corresponding interpolation orbit spaces and method-
of-means spaces. Before we state the results, we need to introduce further
notations. Let E be a Banach sequence space on J and let X be a Banach
space. A vector sequence {xn} in X is weakly E-summable if the scalar
sequences {x∗(xn)} are in E for every x

∗ in the dual space X∗ of X. The
space of all weakly E-summable sequences {xn} of a Banach space X such
that

wE,X(xn) := sup{‖{x
∗(xn)}‖E ; ‖x

∗‖X∗ ≤ 1} <∞

is denoted by Ew(X).
Let E and F be two Banach sequence lattices on J, and let X and

Y be Banach spaces. An operator T : X → Y between Banach spaces is
said to be (F,E)-summing if the induced operator T̂ defined on Ew(X) by

T̂{xn} = {Txn} for {xn} ∈ E
w(X) is bounded from Ew(X) into F (Y ). In

this case we write
πF,E(T ) := ‖T̂‖Ew(X)→F (Y ).

In what follows, we shall always assume that E →֒ F since only in
this case are there non-zero (F,E)-summing operators. We let ΠF,E(X,Y )
denote the space of all (F,E)-summing operators from X to Y . Let us
remark that under minor additional assumptions on E and F , (ΠF,E , πF,E)
is a Banach operator ideal in the sense of Pietsch (see [26] for details). In
the case E = ℓp and F = ℓq with 1 ≤ p ≤ q < ∞, ΠF,E is the well known
ideal of (q, p)-summing operators (see [12]).
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Recall that if X and Y are Banach sequence spaces on J, the space
M(X,Y ) of multipliers from X into Y is the space of all sequences x such
that the associated multiplication operator X ∋ y 7→ xy is defined and
bounded from X into Y . The space M(X,Y ) equipped with the norm

‖x‖M(X,Y ) = sup{‖xy‖Y ; ‖y‖X ≤ 1}

is a Banach sequence space. In the case when Y = ℓ1, M(X, ℓ1) is the usual
Köthe dual space X ′ of X.

The proof of the following technical result is given in [26] and is outlined
below for the sake of completeness.

Lemma 3.1. Let X and Y be Banach spaces and let E be a Banach
sequence space on J. Then every (F, 1)-summing operator T : X → Y is
(M(E,F ), E′)-summing with πM(E,F ),E′(T ) ≤ πF,ℓ1(T ).

Proof. Since ℓ1 →֒ F , we have E′ →֒M(E,F ) for any Banach sequence
lattice E. Let x = {xn} ∈ (E

′)w(X). Then {ξnxn} ∈ ℓ
w
1 (X) for each ξ =

{ξn} ∈ E. This implies, by the assumption that T : X → Y is (F, ℓ1)-
summing, that {ξn‖Txn‖Y } ∈ F and

‖{ξn‖Txn‖Y }‖F ≤ C sup
{∑

n

|ξnx
∗(xn)|; ‖x

∗‖X∗ ≤ 1
}

≤ C‖ξ‖E sup{‖{x
∗(xn)}‖E′ ; ‖x

∗‖ ≤ 1}

with C = πF,ℓ1(T ). The above inequality implies that {Txn} ∈M(E,F )(Y )
and the induced map

T̂ : (E′)w(X)→M(E,F )(Y )

is bounded with ‖T̂‖ ≤ C.

Recall that if X is a Banach lattice, then the largest ideal consisting of
all elements with order continuous norm is denoted by Xa. Clearly, Xa =
{x ∈ X; |x| ≥ xn ↓ 0 implies that ‖xn‖ → 0}.

Proposition 3.2. Let E = (E0, E1) be a couple of Banach sequence
spaces on J and let ξ = {ξn} ∈ (E0 + E1)a be such that |ξ| > 0. If any
operator T : E → X is such that T : Ej → Xj is (Fj, 1)-summing (j = 0, 1)
then the following continuous inclusion holds:

Orb(ξ, E → X) →֒ JΦ0,Φ1(X),

where Φj =M(Ej , Fj)(1/|ξ|) for j = 0, 1.

