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Littlewood–Paley g-functions with rough
kernels on homogeneous groups

by

Yong Ding and Xinfeng Wu (Beijing)

Abstract. Let G be a homogeneous group on Rn whose multiplication and inverse
operations are polynomial maps. In 1999, T. Tao proved that the singular integral operator
with L log+L function kernel on G is both of type (p, p) and of weak type (1, 1). In this
paper, the same results are proved for the Littlewood–Paley g-functions on G.

1. Introduction. Let Ω be a function defined on the Euclidean unit
sphere Sn−1 in Rn (n ≥ 2) and satisfying the cancellation condition

(1.1)
�

Sn−1

Ω(θ) dθ = 0.

Denote by TΩ the singular integral operator defined by

TΩf(x) = p.v.
�

Rn

Ω(y/|y|)
|y|n

f(x− y) dy

for f in the Schwartz class S(Rn). These operators, known as Calderón–
Zygmund singular integral operators, were first studied by Calderón and
Zygmund in their famous article [CZ1]. They proved Lp boundedness of TΩ
when the kernels are regular. Later in 1960, Hörmander [Hor] showed that
the same results hold when the kernel only satisfies a weaker condition which
is referred to as Hörmander’s condition today.

An important and interesting question is whether the regularity con-
ditions on the convolution kernels are necessary for the Lp (1 < p < ∞)
boundedness of the Calderón–Zygmund singular integral operators. In 1956,
Calderón and Zygmund [CZ2] gave a negative answer. Using the method of
rotations, Calderón and Zygmund proved that TΩ is still bounded on Lp for
1 < p < ∞ when Ω is odd in L1(Sn−1), or even in L log+L(Sn−1) satisfy-
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ing (1.1). In 1988, Hofmann [Hof] proved that the rough singular integral
operator TΩ is of weak type (1, 1) in R2 for Ω ∈ Lq(S1), q > 1. In an un-
published work, M. Christ obtained a weak type (1, 1) inequality for TΩ
for Ω ∈ L log+ L(Sn−1) in dimension n ≤ 7. In 1996, Seeger [Se] showed
that TΩ is of weak type (1, 1) if Ω ∈ L log+ L(Sn−1) with the mean zero
condition (1.1) for all dimensions n ≥ 2. In [GS], Grafakos and Stefanov
gave a nice survey, which contains a thorough discussion of the history of
the operator TΩ.

It is well known that a homogeneous group G is a Lie group equipped
with multiplication, inverse, dilation, and norm structures

(1.2) (x, y) 7→ xy, x 7→ x−1, (t, x) 7→ t ◦ x, x 7→ ρ(x)

for x, y ∈ G and t > 0. Here the multiplication and inverse operations are
polynomial maps, while the dilation structure preserves the group operations
and is given in coordinates by

(1.3) t ◦ (x1, . . . , xn) = (tα1x1, . . . , t
αnxn)

for some constants 0 < α1 ≤ · · · ≤ αn and satisfies ρ(t◦x) = tρ(x). It can be
shown that Lebesgue measure dx is a Haar measure on G and that ρ(x) ∼
ρ(x−1). We call n the Euclidean dimension of G, and N = α1 + · · ·+αn the
homogeneous dimension of G. Denote by Σ = {x ∈ G : ρ(x) = 1} the “unit
sphere” of G.

When Ω satisfies a much stronger smoothness condition, TΩ is a bounded
operator on Lp(G) for 1 < p < ∞ (see [St2]). By analyzing the results
on rough singular integral operators TΩ mentioned above, it is natural to
conjecture that analogous results also hold on the homogeneous group G.
However, there exist many difficulties in this generalization. In fact, the
method based on Fourier transform estimates is not available on the general
homogeneous group G, and this method plays a key role in studying the
L2 and weak (1, 1) boundedness for the rough operator TΩ on Rn. In 1999,
using a variant of Littlewood–Paley theory and an iterated TT ∗ method, Tao
[T] generalized the results in [CZ2] and [Se] to the homogeneous group G.
To be precise, Tao proved the weak type (1, 1) and (2, 2) boundedness of
T with kernels belonging to the class L log+L on G, and hence the (p, p)
boundedness of T for 1 < p <∞ follows easily by interpolation and duality.
Tao’s work in [T] is very significant because the ideas presented there pave
the way to the theory of rough operators on general homogeneous groups.

On the other hand, it is well known that the Littlewood–Paley operators
play an important role in harmonic analysis on Rn, PDE, characterizing
function spaces, etc. The Littlewood–Paley operators in high dimensions
were first introduced by Stein in [St1]. If Ω ∈ L1(Sn−1) satisfies (1.1), set
ϕ(x) = Ω(x/|x|)|x|−n+1χ{|x|≤1}(x) and ϕt(x) = t−nϕ(x/t) for t > 0. Then
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the Littlewood–Paley g-function gΩ with homogeneous kernel is defined by

gΩ(f)(x) =
(∞�

0

|ϕt ∗ f(x)|2 dt
t

)1/2

.

In [St1], Stein proved that if Ω ∈ Lipα(Sn−1), 0 < α ≤ 1, then gΩ is of weak
type (1, 1) and of type (p, p) for 1 < p ≤ 2. In 1962, Benedek, Calderón and
Panzone [BCP] showed if Ω ∈ C1(Sn−1), then gΩ is of type (p, p) for 1 <
p < ∞. In 2000, Ding, Fan and Pan [DFP2] proved that if Ω ∈ H1(Sn−1),
the Hardy space on Sn−1 (see [Con] or [RW] for the definition), then gΩ is
still of type (p, p) for 1 < p < ∞. In 2001, Fan and Sato [FaSa] established
the weak (1, 1) boundedness of gΩ if Ω ∈ L log+L(Sn−1). The results in
[DFP2] and [FaSa] show that the regularity condition imposed on Ω is not
necessary for the Lp (1 < p < ∞) and weak (1, 1) boundedness of gΩ. See
also [DFP1] and [AACP] for more results about the rough Littlewood–Paley
g-function on Rn.

