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A functional calculus description of real

interpolation spaces for sectorial operators

by

Markus Haase (Pisa)

Abstract. For a holomorphic function ψ defined on a sector we give a condition
implying the identity

(X,D(Aα))θ,p = {x ∈ X | t−θ Re α
ψ(tA) ∈ Lp

∗((0,∞);X)}

where A is a sectorial operator on a Banach space X. This yields all common descriptions
of the real interpolation spaces for sectorial operators and allows easy proofs of the moment
inequalities and reiteration results for fractional powers.

1. Introduction. Sectorial operators (also called “nonnegative opera-
tors” sometimes) on Banach spaces have been the object of study for at
least the last fifty years. The reason for this interest is that they form a nat-
ural abstraction of elliptic differential operators. In addition also generators
of (not necessarily holomorphic) semigroups can be subsumed under this
concept. In the late fifties, the concept of fractional power Aα of a sectorial
operator A was invented to replace the discrete scale of regularity coming
along with A by a continuous analogue (see [17, Sec. 3.4] for more informa-
tion). Around the same time, a general theory of so-called real interpolation

spaces was created (see [4, Sec. 3.14]). Unfortunately, even in “standard”
examples (like the Laplacian on Lp(Rd) for p 6= 2) the domains of fractional
powers do not coincide with real interpolation spaces (X,D(Am))θ,p. More-
over, it became clear that real interpolation spaces are much better suited
for dealing with regularity questions. (See [15], where the regularity theory
for the inhomogeneous Cauchy problem u′ +Au = f is treated.) One reason
for this is that the real interpolation spaces (X,D(Am))θ,p allow particularly
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nice descriptions. For m = 1 one has for example

(1) (X,D(A))θ,p = {x ∈ X | ‖tθA(t+A)−1x‖X ∈ Lp((0,∞); dt/t)},

and, if −A generates a bounded holomorphic semigroup,

(2) (X,D(A))θ,p = {x ∈ X | ‖t(1−θ)Ae−tAx‖X ∈ Lp((0,∞); dt/t)}

(see [15, Chapter 2]). In a series of papers, Komatsu explored the fractional
powers and in particular studied the relation of the domains D(Aα) and the
real interpolation spaces. He generalized (1) to

(3) (X,D(Aα))θ,p = {x ∈ X | ‖tθReα[A(t+A)−1]αx‖X ∈ Lp((0,∞); dt/t)},

a description which today bears his name (see [12] or [17, Sec. 11.3]).
A more recent concept developed to study sectorial operators is the

functional calculus. Initiated by McIntosh [18] on Hilbert spaces, its gen-
eralization to Banach spaces has proved to be a particularly useful tool in
understanding phenomena around sectorial operators (see [2] or [14] and the
references therein). Using the language of functional calculus, one can see
that the above descriptions of real interpolation spaces follow a common
pattern, namely

(4) (X,D(Aα))θ,p = {x | ‖t−θReαψ(tA)x‖X ∈ Lp((0,∞); dt/t)}

(see Section 7 for details). Such a description (in case X is a Hilbert space
and p = 2) played a decisive role already in McIntosh’s work (cp. also [3]),
especially in the proof of his fundamental result on the boundedness of the
H∞-calculus. (The key property here is that one has a certain freedom in
choosing the function ψ.) One can generalize the results from [3] in order
to find a large class of admissible functions ψ. However, this generalization
works only in the case when A is injective, whereas the above descriptions
(1)–(3) do not require injectivity of A. Hence, up to now a general crite-
rion for functions ψ satisfying (4) is missing. In this paper we give such a
criterion which is particularly simple in the case θ ∈ (0, 1) (Theorem 1).
Imposing stronger conditions also includes the extremal case θ = 1, p = ∞
(Theorem 2). Our results contain all the known descriptions and even yield
new ones.

The plan of the paper is as follows. In Section 2 we recall some basic defi-
nitions and facts about sectorial operators. Also, we sketch the construction
of the functional calculus and list those of its properties which will be used in
the later sections. In Section 3 we state our main results, Theorems 1 and 2.
In Theorem 1 a simple condition on ψ suffices, but one has the identity (4)
only for θ 6= 1. In Theorem 2 the extremal case θ = 1, p = ∞ is included,
but the conditions on the function ψ are more restrictive.

In Section 4 we give a proof of a special case (Theorem 3) of Theorem 2
since this proof is easier and particularly interesting. The proof of Theorem 2
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is then given in Section 5. Finally, in Section 6 we present the proof of
Theorem 1, which uses many of the ideas developed so far.

In Section 7 we first show that the common formulations (1)–(3) are
instances of our generic description (Sections 7.1 and 7.2). Then we show
how the well known moment inequalities for fractional powers are derived
with our methods, and how one can easily obtain results like

(X,D(Aα))
θRe β

Re α
,p

= (X,D(Aβ))θ,p

without using abstract reiteration arguments (Section 7.4). Finally, in Sec-
tion 7.5 we relate one of our auxiliary results (Theorem 4) to the famous
Carleson Corona Theorem.

Here are some definitions and notational conventions. For any open set
Ω ⊂ C we denote by O(Ω) (resp.H∞(Ω)) the space of all holomorphic (resp.
bounded holomorphic) functions on Ω. The function z 7→ z is abbreviated
simply by z. For f ∈ H∞(Ω) we define

‖f‖Ω := ‖f‖∞,Ω = sup{|f(z)| | z ∈ Ω}.

On Ω = C \ (−∞, 0] we consider the functions zα := eα log z where log z
denotes the principal part of the logarithm.