Proof. Since the unit basis vectors {en} form an unconditional basis in
(E0 + E1)a, for any ξ = {ξn} ∈ (E0 + E1)a we have

ξ =
∑

n

ξnen (convergence in E0 + E1).
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For any T : E → X, we get

Tξ =
∑

n

ξnTen (convergence in X0 +X1).

Further, our assumption on T implies (by Lemma 3.1) that T : Ej → Xj is
an (M(Ej, Fj), E

′
j)-summing operator (j = 0, 1). Since {en} is F

′-summing
in each sequence Banach lattice F on J with wF ′,F (en) ≤ 1, it follows that
for un = ξnTen and j = 0, 1, we have

‖{un}‖Φj(Xj) = ‖{‖Ten‖Xj}‖M(Ej ,Fj) ≤ CπFj ,1(T ).

Combining the above facts shows that un ∈ X0 ∩ X1 and Tξ =
∑

n un
(convergence in X0 +X1), and in consequence, x ∈ JΦ0,Φ1(X).

The next result shows that in some cases we are able to describe inter-
polation orbits.

Proposition 3.3. Assume that (E0, E1) and (F0, F1) are couples of Ba-
nach symmetric sequence spaces on Z such that the inclusion map Fj →֒ ℓ∞
is (Fj, 1)-summing (j = 0, 1). If E = M(E0, F0) = M(E1, F1), then the
following statements are true:

(i) If ϕ ∈ P0 and aϕ = {ϕ(1, tn)}, where {tn} is the Janson sequence
for ϕ, then

Orb(aϕ, (E0, E1(1/tn))→ (F0, F1(1/tn))) = E(1/ϕ(1, tn)).

(ii) If x ∈ E0 + E1(2
−n) is such that ̺ = K(·, x;E0, E1(2

−n)) ∈ P+−,
then

Orb(x, (E0, E1(2
−n))→ (F0, F1(2

−n))) = E(1/̺(2n)).

Proof. (i) Since the inclusion map F1 →֒ ℓ∞ is (F1, 1)-summing, it follows
that for any weighted sequence w the inclusion map F1(w) →֒ ℓ∞(w) is
also (F1, 1)-summing. Further, M(E1(1/tn), F1) = M(E1, F1)(tn) shows by
Proposition 3.2 (with ξ = aϕ) that

Orb(aϕ, (E0, E1(1/tn))→ (F0, F1(1/tn))) →֒ ϕ(ℓ∞, ℓ∞(1/tn))E,E .

By Theorem 7.6.2 and Lemma 7.6.3 in [29], we have

ϕ(ℓ∞, ℓ∞(1/tn))E,E = E(1/ϕ(1, tn)).

To complete the proof, we need to show the reverse inclusion. Fix {λn} ∈
E(1/ϕ(1, tn)). Our hypothesis E =M(E0, F0) =M(E1, F1) implies

M(E1(1/tn), F1(1/tn)) =M(E1, F1),

and hence we conclude that the diagonal map D defined on E0 + E1(1/tn)
by

Dx =

{
λnxn
̺(tn)

}
for x = {xn} ∈ E0 + E1(1/tn)
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maps the couple (E0, E1(1/tn)) continuously into (F0, F1(1/tn)). Since Daϕ
= {λn}, the proof is complete.
(ii) First note that {2n} is the Janson sequence for ϕ ∈ P+− (see [17]).

Further, by Theorem 4.7 in [27], it follows that x and aϕ = {ϕ(1, 2
n)} are or-

bitally equivalent. This implies that the orbit spaces Orb(x, (E0, E1(2
−n))→

(F0, F1(2
−n))) and Orb(aϕ, (E0, E1(2

−n)) → (F0, F1(2
−n))) coincide up to

equivalence of norms. Thus statement (i) applies.

Note that in the case when the spaces of multipliers in the above propo-
sition do not coincide, the description of interpolation orbits is a nontrivial
problem in general. In what follows, we present further results, where we do
not need the assumption that the spaces of multipliers between symmetric
spaces form the same space. This result can be applied to many concrete
symmetric sequence spaces, e.g., Lorentz spaces ℓp,q and d(w, p), as well as
Orlicz spaces ℓϕ, via the results on Banach ideal properties of corresponding
inclusion maps related to those spaces, presented in [9] and [10].