Inspired by Tao’s pioneering work, in this paper, we will discuss some
mapping properties of the Littlewood–Paley g-functions with rough kernels
on the homogeneous group G.

Suppose that a function Ω defined on G satisfies the following conditions:

Ω(t ◦ x) = Ω(x) for t > 0 and x ∈ G,(1.4) �

Σ

Ω(x) dσ(x) = 0,(1.5)

and Ω ∈ L1(Σ), that is,

(1.6)
�

Σ

|Ω(x)| dσ(x) <∞,

where σ is a Radon measure on Σ (see [FoSt, p. 14]). The Littlewood–Paley
g-function on G is defined by

gΩf(x) =
(∞�

0

|f ∗ κt|2
dt

t

)1/2

,

where κt(x) = t−1Ω(x)ρ(x)1−Nχ{ρ(x)≤t}(x) (t > 0, x ∈ G) and Ω satisfies
the conditions (1.4)–(1.6).

In this paper, we will prove the weak type (1, 1) and (p, p) boundedness
of the Littlewood–Paley g-function on the homogeneous group G if the size
condition (1.6) is replaced by the following L log+ L(Σ) condition:

(1.7)
�

Σ

|Ω(x) log(2 +Ω(x))| dσ(x) <∞.

Our main results are as follows.
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Theorem 1.1. If Ω ∈ L log+ L(Σ) satisfies (1.4) and (1.5), then gΩ is
bounded on L2(G).

Theorem 1.2. If Ω ∈ L log+ L(Σ) and gΩ is bounded on L2(G), then
gΩ is of weak type (1, 1) on G.

By an interpolation theorem, we get

Corollary 1.3. Suppose Ω ∈ L log+ L(Σ) satisfies (1.4) and (1.5).
Then gΩ is bounded on Lp(G) for 1 < p ≤ 2 and is of weak type (1, 1) on G.

The basic idea of proving our theorems is to view the Littlewood–Paley
g-function as a vector-valued singular integral (see Section 2). It should be
pointed out that some ideas used in this work are borrowed from Tao’s
paper [T]. However, the extra integral in t causes some essential difficulties
so that we do not use the method in [T] directly in many estimates. Here,
we point out three major differences:

(1) The singular integral operator T and its adjoint operator T ∗ are
essentially the same. Hence, the properties of T can be translated to T ∗.
However, the Littlewood–Paley g-function gΩ and its adjoint g∗Ω are essen-
tially different, since gΩ maps a scalar-valued function to a Hilbert-valued
function and its adjoint operator g∗Ω is a mapping from a Hilbert-valued
function space to a scalar-valued function space.

(2) In the proof of Theorem 1.1, we view the Littlewood–Paley g-function
as a vector-valued singular integral. However, in estimating the nondegen-
erate portion of the integral, there are some additional difficulties caused by
the extra t integral coming from vector-valued duality (see Remark 4.4 at
the end of Section 4).

To avoid this problem, we iterate T m+ 1 times instead of m times, and
then “throw out” the extra t integral to reduce the estimate for a vector-
valued integral to a scalar-valued one.

In the weak (1, 1) case, we shall iterate T m + 2 times for symmetry
considerations. Also more careful estimates are required for the reduction
(see Section 7).

(3) In the proof of weak type (1, 1) boundedness, we are led to esti-
mate the derivatives of homogeneous norms. We show that any homogeneous
norm on the homogeneous group satisfies certain regularity conditions (see
Theorem 7.1). Then we get the desired estimates by using left-invariant
differentiation structures developed by Tao (see Lemma 7.2).

Remark 1.4. In 1960, Hörmander [Hor] proved the Lp boundedness
of a parameterized Littlewood–Paley g-function. Using our argument, one
can prove results similar to ours for the parameterized Littlewood–Paley
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g-function gΩ,ν defined by

gΩ,νf(x) =
(∞�

0

|f ∗ κνt |2
dt

t

)1/2

,

where κνt (x) = t−νΩ(x)ρ(x)ν−Nχ{ρ(x)≤t}(x) for t, ν > 0 and x ∈ G, and Ω
satisfies the conditions (1.4)–(1.6).

Throughout this paper, we will work exclusively with real-valued func-
tions. The letters C (resp. c, ε) will always be used to denote large (resp.
small) positive constants only depending on the homogeneous group G and
any other specified quantities. The values of these constants are not neces-
sarily the same at each occurrence. We use A . B to denote A ≤ CB, and
we write A ∼ B if A . B . A.

2. L2 estimate I: Kernel truncation and frequency localiza-
tion. Let K(x) = Ω(x)ρ(x)−N and ht(x) = t−1ρ(x)χ{ρ(x)≤t}(x). Set K0 :=
KχA0 with A0 = {x ∈ G : 1 ≤ ρ(x) ≤ 2}. Then we may normalize
‖K0‖L log+ L(G) = 1 since Ω ∈ L log+ L(Σ). Let H be the Hilbert space
L2(R+, dt/t) with the norm and inner product denoted by | · |H and 〈·, ·〉H,
respectively. Thus, the Littlewood–Paley g-function gΩ can be written as

(2.1) gΩ(f)(x) =
(∞�

0

|f ∗ (htK)(x)|2 dt
t

)1/2

= |f ∗ (h(·)K)(x)|H.

For each u > 0, define the scaling map ∆[u] by ∆[u]f(y) = u−Nf(u−1 ◦ y).
Then we have the identity

(2.2) K(x) =
1

log 2

∞�

0

∆[u]K0(x) du.

