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Backward Aluthge iterates of a hyponormal operator
and scalar extensions

by

C. Benhida (Lille) and E. H. Zerouali (Rabat)

Abstract. Let R and S be two operators on a Hilbert space. We discuss the link
between the subscalarity of RS and SR. As an application, we show that backward Aluthge
iterates of hyponormal operators and p-quasihyponormal operators are subscalar.

1. Introduction. Let H be a Hilbert space and L(H) be the algebra of
bounded linear operators on H. We write σ(T ) for the spectrum of T .

In [14], M. Putinar showed that a hyponormal operator has a scalar
extension which means that it is similar to the restriction to an invariant
subspace of a (generalized) scalar operator (in the sense of Colojoarǎ–Foiaş).
This was extended to w-hyponormal operators by E. Ko [10].

A bounded linear operator S on H is called scalar of order m if it has a
spectral distribution of order m, i.e., if there is a continuous unital morphism
of topological algebras

Φ : Cm0 (C)→ L(H)

such that Φ(z) = S, where as usual z stands for the identical function
on C and Cm0 (C) for the space of compactly supported functions on C,
continuously differentiable of order m, 0 ≤ m ≤ ∞. We mention that here we
will identify any function with its values in a neighborhood of the spectrum
of S. An operator is subscalar of order m if it is a restriction of a scalar
operator of order m. It is known that subscalarity of order ∞ is equivalent
to property (β)ε [7, Proposition 3.3].

A Banach space operator A ∈ L(X ) has property (β)ε if, for each open
subset U of the complex plane C, the operator

Az : E(U ,X )→ E(U ,X )

defined by Az(f) = (A − z)f from the Fréchet space E(U ,X ) of X -valued
C∞-functions into itself is one-to-one and has closed range.
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Property (β)ε implies (Bishop’s) property (β), where an operator A ∈
L(X ) is said to have property (β) if, for each open subset U of C, the operator

Az : O(U ,X )→ O(U ,X )

from the Fréchet space O(U ,X ) of X -valued analytic functions on U into
itself is one-to-one and has closed range. Properties (β)ε and (β) play an
important role in local spectral theory and related topics. For further infor-
mation, see [1, 6, 7] and [13].

Let D be a bounded open disc in C and dµ(z) the planar Lebesgue mea-
sure. We shall denote by L2(D,H) the Hilbert space of measurable functions
f : D→ H such that

‖f‖2,D =
( �

D

‖f(z)‖2 dµ(z)
)1/2

<∞.

The space of functions f ∈ L2(D,H) which are analytic in D is defined
by

A2(D,H) = L2(D,H) ∩ O(D,H)

where O(D,H) denotes the Fréchet space of H-valued analytic functions on
D with uniform topology. A2(D,H) is called the Bergman space for D.

Let us define a Sobolev type space Wm(D,H), for m ∈ N, to be the
space of those functions f ∈ L2(D,H) whose derivatives ∂̄f, . . . , ∂̄mf in the
sense of distributions still belong to L2(D,H). Endowed with the norm

‖f‖2Wm =
m∑
i=0

‖∂̄if‖22,D,

Wm(D,H) becomes a Hilbert space continuously embedded in L2(D,H).
Now, for f ∈ Cm0 (C), let Mf denote the operator on Wm(D,H) given by
multiplication by f . It has a spectral distribution of order m, defined by the
functional calculus

ΦM : Cm0 (C)→ L(Wm(D,H)), ΦM (f) = Mf .

Thus, Mz is a scalar operator of order m.
We proved in [4] that for two given operators R and S, the operators

RS and SR share the same local spectral properties (SVEP, (β), (β)ε, etc.)
and almost all their global spectral properties.

In this paper, we consider intermediate properties between SVEP and
property (β)ε involving Sobolev spaces. We then investigate the behavior of
RS and SR with regard to these properties.

As an application, we give various results on Aluthge transforms and
backward Aluthge iterates of hyponormal operators and p-quasihyponormal
operators.



