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Ergodic seminorms for commuting transformations
and applications

by

Bernard Host (Marne-la-Vallée)

Abstract. Recently, T. Tao gave a finitary proof of a convergence theorem for multi-
ple averages with several commuting transformations, and soon thereafter T. Austin gave
an ergodic proof of the same result. Although we give here another proof of the same
theorem, this is not the main goal of this paper. Our main concern is to provide tools for
the case of several commuting transformations, similar to the tools successfully used in
the case of a single transformation, with the idea that they may be used in the solution
of other problems.

1. Introduction

1.1. Motivation and context. Recently, T. Tao [T] proved a convergence
result for several commuting transformations:

Theorem (T. Tao). Let (X,µ, S1, . . . , Sd) be a system where S1, . . . , Sd
are commuting measure preserving transformations of the probability space
(X,µ). Then for every f1, . . . , fd ∈ L∞(µ), the averages

(1)
1
N

N−1∑
n=0

Sn1 f1 · . . . · Snd fd

converge in L2(µ).

For d = 2 the result was proved by Conze and Lesigne [CL]. The partic-
ular case when the transformations Ti are powers of a single transformation,
for example Ti = T i, was solved in [HK1].

Tao’s proof does not really belong to ergodic theory: it only uses the
pointwise ergodic theorem in order to translate the problem into a finitary
question. Soon after, H. Towsner [To] rewrote Tao’s proof using nonstandard
analysis. More recently, T. Austin [A] gave another proof of the same result
by more conventional ergodic methods, and the present work was inspired
by reading his paper.
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Let us say a few words about the methods. All the papers dealing with a
single transformation use an idea introduced implicitly by Furstenberg [F]:
the construction of a characteristic factor. It is a factor (i.e. a quotient) of
the system controlling the asymptotic behavior of the multiple averages so
that one can restrict the study only to functions defined on this factor. The
next step is to prove that this factor has some useful structure, and, once
this is done, convergence is generally easier to prove. In short, the conver-
gence follows from the existence of some hidden structure in the system.
The structure given in [HK1] can be used to study other problems of mul-
tiple convergence and of multiple recurrence, like for example in [HK2], [L],
[BHK], [FHK], [FK2]. A similar method was used by Conze and Lesigne for
two commuting transformations, but all attempts to solve the general case
using the machinery of characteristic factors have been unsuccessful (1).

T. Austin proceeds in the opposite direction, building an extension of
the original system with good properties; he calls this extension a pleasant
system. This extension is not very explicit (it is defined as an inverse limit)
and it gives little information about the original system. Moreover, its con-
struction is directly related to the averages (1) and seems to be difficult to
use for related problems.

Although here we give a fourth proof of Tao’s result, this is not the
main point of this paper. Our main goal is to provide tools for the case of
several commuting transformations, similar to the tools successfully used in
the case of a single transformation, with the idea that they can be useful
in the solution of other problems. For this reason, we conclude this paper
by giving some properties that we do not immediately need (see Section 4),
but should be useful in other applications.

The price to pay for more generality is that some proofs in this paper
are less elementary than those in Austin’s.

1.2. Tao’s method gives the convergence of the ordinary averages (1)
only, while Austin’s proof, as well as ours, generalizes to “uniform averages”:

Theorem 1 (T. Austin). Let (X,µ, S1, . . . , Sd) be a system where
S1, . . . , Sd are commuting measure preserving transformations. Then for all
f1, . . . , fd ∈ L∞(µ), the averages

(2)
1
|Ij |

∑
n∈Ij

Sn1 f1 · . . . · Snd fd

converge in L2(µ) for any sequence (Ij : j ≥ 1) of intervals in Z whose
lengths |Ij | tend to infinity.

(1) The case considered in [FK1] is very particular.
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In fact, Austin’s result is slightly more general: instead of commut-
ing transformations he considers commuting measure preserving Zr-actions
on X; the averages on intervals are replaced by averages on a Følner se-
quence in Zr. Up to minor changes (almost only in notation), the method
presented here can be used in this more general situation. For simplicity, we
restrict ourselves to the case stated in Theorem 1.

1.3. Contents. We first follow the same strategy as in the first sections
of [HK1]: given a system (X,µ, T1, . . . , Td) where the transformations com-
mute, in Section 2 we build a measure µ∗ on some Cartesian (finite) power
X∗ of X and use it to define a seminorm ||| · ||| on L∞(µ). Then we establish
the properties used in the proof of Tao’s theorem. We show:

Proposition 1. Let (X,µ, S1, . . . , Sd) be a system where S1, . . . , Sd are
commuting measure preserving transformations. Define T1 = S1 and Ti =
SiS

−1
1 for 2 ≤ i ≤ d and let ||| · ||| denote the seminorm on L∞(µ) associated

to the system (X,µ, Td, . . . , T2, T1). Then for all f1, . . . , fd ∈ L∞(µ) with
‖fi‖L∞(µ) ≤ 1 for 2 ≤ i ≤ d, we have

lim sup
j→∞

∥∥∥∥ 1
|Ij |

∑
n∈Ij

Sn1 f1 · . . . · Snd fd
∥∥∥∥
L2(µ)

≤ |||f1|||

for every sequence (Ij : j ≥ 1) of intervals in Z whose lengths tend to infinity.