Take a nonnegative function ϕ ∈ C∞0 (R) such that supp(ϕ) ⊂ (1/4, 4),
ϕ(u) ≡ 1 for 1/2 ≤ u ≤ 2 and

∑
j∈Z 2−jϕ(2−ju) = 1/log 2. For j ∈ Z, define

an operator Sj by

SjF (x) = 2−j
∞�

0

ϕ(2−ju)∆[u]F (x) du.

Then by (2.2), we have a dyadic decomposition K =
∑

j∈Z SjK0. It is easy
to see that

(2.3) ‖Sjf‖L1(G) . ‖f‖L1(G) uniformly in j

and

(2.4) |h(·)(x)|H . 1 uniformly in x ∈ G.
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We now define the H-valued Lq spaces. For 1 ≤ q <∞, let

Lq(H) =
{
f(x, t) : ‖f‖Lq(H) :=

{ �

G

(∞�
0

|f(x, t)|2 dt
t

)q/2
dx

}1/q

<∞
}
.

In view of Minkowski’s inequality and the classical Young inequality, the
following version of Young’s inequality on Lq(H) is obvious.

Lemma 2.1. Suppose 1 ≤ p, q, r ≤ ∞, 1/p + 1/q = 1 + 1/r, f ∈ Lq(H)
and g ∈ Lp(G). Then

‖f ∗ g‖Lr(H) ≤ C‖g‖Lp(G)‖f‖Lq(H).

With the above notations, by (2.3) and (2.4) we have

(2.5) ‖htSjf‖L1(H) . ‖f‖L1(G) uniformly in j.

To prove Theorem 1.1, by (2.1), it suffices to show that

(2.6)
∥∥∥f ∗∑

j

(htSjK0)
∥∥∥
L2(H)

. ‖f‖L2(G).

For s ≥ 0, define

As0 = {x ∈ A0 : 22s ≤ 2 + |K0(x)| < 22s+1}
and ks0 = K0χAs

0
. Let

Ks
0 = ks0 −

χA0

|A0|

�

A0

ks0(x) dx.

Then K0 =
∑

s≥0K
s
0 and each Ks

0 has mean zero. Note that∑
s≥0

2s‖Ks
0‖L1(G) .

∑
s≥0

2s‖ks0‖L1(G) . ‖K0‖L log+ L(G) = 1.

Thus, (2.6) will follow if we can show that for some ε > 0 and all s ≥ 0,

(2.7)
∥∥∥f ∗∑

j

(htSjKs
0)
∥∥∥
L2(H)

. ‖f‖L2(G)(2
s‖Ks

0‖L1(G) + 2s2−ε2
s
).

Now we fix s. For each integer k, let Tk denote the operator

Tkf = f ∗
(k+1)2s−1∑
j=k2s

(htSjKs
0).

To get (2.7), it is sufficient to show the following operator norm estimate:

(2.8)
∥∥∥∑

k

Tk

∥∥∥
L2(G)→L2(H)

. 2s‖Ks
0‖L1(G) + 2s2−ε2

s
.

By Lemma 2.1 and (2.5), we have

‖Tkf‖L2(H) . ‖f‖L2(G)2
s‖Ks

0‖L1(G) uniformly in k.
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Hence, Tk is a bounded operator from L2(G) to L2(H). Then the adjoint
operator T ∗k of Tk, defined by

T ∗k gt(x) =
(k+1)2s−1∑
j=k2s

∞�

0

gt ∗ (htSjK̃s
0)(x)

dt

t
,

is bounded from L2(H) to L2(G) with the same operator norm as Tk, where
K̃s

0(x) = Ks
0(x−1) for each x ∈ G. Thus for all k, k′, we have

max{‖TkT ∗k′‖L2(H)→L2(H), ‖T ∗kTk′‖L2(G)→L2(G)} . (2s‖Ks
0‖L1(G))

2.

Therefore, by the Cotlar–Stein lemma (see [St2]), to obtain the estimate
(2.8), it suffices to show that there exists a large constant C such that when
|k − k′| ≥ C,

(2.9) max
{
‖Tk′T ∗k ‖L2(H)→L2(H), ‖T ∗k′Tk‖L2(G)→L2(G)

}
. 22s2−ε2

s|k−k′|.

By the definitions of Tk′ and T ∗k , we need to prove that∥∥∥∥(k+1)2s−1∑
j=k2s

(k′+1)2s−1∑
j′=k′2s

∞�

0

gt1 ∗ (ht1SjK̃
s
0) ∗ (ht2Sj′K

s
0)
dt1
t1

∥∥∥∥
L2(H)

. 22s2−ε2
s|k−k′|‖gt1‖L2(H),∥∥∥∥(k+1)2s−1∑

j=k2s

(k′+1)2s−1∑
j′=k′2s

∞�

0

f ∗ (htSjKs
0) ∗ (htSj′K̃s

0)
dt

t

∥∥∥∥
L2(G)

. 22s2−ε2
s|k−k′|‖f‖L2(G).

By the triangle inequality, it suffices to show that for all integers j, j′ with
|j − j′| > C2s,∥∥∥∥∞�

0

gt1 ∗ (ht1SjK̃
s
0) ∗ (ht2Sj′K

s
0)
dt1
t1

∥∥∥∥
L2(H)

. 2−ε|j−j
′|‖gt1‖L2(H),(2.10)

∥∥∥∥∞�
0

f ∗ (htSjKs
0) ∗ (htSj′K̃s

0)
dt

t

∥∥∥∥
L2(G)

. 2−ε|j−j
′|‖f‖L2(G).(2.11)

Now we use the Littlewood–Paley theory to show (2.10) and (2.11). Take
a C∞ function φ supported on the unit ball with ‖φ‖C1 . 1 and

	
φ = 1.

We may also assume that φ = φ̃, where φ̃(x) = φ(x−1) for x ∈ G. For each
integer k, write

ψk = ∆[2k−1]φ−∆[2k]φ.