Theorem 3.4. Let X = (X0, X1) be a couple of Banach lattices satisfy-
ing an upper 2-estimate and x ∈ X0+X1 be such that ϕ(s, t) = K(s, t, x;X)
is non-degenerate. Assume further that Ej is a pj-concave Banach sym-
metric sequence spaces on Z, 1 < pj ≤ 2 for j = 0, 1. Then for any
weight sequences w0 and w1 the following continuous inclusion holds with
F0 =M(ℓp0 , E0) and F1 =M(ℓp1 , E1):

Orb(x,X → (E0(w0), E1(w1))) →֒ ϕ(ℓp0(w0), ℓp1(w1))F0,F1 .

Proof. Let y = Tx with T : X → (E0(w0), E1(w1)). Assume that {tn} is
any fundamental sequence for ϕ. For xϕ := {ϕ(1, tn)}, we have

K(t, x;X) ≺ K(t, xϕ; ℓ2, ℓ2(1/tn)).

It follows by Cwikel’s result (see [3, Cor. 4.4.35]) that there exists an oper-
ator U : (ℓ2, ℓ2(1/tn)) → (X0, X1) such that Uxϕ = x. In consequence, we
conclude that

S = TU : (ℓ2, ℓ2(1/tn))→ (E0(w0), E1(w1))

and y = Sxϕ.
It is proved in [9] that if E is a p-concave Banach symmetric sequence

space with 1 < p ≤ 2, then the inclusion map E →֒ ℓp is (M(ℓp, E), 2)-
summing. Thus, by the Banach ideal property, it follows that S : ℓ2
→ ℓp0(w0) is (M(ℓp0 , E0), 2)-summing and S : ℓ2(1/tn) → ℓp1(w1) is
(M(ℓp1 , E1), 2)-summing. Since {en} ∈ ℓ

w
2 (ℓ2) and {tnen} ∈ ℓ

w
2 (ℓ2(1/tn))),

it follows that
{‖S(en)‖ℓp0(w0)} ∈M(ℓp0 , E0)

and
{tn‖S(en)‖ℓp1(w1)} ∈M(ℓp1 , E1).
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Since

y = Sxϕ =
∑

n

ϕ(1, tn)S(en) (convergence in ℓp0(w0) + ℓp1(w1)),

the proof is complete.

Theorem 3.5. Let X = (X0, X1) and Y = (Y0, Y1) be relatively complete
couples of Banach lattices such that Xj satisfies an upper pj-estimate and
Yj satisfies a lower qj-estimate (j = 0, 1). If x ∈ X0 + X1 is such that
ϕ = K(·, ·, x; X) ∈ P0, then

Orb(x,X → Y ) →֒ ϕ(Y0, Y1)r0,r1 ,

where 1/rj = (1/qj − 1/pj)+ for j = 0, 1.

Proof. Let y = Tx with T : X → Y . Consider the sequences xϕ =
{ϕ(1, tn)} and yψ = {ψ(1, sn)}, where {tn} and {sn} are the fundamental
sequences for the functions ϕ and ψ = K(·, ·, y;Y ) ∈ P0, respectively. We
have

K(t, x;X) ≺ K(t, xϕ; ℓp0 , ℓp1(1/tn))

and
K(t, yψ; ℓq0 , ℓq1(1/sn)) ≺ K(t, y;Y ).

It follows by Cwikel’s result (see [3, Cor. 4.4.35]) that there exist operators

U : (ℓp0 , ℓp1(1/tn))→ (X0, X1) and V : (Y0, Y1)→ (ℓq0 , ℓq1(1/sn))

such that Uxϕ = x and V y = yψ. In consequence,

S = V TU : (ℓp0 , ℓp1(1/tn))→ (ℓq0 , ℓq1(1/sn))

and S(xϕ) = yψ. This implies, by Proposition 3.2, that

yψ ∈ ϕ(ℓ∞, ℓ∞(1/sn))r0,r1 .

Now applying Corollary 2.2, we obtain y ∈ ϕ(Y0, Y1)r0,r1 .