Backward Aluthge iterates 3

Notice in passing that such an application provides a simple approach to
obtaining subscalarity of many classes of operators. Similar results are given
in [9, 11, 12]. Proofs in the previous papers rely heavily on some L2-version
of the following lemma due to Xia, which can be found for example in [9].

Lemma 1.1 ([16, Lemma 2.1]). Let T = U |T | ∈ L(H) be the polar de-
composition of T,Q = |T | − |T |l, z = %eiθ, % > 0, and |eiθ| = 1 where
|T | = (T ∗T )1/2 and |T |l = (TT ∗)1/2. Then for all f ∈ H,

‖(T − z)f‖2 = ‖(|T | − %)f‖2 + %‖ |T |1/2(U − eiθ)∗f‖2 + %〈Qf, f〉.
It is however not clear for us how such an L2-version could be applied.

2. Subscalarity of RS and SR. Using the Cauchy–Pompeiu formula,
M. Putinar proved in [14] the lemma below for i = 0, from which one may
deduce easily the following form:

Lemma 2.1. For every bounded disc D in C there is a constant CD such
that for all T ∈ B(H) and f ∈Wm(D,H) we have

‖(I − P )∂̄if‖2,D ≤ CD[‖(T − z)∗∂̄i+1f‖2,D + ‖(T − z)∗∂̄i+2f‖2,D]
for i = 0, 1, . . . ,m−2, where P denotes the orthogonal projection of L2(D,H)
onto A2(D,H)

We shall also use the following well known fact (see [14]):

Lemma 2.2. Let U and V be bounded connected open sets in C. If V is
relatively compact in U , then there is a constant c > 0 such that ‖f‖∞,V ≤
c‖f‖2,U for all f ∈ A2(U,H).

In [4], we proved that for two given operators R and S, the operators RS
and SR have the same local spectral properties, in particular, the single-
valued extension property (SVEP). The following result shows that we have
an analogue of the SVEP for Sobolev spaces.

Proposition 2.3. Let R and S be two operators on H and let D be a
bounded disc containing σ(RS)∪{0}. Then RS−λ : W 2(D,H)→W 2(D,H)
is one-to-one if and only if SR− λ : W 2(D,H)→W 2(D,H) is one-to-one.

Proof. It is clear that by symmetry, it is enough to prove the statement
in one direction. Assume that RS−λ is one-to-one. If f ∈W 2(D,H) is such
that (SR − λ)f = 0, then (RS − λ)Rf = 0. By hypothesis, Rf = 0. Thus
λf = 0. Consequently, λ∂̄if = 0 for i = 1, 2. Using Lemma 2.1 with T = 0,
we get f = Pf . Then λf = λPf = 0. But, from [5, Corollary 10.7], there
exists a constant c > 0 such that

c‖Pf‖2,D ≥ ‖λPf‖2,D.
Therefore f = Pf = 0.
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Let us introduce the following definition.

Definition 2.4. Let A be an operator on H, and m and p two integers
such that 0 ≤ p < m. We shall say that A has the property (βm,p) if there
exists a neighbourhood U of σ(A) such that for every bounded disc D con-
taining U , the map A− z : Wm(D,H)→Wm(D,H) satisfies the following:
If (fn) is a sequence in Wm(D,H) such that limn→∞ ‖(A − z)fn‖Wm = 0
then limn→∞ ‖fn‖Wm−p = 0.

Let us write (βm) for (βm,0), and (β∞) for
⋂
m∈N(βm,0).

Remark 2.5.

(i) (βm,p)⇒ (βm,q) for every 0 ≤ q ≤ p.
(ii) (βm) implies that the map in question is bounded below.

(iii) (βm)⇒ SVEP.
(iv) (β∞)⇒ (βε).

Proposition 2.6. If T is a hyponormal operator then T has the prop-
erty (βm,2) for every integer m ≥ 2.