For an operatorA on a Banach spaceX, we denote by N(A) its kernel and
by R(A) its range. We denote by L(X) the set of all bounded, everywhere
defined operators on X. The resolvent set ̺(A) of A is defined as ̺(A) :=
{λ ∈ C | λ−A is injective and (λ−A)−1 ∈ L(X)}, and we write R(λ,A) :=
(λ− A)−1 for the resolvent of A. The set σ(A) := C \ ̺(A) is the spectrum

of A. One may consult [7] for other notations and the basic results of spectral
theory for unbounded operators. IfA andB are any operators onX we define
their product BA as (BA)x := B(Ax) for x ∈ D(BA) := {x ∈ D(A) | Ax ∈
D(B)}.

Let (a, b) ⊂ (0,∞) and 1 ≤ p ≤ ∞. We denote by L
p
∗((a, b);X) the

Bochner space of (equivalence classes of) X-valued functions wich are in Lp

with respect to the measure dt/t. If X = C, we simply write L
p
∗(a, b). The

positive real coordinate (t 7→ t) is abbreviated simply by t.

2. Sectorial operators and their functional calculus. In this sec-
tion we briefly recall the definition of sectorial operators and their holomor-
phic functional calculus.

For 0 ≤ ω ≤ π let

Sω :=

{
{z ∈ C | z 6= 0 and |arg z| < ω}, 0 < ω ≤ π,

(0,∞), ω = 0.

Hence if ω > 0, Sω denotes the open sector symmetric with respect to the
positive real axis with opening angle ω.
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Let X be a Banach space and ω ∈ [0, π). A (possibly unbounded) oper-
ator A is called sectorial of angle ω (for short: A ∈ Sect(ω)) if

1) σ(A) ⊂ Sω,
2) M(A,ω′) := sup{‖λR(λ,A)‖ | λ /∈ Sω′} <∞ for all ω′ ∈ (ω, π).

If A is sectorial, we call

ωA := min{0 ≤ ω < π | A ∈ Sect(ω)}

the spectral angle (or sectoriality angle) of A. Note that if A ∈ Sect(ω) then
also tA ∈ Sect(ω) for each t > 0, with the same constants: M(tA, ω′) =
M(A,ω′) for all ω < ω′ ≤ π. More on basic properties of sectorial opera-
tors can be found in [17] or [10]. Note that we do not assume a sectorial
operator to be densely defined or have dense range, although these density
assumptions appear frequently in the literature as part of the definition.

For ϕ ∈ (0, π] we let

H∞
0 (Sϕ) := {f ∈ O(Sϕ) | ∃C, s > 0 : |f(z)| ≤ Cmin(|z|s, |z|−s)}.

We enlarge this algebra (!) to obtain

E(Sϕ) := H∞
0 (Sϕ) ⊕ C

1

1 + z
⊕ C1.

A function f ∈ O(Sϕ) is in E(Sϕ) if and only if it is bounded, has finite
limits at {0,∞} and these limits are approached “polynomially fast”. Since

1

1 + 1/z
=

z

1 + z
= 1 −

1

1 + z
,

one has f ∈ E(Sϕ) if and only if f(z−1) ∈ E(Sϕ). If the precise sector is
understood or not important, we sometimes write just E , H∞

0 instead of
E(Sϕ), H∞

0 (Sϕ). We will use the following simple fact.

Lemma 2.1. Let Reα > 0. Then
zα

(1 + z)α
,

1

(1 + z)α
∈ E(Sϕ)

for each 0 < ϕ < π.

Proof. One has zαwα = (zw)α whenever z, w, zw ∈ Sπ. Therefore

1

(1 + z−1)α
=

(
1

1 + z−1

)α

=

(
z

1 + z

)α

=
zα

(1 + z)α

for all z ∈ Sπ. Hence it suffices to show that 1/(1 + z)α ∈ E(Sϕ). To see this,
note first that this function decays polynomially fast at ∞. Second, since
the function zα is holomorphic at 1, the function 1/(1 + z)α is holomorphic
at 0. Hence there is C > 0 such that∣∣∣∣

1

(1 + z)α
− 1

∣∣∣∣ ≤ C|z| (z near 0),

which completes the proof.
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Given a function f(z) := ψ(z)+ c
1+z+d1 ∈ E(Sϕ) and a sectorial operator

A with ωA < ϕ one defines

Φ(A) := f(A) := ψ(A) + c(1 +A)−1 + d ∈ L(X),

where ψ(A) is defined by a Cauchy integral

(5) ψ(A) :=
1

2πi

\
∂Sω′

ψ(z)R(z,A) dz

for (any) ω′ ∈ (ω, ϕ). This establishes an algebra homomorphism Φ : E(Sϕ)
→ L(X). Details of this construction can be found in [9] and [10]. Only a
few properties of the functional calculus will be used in this paper. We list
these properties in the rest of this section.

Lemma 2.2. Let A ∈ Sect(ω), ϕ ∈ (ω, π) and f ∈ E(Sϕ). Then the

function (t 7→ f(tA)) : (0,∞) → L(X) is continuous and

Cf := sup
t>0

‖f(tA)‖ <∞.

Proof. Write f = ψ + c(1 + z)−1 + d. The uniform boundedness of the
family ((1 + tA)−1)t>0 is just the definition of sectoriality. The uniform
boundedness of (ψ(tA))t>0 follows from a simple change of variables in the
Cauchy integral. Continuity is also straightforward.

There is a standard way to extend the “elementary” functional calculus
Φ : E(Sϕ) → L(X) to a larger algebra of functions on the sector Sϕ (see
[5], [1] or [10]). The operators so obtained may then be unbounded. In this
way one can define the fractional powers Aα for all Reα > 0. A general
fact in the extended functional calculus is the identity (fg)(A) = f(A)g(A)
whenever g(A) ∈ L(X) (see one of the above references or [9]). As a special
case of this we note the following.