Applying the result obtained in [5] (which says that if X = (X0, X1) is
a non-trivial Banach couple then X0 ∩ X1 is not dense in the real method
space (X0, X1)θ,∞ for any 0 < θ < 1), we can easily conclude from the
results obtained above that there exist a large class of couples which are not
relative Calderón couples.
The following result extends a result of Ovchinnikov in [31] given for

special weighted ℓp-spaces. The proof is a modification of the one presented
in [31]. We merely sketch it below in a more general case for the sake of
convenience. Let us note that the key to the proof is some kind of regular-
ization result, which uses convolutions. The idea of such constructions of
regularization for sequences or functions has been used, e.g. in [32].

Proposition 3.6. Let (E0, E1) be a couple of maximal or minimal Ba-
nach symmetric sequence spaces on Z and let w0 = {w

0
n} and w1 = {w

1
n} be
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weighted sequences supported on J. Assume that a positive sequence x = {ξn}
supported on J belongs to the Calderón–Lozanovsky space ϕ(E0(w0), E1(w1))
generated by Banach sequence spaces supported on J and

c
w0n
w0n+1

≤
ξn+1
ξn
≤
1

c

w1n
w1n+1

for some c > 1 and all n ∈ J. Then there exist {β0n} ∈ E0 and {β
1
n} ∈

E1(1/sn) such that for v0 = {w
0
n/β
0
n} and v1 = {w

1
n/β
1
n} we have

K(s, t, x; ℓ1(v0), ℓ1(v1)) ≺ ϕ(s, t).

Proof. By the definition of Calderón–Lozanovsky space, we have ξn =
ϕ(α0nw

0
n, α
1
nw
1
n) with {α

0
n} ∈ E0 and {α

1
n} ∈ E1(sn). Fix 0 < ε < 1, j = 0, 1

and define the sequence ε0 = {ε0k} (resp., ε
1 = {ε1k}) by ε

0
k = (1− ε)

−k for
k ≤ 0 and ε0k = 0 for k > 0 (resp., ε

1
k = (1 − ε)

k for 0 ≤ k and ε1k = 0

for k < 0). Now, consider the convolutions βj := {βjn} = εj ⋆ αj , j = 0, 1,
defined by

β0n =

0∑

k=−∞

(1− ε)kα0n−k, β1n =

∞∑

k=0

(1− ε)kα1n−k.

It is easy to see that α0n ≤ β0n and α
1
n ≤ β1n for any n ∈ J. Further, it

follows from εj ∈ ℓ1 that the map x 7→ εj ⋆ x is bounded in the couple
(ℓ1, ℓ∞). Since any maximal or minimal Banach symmetric sequence space
is an interpolation space between ℓ1 and ℓ∞, we conclude that β

0 ∈ E0 and
β1 ∈ E1(1/sn). We show that {β

0
n} and {β

1
n} satisfy the required inequality.

In fact, we have

K(s, t, x; ℓ1(v0), ℓ1(v1)) =
∑

n∈J

ξnmin

{
sw0n
β0n

,
tw1n
β1n

}
.

In particular, for s0 := β
0
k/w

0
k and t0 := β

1
k/w

1
k, we get

K(s0, t0, x; ℓ1(v0), ℓ1(v1)) ≤
∑

n≤k

ξn
w0n
w0k

β0k
β0n
+
∑

n>k

ξn
w1n
w1k

β1k
β1n
.

In view of our assumptions, we have

ξn
ξn+1

w0n
w0n+1

≤
1

c
and

ξn+1
ξn

w1n+1
w1n
≤
1

c
,

Combining these facts with the obvious inequalities

β0n+1
β0n
≤
1

1− ε
,

β1n
β1n+1

≤
1

1− ε
,
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we conclude that for ε > 0 small enough, we get for some q > 1,

ξn
ξn+1

w0n
w0n+1

β0n+1
β0n
≤
1

q
,

ξn+1
ξn

w1n+1
w1n

β1n
β1n+1

≤
1

q
.

This implies that

ξn
ξk

w0n
w0k

β0k
βn
≤

(
1

q

)k−n
for all n ≤ k,

ξn
ξk

w1n
w1k

β1k
β1n
≤

(
1

q

)n−k
for all n > k.

Applying the above inequalities, we obtain
∑

n≤k

ξn
w0n
w0k

β0k
β0n
≤

q

q − 1
ξk,

∑

n>k

ξn
w1n
w1k

β1k
β1n
≤

q

q − 1
ξk.