Proof. Let (fn)n ⊂Wm(D,H) be such that limn→∞ ‖(T−z)fn‖Wm = 0.
This means that

lim
n→∞

‖(T − z)∂̄ifn‖2,D = 0, i = 0, . . . ,m.(1)

Since T is a hyponormal operator, we have

lim
n→∞

‖(T − z)∗∂̄ifn‖2,D = 0, i = 0, . . . ,m.

Using Lemma 2.1, we get

lim
n→∞

‖(I − P )∂̄ifn‖2,D = 0, i = 0, . . . ,m− 2.(2)

This combined with (1) gives

lim
n→∞

‖(T − z)P ∂̄ifn‖2,D = 0, i = 0, . . . ,m− 2.

But T has Bishop’s property (β). So, using Lemma 2.2, we get

lim
n→∞

‖P ∂̄ifn‖2,D = 0

and by (2),
lim
n→∞

‖∂̄ifn‖2,D = 0, i = 0, . . . ,m− 2.

This means limn→∞ ‖fn‖Wm−2 = 0.

In contrast with the SVEP, Bishop’s property (β) and the property (βε),
we show here that RS and SR do not share exactly the same property (βk,l).

Proposition 2.7. Let R and S be two operators on H. If RS has (βm,p)
then SR has (βm,p+2).
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Proof. Let (fn)n ⊂Wm(D,H) be such that

lim
n→∞

‖(SR− z)fn‖Wm = 0

From the definition of the norm of the Sobolev space, we deduce

(3) lim
n→∞

‖(SR− z)∂̄ifn‖2,D = 0, i = 0, . . . ,m.

By applying R, we obtain

lim
n→∞

‖(RS − z)∂̄i(Rfn)‖2,D = 0, i = 0, . . . ,m.

Since RS has the property (βm,p), we get

lim
n→∞

‖∂̄i(Rfn)‖2,D = 0, i = 0, . . . ,m− p.

Applying S, we have

lim
n→∞

‖SR∂̄ifn‖2,D = 0, i = 0, . . . ,m− p.

We then deduce from (3) that

lim
n→∞

‖z∂̄ifn‖2,D = 0, i = 0, . . . ,m− p.(4)

Using Lemma 2.1 with T = 0, we infer

lim
n→∞

‖(I − P )∂̄ifn‖2,D = 0, i = 0, . . . ,m− p− 2.(5)

where P denotes the orthogonal projection of L2(D,H) onto the Bergman
space A2(D,H).

Then, from (4) and (5), we get

lim
n→∞

‖zP ∂̄ifn‖2,D = 0, i = 0, . . . ,m− p− 2.(6)

Since Mz is bounded below on the Bergman space, (6) implies that

lim
n→∞

‖P ∂̄ifn‖2,D = 0, i = 0, . . . ,m− p− 2.(7)

Then (5) and (7) yield

lim
n→∞

‖fn‖Wm−p−2 = 0

and hence the desired conclusion.

We also have

Proposition 2.8. Let R and S be two operators on H and let D be
a bounded disc containing σ(RS) ∪ {0}. Assume that RS has the property
(βm−1,p) for some m ≥ p+ 2. Then the map V : H → H(D) defined by

V h = 1⊗ h := 1⊗ h+ (SR− z)Wm(D,H)

is one-to-one and has closed range, where 1⊗h denotes the constant function
sending any z in D to h, and H(D) := Wm(D,H)/(SR− z)Wm(D,H).
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Proof. Let (hn)n ⊂ H and (fn)n ⊂Wm(D,H) be such that

lim
n→∞

‖(SR− z)fn + 1⊗ hn‖Wm(D,H) = 0.(8)

From the definition of the norm of the Sobolev space, we deduce

lim
n→∞

‖(SR− z)∂̄ifn‖2,D = 0, i = 1, . . . ,m.(9)

By applying R, we have

lim
n→∞

‖(RS − z)∂̄i(Rfn)‖2,D = 0, i = 1, . . . ,m,

which means that

lim
n→∞

‖(RS − z)∂̄1(Rfn)‖Wm−1 = 0.

