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A remark on extrapolation of rearrangement operators
on dyadic H*°, 0 <s <1

by

STEFAN GEISs (Jyvéskyld), PauL F. X. MULLER (Linz) and
VERONIKA PILLWEIN (Linz)

Abstract. For an injective map 7 acting on the dyadic subintervals of the unit inter-
val [0,1) we define the rearrangement operator Ts, 0 < s < 2, to be the linear extension
of the map

hi  hro
[ |r (D)
where h; denotes the L°°-normalized Haar function supported on the dyadic interval I.

We prove the following extrapolation result: If there exists at least one 0 < so < 2 such
that T, is bounded on H*°, then for all 0 < s < 2 the operator T is bounded on H*.

1. Introduction. In this paper we prove extrapolation estimates for
rearrangement operators of the Haar system, normalized in H®, 0 < s < 2.
Here H?® denotes the dyadic Hardy space of sequences (g(I))ep for which

1

1) ot relize = | (32 ohri)” dr < o

0 IeD

In (1) we let D denote the collection of all dyadic intervals [a,b) in the
unit interval [0, 1) and correspondingly (hr)rep denotes the L*°-normalized
Haar system. For an injective map 7 : D — D we define the rearrangement
operator T to be the linear extension of

hi her(1y
Ts: .
TEEMEHIEE

We show that
2) T H — H|"O <¢|T,: HP — HP||, 0<s<p<2,
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where 0 < 6 < 1 is chosen such that
1 1-6 n 0
P s 2’

¢ > 0 depends at most on s and p, and
1Ty < H* — B == sup{|Tugl| - : lgllaz= < 1}.

The novelty of (2) lies in the range of admissible values for s. In [4]
the estimate (2) was obtained for the range 1 < s < p < 2. The proof in
[4] is based on duality and therefore strictly limited to the case s > 1. An
alternative proof of (2) for 1 < s < p < 2 has been given by exploiting the
norm devised by G. Pisier in the context of general Banach lattices [6]. For
example, for g = (g(I));ep € H' Pisier’s result reads in our setting as

1 _ _ _
®) S lolis’ < s {|| 3o lg@ (DRl <1} < Nl
1eD

with 0 < <1 and

1 0

S=1- 2,

P 2
where d > 1 depends at most on p and . We do not know who should be
credited for finding the proof of (2), 1 < s < p < 2, using (3). A proof of (3)
follows by specializing the ideas of G. Pisier to the context of H'. The work
of M. Cwikel, P. G. Nilsson and G. Schechtman [1, Ch. 3] plays a crucial
role in linking (3) to G. Pisier’s original construction [6].

2. Extrapolation estimates. The aim of this paper is to present a
proof of the following two theorems.

THEOREM 1. Let 7 : D — D be an injection, and let 0 < s < p < 2 and
0 <6 <1 be such that

1_1-0 0
p s 2

Then there exists a constant ¢ > 0, depending at most on s and p, such that
1
“ T : H® — H*|"% < ||Tp, : HP — HP|| < ¢||Ts : H® — H*||'~°.
c

The point of the above theorem is the left-hand inequality which corre-
sponds to an extrapolation. The right-hand one is rather standard and follows
by interpolation. The proof of the extrapolation inequality is based on

THEOREM 2. For 0 <s<p<q<2and0 <60 <1 such that
1 1-60 0

p S q
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there exists a constant ¢ > 0, depending at most on s, p, and q, such that
1 _ _ _
(@ ~lgliz" < sup {|| S lg@ (DR llelle <1} < gl
1eD

for all g € H®.

The main estimate in Theorem 2 is the left-hand inequality for which we
present two approaches. One is by reduction to the case of Banach lattices
and duality. The second approach is via Theorem 5 which is the desired
inequality for ¢ = 2 and p + s > 2 and which is—despite the parameter
restriction—sufficient to prove the extrapolation part of Theorem 1 as well.
The proof of Theorem 5 circumvents the use of duality and is based instead
on the atomic decomposition; it provides additional information by finding
a particular wg that realizes the supremum in (4) up to a multiplicative
constant.

Let us start with the proof of Theorem 2 by introducing the following
Banach lattices of Triebel type.

DEFINITION 3. For 1 < o < oo we let
1/a
fi = {9 = (Dren : lglge = | (X lomy1ond) | | < oo}
IeD

The lattice structure of the spaces fi* is defined through the canonical
lattice structure of the sequences (g(I))rep. The Triebel spaces f{* form an
interpolation scale compatible with the Calderén product: For

1 1-—
1_1l-n_n

v a f
0<n<l,and 1 <a<+vy<f< oo, M. Frazier and B. Jawerth [2, Theorem
8.2] (1) proved that
(5) lal < Nl gop-nzoye < el
with ¢ > 1 depending at most on «, ~, and 3, where the Calderén product
is given by
n — 1=n1 4,17
1oy = int{lgoll "ol 1 = ol lon 7).