Finally, the above estimates yield

K(s0, t0, x; ℓ1(v0), ℓ1(v1)) ≤
2q

q − 1
ξk =

2q

q − 1
ϕ(α0kw

0
k, α1w

1
k)

≤
q

q − 1
ϕ(β0kw

0
k, β
1
kw
1
k).

In consequence, by concavity of the K-functional, we obtain the required
estimate.

Proposition 3.7. Let {tn}n∈J be a fundamental sequence for ϕ ∈ P0
and (F0, F1) be a couple of Banach symmetric sequence spaces on Z. Assume

that

x ∈ ϕ(M(ℓp0 , F0)(w0),M(ℓp1 , F1)(w1))

and the weighted sequences w0 and w1 satisfy the assumptions of Proposition
3.6. Then there exists an operator S : (ℓp0 , ℓp1(1/tn)) → (F0(w0), F1(w1))
such that S(aϕ) = x, where aϕ = {ϕ(1, tn)}.

Proof. Let E0 = M(ℓp0 , F0) and E1 = M(ℓp1 , F1). Using Proposition
3.6, we can find {β0n} ∈ E0 and {β

1
n} ∈ E1 such that for v0 := {w

0
n/β
0
n} and

v1 := {w
1
n/β
1
n}, we have

K(s, t, x; ℓ1(v0), ℓ1(v1)) ≺ ϕ(s, t).

Applying the equivalence K(t, aϕ; ℓp0 , ℓp1(1/tn)) ≍ ϕ(1, t), we obtain

K(t, x; ℓp0(v0), ℓp1(v1)) ≺ K(t, aϕ; ℓp0 , ℓp1(1/tn)).

Hence, by the Sparr theorem from [33], there exists an operator

T : (ℓp0 , ℓp1(1/tn))→ (ℓp0(v0), ℓp1(v1))

with T (aϕ) = x. Since id : (ℓp0(v0), ℓp1(v1)) → (F0(w0), F1(w1)), we find
that

S = id ◦ T : (ℓp0 , ℓp1(1/tn))→ (F0(w0), F1(w1))
satisfies Saϕ = x.
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Theorem 3.8. Let X = (X0, X1) and Y = (Y0, Y1) be relatively com-
plete couples of Banach lattices such that Xj satisfies a lower pj-estimate
and Yj satisfies an upper qj-estimate (j = 0, 1). If x ∈ X0+X1 is such that
ϕ = K(·, ·;x,X) ∈ P0 and {tn} is the Janson sequence for ϕ, then

ϕ(Y0, Y1)r0,r1 →֒ Orb(x,X → Y ),

where 1/rj = (1/qj − 1/pj)+ for j = 0, 1.

Proof. Let y ∈ ϕ(Y0, Y1)r0,r1 and let {sn} be the Janson sequence for
ψ = K(·, ·, y;Y ). It follows by Corollary 2.2 and Theorem 2.4 that

yψ := {ψ(sn)} ∈ ϕ(ℓr0, ℓr1(1/sn))r0,r1 →֒ ϕ(ℓr0 , ℓr1(1/sn)).

Taking w0 := {1} and w1 := {1/sn}, we conclude that x := yψ, w0 and w1
satisfy the assumptions of Proposition 3.7. Thus, there exists an operator

S : (ℓp0 , ℓp1(1/tn))→ (ℓq0 , ℓq1(1/sn))

such that S(xϕ) = yψ, where xϕ = {ϕ(1, tn)} and {tn} is the Janson se-
quence for ϕ. Since

K(t, xϕ; ℓp0 , ℓp1(1/tn)) ≺ K(t, a;X)

and
K(t, y;Y ) ≺ K(t, yψ; ℓq0 , ℓq1(1/sn)),

applying Cwikel’s result (see [3, Cor. 4.4.35]), we find that there exist op-
erators U : (X0, X1) → (ℓp0 , ℓp1(1/tn)) and V : (ℓq0 , ℓq1(1/sn)) → (Y0, Y1)
such that Ua = xϕ and V yψ = y. In consequence,

T = V SU : (X0, X1)→ (Y0, Y1)

and T (x) = y, i.e. y ∈ Orb(x,X → Y ). This completes the proof.