Note that ψk is supported on the annulus of radius C2k, that is, on the set
{x ∈ G : C2k−1 ≤ ρ(x) ≤ C2k+1} for some absolute constant C. Moreover,
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ψk has mean zero and ψ̃k = ψk. Since∑
k

ψk ∗ f(x) = f(x) =
∑
k

f ∗ ψk(x)

for x 6= 0, we may write

(2.12) f ∗(htSjKs
0)∗(htSj′K̃s

0) =
∑
k

∑
k′

f ∗(htSjKs
0)∗ψk∗ψk′ ∗(htSj′K̃s

0).

We need the following lemma to prove (2.10) and (2.11).

Lemma 2.2. For any integers j, k and any L∞(G) function K0 on the
unit annulus with mean zero, we have

‖f ∗ (htSjK0) ∗ ψk‖L2(H) . 2−ε|j−k|‖f‖L2(G)‖K0‖L∞(G)(2.13)

and

‖f ∗ ψk ∗ (htSjK0)‖L2(H) . 2−ε|j−k|‖f‖L2(G)‖K0‖L∞(G).(2.14)

The proof of Lemma 2.2 will be postponed until the next section. Now
let us complete the proof of (2.10) and (2.11) by applying Lemma 2.2. In
fact, by (2.13), we have

(2.15) ‖f ∗ (htSjKs
0) ∗ ψk‖L2(H) . 22s+1

2−ε|j−k|‖f‖L2(G)

and (by duality)

(2.16)
∥∥∥∥∞�

0

gt ∗ ψk′ ∗ (htSj′K̃s
0)
dt

t

∥∥∥∥
L2(G)

. 22s+1
2−ε|k

′−j′|‖gt‖L2(H).

Using the estimates (2.15) and (2.16), we get

(2.17)
∥∥∥∥∞�

0

f ∗ (htSjKs
0) ∗ ψk ∗ ψk′ ∗ (htSj′K̃s

0)
dt

t

∥∥∥∥
L2(G)

. 22s+2
2−ε|j−k|2−ε|k

′−j′|‖f‖L2(G).

Similarly, it follows from (2.14) that

(2.18)
∥∥∥∥∞�

0

ft1 ∗ (ht1SjK̃
s
0) ∗ ψk ∗ ψk′ ∗ (ht2Sj′K

s
0)
dt1
t1

∥∥∥∥
L2(H)

. 22s+2
2−ε|j−k|2−ε|k

′−j′|‖ft1‖L2(H).

On the other hand, from the smoothness and mean zero conditions on
ψk, ψk′ , we have

(2.19) ‖ψk ∗ ψk′‖L1(G) . 2−ε|k−k
′|.

By Hölder’s inequality and (2.4),

|〈h(·)(x), h(·)(y)〉H| ≤ |h(·)(x)|H · |h(·)(y)|H . 1
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uniformly in x, y ∈ G. This estimate together with Young’s inequality, (2.19)
and (2.3) yields

(2.20)
∥∥∥∥∞�

0

f ∗ (htSjKs
0) ∗ ψk ∗ ψk′ ∗ (htSj′K̃s

0)
dt

t

∥∥∥∥
L2(G)

.

∥∥∥∥∞�
0

(htSjKs
0) ∗ ψk ∗ ψk′ ∗ (htSj′K̃s

0)
dt

t

∥∥∥∥
L1(G)

‖f‖L2(G)

. ‖|SjKs
0 | ∗ |ψk ∗ ψk′ | ∗ |Sj′K̃s

0 |‖L1(G)‖f‖L2(G)

. ‖SjKs
0‖L1(G)‖ψk ∗ ψk′‖L1(G)‖Sj′K̃s

0‖L1(G)‖f‖L2(G)

. 2−ε|k−k
′|‖f‖L2(G).

By Minkowski’s inequality and (2.4), we get

(2.21)
∥∥∥∥∞�

0

ft1 ∗ (ht1SjK̃
s
0) ∗ ψk ∗ ψk′ ∗ (ht2Sj′K

s
0)
dt1
t1

∥∥∥∥
L2(H)

.

∥∥∥∥ ∣∣∣∣∞�
0

ft1 ∗ (ht1SjK̃
s
0)
dt1
t1

∣∣∣∣ ∗ |ψk ∗ ψk′ | ∗ |Sj′Ks
0 |
∥∥∥∥
L2(G)

.

By the Fubini theorem and Hölder’s inequality, for every x ∈ G,∣∣∣∣∞�
0

ft1 ∗ (ht1SjK̃
s
0)(x)

dt1
t1

∣∣∣∣ ≤ �

G

∣∣∣∣∞�
0

ft1(xy−1)ht1(y)
dt1
t1

∣∣∣∣ |SjK̃s
0(y)(y)| dy

≤
�

G
|ft1(xy−1)|H|SjK̃s

0(y)| dy

= (|ft1 |H ∗ |SjK̃s
0 |)(x).

Inserting this estimate into (2.21) and using Young’s inequality, (2.3) and
(2.19), we get

(2.22)
∥∥∥∥∞�

0

ft1 ∗ (ht1SjK̃
s
0) ∗ ψk ∗ ψk′ ∗ (ht2Sj′K

s
0)
dt1
t1

∥∥∥∥
L2(H)

.

∥∥∥∥(∞�
0

|ft1(·)|2 dt1
t1

)1/2

∗ |SjK̃s
0 | ∗ |ψk ∗ ψk′ | ∗ |Sj′Ks

0 |
∥∥∥∥
L2(G)

. ‖SjK̃s
0‖L1(G)‖ψk ∗ ψk′‖L1(G)‖Sj′Ks

0‖L1(G)‖ft1‖L2(H)

. 2−ε|k−k
′|‖ft1‖L2(H).