Next, we remark that X∗ is naturally endowed with some commuting
transformations T ∗1 , . . . , T

∗
d and that X∗, endowed with µ∗ and with these

transformations, admits X as a factor. Therefore, in order to prove the
convergence of the averages (1), we can substitute X∗ for X.

Properties of this system are established in Section 3. Substituting
(X∗, µ∗, T ∗1 , . . . , T

∗
d ) for (X,µ, T1, . . . , Td), we define a seminorm ||| · |||∗ on

L∞(µ∗). Before stating our main result we introduce notation used through-
out this paper.

Notation. If S is a measure preserving transformation of a probability
space (Y, ν), we write I(S) for the σ-algebra of S-invariant sets.

Theorem 2. Let W∗ be the σ-algebra

W∗ :=
d∨
i=1

I(T ∗i )

of (X∗, µ∗). If F ∈ L∞(µ∗) is such that Eµ∗(F |W∗) = 0, then |||F |||∗ = 0.

We call a system with this property a magic system.
Theorem 2 implies in particular that every system has a magic extension.

This notion is similar to that of a pleasant system in [A] and is used in the
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same way. The differences are that X∗ is a relatively explicit system (2)
(X∗ is a finite Cartesian power of X) and that its construction is related
to the seminorm associated to the transformations, and not only to the
averages (1). Therefore it can be used to study any other question involving
this seminorm.

Tao’s ergodic theorem follows easily from the preceding two results:

Proof of Theorem 1, assuming everything above. We proceed by induc-
tion on d. For d = 1, the statement is the mean ergodic theorem. We take
d > 1 and assume that the result holds for d− 1 transformations.

Let T1, . . . , Td and ||| · ||| be as in Proposition 1, (X∗, µ∗, T ∗1 , . . . , T
∗
d ) as

above, and W∗ as in Theorem 2. We define transformations S∗1 , . . . , S
∗
d of

X∗ by S∗1 = T ∗1 and S∗i = T ∗i T
∗−1
1 for 2 ≤ i ≤ d.

We see that (X,µ, S1, . . . , Sd) is a factor of (X∗, µ∗, S∗1 , . . . , S
∗
d). There-

fore, in order to prove the convergence of the averages (2) in L2(µ) for
functions f1, . . . , fd in L∞(µ), it suffices to show the convergence in L2(µ∗)
of the averages

(3)
1
|Ij |

∑
n∈Ij

S∗n1 f∗1 · . . . · S∗nd f∗d

for functions f∗1 , . . . , f
∗
d in L∞(µ∗).

Consider first the case that

(4) f∗1 = g2 · · · gd where gi is invariant under T ∗i for 2 ≤ i ≤ d.
Since T ∗i = S∗i S

∗−1
1 for 2 ≤ i ≤ d, the averages (3) can be rewritten as

1
|Ij |

∑
n∈Ij

S∗n2 (g2f
∗
2 ) · . . . · S∗nd (gdf∗d )

and the convergence in L2(µ∗) follows from the induction hypothesis.
Since the linear span of the functions of the form (4) is dense in

L∞(µ∗,W∗) under the norm of L1(µ∗), by density the averages (3) converge
whenever the function f∗1 is measurable with respect to W∗.

We are left with checking the case that Eµ∗(f∗1 |W∗) = 0. We have
|||f∗1 |||∗ = 0 by Theorem 2 and the averages (3) converge to 0 in L2(µ∗)
by Proposition 1 applied to the system (X∗, µ∗, S∗1 , . . . , S

∗
d).

2. The box measure and the box seminorm. The objects defined
in this section, as well as their properties, are completely similar to those
of Section 3 of [HK1]. Most of the proofs are exactly the same and we only
sketch them.

(2) It seems plausible that the methods used here in the proof of Theorem 2 can be
combined with the constructions of [A], removing the need for the inverse limit.
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2.1. Notation. All functions are implicitly assumed to be measurable
and real-valued.

If S is a measure preserving transformation of a probability space (Y, ν),
the conditionally independent square of ν over the σ-algebra I(S) is the
measure ν ×I(S) ν on Y × Y characterized by: for all bounded measurable
functions f, f ′ on X,�

f(y)f ′(y′) d(ν ×I(S) ν) (y, y′) =
�
Eν(f | I(S))Eν(f ′ | I(S)) dν.

We write X∗ = X2d
. We introduce some conventions for notation of

points in this space and more generally in X2k
where k ≥ 1 is an integer.

The points of X2k
are written as

x = (xε : ε ∈ {0, 1}k).
Each ε ∈ {0, 1}k is written without commas or parentheses. If k ≥ 2 and
η ∈ {0, 1}k−1, we write η0 = η1 . . . ηk−10 and η1 = η1 . . . ηk−11.

Occasionally, it is also convenient to use another notation. We write
[k] = {1, . . . , k} and make the natural identification between {0, 1}k and the
family of subsets of [k]. Therefore, for ε ∈ {0, 1}k and 1 ≤ i ≤ k, the assertion
“εi = 1” is equivalent to “i ∈ ε”. Therefore we write ∅ = 0 . . . 0 ∈ {0, 1}k.

If fε, ε ∈ {0, 1}k, are functions on X, we define a function on X2k
by( ⊗

ε∈{0,1}k
fε

)
(x) :=

∏
ε∈{0,1}k

fε(xε).

For 1 ≤ i ≤ d, T∆
i denotes the diagonal transformation Ti × · · · × Ti

of X2k
:

(T∆
i x)ε = Tixε for every ε ∈ {0, 1}d,

and the side transformations T ∗i of X∗ are defined by

(5) (T ∗i x)ε =
{
Tixε if εi = 0,
xε if εi = 1,

for every ε ∈ {0, 1}d.