Lemma 2.3. Let Reα > 0 and f, zαf ∈ E(Sϕ). Then R(f(A)) ⊂ D(Aα)
and Aαf(A) = (zαf)(A).

Another basic fact is that f(tA) = [f(tz)](A) for all f from a reasonably
large class of functions, containing in particular all functions f ∈ E and all
the fractional powers f = zα with Reα > 0. This readily yields (tA)α =
tαAα and D((tA)α)) = D(Aα) for all sectorial operators A, complex numbers
α with Reα > 0, and t > 0.

3. Main results. In the following we assume the reader to be familiar
with the basic theory of real interpolation spaces. Detailed information can
be found in [4] or [16]. We will exclusively use the so-called “K-method”.
Since for certain parameters θ, p the spaces become trivial, we will profit
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from the following definition:

(θ, p) ∈ Γ :⇔

{
θ ∈ (0, 1) ∧ 1 ≤ p <∞ or

θ ∈ [0, 1] ∧ p = ∞.

Let us state our first main result.

Theorem 1. Let A ∈ Sect(ω), ϕ ∈ (ω, π) and Reα > 0. Take any

function 0 6= ψ ∈ O(Sϕ) such that ψ, ψz−α ∈ E(Sϕ). Then

(X,D(Aα))θ,p = {x ∈ X | t−θReαψ(tA)x ∈ Lp∗((0,∞);X)}

with the equivalence of norms

‖x‖(X,D(Aα))θ,p
∼ ‖x‖X + ‖t−θReαψ(tA)x‖

L
p
∗((0,∞);X)

for all θ ∈ (0, 1), p ∈ [1,∞].

The proof of Theorem 1 will be given in Section 6. Note that one could
also allow the case θ = 0, p = ∞, for trivial reasons. However, it is important
that the case θ = 1, p = ∞ is excluded. If one looks for conditions on ψ
which imply (4) also in this extremal case, one arrives at the following result.

Theorem 2. Let A ∈ Sect(ω), ϕ ∈ (ω, π) and Reα > 0. Take a function

0 6= ψ ∈ O(Sϕ) such that ψ, ψz−α ∈ E(Sϕ). Assume in addition that ψ has

the following properties:

(a) limz→0 ψ(z)z−α 6= 0,
(b) ψ(z) 6= 0 for all z ∈ Sϕ,

(c) sup
z∈Sϕ, s≥1

∣∣∣∣
ψ(sz)

sαψ(z)

∣∣∣∣ <∞.

Then

(X,D(Aα))θ,p = {x ∈ X | t−θReαψ(tA)x ∈ Lp∗((0,∞);X)}

with the equivalence of norms

‖x‖(X,D(Aα))θ,p
∼ ‖x‖X + ‖t−θReαψ(tA)x‖L

p
∗((0,∞);X)

for all (θ, p) ∈ Γ .

The proof of Theorem 2 will be given in Section 5. The following special
case is worth stating explicitly.

Theorem 3. Let A ∈ Sect(ω), ϕ ∈ (ω, π) and Reα > 0. Take a function

0 6= ψ ∈ O(Sϕ) such that ψ, ψz−α ∈ E(Sϕ). Assume in addition that ψ
satisfies the following conditions:

(a) limz→0 ψ(z)z−α 6= 0,
(b) ψ(z) 6= 0 for all z ∈ Sϕ,
(c) ψ(∞) 6= 0.
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Then

(X,D(Aα))θ,p = {x ∈ X | t−θReαψ(tA)x ∈ Lp∗((0,∞);X)}

with the equivalence of norms

‖x‖(X,D(Aα))θ,p
∼ ‖x‖X + ‖t−θReαψ(tA)x‖L

p
∗((0,∞);X)

for all (θ, p) ∈ Γ .

Proof. One only has to show that also (c) of Theorem 2 is satisfied, at
least on a slightly smaller sector. Choose ϕ′ ∈ (ω, ϕ). Then

∣∣∣∣
ψ(sz)

sαψ(z)

∣∣∣∣ =

∣∣∣∣
ψ(sz)(sz)−α

ψ(z)z−α

∣∣∣∣ ≤ ‖ψz−α‖ϕ

∣∣∣∣
1

ψ(z)z−α

∣∣∣∣
and ∣∣∣∣

ψ(sz)

sαψ(z)

∣∣∣∣ ≤ ‖ψ‖ϕ

∣∣∣∣
1

ψ(z)

∣∣∣∣
independently of s ≥ 1. The first right hand side above is bounded for
z ∈ Sϕ′ with |z| ≤ 1, the second for z ∈ Sϕ′ with |z| ≥ 1.

In the next section we will give an independent proof of Theorem 3. The
main reason for doing so is that the proof in the special case is consider-
ably easier and more elementary, and nevertheless shows some central ideas
appearing also in the proof of the general result.

Remark 3.1. The advantage of Theorems 2 and 3 is that they work also
in the extremal case θ = 1, p = ∞. Moreover, one can already deduce the
common descriptions (1)–(3) from them (see Sections 7.1 and 7.2.) However,
they are unflexible in a certain sense. Namely, condition (a) of Theorem 2
prevents us from using the same function ψ for describing interpolation
spaces for different couples (X,D(Aα)), (X,D(Aβ)) (α 6= β). Theorem 1 is
more flexible in this sense, and in fact implies reiteration results as, e.g.,

(X,D(Aα))
θRe β

Re α
,p

= (X,D(Aβ))θ,p

where 0 < Reβ ≤ Reα, θ ∈ (0, 1), p ∈ [1,∞] (cp. Corollary 7.3).