Applying Theorems 3.5 and 3.8, we obtain a description of interpola-
tion orbit spaces in Banach couples of weighted Lp-spaces obtained in [30]
and [31].

Corollary 3.9. Let (Lp0(u0), Lp1(u1)) and (Lq0(v0), Lq0(v1)) be Ba-
nach couples of weighted spaces. If x ∈ Lp0(u0) + Lp1(u1) is such that
ϕ = K(·, ·, x; (Lp0(u0), Lp1(u1))) ∈ P0 and {tn} is the fundamental sequence
for ϕ, then

Orb(x, (Lp0(u0), Lp1(u1))→ (Lq0(v0), Lq0(v1))) = ϕ(Lq0(v0), Lq0(v1))r0,r1 ,

with 1/rj = (1/qj − 1/pj)+ for j = 0, 1. In particular , if ϕ ∈ P
+−, then

Orb(x, (Lp0(u0), Lp1(u1))→ (Lq0(v0), Lq0(v1))) = (Lq0(v0), Lq0(v1))E

where E = ϕ(ℓr0, ℓr1(2
−n)).

We remark that the results can be applied to interpolation operators.
Recall that if X = (X0, X1) is a Banach couple and ϕ ∈ P, then the ab-
stract Marcinkiewcz space Mϕ(X) consists of all x ∈ X0 + X1 such that
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K(t, x;X) ≺ ϕ(1, t), and it is equipped with the norm

‖x‖ = sup

{
K(t, x;X)

ϕ(1, t)
; t > 0

}
.

Note that it follows immediately by the construction of Marcinkiewicz spaces
that if T : X → Y , then T maps boundedly Mϕ(X) into Mϕ(Y ). The result
presented below shows that under certain conditions the range space may
be essentialy smaller than Mϕ(Y ). In general, results of this type are rare
and the proofs require special machinery. For related results on interpola-
tion operators acting between abstract real method spaces, we refer to [11]
and [26].

Following [3], a Banach couple E = (E0, E1) is called Conv0-abundant if
for any ϕ ∈ P0 there exists x ∈ E0 + E1 such that K(t, x;E) ≍ ϕ(1, t). We
note that for a couple E to be Conv0-abundant, it is necessary and sufficient
that there exists a non-zero element x ∈ E0+E1 for which K(·, x;E) ∈ P

+−

(see [3, Theorem 4.5.7]).

Theorem 3.10. Let E = (E0, E1) and Y = (Y0, Y1) be relatively com-
plete couples of Banach lattices such that Ej satisfies an upper pj-estimate
and Yj satisfies a lower qj-estimate, and let 1/rj = (1/qj − 1/pj)+ for
j = 0, 1. Assume that E = (E0, E1) is Conv0-abundant and X is a Ba-
nach couple such that E = (E0, E1) and X are relative Calderón couples.
Then the following statements are true for any operator T : X → Y :

(i) If ϕ ∈ P0, then T is bounded from Mϕ(X) into ϕ(Y0, Y1)r0,r1 .
(ii) If ϕ∈P+−, then T is bounded fromMϕ(X) into (Y0, Y1)ϕ(ℓr0 ,ℓr1(2−n)).

Proof. (i) Let ϕ ∈ P0. In view of our hypothesis, there exists x ∈ E0+E1
such that K(·, x;E) ≍ ϕ(1, ·). Since E and X are relative Calderón couples,
Orb(x,E → X) = Mϕ(X). To complete the proof it is enough to combine
Theorem 3.5 with the obvious fact that the map X 7→ Orb(x,E → X) is an
exact interpolation functor (see [3], [29]).

(ii) If ϕ ∈ P+−, then Theorem 2.7 implies

ϕ(Y0, Y1)r0,r1 = (Y0, Y1)ϕ(ℓr0 ,ℓr1(2−n)),

and so the proof is complete by (i).

Based on well known results on Calderón couples (see, e.g., [6], [7] and
[18]), we can apply the above theorem for these couples. In particular it
can be used to study interpolation of some classical operators in analysis,
like singular integral operators and Hardy–Littlewood, Hilbert, Riesz, and
Carleson–Hunt operators, by using well known results on boundedness of
these operators between function spaces, including weighted Lp-spaces (see,
e.g., [4] and [15]). We leave the details to the interested reader.
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