2.2. The box measure. We build a measure µ∗ on X∗. First we define a
measure µT1 on X2 by

µT1 = µ×I(T1) µ.

This means that for f0, f1 ∈ L∞(µ), we have

(6)
�
f0(x0)f1(x1) dµT1(x) =

�
E(f0 | I(T1))E(f1 | I(T1)) dµ.

This measure is invariant under the transformations

Ti × Ti (1 ≤ i ≤ d) and T1 × Id.

Next we define the measure µT1,T2 on X4 = X2 ×X2 by

µT1,T2 = µT1×I(T2×T2)µT1 .
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This means that for f00, . . . , f11 ∈ L∞(µ) we have
� ∏
ε∈{0,1}2

fε(xε) dµT1,T2(x)

=
�
EµT1

(f00 ⊗ f10 | I(T2 × T2))EµT1
(f01 ⊗ f11 | I(T2 × T2)) dµT1 .

For 1 ≤ i ≤ d, this measure is invariant under the “diagonal transforma-
tions” Ti × Ti × Ti × Ti of X4; it is also invariant under the “side transfor-
mations” T1 × Id× T1 × Id and T2 × T2 × Id× Id.

In the same way, for k < d we obtain a measure µT1,...,Tk
onX2k

, invariant
under all “diagonal transformations” Ti × · · · × Ti (1 ≤ i ≤ d) and under
the “side transformations” associated to T1, . . . , Tk as in (5), but with k
substituted for d. We define

µT1,...,Tk+1
= µT1,...,Tk

×I(Tk+1×Tk+1×···×Tk+1)µT1,...,Tk
.

After d steps, we obtain a measure µ∗ := µT1,...,Td
on X∗ = X2d

. For
fε ∈ L∞(µ), ε ∈ {0, 1}d, we have

(7)
� ⊗
ε∈{0,1}d

fε dµ
∗(x)

=
�
EµT1,...,Td−1

( ⊗
η∈{0,1}d−1

fη0

∣∣∣ I(Td × · · · × Td)
)

· EµT1,...,Td−1

( ⊗
η∈{0,1}d−1

fη1

∣∣∣ I(Td × · · · × Td)
)
dµT1,...,Td−1

and thus

(8)
� ⊗
ε∈{0,1}d

fε dµ
∗(x) = lim

N→∞

1
N

N−1∑
n=0

� ⊗
η∈{0,1}d−1

(
Tnd fη0 · fη1

)
dµT1,...,Td−1

.

Moreover, the same convergence holds if the intervals [0, N) are replaced by
any sequence of intervals whose lengths tend to infinity. Starting from (8)
and proceeding by downward induction we get:

Lemma 1. For fε ∈ L∞(µ), ε ∈ {0, 1}d, we have

(9)
� ∏
ε∈{0,1}d

fε(xε) dµ∗(x)

= lim
Nd→∞

1
Nd

Nd−1∑
nd=0

· · · lim
N2→∞

1
N2

N2−1∑
n2=0

lim
N1→∞

1
N1

N1−1∑
n1=0� ∏

ε∈{0,1}d
T

(1−ε1)n1

1 . . . T
(1−εd)nd

d fε dµ.
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Moreover , relation (9) holds for averages on any other sequence of intervals
whose lengths tend to infinity , for example for the symmetric averages on
[−Ni, Ni].

The measure µ∗ is invariant under the diagonal transformations T∆
i and

the side transformations T ∗i , 1 ≤ i ≤ d. This measure is called the box
measure associated to the transformations T1, . . . , Td.

In some cases, we write µT1,...,Td
instead of µ∗ to avoid any possible

ambiguity.
We notice that all the marginals of µ∗ are equal to µ and that the projec-

tion π∅ : X2k→X given by π∅(x)=x∅ is a factor map from (X∗, µ∗, T ∗1 , . . . , T
∗
d )

to (X,µ, T1, . . . , Td).
For 1 ≤ i ≤ d, the coordinate indexed by any ε ∈ {0, 1}d plays the same

role in the construction of µ∗ as the coordinate indexed by ε′ obtained by
substituting 1− εi for εi. This shows that the measure µ∗ is invariant under
the symmetry of X∗ associated to this map in the obvious way.

2.3. The box seminorm. By (7), for every f ∈ L∞(µ) we have
� ∏
ε∈{0,1}d

f(xε) dµ∗(x) ≥ 0

and we can define:

Definition. For f ∈ L∞(µ),

(10) |||f ||| :=
(� ∏

ε∈{0,1}d
f(xε) dµ∗(x)

)1/2d

.

When needed, we write |||f |||T1,...,Td
instead of |||f |||.

From (8) we get:

For every f ∈ L∞(µ) we have

(11) |||f |||2d

T1,...,Td
= lim

Nd→∞

Nd−1∑
nd=0

|||Tnd
d f · f |||2d−1

T1,...,Td−1
.

Proposition 2 (and definition).

(i) For fε ∈ L∞(µ), ε ∈ {0, 1}d, we have

(12)
∣∣∣� ⊗
ε∈{0,1}d

fε dµ
∗
∣∣∣ ≤ ∏

ε∈{0,1}d
|||fε||| .