Taking the geometric mean of (2.17) and (2.20) and then summing over
k and k′, we obtain
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0

f ∗ (htSjK0) ∗ (htSj′K̃0)
dt

t

∥∥∥∥
L2(G)

. 22s+1 |j − j′|2−ε|j−j′|/2‖f‖L2(G),

which gives (2.11) for some ε > 0 if |j − j′| > C2s for a sufficiently large C.
In the same way we can deduce (2.10) from (2.18) and (2.22). Thus, to finish
the proof of Theorem 1.1, it remains to show Lemma 2.2.

3. L2 estimate II: Iterated TT ∗ method. The proof of Lemma 2.2
will be given in this section. We only verify (2.13) here since (2.14) can be
proved in a similar way. First we normalize K0 so that ‖K0‖∞ = 1. By
dilation invariance,

‖(htSjK0) ∗ ψk‖L1(H) = ‖(htS0K0) ∗ ψk−j‖L1(H),

so we only need to show (2.13) for j = 0. If k ≥ −C, then by the mean zero
condition on K0 and the smoothness of ψk, we have

(3.1) ‖(htS0K0) ∗ ψk‖L1(H) . 2−εk.

By Young’s inequality (Lemma 2.1) and (3.1), we get (2.13) for k ≥ −C,
where C is a constant large enough to be determined later. Thus in the
following we may assume that k < −C.

Fix k = −s for some s > C. If we define an operator Lψ by

Lψf(x, t) = f ∗ (htS0K0) ∗ ψ−s,

then it is easy to see that Lψ is a bounded operator from L2(G) to L2(H).
Denote by L∗ψ the adjoint operator of Lψ, that is, for gt ∈ L2(H),

L∗ψ(gt)(x) =
∞�

0

gt ∗ ψ−s ∗ (htS0K̃0)
dt

t
.

Thus, (2.13) will follow from the following estimates:

‖LψL∗ψ(gt0)‖L2(H)

=
∥∥∥∥(∞�

0

gt0 ∗ ψ−s ∗ (ht0S0K̃0)
dt0
t0

)
∗ (ht1S0K0) ∗ ψ−s

∥∥∥∥
L2(H)

. 2−εs‖gt0‖L2(H)

and

‖L∗ψLψ(f)‖L2(G) =
∥∥∥∥∞�

0

f ∗ ψ−s ∗ (htS0K̃0) ∗ (htS0K0) ∗ ψ−s
dt

t

∥∥∥∥
L2(G)

. 2−εs‖f‖L2(G).

From the operator norm identity ‖LψL∗ψ‖ = ‖(LψL∗ψ)n+1‖1/(n+1), it suffices
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to show ∥∥∥∥∞�
0

. . .

∞�

0

ft0 ∗ ψ−s ∗ (ht0S0K̃0)
dt0
t0
∗ (ht1S0K0) ∗ ψ−s(3.2)

∗ ψ−s ∗ (ht1S0K̃0)
dt1
t1
∗ (ht2S0K0) ∗ ψ−s

· · ·

∗ ψ−s ∗ (htnS0K̃0)
dtn
tn
∗ (htn+1S0K0) ∗ ψ−s

∥∥∥∥
L2(H)

. 2−εs‖ft0‖L2(H)

and ∥∥∥∥∞�
0

. . .

∞�

0

f ∗ ψ−s ∗ (ht1S0K̃0) ∗ (ht1S0K0) ∗ ψ−s
dt1
t1

(3.3)

∗ ψ−s ∗ (ht2S0K̃0) ∗ (ht2S0K0) ∗ ψ−s
dt2
t2

· · ·

∗ ψ−s ∗ (htnS0K̃0) ∗ (htnS0K0) ∗ ψ−s
dtn
tn

∥∥∥∥
L2(G)

. 2−εs‖f‖L2(G).

By Young’s inequality, it is easy to see that (3.3) follows from

(3.4)
∥∥∥∥∞�

0

. . .

∞�

0

ψ−s ∗ (ht1S0K0) ∗ (ht1S0K̃0) ∗ ψ−s
dt1
t1
∗ ψ−s ∗ (ht2S0K0)

∗ · · · ∗ ψ−s ∗ (htnS0K̃0) ∗ (htnS0K0) ∗ ψ−s
dtn
tn

∥∥∥∥
L1(G)

. 2−εs.

Next, we want to show that (3.2) will follow from an L1(G) norm (not
L1(H) norm) estimate similar to (3.4). This is a key step since if we worked
with a vector-valued integral (L1(H) estimate), some essential difficulties
would arise (see Remark 4.4 in the next section).

By Hölder’s inequality,∥∥∥∥∞�
0

ft0 ∗ ψ−s ∗ (ht0S0K̃0)
dt0
t0

∥∥∥∥
L2(G)

≤ ‖ |f |H ∗ |ψ−s| ∗ |h(·)S0K̃0|H‖L2(G)

≤ ‖f‖L2(H)‖ψ−s‖L1(G)‖h(·)S0K̃0‖L1(H)

. ‖f‖L2(H).
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Thus, on applying Young’s inequality again, (3.2) will follow from

(3.5)
∥∥∥∥∞�

0

. . .

∞�

0

(ht1S0K0) ∗ ψ−s ∗ ψ−s ∗ (ht1S0K̃0)
dt1
t1
∗ (ht2S0K0) ∗ ψ−s

∗ · · · ∗ ψ−s ∗ (htnS0K̃0)
dtn
tn
∗ (htn+1S0K0) ∗ ψ−s

∥∥∥∥
L1(H)

. 2−εs.

Noting that htn+1S0K0 ∗ ψ−s ∈ L1(H), by Minkowski’s inequality we see
that (3.5) is implied by

(3.6)
∥∥∥∥∞�

0

. . .