We conclude this section by noticing that one of the desired inclusions
is easy.

Lemma 3.2. Let A ∈ Sect(ω), ϕ ∈ (ω, π) and Reα > 0. Let ψ, ψ̃ :=
ψz−α ∈ E(Sϕ). Then

‖ψ(tA)x‖ ≤ C K(tReα, x,X,D(Aα)) (x ∈ X, t > 0),

where C = max(Cψ, Cψ̃). Consequently , there is a continuous inclusion

(X,D(Aα))θ,p ⊂ {x ∈ X | t−θReαψ(tA)x ∈ Lp∗((0,∞);X)

for all (θ, p) ∈ Γ .
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Proof. Let x = a + b where a ∈ X and b ∈ D(Aα). Then ψ(tA)x =

ψ(tA)a+ tαψ̃(tA)Aαb. This yields

‖ψ(tA)x‖ ≤ Cψ‖a‖X + tReαC
ψ̃
‖Aαb‖X ≤ C(‖a‖X + tReα‖b‖D(Aα)).

Taking the infimum gives the first statement. The second follows readily.

4. Proof of Theorem 3. In this section we prove Theorem 3. The next
result contains the key observation.

Proposition 4.1. Let A ∈ Sect(ω), ϕ ∈ (ω, π), Reα > 0 and ψ, ψz−α ∈
E(Sϕ). Assume there are functions f, g ∈ E(Sϕ) such that

(6) fψ + gψz−α = 1.

Then there is a constant C ≥ 1 such that

K(tReα, x,X,D(Aα)) ≤ C(‖ψ(tA)‖ + min(tReα, 1)‖x‖)

for all x ∈ X and t > 0.

Proof. Using (6) we define h1 := fψ and h2 := gψz−α. Then we write

x = h1(tA)x+ h2(tA)x = f(tA)ψ(tA)x+ g(tA)(ψz−α)(tA)x

and observe that, by Lemma 2.3, the vector h2(tA)x is in D(Aα) with

‖h2(tA)x‖D(Aα) ≤ t−ReαCg‖ψ(tA)x‖ + Ch2
‖x‖.

Hence we obtain

K(tReα, x,X,D(Aα)) ≤ (Cf + Cg)‖ψ(tA)x‖ + Ch2
tReα‖x‖.

Now the statement follows from the inequality K(tReα, x,X,D(Aα)) ≤ ‖x‖,
valid for all x ∈ X.

One should note that (6) already implies conditions (a)–(c) of Theorem 3.
It is a surprising fact that these are already sufficient. To see this, we consider
first a special case.

Lemma 4.2. Let Reα > 0. Then there are functions f, g ∈ O(Sπ) with

f(z)
zα

(1 + z)α
+ g(z)

1

(1 + z)α
= 1 (z ∈ Sπ),

and f, g ∈ E(Sϕ) for each 0 < ϕ < π.

Proof. Choose m ∈ N with m > 2Reα. Multiply the equality fzα+ g =
(1 + z)α by (1 + z)m−α. This yields

fzα(1 + z)m−α + g(1 + z)m−α = (1 + z)m =

m∑

j=0

(
m

j

)
zj

=
k∑

j=0

(
m

j

)
zj +

m∑

j=k+1

(
m

j

)
zj
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where k is chosen so that Reα − 1 < k < m − Reα, e.g., k = ⌊Reα⌋. One
can then define

f(z) :=

m∑

j=k+1

(
m

j

)
zj−α

(1 + z)m−α
, g(z) :=

k∑

j=0

(
m

j

)
zj

(1 + z)m−α
.

The following result, interesting in its own right, completes the proof of
Theorem 3.

Theorem 4. Let Reα > 0, ϕ ∈ (0, π) and ψ ∈ O(Sϕ) satisfy

(a) ψ, ψz−α ∈ E(Sϕ),
(b) ψ(z) 6= 0 for all z ∈ Sϕ,

(c) ψ(z)z−α
∣∣
z=0

6= 0,
(d) ψ(∞) 6= 0.

Then there are functions f, g ∈ O(Sϕ) such that

f(z)ψ(z) + g(z)ψ(z)z−α = 1 (z ∈ Sϕ),

and f, g ∈ E(Sϕ′) for each 0 < ϕ′ < ϕ.

Proof. Applying Lemma 4.2 we find f1, g1 with f1z
α + g1 = (1 + z)α.

Then we write

1 = f1
zα

(1 + z)αψ
ψ + g1

zα

(1 + z)αψ
ψz−α

and it remains to show that zα/(1 + z)αψ is in E(Sϕ). But this is easy from
the assumptions on ψ.

5. Proof of Theorem 2. It follows from Lemma 3.2 that we only have
to care for the inclusion

{x | t−θReα‖ψ(tA)x‖ ∈ Lp∗(0,∞)} ⊂ (X,D(Aα))θ,p.

To establish it we want to write the constant 1 as a sum of appropriate
functions 1 = h1 + h2 as in Proposition 4.1. The weaker conditions on ψ,
however, render this more complicated than in the previous section. We start
with some auxiliary results.

Lemma 5.1. Let ψ ∈ H∞
0 (Sϕ) and define

h(z) :=

1\
0

ψ(sz)
ds

s
and g(z) :=

∞\
1

ψ(sz)
ds

s
(z ∈ Sϕ).

Then g, h ∈ E(Sϕ) with h(0) = g(∞) = 0. More precisely , if for some α > 0
the function ψz−α is bounded , so is hz−α, and if ψzα is bounded , so is gzα.
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If x ∈ X is such that ‖ψ(tA)x‖X ∈ L1
∗(0, 1) then

h(A)x =

1\
0

ψ(sA)x
ds

s
.