(ii) |||·||| is a seminorm on L∞(µ). We call it the box seminorm associated
to T1, . . . , Td.
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The bound (12) is similar to the Cauchy–Schwarz–Gowers Inequality.

Proof. The first part of Proposition 2 is proved by induction on d. For
d = 1, the result follows immediately from the definition (6) of µT1 and the
Cauchy–Schwarz Inequality. We assume now that d ≥ 2 and that the result
is true for d− 1 transformations.

For ε ∈ {0, 1}d we define two functions f ′ε and f ′′ε on X by

f ′η0 = f ′η1 = fη0 and f ′′η0 = f ′′η1 = fη1 for all η ∈ {0, 1}d−1.

Let I be the left hand side of (12) and let I ′ and I ′′ be, respectively, the
similar expressions obtained by substituting the functions f ′ε, respectively
f ′′ε , for the functions fε. By (7) and the Cauchy–Schwarz Inequality, we have
I2 ≤ I ′I ′′.

By (8), the induction hypothesis, the Hölder Inequality, and (11),

I ′=
∣∣∣∣ lim
Nd→∞

1
Nd

Nd−1∑
nd=0

� ⊗
η∈{0,1}d−1

(Tnd fη0 · fη0) dµT1,...,Td−1

∣∣∣∣
≤ lim sup

Nd→∞

1
Nd

Nd−1∑
nd=0

∏
η∈{0,1}d−1

|||Tnd
d fη0 · fη0|||T1,...,Td−1

≤
∏

η∈{0,1}d−1

|||fη0|||2T1,...,Td
.

A similar bound holds for I ′′ and the result follows.
The second part of the proposition is obtained by using the same proof

as for Lemma 3.9 in [HK1].

2.4. Proof of Proposition 1. The proof is the same as in the case of a
single transformation; see for example Theorem 12.1 in [HK1]. The proof
proceeds by induction on d. For d = 1 the seminorm is the absolute value
of the integral and there is nothing to prove. Assume d > 1 and that the
result is true for d− 1 transformations.

Let f1, . . . , fd and S1, . . . , Sd be as in the statement. We recall that T1 =
S1 and that Ti = SiS

−1
1 for 2 ≤ i ≤ d. By the van der Corput Lemma and

Cauchy–Schwarz Inequality, the lim sup in the proposition is bounded by

lim sup
H→∞

1
H

H−1∑
h=0

lim sup
j→∞

∥∥∥∥ 1
|Ij |

∑
n∈Ij

∏
1≤i≤d
i 6=2

(SiS−1
2 )n(fi · Shi fi)

∥∥∥∥
L2(µ)

.

By the induction hypothesis, this lim sup is bounded by

lim sup
H→∞

1
H

H−1∑
h=0

|||f1 · Sh1 f1|||] ,

where ||| · |||] is the seminorm associated to the transformations

(SdS−1
2 )(S1S

−1
2 )−1 = Td, . . . , (S3S

−1
2 )(S1S

−1
2 )−1 = T3 and S1S

−1
2 = T−1

2 .
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By construction, this seminorm remains unchanged if T2 is substituted for
T−1

2 and thus is equal to the seminorm ||| · |||Td,...,T3,T2 .
By Lemma 1 and by Corollary 3 (see Section 4),

1
H

H−1∑
h=0

|||f1 · Sh1 f1|||2
d−1

Td,...,T2
→ |||f1|||2

d

Td,...,T2,S1
as H →∞.

Since S1 = T1, the proof is complete.

2.5. A uniformity result. The next lemma has no analog in [HK1].

Lemma 2. Let f∅ ∈ L∞(µ). For every δ > 0, there exists N0 = N0(δ)
such that for all fε ∈ L∞(µ), ∅ 6= ε ∈ {0, 1}d with ‖fε‖L∞(µ) ≤ 1, and all
intervals I1, . . . , Id of Z of length ≥ N0, we have∣∣∣∣ 1

|I1| . . . |Id|
∑
n1∈I1
···

nd∈Id

� ∏
ε∈{0,1}d

T
(1−ε1)n1

1 . . . T
(1−εd)nd

d fε dµ

∣∣∣∣ < |||f∅|||+ δ.

Proof. We can assume that ‖f∅‖L∞(µ) ≤ 1.
Let J be the average in the statement and let H1, . . . ,Hd be integers

with 1 ≤ Hi ≤ |Ii| for all i.
Each ε ∈ {0, 1}d is written either as ε = η0 with η ∈ {0, 1}d−1 or as

ε = η1, depending on the value of εd. We split the product in the integral
into two parts:

(i) The product of the terms indexed by η0 for some η ∈ {0, 1}d−1. This
product can be written as Tnd

d Fn1,...,nd−1
.

(ii) The product F ′n1,...,nd−1
of the terms indexed by η1 for some η ∈

{0, 1}d−1.

Thus J is equal to
1

|I1| . . . |Id−1|
∑
n1∈I1
···

nd−1∈Id−1

� 1
|Id|

∑
nd∈Id

TndFn1,...,nd−1
· F ′n1,...,nd−1

dµ.

Since |F ′n1,...,nd−1
| ≤ 1, we have

|J |2 ≤ 1
|I1| . . . |Id−1|

∑
n1∈I1
···

nd−1∈Id−1

∥∥∥∥ 1
|Id|

∑
nd∈Id

TndFn1,...,nd−1

∥∥∥∥2

L2(µ)

.