Since we have assumed that RS has the property (βm−1,p), we have

lim
n→∞

‖∂̄1Rfn‖Wm−1−p = 0,

or equivalently

lim
n→∞

‖R∂̄ifn‖2,D = 0, i = 1, . . . ,m− p.

Putting this in (9), we get

lim
n→∞

‖z∂̄ifn‖2,D = 0, i = 1, . . . ,m− p.(10)

Now, using Lemma 2.1 with T = 0 and i = 0, we obtain (remember that
m ≥ p+ 2, thus m− p ≥ 2)

‖(I − P )fn‖2,D ≤ CD(‖ − z̄∂̄1fn‖2,D + ‖ − z̄∂̄2fn‖2,D).(11)

From (11) and (10), we have

lim
n→∞

‖(I − P )fn‖2,D = 0,

and this inserted in (8) gives

lim
n→∞

‖(SR− z)Pfn + 1⊗ hn‖2,D = 0.

Now, let Γ be a curve in D surrounding σ(SR)∪{0}. By using the Hölder
inequality, we have

lim
n→∞

∥∥∥∥ 1
2πi

�

Γ

((SR− z)Pfn(z) + 1⊗ hn) dµ(z)
∥∥∥∥ = 0.

By Cauchy’s theorem,
1

2πi

�

Γ

(SR− z)Pfn(z) dµ(z) = 0,

and so limn→∞ hn = 0. We conclude that V is one-to-one and has closed
range.
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Theorem 2.9. Let R and S be two operators on H. If RS has the prop-
erty (βm−1,p) for some m ≥ p+ 2, then SR is subscalar of order m.

Proof. Let V : H → H(D) be the operator considered above, defined
by V h = 1⊗ h, where 1⊗ h denotes the constant function h. Then V SR =
MV . In particular, ranV is an invariant subspace of M . Since V is one-to-
one and has closed range by Proposition 2.8, SR is a subscalar operator of
order m.

3. Some applications

3.1. Aluthge transforms. For a bounded operator T on H, let U |T | be its
polar decomposition, where |T | = (T ∗T )1/2 and U is the appropriate partial
isometry. The Aluthge transform of T is the operator T̃ = |T |1/2U |T |1/2 and
was first considered by A. Aluthge to extend some inequalities related to
hyponormality ([2]).

For t ∈ ]0, 1[, the generalized Aluthge transforms of T are the operators
T̃ (t) = |T |1−tU |T |t. Note that the Aluthge transform is T̃ (1/2).

Observe that the generalized Aluthge transforms obey the “RS-SR” prin-
ciple, since if we put R = |T |1−t and S = U |T |t, we have RS = T̃ (t), while
SR = T . Therefore, we immediately get the following corollary.

Corollary 3.1. Let T be an operator on H. If T̃ (t) has (βm,p) then T
has (βm,p+2).

In particular (when p = 0), we retrieve the following result.

Corollary 3.2 ([8, Theorem 1.7]). Let T be an operator on H and let D
be a bounded disc containing σ(T )∪{0}. Assume that T̃ − z : Wm(D,H)→
Wm(D,H) is bounded below. If fn is a sequence in Wm(D,H) such that
limn→∞ ‖(T − z)fn‖Wm = 0 then limn→∞ ‖fn‖Wm−2 = 0.

3.2. Backward Aluthge iterates of hyponormal operators. An operator
A ∈ L(H) is said to be p-hyponormal (p > 0) if |A|2p ≥ |A∗|2p, where |A| =
(A∗A)1/2. A 1/2-hyponormal operator is called semi-hyponormal ([16]).