∞�

0

(ht1S0K0) ∗ ψ−s ∗ ψ−s ∗ (ht1S0K̃0)
dt1
t1

∗ · · · ∗ (htnS0K0) ∗ ψ−s ∗ ψ−s ∗ (htnS0K̃0)
dtn
tn

∥∥∥∥
L1(G)

. 2−εs.

Thus, to get (3.2) and (3.3), it remains to show (3.4) and (3.6).
Now we will use the following idea. Let φ be an L1 function supported

in B. Then
|φ ∗ f(x)| ≤ ‖φ‖L1 sup

w∈B
|δw ∗ f(x)|,

where δw is the Dirac measure supported at w. Since the functions ψ−s∗S0K̃0

and ψ−s ∗ ψ−s ∗ S0K̃0 are bounded in L1(B(0, C)), we have

|ψ−s ∗ (htS0K̃0) ∗ f(x)| . sup
w∈B(0,C), ξ∈A0

|δw ∗ f(x)ht(ξ)|.

Thus to show (3.6), it suffices to prove

(3.7)
∥∥∥∥ �

[0,∞)n

((ht1S0K0) ∗ δw2 ∗ · · ·

∗ δwn ∗ (htnS0K0) ∗ ψ−s ∗ δwn+1)
n∏

m=1

htm(ξm)
dt

t

∥∥∥∥
L1(G)

. 2−εs

uniformly for (w2, . . . , wn+1) ∈ (B(0, C))n and (ξ1, . . . , ξn) ∈ An0 , where
δwj is the Dirac measure supported at wj for j = 2, . . . , n + 1. Moreover,
dt
t = dt1

t1
⊗ · · · ⊗ dtn

tn
. In the same way, to show (3.4), it suffices to verify

(3.8)
∥∥∥∥ �

[0,∞)n

(δw1 ∗ (ht1S0K0) ∗ δw2

∗ · · · ∗ δwn ∗ (S0K0htn) ∗ ψ−s)
n∏

m=1

htm(ξm)
dt

t

∥∥∥∥
L1(G)

. 2−εs

uniformly for (w1, . . . , wn) ∈ (B(0, C))n and (ξ1, . . . , ξn) ∈ An0 .
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Below we only give the proof of (3.7), since (3.8) can be proved simi-
larly. Fix ~w := (w2, . . . , wn+1) ∈ (B(0, C))n and ~ξ := (ξ1, . . . , ξn) ∈ An0 . By
duality, it suffices to show that the quantity

(3.9)
∣∣∣∣〈 �

[0,∞)n

((ht1S0K0) ∗ · · · ∗ δwn

∗ (htnS0K0) ∗ ψ−s ∗ δwn+1)
n∏

m=1

htm(ξm)
dt

t
, g

〉∣∣∣∣
is . 2−εs for all test functions g with ‖g‖L∞(G) ≤ 1. For a fixed g, performing
the t integration and taking w1 ∈ B(0, C), we can rewrite (3.9) as

(3.10)
∣∣∣∣ � � �ψ−s(x)g(w−1

1 Φ~y(~u)xwn+1)

×
n∏
i=1

ϕ(ui)K0(yi) min
{
uiρ(yi)
ρ(ξi)

,
ρ(ξi)
uiρ(yi)

}
dx d~u d~y

∣∣∣∣,
where x ∈ G, ~u := (u1, . . . , un) ∈ [−C,C]n, ~y := (y1, . . . , yn) ∈ An0 and

Φ~y(~u) :=
n∏
i=1

wi(ui ◦ yi).

To see this, we only check this equality for n = 2. In this case, it is easy
to see that (3.9) equals

(3.11)
� �

[0,∞)n

{ �

G
ψ−s(x)((ht2S0K̃0) ∗ δw−1

2
∗ (ht1S0K̃0) ∗ g ∗ δw−1

3
)(x) dx

}

× ht1(ξ1)ht2(ξ2)
dt1 dt2
t1t2

.

Expanding the first two convolutions, we get

(ht2S0K̃0) ∗ δw−1
2
∗ (ht1S0K̃0) ∗ g ∗ δw−1

3
(x)

=
�

A0

ht2(y2)S0K̃0(y2)(δw−1
2
∗ (ht1S0K̃0) ∗ g ∗ δw−1

3
)(y−1

2 x) dy2

=
�

A0

ht2(y2)S0K̃0(y2)((ht1S0K̃0) ∗ g ∗ δw−1
3

)(w2y
−1
2 x) dy2.

Recalling

S0K̃0(x) =
∞�

0

ϕ(s)s−NK̃0(s−1 ◦ x) ds
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and K̃0(x) = K0(x−1), we have

(ht2S0K̃0) ∗ δw−1
2
∗ (ht1S0K̃0) ∗ g ∗ δw−1

3
(x)

=
�

A0

ht2(u2 ◦ y2)
(∞�

0

ϕ(u2)K̃0(y2) du2

)
× ((ht1S0K̃0) ∗ g ∗ δw−1

3
)(w2(u2 ◦ y−1

2 )x) dy2

=
�

A0

∞�

0

ht2(u2 ◦ y−1
2 )ϕ(u2)K0(y2)

× ((ht1S0K̃0) ∗ g ∗ δw−1
3

)(w2(u2 ◦ y2)x) du2 dy2.

Similarly, we can expand the other two convolutions to obtain

(3.12) (ht2S0K̃0) ∗ δw−1
2
∗ (ht1S0K̃0) ∗ g ∗ δw−1

3
(x)

=
�

A0×A0

∞�

0

∞�

0

ht2(u2 ◦ y−1
2 )ht1(u1 ◦ y−1

1 )ϕ(u2)ϕ(u1)K0(y2)K0(y1)

× g((u1 ◦ y1)w2(u2 ◦ y2)xw3) du1 du2 dy1 dy2.