By the finite van der Corput Lemma, the square of the norm in this formula
is bounded by the absolute value of

4Hd

|Id|
+

Hd∑
hd=−Hd

Hd − |hd|
H2
d

�
T hdFn1,...,nd−1

· Fn1,...,nd−1
dµ.
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Replacing F by its value shows that |J |2 is bounded by the absolute value of

4Hd

|Id|
+

1
|I1| . . . |Id−1|

∑
n1∈I1
···

nd−1∈Id−1

Hd∑
hd=−Hd

Hd − |hd|
H2
d

×
� ∏
ε∈{0,1}d

T
(1−ε1)n1

1 . . . T
(1−εd−1)nd−1

d−1 T
(1−εd)hd

d gε dµ,

where the functions gε are given by gη0 = gη1 = fε for η ∈ {0, 1}d−1.
We iterate the same computation, using successively εd−1, . . . , ε2, ε1 in-

stead of εd. Then

|J |2d ≤ C
(
H1

|I1|
+ · · ·+ Hd

|Id|

)
+
∣∣∣∣ ∑
−H1≤h1≤H1

···
−Hd≤hd≤Hd

d∏
i=1

Hi − |hi|
H2
i

� ∏
ε∈{0,1}d

T
(1−ε1)h1

1 . . . T
(1−εd)hd

d f∅ dµ

∣∣∣∣
for some absolute constant C.

By Lemma 1, the iterated limit of the last average when H1 → ∞, . . . ,
Hd →∞ is equal to |||f∅|||2

d
. Therefore there exist H1, . . . ,Hd such that this

average has absolute value less than (|||f∅|||+ δ/2)2d
. The result follows.

Remark 1. Corollary 3 (Section 4) follows easily from Lemmas 1 and 2
and thus does not depend on Proposition 3. Moreover, it is easy to check that
the role played by f∅ in Lemma 2 can be played by fη for any η ∈ {0, 1}d and
this implies a weak version of the bound (12) in Proposition 2: the integral
of the left hand side is equal to zero whenever at least one of the functions fε
has zero seminorm. In fact, this weak version would suffice for our purpose.

2.6. A characteristic σ-algebra on X. The definitions and results of this
section are completely similar to those of Section 4.2 of [HK1].

Let us identify X∗ = X2d
with X2d−1 × X2d−1

; each point x ∈ X∗ is
written x = (x′, x′′), where x′, x′′ ∈ X2d−1

are given by

x′ = (xη0 : η ∈ {0, 1}d−1) and x′′ = (xη1 : η ∈ {0, 1}d−1).

By construction, the images of µ∗ under the projections x 7→ x′ and x 7→ x′′

are equal to the measure µd−1 associated to the transformations T1, . . . , Td−1.
We also remark that

(13) T∆
d T

∗−1
d = Id× T ◦d , where T ◦d = Td × · · · × Td︸ ︷︷ ︸

2d−1 times

.

From the inductive definition of the measure µ∗, we deduce:
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Lemma 3. Let F ∈ L∞(µ∗) be a function invariant under the trans-
formation T∆

d T
∗−1
d . Then there exists a function G on X2d−1

, belonging to
L∞(µd−1), such that

F (x) = G(x′) for µ∗-almost every x = (x′, x′′) ∈ X∗.
By induction on d, we have:

Corollary 1. Let F ∈ L∞(µ∗) be a function that is invariant under
the transformations T∆

i T
∗−1
d for i = 1, . . . , d. Then there exists a function

f ∈ L∞(µ) such that F (x) = f(x∅) for µ∗-almost every x ∈ X∗.

We write X] = X2d−1 and identify X∗ with X × X] by isolating the
coordinate ∅ of each point: each point x ∈ X∗ is written

x = (x∅, x
]), where x] = (xε : ε ∈ {0, 1}d, ε 6= ∅) ∈ X].

We write µ] for the image of µ∗ in X] under the projection x 7→ x].
For 1≤ i≤ d, the measure preserving transformation T∆

i T
∗−1
i of (X∗, µ∗)

leaves the coordinate x∅ of each point x invariant, and thus we can write
this transformation as

T∆
i T

∗−1
i = IdX × T ]i ,

where T ]i is the measure preserving transformation of (X], µ]) given by

(Tix])ε =
{
Tixε if εi = 1,
xε if εi = 0,

for ∅ 6= ε ∈ {0, 1}d.

By Corollary 1 we immediately deduce:

Corollary 2. Let J ] be the σ-algebra of invariant sets of (X], µ],

T ]1 , . . . , T
]
d). Then for every A ∈ J ] there exists a subset B of X with

(14) 1B(x∅) = 1A(x]) for µ∗-almost every x = (x∅, x
]) ∈ X∗.

We remark that conversely, if A ⊂ X] and B ⊂ X satisfy (14), then A

is invariant under T ]i for every i.

Lemma 4 ([HK1, Lemma 4.3]). Let Z be the σ-algebra on X consisting
of sets B such that there exists a subset A of X] satisfying the relation (14)
of Corollary 2. Then for every f ∈ L∞(µ) we have

|||f ||| = 0 if and only if Eµ(f | Z) = 0.

Proof. Assume first that Eµ(f | Z) = 0. Let F be the function on X]

given by
F (x]) =

∏
∅6=ε∈{0,1}d

f(xε).