The Löwner–Heinz inequality implies that if A is q-hyponormal then it
is p-hyponormal for any 0 < p ≤ q. It is known that if T is p-hyponormal
(p > 0), then T̃ is semi-hyponormal and ˜̃T is hyponormal. T is said to be
w-hyponormal ([3]) if |T̃ | ≥ |T | ≥ |T̃ ∗|, so T̃ is semi-hyponormal if T is
w-hyponormal. It is also known ([3]) that p-hyponormal (p > 0) operators
are w-hyponormal.

Consider the iterated Aluthge transforms of T defined by T̃ (n) = ˜̃
T (n−1)

for n ≥ 1 and T̃ (0) = T .



8 C. Benhida and E. H. Zerouali

The following sets were defined in [11]:

BAIH(k) := {T ∈ L(H) : T̃ (k) is a hyponormal operator}.

Remark 3.3.

(1) BAIH(0) is the set of hyponormal operators.
(2) BAIH(1) := {T ∈ L(H) : T̃ is a hyponormal operator} and thus all

semi-hyponormal operators are in BAIH(1).
(3) BAIH(2) contains all w-hyponormal operators.

We will prove the following result on subscalarity in this class of opera-
tors.

Theorem 3.4. If T ∈ BAIH(k) then:

(1) T has the property (βm,2k+2) for every m ≥ 2k + 2.
(2) T is subscalar of order 2k + 2.

Proof. As T̃ (k) is hyponormal, it has the property (βm,2) for every m≥ 2
by Proposition 2.6. Now, by Corollary 3.1, T̃ (k−1) has (βm,4) for every
m≥ 4. Repeating the same argument, we find that T̃ (1) has (βm,2k) for
every m≥ 2k. Thus T = T̃ (0) has (βm,2k+2) for every m ≥ 2k + 2 and so it
is subscalar of order 2k + 2 by Theorem 2.9.

As a corollary, we obtain some well known results of [10] and [14].

Corollary 3.5.

(1) If T ∈ BAIH(0) (i.e. T is hyponormal) then T is subscalar of
order 2.

(2) If T is w-hyponormal then T is subscalar of order 6.

Proof. (1) is clear.
(2) Since T is w-hyponormal, T ∈ BAIH(2). Thus, by Theorem 3.4, T

is subscalar of order 2 · 2 + 2 = 6.

3.3. p-quasihyponormal operators. We first give the following result
which generalizes [12, Lemma 3.2].

Proposition 3.6. Let T be an operator matrix on M⊕M⊥ = H such
that T =

(
A C
0 0

)
where A ∈ BAIH(k)(M) andM is a closed linear subspace

of H. Then T is subscalar of order 4 + 2k.

Proof. Consider

R =

(
I 0
0 0

)
and S =

(
A C

0 I

)
.
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Then

SR =

(
A 0
0 0

)
and S̃R

(p)
=

(
Ãp 0
0 0

)
.

From this we infer that SR ∈ BAIH(k) if A ∈ BAIH(k).
By Theorem 3.4, SR has the property (βm,2k+2) for every m ≥ 2k + 2,

and by Proposition 2.7 and Theorem 2.9, RS has (βm,2k+4) if m ≥ 2k + 4
and RS = T is subscalar of order 2k + 4.

Corollary 3.7. If A is a p-hyponormal or a w-hyponormal operator
then T =

(
A C
0 0

)
is subscalar of order 8.

Proof. If A is a w-hyponormal operator, then A is in BAIH(2) and we
obtain the result from Proposition 3.6.

Now, we recapture the result obtained in [12, Theorem 3.3].
Recall from [15] that an operator T is said to be p-quasihyponormal for

0 < p < 1 if T ∗[(T ∗T )p − (TT ∗)p]T ≥ 0.

Corollary 3.8. Every p-quasihyponormal operator is subscalar of or-
der 6 if 1/2 ≤ p ≤ 1 and of order 8 if 0 < p < 1/2.

Proof. It was shown in [12] that a p-quasihyponormal operator has the
decomposition given in Corollary 3.7, with A a p-hyponormal operator.
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