Inserting (3.12) into (3.11), we get (3.10) by noting that

∞�

0

∞�

0

ht1(u1 ◦ y1)ht2(u2 ◦ y2)ht1(ξ1)ht2(ξ2)
dt1
t1

dt2
t2

=
(∞�

0

ht1(u1 ◦ y1)ht1(ξ1)
dt1
t1

)(∞�
0

ht2(u2 ◦ y2)ht2(ξ2)
dt2
t2

)
=

u1ρ(y1)ρ(ξ1)
2(max{u1ρ(y1), ρ(ξ1))}2

· u2ρ(y2)ρ(ξ2)
2(max{u2ρ(y2), ρ(ξ2)}2

=
1
4

min
{
u1ρ(y1)
ρ(ξ1)

,
ρ(ξ1)
u1ρ(y1)

}
·min

{
u2ρ(y2)
ρ(ξ2)

,
ρ(ξ2)
u2ρ(y2)

}
.

The general case can be obtained by iterating the above process.
The next step is to split the integral in (3.10) into two parts. We need

the left-invariant differentiation structures exploited by Tao in [T]. Let f(t)
be smooth functions from R to G. The left-invariant derivative ∂Lt f(t) is
defined by Newton’s approximation:

f(t+ ε) = f(t)(ε∂Lt f(t)) + ε2O(1), for ε small.

If F (x) is a smooth function from Rn to G, the left-invariant derivative
DL
xF (x) is defined to be the matrix with columns given by

DL
x f(x) = (∂Lx1

F (x), . . . , ∂Lxn
F (x)).
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Using the above notions, we split the integral in (3.10) into

(3.13)
∣∣∣∣ �

An
0

�

[C−1,C]n

�

G
ψ−s(x)g(w−1

1 Φ~y(~u)xwn+1)η(2nεs detDL
~u (Φ~y)(~u))

×
n∏
i=1

ϕ(ui)K0(yi) min
{
uiρ(yi)
ρ(ξi)

,
ρ(ξi)
uiρ(yi)

}
dx d~u d~y

∣∣∣∣
and

(3.14)
∣∣∣∣ �
An

0

�

[C−1,C]n

�

G
ψ−s(x)g(w−1

1 Φ~y(~u)xwn+1)[1− η(2nεs detDL
~u (Φ~y)(~u))]

×
n∏
i=1

ϕ(ui)K0(yi) min
{
uiρ(yi)
ρ(ξi)

,
ρ(ξi)
uiρ(yi)

}
dx d~u d~y

∣∣∣∣,
where η is a smooth nonnegative bump function which equals 1 near 0 ∈ G.

To estimate (3.13), we simply replace everything by absolute values, and
observe that it can be controlled by the “degenerate portion” of the integral
(see Section 6 in [T]). More precisely, using the bounds on g, ϕ and K0, we
see that the left hand side of (3.13) does not exceed

�

G

�

[C−1,C]n

�

An
0

|ψ−s(x)|η(2nεs detDL
~u (Φ~y)(~u)) d~y d~u dx,

which is ≤ C2−εs (see [T]). So it remains to deal with (3.14).

4. L2 estimate III: Nondegenerate portion of the integral. We
first give the following result due to Tao.

Lemma 4.1 ([T, Lemma 7.1]). Let f be a function on B(0, C) with mean
zero and ‖f‖1 . 1. Then there exist functions f1, . . . , fn supported on a
slightly larger ball B(0, C) with ‖fi‖1 . 1 and f(x) =

∑n
i=1 ∂xifi(x).

Let us continue the proof of the L2 estimate. Note that K0 ∈ L∞(A0)
implies K0 ∈ L1(G). Thus to prove (3.14) . 2−εs, it suffices to show∣∣∣∣ �

[C−1,C]n

�

G
ψ−s(x) g(w−1

1 Φ~y(~u)xwn+1)[1− η(2nεs detDL
~u (Φ~y)(~u))]

×
n∏
i=1

ϕ(ui) min
{
uiρ(yi)
ρ(ξi)

,
ρ(ξi)
uiρ(yi)

}
dx d~u

∣∣∣∣ . 2−εs

uniformly in ~y ∈ An0 .
Since ψ0 is supported on B(0, 16) with mean zero and ‖ψ‖L1(G) . 1, by

Lemma 4.1 we have ψ−s(x) =
∑n

j=1 ∂xjfj(x), where the functions fj are
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supported on B(0, 24−s) and satisfy

(4.1) ‖fj‖1 . 2−αjs.

It thus suffices to bound the quantity

(4.2)
∣∣∣∣� � ∂xjfj(x)g(w−1

1 Φ~y(~u)xwn+1)a(~u)
n∏
i=1

min
{
uiρ(yi)
ρ(ξi)

,
ρ(ξi)
uiρ(yi)

}
d~u dx

∣∣∣∣
by C2−εs for all j = 1, . . . , n, where

a(~u) = [1− η(2nεs detDL
~u (Φ~y)(~u))]

n∏
i=1

ϕ(ui).

If we integrate by parts in the xj variable, (4.2) can be rewritten as∣∣∣∣ � � fj(x)∂xjg(Φ̃)a(~u)
n∏
i=1

min
{
uiρ(yi)
ρ(ξi)

,
ρ(ξi)
uiρ(yi)

}
d~u dx

∣∣∣∣.
where we use Φ̃ to denote w−1

1 Φ~y(~u)xwn+1 for simplicity. By (4.1), if ε is
small enough, we only need to show∣∣∣∣ � ∂xjg(Φ̃)a(~u)

n∏
i=1

min
{
uiρ(yi)
ρ(ξi)

,
ρ(ξi)
uiρ(yi)

}
d~u

∣∣∣∣ . 2Cεs

uniformly in x ∈ B(0, 16) for some constant C.
The following result was proved in [T].

Lemma 4.2 ([T, Lemma 7.2]). Let f : R × Rn → G and F : G → R be
smooth functions. Then

∂sF (f(s, t)) = ∇tF (f(s, t)) · (DL
t f(s, t))−1∂Ls f(s, t)

whenever detDL
t f(s, t) is nonzero.