Let J ] be defined as in Corollary 2. The function x 7→ Eµ](F | J ])(x]) on
X∗ is invariant under all transformations T∆

i T
∗−1
i . Thus by Corollary 1,
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there exists a function g on X with

g(x∅) = Eµ](F | J ])(x]) for µ∗-almost every x = (x∅, x
]).

We remark that the function g is measurable with respect to Z by defini-
tion of this σ-algebra. Since µ∗ is invariant under IdX × T ]i for every i, by
definition of the seminorm we have

|||f |||2d
=

�

X∗

f(x∅)F (x]) dµ∗(x∅, x
])

=
�

X∗

f(x∅)Eµ](F | J ])(x]) dµ∗(x) =
�

X

f(x∅)g(x∅) dµ(x∅) = 0.

We assume now that |||f ||| = 0. Let g ∈ L∞(µ) be measurable with respect
to Z. By definition, there exists a function G ∈ L∞(µ]) with g(x∅) = G(x]),
µ∗-almost everywhere. We have�

X

f(x)g(x) dµ(x) =
�

X∗

f(x∅)G(x]) dµ∗(x∅, x
])

and using the bound (12) of Proposition 2 we deduce that this integral is
equal to zero.

In the case of a single transformation, the σ-algebra Z is the σ-algebra
Zd−1 of [HK1], where it is shown that the corresponding factor Zd−1 has
the structure of an inverse limit of (d − 1)-step nilsystems. In the present
case of several transformations, Z apparently only has a weaker structure
and we stop following [HK1] at this point.

3. Proof of Theorem 2

3.1. The system (X∗, µ∗, T ∗1 , . . . , T
∗
d ). Let X ] be the σ-algebra on X∗

corresponding to the factor X] of X∗; X ] is spanned by the projections
x 7→ xε : X∗ → X for ε ∈ {0, 1}d, ε 6= ∅.

Lemma 5. The subspace of L2(µ∗) consisting of functions with zero con-
ditional expectation on X ] is the space spanned by the functions of the form

F (x) =
∏

ε∈{0,1}d
fε(xε), where |fε| ≤ 1 for all ε and Eµ(f∅ | Z) = 0.

Proof. Let L be the closed subspace of L2(µ∗) spanned by the functions
of the type given in the statement and let L′ be the closed subspace of
L2(µ∗) spanned by the functions of the form

F ′(x) =
∏

ε∈{0,1}d
f ′ε(xε), where |f ′ε| ≤ 1 for all ε and f ′∅ is Z-measurable.

The sum of these spaces is clearly dense in L2(X∗, µ∗). We claim that they
are orthogonal.
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Let fε and f ′ε, ε ∈ {0, 1}d, be as above. For every i, the function x 7→
f∅(x∅)f ′∅(x∅) is invariant under IdX × T ]i and thus

�
f∅(x∅)f

′
∅(x∅)

∏
∅6=ε∈{0,1}d

f(xε)f ′(xε) dµ∗ =
�
f∅(x∅)f

′
∅(x∅)G(x]) dµ∗,

where
G = Eµ]

( ⊗
∅6=ε∈{0,1}d

fεf
′
ε

∣∣∣J ]).
By Corollary 2, there exists a function g ∈ L∞(µ), measurable with respect
to Z, with g(x∅) = G(x]) for µ∗-almost every x = (x∅, x]) and so the integral
above is equal to �

f∅(x∅)f
′
∅(x∅)g(x∅) dµ(x∅).

Since Eµ(f∅ | Z) = 0 and the function f ′∅ · g is Z-measurable, the above
integral vanishes and thus L and L′ are orthogonal. Therefore L is the
orthogonal complement to L′.

On the other hand, L′ clearly contains L2(X∗,X ], µ∗) and by the defi-
nition of Z in Lemma 4 we have the opposite inclusion. Thus these spaces
are equal. Therefore, L is the orthogonal complement to L2(X∗,X ], µ∗), and
this is the announced result.

3.2. Iterating the construction. We now define a new system (X∗∗, µ∗∗,
T ∗∗1 , . . . , T ∗∗d ) where X∗∗ := (X∗)∗ = (X2d

)2d
. It is built from the system

(X∗, µ∗, T ∗1 , . . . , T
∗
d ) in the same way that (X∗, µ∗, T ∗1 , . . . , T

∗
d ) was built from

(X,µ, T1, . . . , Td). The points of X∗∗ are written

x = (xεη : ε, η ∈ {0, 1}d),
with the 2d natural projections π∗η : X∗∗ → X∗ being given by

(π∗η(x))ε = xεη.

The seminorm ||| · |||∗ on L∞(µ∗) is defined from the measure µ∗∗ in the same
way that the seminorm ||| · ||| on L∞(µ) was defined from the measure µ∗.

Lemma 6. Let

F (x) =
∏

ε∈{0,1}d
fε(xε), where fε ∈ L∞(µ) for all ε and |||f∅||| = 0.

Then |||F |||∗ = 0.

Proof. We can assume that |fε| ≤ 1 for ε 6= ∅. By Lemma 1 applied to
the measure µ∗∗, (|||F |||∗)2d

is equal to

lim
Pd→∞

. . . lim
P1→∞

1
Pd . . . P1

∑
0≤pd<Pd···
0≤p1<P1

I(p1, . . . , pd),
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where

I(p1, . . . , pd) :=
� ∏
η∈{0,1}d

T
∗ (1−η1)p1
1 . . . T

∗ (1−ηd)pd

d

( ⊗
ε∈{0,1}d

fε

)
dµ∗.