Proof. Since ψ ∈ H∞
0 , the functions g, h are well defined and bounded.

By Morera’s theorem, g and h are also holomorphic. Choose C,α > 0 such

that |ψ(z)| ≤ C|z|α. Then |h(z)| ≤ C|z|α
T1
0 s

α−1 ds. This shows that h is
“good” at 0. Analogously, g is “good” at ∞. The function

γ :=

∞\
0

ψ(sz)
ds

s

is constant on (0,∞) (by change of variables), hence on the whole sector Sϕ
(by holomorphy). Thus we can write h − γ = g, which shows g, h ∈ E(Sϕ)
and g(0) = h(∞) = γ.

To prove the last assertion of the lemma, consider the approximants

hn(z) :=
T1
1/n ψ(sz) ds/s. Standard arguments (namely, Fubini’s theorem)

and the assumption on x show that

hn(A)x =

1\
1/n

ψ(sA)x
ds

s
→

1\
0

ψ(sA)x
ds

s
.

On the other hand, with C,α > 0 as above, we have |hn(z)| ≤ (C/α)|z|α

independently of n and—for m > α—Lebesgue’s theorem yields

(1 +A)−mhn(A) =

(
hn

(1 + z)m

)
(A) →

(
h

(1 + z)m

)
(A) = (1 +A)−mh(A)

in L(X). So we arrive at (1+A)−m
T1
0 ψ(sA)x ds/s = (1+A)−mh(A)x, which

implies the desired statement.

Remark 5.2. We note that the analogue of the last statement for g is
true if (and only if) A is injective. We will not use this fact in what follows.

Lemma 5.3. Let 0 6= ψ ∈ E(Sϕ) and Reα > 0. Then there is f ∈
H∞

0 (Sϕ) such that
∞\
0

(fψ)(sz)
ds

s
= 1 (z ∈ Sϕ)

and zαf ∈ H∞
0 (Sϕ).

Proof. Let ψ(z) := ψ(z) and τ(z) := z/(1 + z)2. Then ψ(t)ψ(t) = |ψ(t)|2

for all t > 0. Choose m > Reα. Since 0 6= ψ,

c :=

∞\
0

τ(s)mψ(s)ψ(s)
ds

s
> 0.

Then f := c−1τmψ is an appropriate choice.
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The next lemma states the well known Hardy–Young inequality.

Lemma 5.4 (Hardy–Young inequality). Let σ > 0, p ∈ [1,∞] and f :
(0,∞) → [0,∞).

(a) If t−σf ∈ L
p
∗(0,∞) then f ∈ L1

∗(0, T ) for every T ∈ (0,∞), and

g(t) :=

t\
0

f(s)
ds

s

satisfies t−σg ∈ L
p
∗(0,∞) and ‖t−σg‖L

p
∗(0,∞) ≤ σ−1‖t−σf‖L

p
∗(0,∞).

(b) If tσf ∈ L
p
∗(0,∞), then f ∈ L1

∗(T,∞) for every T ∈ (0,∞), and

g(t) :=

∞\
t

f(s)
ds

s

satisfies tσg ∈ L
p
∗(0,∞) and ‖tσg‖L

p
∗(0,∞) ≤ σ−1‖tσf‖L

p
∗(0,∞).

Proof. The second assertion follows from the first by a change of pa-
rameter t 7→ t−1. The first assertion can be proved easily by Riesz–Thorin
interpolation since the case p = ∞ is trivial and the case p = 1 is just the
Fubini theorem. (Only positive operators are involved here, so interpolation
is elementary, cf. [8].) Of course one can also look into a book, e.g., [11, pp.
245–246].

Let us turn to the key step.

Lemma 5.5. Let A ∈ Sect(ω), ϕ ∈ (ω, π), Reα > 0, and assume that

ψ ∈ E(Sϕ) satisfies all the hypotheses of Theorem 2. Then there are functions

f ∈ H∞
0 (Sϕ) and g ∈ E(Sϕ) such that

(7)

1\
0

(fψ)(sz)
ds

s
+ g(z)ψ(z)z−α = 1 (z ∈ Sϕ).

Proof. We apply Lemma 5.3 to find a function f ∈ H∞
0 such that

f̃ := zαf ∈ H∞
0 and

T∞
0 (fψ)(sz) ds/s = 1 for all z ∈ Sϕ. Let h(z) :=T∞

1 (fψ)(sz) ds/s. From Lemma 5.1 it follows that h ∈ E and h(0) = 1.

Define g(z) := h(z)/ψ(z)z−α. Since by assumption ψ(z)z−α|z=0 6= 0, g is
“good” at 0. To see that it is also “good” at ∞, we use condition (c) of
Theorem 2 and write

|g(z)| =

∣∣∣∣
h(z)

ψ(z)z−α

∣∣∣∣ =

∣∣∣∣
∞\
1

(sz)αf(sz)
ψ(sz)

sαψ(z)

ds

s

∣∣∣∣ ≤ C

∞\
1

|f̃(sz)|
ds

s
,

the latter being obviously “good” at ∞ (cf. Lemma 5.1).

The next result is parallel to Proposition 4.1 and is the last step in the
proof of Theorem 2.
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Proposition 5.6. Let A ∈ Sect(ω), ϕ ∈ (ω, π), Reα > 0, and assume

that ψ, ψz−α ∈ E(Sϕ). Assume furthermore that there are functions f, g ∈
E(Sϕ) with (fψ) ∈ H∞

0 and

1 =

1\
0

(fψ)(sz)
ds

s
+ g(z)ψ(z)z−α (z ∈ Sϕ).