(The left-hand inequality of (5) follows by an appropriate application of
Holder’s inequality.) Our main tool will be the extrapolation formula

(6) lgl7s = sup {[llgl”lewl [l payrnpoyn : 0l < 13

with 1 < a < f <ooand 0 < n <1 from M. Cwikel, P. G. Nilsson and
G. Schechtman [1, Theorem 3.5].

(1) The spaces we use are complemented subspaces of the spaces ffl/Q’p from [2,
p. 38], complemented in a way that [2, Theorem 8.2] remains true.
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Proof of Theorem 2. For 0 <t <2 and g = (g(I))rep we get

! t

(S gtrmiw) " da

0 IeD

! t/2

(o ew@) " do = (gl -

0 IeD

(7) g1 =

Consequently, rewriting (4) we need to prove that

_W’Hm
< sup {[(lg(D PP repl L, + 1wl 4, < 1} < [lg1*] "

Replacing in the above estimates g by |g|*/* and w by |w|/¢ we obtain

1 —0)/s
®) = llgl” .

e

< sup{[[(|g(D) P (D) P repl| porp + llwll ora < 1} < |!g||p2/s e,

With « :=2/q, :=2/s,v:=2/p,and n := (q — )/( s) € (0,1) so that
I 1-
l<a<y<f, -—=—141
7T e T
the estimates (8) are equivalent to

1 _

— llgls < sup{ll(lg(D)I"lw()"Miepll s+ lwllge <1} < llglls,

cP f1 1 f1
which follows immediately from (5) and (6). =

Proof of Theorem 1. (a) First we prove the left-hand inequality. Assume
that |7, : HP — HP|| < oo (otherwise there is nothing to prove). Fix
g=(g(I))1ep € H® and w = (w(I))ep € H2. Define

wi= Y gD (D) hy.

IeD
As1/p=(1-0)/s+ 6/2 we have

(Tpu)(J) = [(Tsg) (D[ (Tow) ()|’
for the corresponding Haar coefficients. By Theorem 2 we get

1
;ungnHksup{HZ\ L) (Dl (DIh]| o lwllae <1}

Since Ty preserves the H2-norm and the supremum in the above expression
can be restricted to those w such that w(J) = 0 whenever J & 7(D), we can
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rewrite the above inequality as

1
- IZugll; 9<sup{HZr o) (DI (Tew) (D) | 1Tz < 1

- sup{HTp(Z 9D |l < 1}

1eD
As T, is bounded on H?,

sup {[| 7,( Y LoD P rwo(DIh )|+ Il < 1}
1eD
<y s 17— HP|swp {|| 3 1o (DR sl < 1},
1€D

By Theorem 2 the supremum above is bounded by || g||11q§9 so that

IITSgIIHf <|ITp - H? — H?||[lgll ;7=

and the claim fOHOWb.

(b) Because || T2g||g2 = ||g]| g2 the right-hand inequality follows from a
general interpolation property of the operators T),: for 0 < s < p < ¢ < 2
and 0 < 0 <1 with 1/p=(1-6")/s+ 6'/q one has

(9) T, : HP — HP|| < ¢|Ts : H® — H*|*"%||T, : H* — HI|)"

where ¢ > 0 depends at most on s, p, and q. There are different ways to
deduce (9). We reduce the family of operators (T},)o<p<2 to a single opera-
tor T" and exploit the interpolation property of the Calderén product. The
map 1" is given by T'((a(I))rep) = (9(J))sep with

7_—1
sy = Lo S e,

0, J & 7(D),
so that, for 0 <t < 2,

5 oo (%)I/trhia)u))mm

1Teglye =

~
m
]

I
Ot = O e o O ey

= N N2 N
"
vl
—
=)
—
=
5
—
=

1 2/t t/2
Lo I N ) ) = 1ol e

m

~ 3

(D)

Y

Together with (7
2 t 2 t
(10) IT;: H — HY|' = |T: .

this implies
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Now, from (5), [2, Proposition 8.1}, and the positivity of T we obtain
IT: 7 = f < el T e g7 = 10T 17— A

forl<a<y<f<ooand 0<n<1suchthat 1/y=(1—-n)/a+n/5,
where ¢ > 0 depends at most on «, 3, and 7. Together with (10) we end up
with (9) by letting « =2/q, 3 =2/s, and vy =2/p. =

3. A constructive aspect of Theorem 2. Given g € H? it follows
from Theorem 2 that there exists a wg € H? with |Jwo||z2 = 1 such that

ol ~ || 2 1o (0 hi |
1eD

whenever 0 < s <p<2,0<60<1, and 1/p=(1—0)/s+ 0/2. The duality
proof of Theorem 2 yields just the existence of such a wg € H?. In order to
get an explicit formula for wy € H? we exploit an atomic decomposition for
g € H? in this section. To simplify the notion we use the square function

1/2
S(9)(@) = (Y g3 @) for g = (g(I))rep € H"
I€D
The following lemma summarizes the properties of the stopping time de-
composition originating with the work of S. Janson and P. W. Jones [3].