By definition of T ∗i , this integral is equal to
� ⊗
ε∈{0,1}d

( ∏
η∈{0,1}d

T
(1−η1)(1−ε1)p1
1 . . . T

(1−ηd)(1−εd)pd

d fε

)
dµ∗.

By Lemma 1 again, but now applied to the measure µ∗, (|||F |||∗)2d
is equal

to

lim
Pd→∞

. . . lim
P1→∞

1
Pd . . . P1

lim
Nd→∞

. . . lim
N1→∞

1
Nd . . . N1

×
∑

0≤pd<Pd···
0≤p1<P1

∑
0≤nd<Nd···
0≤n1<N1

J(n1, . . . , nd, p1, . . . , pd),

where

J(n1, . . . , nd, p1, . . . , pd)

:=
� ∏
ε,η∈{0,1}d

T
(1−ε1)(1−η1)p1+(1−ε1)n1

1 . . . T
(1−εd)(1−ηd)pd+(1−εd)nd)
d fε dµ.

At this point, it is more convenient to identify {0, 1}d with the family of
subsets of [d]. Let θ ⊂ [d]. In the product in ε and η of the last formula, we
gather all terms with ε ∪ η = θ. For 1 ≤ i ≤ d we have (1 − εi)(1 − ηi)pi +
(1− εi)ni = (1− θi)(pi + ni) + ηini. Thus

J(n1, . . . , nd, p1, . . . , pd)

=
� ∏
θ⊂[d]

T
(1−θ1)(p1+n1)
1 . . . T

(1−θd)(pd+nd)
d g

(n1,...,nd)
θ dµ,

where
g

(n1,...,nd)
θ =

∏
η⊂θ

T η1n1
1 . . . T ηdnd

d

∏
ε:ε∪η=θ

fε.

We consider P1, . . . , Pd as fixed. We have

K(n1, . . . , nd) :=
1

Pd . . . P1

∑
0≤pd<Pd···
0≤p1<P1

J(n1, . . . , nd, p1, . . . , pd)

=
1

Pd . . . P1

∑
nd≤pd<nd+Pd···
n1≤p1<n1+P1

� ∏
θ⊂[d]

T
(1−θ1)p1
1 . . . T

(1−θd)pd

d g
(n1,...,nd)
θ dµ.
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We remark that for all n1, . . . , nd we have

|g(n1,...,nd)
θ | ≤ 1 for every θ and g

(n1,...,nd)
∅ = f∅.

Therefore, by Lemma 2, for every δ > 0 there exists P such that

|K(n1, . . . , nd)| < δ for all n1, . . . , nd whenever P1, . . . , Pd > P,

and the announced conclusion follows.

3.3. End of the proof. We recall that W∗ is the σ-algebra

W∗ =
d∨
i=1

I(T ∗i )

on (X∗, µ∗). We show that if a function F ∈ L∞(µ∗) satisfies Eµ∗(F |W∗)
= 0 then |||F |||∗ = 0.

For every ε 6= ∅, there exists i ∈ {1, . . . , d} with εi = 1 and the projection
x 7→ xε is invariant under T ∗i and thus is W∗-measurable. Hence X ] ⊂ W∗.
Thus Eµ∗(F | X ]) = 0.

Therefore, by Lemma 5 we can restrict to the case that

F (x) =
∏

ε∈{0,1}d
fε(xε) where |fε| ≤ 1 for all ε and Eµ(f∅ | Z) = 0.

We have |||f∅||| = 0 by Lemma 4, and Lemma 6 yields |||F |||∗ = 0.

4. Changing the order of the transformations. The next proposi-
tion shows that we can exchange the order of the limits in the formula (9) of
Lemma 1. This result is parallel to Proposition 3.7 of [HK1], but we cannot
simply copy its proof, as it depends on formula (9) of [HK1] which has no
analog in the present context. It seems that here we need some technology,
for example the “modules” of [CL] and/or [FW]. This is the only point in
this paper where we need more elaborate tools.

Proposition 3. Let σ be a permutation of [d], σ∗ the permutation of
{0, 1}d given by (σ∗(ε))i = εσ(i) for every i, and Σ the associated permutation
of X∗, given by

(Σx)ε = xσ∗(ε) for every ε ∈ {0, 1}d.
Then the box measure associated to the transformations Tσ(1), . . . , Tσ(d) is
the image under Σ of the box measure associated to the transformations
T1, . . . , Td.

We immediately deduce:

Corollary 3. The seminorm ||| · |||T1,...,Td
remains unchanged if the

transformations T1, . . . , Td are permuted.
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4.1. Proof of Proposition 3, first step. First we check that it suffices to
prove the result for the case of two transformations.

Indeed, any permutation of {1, . . . , d} can be written as a product of
transpositions of two consecutive terms and we can thus assume that σ is
the transposition of i and i+ 1 for some i with 1 ≤ i < d.

Fix i and let τ be the box measure associated to T1, . . . , Ti−1 (or equal
to µ if i = 1), S1 = Ti × · · · × Ti, and S2 = Ti+1 × · · · × Ti+1. Applying
the result for these transformations we find that the box measure associated
to T1, . . . , Ti−1, Ti+1, Ti is equal to the image of the box measure associated
to T1, . . . , Ti−1, Ti, Ti+1 under the permutation of the last two digits. We
immediately deduce the announced result.