Then the conclusion of Theorem 2 holds.

Proof. As already noted, one inclusion is clear from Lemma 3.2. Let

h1(z) :=

1\
0

(fψ)(sz)
ds

s
and h2(z) := g(z)ψ(z)z−α.

Clearly, h1, h2 ∈ E . Since zαh2 = ψg ∈ E , Lemma 2.3 shows that h2(tA)
maps X into D((tA)α) = D(Aα) and

Aαh2(tA)x = t−αg(tA)ψ(tA)x

for all x ∈ X and t > 0. Hence we obtain

‖h2(tA)x‖D(Aα) ≤ t−ReαCg‖ψ(tA)x‖ + Ch2
‖x‖

for all x ∈ X and t > 0. This yields

K(tReα, x,X,D(Aα)) ≤ ‖h1(tA)x‖ + Cg‖ψ(tA)x‖ + tReαCh2
‖x‖.

Since also K(tReα, x,X,D(Aα)) ≤ ‖x‖, we can enlarge the constants to
obtain

(8) K(tReα, x,X,D(Aα)) ≤ C[‖h1(tA)x‖ + ‖ψ(tA)x‖ + min(tReα, 1)‖x‖].

Now, take (θ, p) ∈ Γ , θ 6= 0 and x ∈ X such that t−θReα‖ψ(tA)x‖ ∈
L
p
∗(0,∞). Then also t−θReα‖(fψ)(tA)x‖ ∈ L

p
∗(0,∞) since ‖(fψ)(tA)x‖ ≤

Cf‖ψ(tA)x‖. By Hölder’s inequality and θReα > 0 one has

[s 7→ (fψ)(stA)x] ∈ L1
∗((0, 1);X)

for each t > 0. Applying the second part of Lemma 5.1 yields

‖h1(tA)x‖ =

∥∥∥∥
1\
0

(fψ)(stA)x
ds

s

∥∥∥∥ ≤

t\
0

‖(fψ)(sA)x‖
ds

s
=: σ(t).

We can now apply the Hardy–Young inequality (Lemma 5.4) to obtain
t−θReασ(t) ∈ L

p
∗(0,∞) with

‖t−θReασ(t)‖L
p
∗
≤

1

θReα
Cf‖t

−θReαψ(tA)x‖L
p
∗(0,∞).

From (8) we can then infer t−θReαK(tReα, x,X,D(Aα)) ∈ L
p
∗(0,∞) and esti-

mate the L
p
∗-norm of this function in terms of ‖x‖ and ‖t−θReαψ(tA)x‖L

p
∗
.

Combining Lemma 5.5 and Proposition 5.6 completes the proof of The-
orem 2.
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6. Proof of Theorem 1. In this section we present the proof of The-
orem 1. As before, the inclusion “⊂” already follows from Lemma 3.2. In
the proof of the other inclusion we will profit from the following auxiliary
result.

Lemma 6.1. Let A ∈ Sect(ω), ϕ ∈ (ω, π), f ∈ H∞
0 (Sϕ) and Reα > 0.

Define

h(z) :=

∞\
1

s−α f(sz)
ds

s
.

Then h ∈ H∞
0 (Sϕ) and

h(A) =

∞\
1

s−αf(sA)
ds

s
.

Proof. If one chooses 0 < ε < Reα small enough such that z±εf ∈ H∞,
one also has z±εh ∈ H∞. This shows h ∈ H∞

0 . The rest is simply Fubini’s
theorem and the definition of the H∞

0 -functional calculus by the Cauchy
integral. Note that the function s 7→ s−αf(sA) is in L1

∗((1,∞);L(X)).

Returning to our main goal, we again try to write the constant 1 as a
sum of appropriate functions. Hence we start as in the proof of Theorem 2

and choose a function f ∈ H∞
0 (Sϕ) such that f̃ := zαf ∈ H∞

0 (Sϕ) and

∞\
0

(fψ)(s)
ds

s
= 1

(Lemma 5.3). Then we define

h1(z) :=

1\
0

(fψ)(sz)
ds

s
and h2(z) :=

∞\
1

(fψ)(sz)
ds

s
.

By Lemma 5.1, h1, h2 ∈ E(Sϕ) and h1 + h2 = 1. Moreover,

zαh2(z) =

∞\
1

zαf(sz)ψ(sz)
ds

s
=

∞\
1

s−α(f̃ψ)(sz)
ds

s

is—by Lemma 6.1—a function in H∞
0 (Sϕ). Then Lemma 2.3 shows that

h2(tA) maps X into D(Aα) with

Aαh2(tA) = t−α(zαh2)(tA) = t−α
∞\
1

s−α(f̃ψ)(sz)
ds

s
(tA)

=

∞\
1

(st)−α (f̃ψ)(stA)
ds

s
=

∞\
t

s−α (f̃ψ)(sA)
ds

s

for all t > 0 (use Lemma 6.1 again).
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Now, let θ ∈ (0, 1), p ∈ [1,∞] and take x ∈ X such that t−θReα‖ψ(tA)x‖
∈ L

p
∗(0,∞). By the above, x = h1(tA)x + h2(tA)x and h2(tA)x ∈ D(Aα),

hence

K(tReα, x,X,D(Aα)) ≤ ‖h1(tA)x‖ + tReα‖h2(tA)x‖ + tReα‖Aαh2(tA)x‖

for t > 0. In the middle term we estimate ‖h2(tA)x‖ ≤ Ch2
‖x‖ and—

enlarging the constant—arrive at

K(tReα, x,X,D(Aα))

≤ C

[
‖h1(tA)x‖ + min(tReα, 1)‖x‖ + tReα

∞\
t

s−Reα‖ψ(sA)x‖
ds

s

]
.