LEMMA 4. Let 0 < s,p < oo and g = (g(I))rep € H®. Then there exists
a system £ C D of dyadic intervals and T (K) C D for K € £ such that, for

g == > g(Dhr,
1€T(K)
one has the following:
(i) (T(K))kes is a disjoint partition of D,

(i) supp(S(9x)) € K,
(iii) there is a constant ¢ > 0, depending on s only, such that

(11) > 1S(ar)SIE] < elgllie
Ke&
(iv) there is an absolute constant d > 1 such that
P
(12) > lalE)Plgxll < d| > aKgx|
Keé& Ke&
for any sequence of scalars (o )kes where the sides might be infi-
nite.

The above decomposition is obtained by applying a stopping time pro-
cedure based on the size of the square function S(g). This argument is due
to S. Janson and P. W. Jones [3]; it is reproduced in many places, for in-
stance in [5] (cf. Theorem 2.3.3 and Proposition 3.1.5). By renumbering we
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replace (gx, K)gee by (9i, Ii)ien with NV C {1,2,...}. The family (g;, I;) is
called an atomic decomposition of g where we may assume without loss of
generality that ||g;|| g2 = ||[S(gi)||2 > 0 for all ¢ by leaving out those elements
gk with [[gr | g2 = 0.

THEOREM 5. Let 0 < s <p<2andp+s>2, andlet 0 <0 <1 be
such that

I 1-46 N 0
p s 2
For g € H® with ||g||gs > 0 and atomic decomposition (g;, I;) define
—s/2 1/2 115(gi) |50 | 73]
wo = ||g|l g+ : Y, '“g; where Y_i‘
2.0 SN EEATE

i

Then wy € H? with ||wol| g2 < ¢ with ¢ > 0 depending on s only, and

gl < dl| S 19 huwo(D) i |
1eD

where d > 0 is an absolute constant.

Proof. We may assume that ||g|[zs = 1 in the following. As the se-
quence (g;) is disjointly supported over the Haar system, we have S2(wg) =
>, YiS(g;)?. Inserting the definition of V; and using the estimate (11) yields

2
Jewoll 2 = (Z ISR " < M2l = 2 < oo,

Let (gi(I))rep denote the Haar coefficients of g;. Because

S (D lwo(1)|°hr = ZY”%

1eD

from (12) we get
Op/2 _ p
S Y gillye < d| D2 19D huo(DIh |
i I1eD

where the right-hand side is finite because ¢ € H®, wg € H?, and by the
right-hand inequality of (4) (we are interested in an alternative proof for
the left-hand side). As s < 2 we have

= (ZS(gi)2>S/2 < ZS(gi)S

so that 1 = ||g[|3s <>, |lgill3s- Thus in order to prove

S 1o lwo(DIh[)

1€D

1§d‘
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it suffices to show ,
2
S lgillie < >V gillby
i i

Since
0p/2 ) 0 -0
Y2\ gilly = 118 (a) 19252 1317215 (i) I 1 il By

we will prove that

1 1 op)2 1
(V5090)° () d) (§S(g0) () dr) ™ <118 (gII2/2 1172 (§ S(g0)7 () ).
0 0 0

Replacing dx by dz/|I| and taking into the account that the support of S(g;)
is contained in I; we only need to prove for a non-negative random variable
Z that
(EZ*)(BEZ*)"? < || 2| % EZP,
which follows from
(BZ*)(EZ*)"* < (EZ°)(EZ**)"|| 7| %/
< (EZP)s/P(EzP)2=9)00/p)| 7| %s/2

and
s 2—stp 1
p p 2
Second proof of the left-hand inequality of Theorem 1. For 0 < s < p < 2

we find p < p’ < 2 such that s + p’ > 2. Then we get
|Ts : H® — H?|| < c1|| Ty - oY HID/H(l—el)*1
< |7, : H? — Hp|’(1*91)_1(1*92)

where 1 16, 6 1 1-6, 0
! 1 — U2 2
frd _— d _— = o

p S * g p P + 2
with ¢1,co > 0 depending at most on s, p, and p’ and where we used in the
first step Theorem 5 together with the arguments of part (a) of the proof
of Theorem 1, and in the second one formula (9) for ¢ = 2 (note that 75

preserves the H2-norm). Because
(1—6)'1—6)=(1-0)"

with 0 defined in Theorem 1, we are done. m
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