Henceforth we assume that d = 2. We write µ2 for the box measure
associated to T1 and T2 and µ′2 for the measure associated to T2 and T1. We
want to show that µ′2 is the image of µ2 under the map

(x00, x01, x10, x11) 7→ (x00, x10, x01, x11) : X4 → X4.

We recall that

µ∗ = (µ×I(T1) µ)×I(T2×T2) (µ×I(T1) µ),(15)

µ◦ = (µ×I(T2) µ)×I(T1×T1) (µ×I(T2) µ).(16)

4.2. Reduction to the ergodic case. We check that we can restrict to the
case that (X,µ, T1, T2) is ergodic. Indeed, let J be the σ-algebra of sets
invariant under T1 and T2 and let

µ =
�
µω dP (ω)

be the ergodic decomposition of µ under the action of T1 and T2. Since
J ⊂ I(T1) we have

µ×I(T1) µ =
�
(µω×I(T1) µω) dP (ω).

Since J ⊗ J ⊂ I(T2 × T2), by definition of µ∗, we have

µ∗ =
� (

(µω×I(T1) µω)×I(T2×T2) (µω×I(T1) µω)
)
dP (ω)

and a similar expression holds for µ◦. Applying the result to the ergodic
measures µω we deduce the general case.

Henceforth we assume that (X,µ, T1, T2) is ergodic.

4.3. Decomposition. Let f00, f01, f10, f11 ∈ L∞(µ). We want to show
that

(17)
�
f00(x00)f01(x01)f10(x10)f11(x11) dµ∗(x00, x01, x10, x11)

=
�
f00(x00)f01(x10)f10(x01)f11(x11) dµ◦(x00, x01, x10, x11).
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Let Y be the σ-algebra on X corresponding to the maximal isomet-
ric extension of (X, I(T1), µ, T2) in (X,µ, T2) and let Y ′ be the σ-algebra
on X corresponding to the maximal isometric extension of (X, I(T2), µ, T1)
in (X,µ, T1) (3).

For every ε > 0, we can write f00 as a sum f00 = f + f ′ + g + h of four
bounded functions where f is measurable with respect to Y, f ′ is measurable
with respect to Y ′, Eµ(g | Y) = Eµ(g | Y ′) = 0 and ‖h‖2 < ε. Therefore, we
are reduced to considering three different cases: the case that f00 is measur-
able with respect to Y, the completely similar case that f00 is measurable
with respect to Y ′, and the case that Eµ(f00 | Y) = Eµ(f00 | Y ′) = 0.

4.4. The case that f00 is measurable with respect to Y

Lemma 7. Assume that f00 is measurable with respect to Y. Then

sup
m∈Z

∥∥∥∥ 1
N

N−1∑
n=0

Tn1 (Tm2 f00 · f10)− Eµ(Tm2 f00 · f10 | I(T1))
∥∥∥∥
L2(µ)

→ 0

as N →∞.

Proof. We use the vocabulary of “modules” as in [CL]. We can restrict
to the case that f00 = φi where (φ1, . . . , φk) is a base of a

(
I(T1), T2

)
-module

and 1 ≤ i ≤ k: there exists an I(T1)-measurable map x 7→ U(x) with values
in the group of unitary k × k matrices such that

T2φi =
k∑
j=1

Ui,j · φj .

For every m,

Eµ(Tm2 f00 · f10 | I(T1)) =
k∑
j=1

U
(m)
i,j · Eµ(φjf10 | I(T1)),

where U (m) denotes the iterated cocycle:

U (m)(x) = U(Tm−1
2 x) . . . U(T2x)U(x).

For every n,

Tn1 (Tm2 f00 · f10) =
k∑
j=1

U
(m)
i,j · T

n
1 (φjf10).

(3) In fact, these two σ-algebras are equal, but we do not prove equality here.
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Thus for every N we have∥∥∥∥ 1
N

N−1∑
n=0

Tn1 (Tm2 f00 · f10)− Eµ(Tm2 f00 · f10 | I(T1))
∥∥∥∥
L2(µ)

≤
k∑
j=1

∥∥∥∥ 1
N

N−1∑
n=0

Tn2 (φjf10)− Eµ(φj · f10 | I(T1))
∥∥∥∥
L2(µ)

.

We now prove formula (17) when f00 is measurable with respect to Y.
By Lemma 1, the left hand side of (17) is equal to

lim
M→∞

1
M

M−1∑
m=0

�
lim
N→∞

1
N

N−1∑
n=0

Tn1 (Tm2 f00 · f10) · (Tm2 f01 ⊗ f11) dµ.

By Lemma 7, the limit as N →∞ in this expression is uniform in M , thus
the two limits can be permuted and the above expression can be rewritten
as

lim
N→∞

1
N

N−1∑
n=0

�
lim
M→∞

1
M

M−1∑
m=0

Tm2 (Tn1 f00 · f01) · (Tn1 f10 · f11) dµ,

which is equal to the right hand side of (17).

4.5. The case that Eµ(f00 | Y) = Eµ(f00 | Y ′) = 0. It is shown in [CL]
that the T2 × T2 invariant σ-algebra of (X × X,µ ×I(T1) µ) is included in
Y ⊗ Y. Since Eµ(f00 | Y) = 0, we have Eµ×I(T1)µ(f00 ⊗ f01 | I(T2 × T2)) = 0
and, by the definition (15) of µ∗, the left hand side of (17) is equal to zero.
By the same reasoning, the right hand side is also equal to zero.
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