Since we want to have t−θReαK(tReα, x,X,D(Aα)) ∈ L
p
∗(0,∞), the middle

term is obviously good. The first term is dealt with exactly as in the proof of
Proposition 5.6. For the third we define g(s) := s−Reα‖ψ(sA)x‖ and observe
that

s(1−θ)Reαg(s) = sθReα‖ψ(sA)x‖ ∈ Lp∗(0,∞)

by assumption. Hence we can apply part (b) of the Hardy–Young inequality
(Lemma 5.4), and we are done.

We note the following corollary to the proof.

Corollary 6.2. Let A ∈ Sect(ω), ϕ ∈ (ω, π), 0 6= ψ ∈ E(Sϕ) and

Reα > 0. Then

1\
0

s−Reα‖ψ(sA)x‖
ds

s
<∞ ⇒ x ∈ D(Aα).

Proof. Let f, f̃ , h1, h2 be as before. Then x = h1(A)x + h2(A)x and
h2(A)x ∈ D(Aα). By assumption and Lemma 5.1, we have h1(A)x =T1
0 f(sA)ψ(sA)x ds/s. As the operator Aα is closed and Aαf(sA)ψ(sA)x

= s−αf̃(sA)ψ(sA)x is in L1
∗((0, 1);X), one also has h1(A)x ∈ D(Aα) and

Aαx =

∞\
0

f̃(sA)[s−αψ(sA)x]
ds

s
.

7. Applications and comments. In this section we apply Theorem 2
to obtain the standard (and also new) descriptions of real interpolation
spaces.

7.1. The Komatsu spaces. Let A be a sectorial operator on the Banach
space X and let Reα > 0. We consider the function

ψ(z) :=
zα

(1 + z)α
,
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which, by Lemma 2.1, satisfies the hypotheses of Theorem 3. An application
of this theorem yields, after a change of variable t 7→ t−1, the description

(X,D(Aα))θ,p = {x ∈ X | tθReα[A(t+A)−1]αx ∈ Lp∗(0,∞)}

for all (θ, p) ∈ Γ . If 0 < θ < 1, this characterization is connected to the
name of Komatsu (see [12], [13] and compare also [17, Thm. 11.4.2]). The
case α = 1 gives

(X,D(A))θ,p = {x ∈ X | tθ[A(t+A)−1]x ∈ Lp∗(0,∞)},

which is frequently used (see [15, Prop. 2.2.6]). The proofs of the cases α = 1
and α = 2 given in [16, Prop. 3.1.1 & 3.1.6] were our motivating examples
for Theorem 3 and served as a pattern for its proof.

7.2. Description by holomorphic semigroups. Let A be a sectorial oper-
ator on the Banach space X with ωA < π/2. Choose ϕ ∈ (ωA, π/2). The
function f(z) := e−z belongs to E(Sϕ) and f(tA) = e−tA is the bounded
holomorphic semigroup generated by −A. Let Reα > 0. The function

ψ(z) := zαe−z

has the property ψ, z−αψ ∈ E(Sϕ) and also satisfies (a) and (b) of Theo-
rems 3 and 2. Condition (c) of Theorem 3 is not satisfied, but the more
general condition (c) of Theorem 2 is:

ψ(sz)

sαψ(z)
=
e−sz

e−z
= e−(s−1)z,

and this is uniformly bounded for z ∈ Sϕ and s ≥ 1. Hence Theorem 2
applies and yields the description

(X,D(Aα))θ,p = {x ∈ X | t(1−θ)ReαAαe−tAx ∈ Lp∗(0,∞)}

for all (θ, p) ∈ Γ . This is also well known; see [16, Prop. 5.1.2] for the case
α = m (which motivated our proof of Theorem 2).

7.3. Another characterization. Let again A be a sectorial operator on
the Banach space X and consider the function

ψ(z) :=
zα

(1 + z)β

where 0 < Reα < Reβ. Then ψ satisfies the conditions of Theorem 2 (but
not those of Theorem 3). Hence, after changing variables, we obtain

(X,D(Aα))θ,p = {x ∈ X | tReβ−(1−θ)Reα[Aα(t+A)−β]x ∈ Lp∗(0,∞)}

for all (θ, p) ∈ Γ . Specializing, e.g., α = 1, β = 2 yields

(X,D(A))θ,p = {x ∈ X | t1+θA(t+A)−2x ∈ Lp∗(0,∞)}.

This description may be new, at least we do not know of a reference.
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7.4. Interpolation inequalities and reiteration. We now demonstrate how
our methods lead to proofs of important facts in the interpolation theory of
sectorial operators. We start with the fact that the fractional domain space
D(Aβ) is of class J(θ)∩K(θ) between X and D(Aα), where 0 < Reβ < Reα
and θ := Reβ/Reα.

Corollary 7.1. Let A be a sectorial operator and 0 < Reα. Then

(9) (X,D(Aα))θ,1 ⊂ D(Aβ) ⊂ (X,D(Aα))θ,∞

whenever 0 < Reβ < Reα, θ := Reβ/Reα.

Proof. Take ϕ ∈ (ωA, π) and 0 6= ψ ∈ O(Sϕ) with ψ, z−αψ ∈ E(Sϕ).
The left hand inclusion follows from Theorem 1 and Corollary 6.2. To prove

the right hand inclusion, observe ψ̃ := ψz−β is still in E . Now, ψ(tA)x =

tβψ̃(tA)Aβx, whence ‖ψ(tA)x‖ ≤ tReβC
ψ̃
‖Aβx‖ for all t > 0. The rest is

again Theorem 1.

It is well known that the left hand inclusion in (9) implies (and is in
fact equivalent to) an inequality of the form ‖Aβx‖ ≤ C‖x‖1−θ‖Aαx‖θ,
where θ := Reβ/Reα. The usual interpolation-theoretic proof of this impli-
cation requires a description of the interpolation spaces different from the
K-method (cf. [4, Thm. 3.5.2] or [15, Thm. 1.2.15]). However, our methods
allow also a direct proof.

Corollary 7.2 (Moment inequality). Let A be a sectorial operator on

the Banach space X. Let α, β, γ ∈ C be such that Re γ < Reβ < Reα and

Re γ > 0 or γ = 0. Then there is a constant C such that

‖Aβx‖ ≤
C

θ(1 − θ)
‖Aγx‖1−θ‖Aαx‖θ (x ∈ D(Aα)),

where θ is defined as θ := Reβ−Re γ
Reα−Re γ .

Proof. Choose any 0 6= ψ ∈ H∞
0 such that ψzα, ψz−α are still bounded

functions. Define h(z) :=
T1
0 ψ(sz) ds/s, g(z) :=

T∞
1 ψ(sz) ds/s as in Lemma

5.1. Then z−αh and zαg are bounded functions, whence ĥ := z−(α−β)h and
ĝ := zβ−γg are both in H∞

0 . For x ∈ D(Aα) we have

Aβx = h(tA)Aβx+ g(tA)Aβx = tα−βĥ(tA)Aαx+ t−(β−γ)ĝ(tA)x.

This yields

‖Aβx‖ ≤ tReα(1−θ)C
ĥ
‖Aαx‖ + t−ReαθCĝ‖A

γx‖

(see Lemma 2.2). Taking the infimum with respect to t > 0 we arrive at

‖Aβx‖ ≤ C

[(
1 − θ

θ

)θ

+

(
θ

1 − θ

)1−θ]
‖Aγx‖1−θ ‖Aαx‖θ,

where C := max{Cĝ, Cĥ}. The term in brackets is bounded by 1/θ(1 − θ).
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The main part of the next result can be inferred from Corollary 7.1
by means of the so-called Reiteration Theorem from general interpolation
theory (see [4, Thm. 3.5.3]). We present a different proof that uses essentially
our Theorem 1.

Corollary 7.3 (Reiteration). Let A be a sectorial operator. Then the

following assertions hold.

(a) If 0 < Reβ ≤ Reα, then

(X,D(Aα))
θRe β

Re α
,p

= (X,D(Aβ))θ,p

for all θ ∈ (0, 1) and p ∈ [1,∞].
(b) If 0 < Re γ < Reβ ≤ Reα, σ ∈ (0, 1), p ∈ [1,∞], and x ∈ X, then

x ∈ (X,D(Aα))θ,p ⇒ x ∈ D(Aγ) and Aγx ∈ (X,D(Aβ−γ))σ,p,

where θ := (1 − σ)Re γ
Reα + σReβ

Reα .

(c) If α, β, γ, p, σ, θ are as in (b), then

(X,D(Aα))θ,p = (D(Aγ),D(Aβ))σ,p.

Proof. To prove (a), simply choose a function 0 6= ψ ∈ E such that
z−αψ ∈ H∞

0 . Then also ψz−β ∈ H∞
0 and one can apply Theorem 1 twice.

For the proof of (b), choose 0 6= ψ̃ ∈ E such that z−αψ̃ ∈ E and use it to

describe (X,D(Aα))θ,p. Observe that also ψ := z−γψ̃ ∈ E and z−(β−γ)ψ =

z−βψ̃ ∈ E . Hence we can use ψ to describe (X,D(Aβ−γ))σ,p. (Note that
θ, σ ∈ (0, 1), whence Theorem 1 is applicable.) Now, since θReα−Re γ > 0,
we have

1\
0

s−Re γ‖ψ̃(sA)x‖
ds

s
=

1\
0

sθReα−Re γ‖s−θReαψ̃(sA)x‖
ds

s
<∞

if x ∈ (X,D(Aα))θ,p. Applying Corollary 6.2 we see that (X,D(Aα))θ,p ⊂
D(Aγ). Moreover,

t−σRe(β−γ)ψ(tA)Aγx = t−θReαψ̃(tA)x

for all t > 0. This finishes the proof of the stated equivalence.
Statement (c) follows immediately from (b) since here one can assume

without restriction that A is invertible.

These results are of course well known (see e.g. [17, Thm. 11.5.1] and
compare this to statement (b) of Corollary 7.3). However, the method of
proof is different.

7.5. A corona-type theorem. Last but not least, we would like to point
out that Theorem 4 has the flavor of the “Corona Theorem”, although it is
not comparably deep. The general setting is algebraic in nature and quickly
explained. One is given a domain Ω ⊂ C and an algebra A of holomorphic
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functions on Ω, containing 1. For two given functions f, g ∈ A one wants to
characterize (in function-theoretic terms) the following algebraic condition:

(10) There exist a, b contained in A such that af + bg = 1,

i.e., the elements f, g are relatively prime within the ring A. An obvious
necessary condition is that f, g do not have common zeroes. It is well known,
but far from trivial, that if A = O(Ω) is the algebra of all holomorphic
functions, this condition is also sufficient (see [19, Theorem 15.15]). If Ω = D

is the unit disc and A = H∞(D), then a necessary condition is |f |+ |g| ≥ δ
for some δ > 0. That this condition is also sufficient is the result of Carleson
and is the proper “Corona Theorem” (see [6]). Our Theorem 4 says that for
A = E(Sϕ) and a = ψ, b = z−αψ the obvious necessary conditions for (10)
are in fact sufficient.
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