By Lemma 4.2, it suffices to show

(4.3)
∣∣∣∣ �∇~ug(Φ̃)·(DL

~u Φ̃)−1∂Lxj
(Φ̃)a(~u)

n∏
i=1

min
{
uiρ(yi)
ρ(ξi)

,
ρ(ξi)
uiρ(yi)

}
d~u

∣∣∣∣. 2Cεs,

where ∇~u = (∂u1 , . . . , ∂un). To show (4.3), it is equivalent to show∣∣∣∣ � ∂uk
g(Φ̃)((DL

~u Φ̃)−1∂Lxj
(Φ̃))ka(~u)

n∏
i=1

min
{
uiρ(yi)
ρ(ξi)

,
ρ(ξi)
uiρ(yi)

}
d~u

∣∣∣∣ . 2Cεs

for each k = 1, . . . , n, where (·)k denotes the kth component of a vector.
It is not hard to see that the above inequality follows from∣∣∣∣∂uk

[
((DL

~u Φ̃)−1∂Lxj
(Φ̃))ka(~u)

∏
i

min
{
uiρ(yi)
ρ(ξi)

,
ρ(ξi)
uiρ(yi)

}]∣∣∣∣ . 2Cεs,
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where ∂uk
is understood to be the weak derivative when acting on the min-

imum function. Since∣∣∣∣(1 +∇~u)
∏
i 6=k

min
{
uiρ(yi)
ρ(ξi)

,
ρ(ξi)
uiρ(yi)

}∣∣∣∣ . 1,

it suffices to show

|∂uk
[((DL

~u Φ̃)−1∂Lxj
(Φ̃))ka(~u)]| . 2Cεs.

Noticing that all functions appearing in the definition of a are smooth and
compactly supported, we can easily see that

|a(~u)| . 1 and |∇~ua(~u)| . 2nεs.

Thus it suffices to show that, on the support of a(~u),

|(1 + ∂uk
) · [(DL

~u (Φ̃)−1∂Lxj
(Φ̃)]k| . 2Cεs.

By Cramer’s rule, it is equivalent to show

(4.4)
∣∣∣∣(1 + ∂uk

)
det(∂Lu1

(Φ̃), . . . , ∂Lxj
(Φ̃), . . . , ∂Lun

(Φ̃))

detDL
~u (Φ̃)

∣∣∣∣ . 2Cεs,

where (∂Lu1
(Φ̃), . . . , ∂Lxj

(Φ̃), . . . , ∂Lun
(Φ̃)) denotes the matrix whose j′th col-

umn vector is ∂Luj′
Φ̃ for j′ = 1, . . . , n, j′ 6= k and whose kth column vector

is ∂Lxj
(Φ̃).

Now we summarize some useful conclusions in the following lemma; see
[T] for the proofs.

Lemma 4.3 (see [T]). Let f(t), g(t) be a smooth functions from R to G
and s(t) be a smooth function from R to R. Then

|∂tf(t)| ∼ |∂Lt f(t)| whenever |f(t)| . 1;(a)

∂Lt (f(t)g(t)) = ∂Lt g(t) + C[g(t)]∂Lt f(t);(b)

C[t ◦ x](t ◦ v) = t ◦ (C[x]v), C[x]−1 = C[x−1];(c)
|C[x]v| ∼ |v| whenever |x| . 1;(d)
X(t ◦ x) = t ◦X(x) and ρ(X(x)) . ρ(x);(e)
ρ(∂t(t ◦ x)) ∼ ρ(t ◦ x) for t . 1;(f)

∂Lt (s(t) ◦ f(t)) = s(t) ◦ ∂Lt f(t) + (s′(t)/s(t))(s(t) ◦X[f(t)]),(g)

where X(x) is the vector field defined by X(x) = ∂Lt (t ◦ x)|t=1.

By Lemma 4.3(b),

(4.5) DL
~u (Φ̃) = DL

~u (Φ~y(~u)xwn+1) = C[xwn+1]DL
~u (Φ~y(~u)).

Since ρ(xwn+1) . ρ(x) + ρ(wn+1) . 1 (cf. [FoSt, p. 9]),

(4.6) |detDL
~u (Φ̃)| = |detDL

~u (Φ~y(~u)xwn+1)| ∼ |detDL
~u (Φ~y(~u))| & 2−nεs
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on the support of a(~u). On the other hand, since Φ̃ is smooth and compactly
supported in all variables, we can readily see that

|(1 + ∂uk
) det(∂Lu1

(Φ̃), . . . , ∂Lxj
(Φ̃), . . . , ∂Lun

(Φ̃))| . 1.

This inequality together with (4.6) yields (4.4). Thus we have completed the
proof of Theorem 1.1.

We make the following remark to demonstrate why we need to pass from
the vector-valued integral to a scalar-valued one.

Remark 4.4. If we worked with the vector-valued integral, instead of
(4.3), we need to show∣∣∣∣∞� �

0

∇~ugtn(w−1
1 Φ~y(~u)x) · (DL

~u (w−1
1 Φ~y(~u)x))−1∂Lxj

(w−1
1 Φ~y(~u)x)htn(un|yn|)

× a(~u)
n−1∏
i=1

min
{
uiρ(yi)
ρ(ξi)

,
ρ(ξi)
uiρ(yi)

}
dtn
tn

d~u

∣∣∣∣ . 2Cεs.

Take a look at the terms depending on tn and observe that if we perform
integration by parts in un, the boundary term which depends on tn is

∞�

0

gtn(w−1
1 Φ~y(~u)x)|un=tn/ρ(yn)

dtn
tn
,

which is not bounded in L∞(G) although gtn ∈ L∞(H).

5. Weak (1, 1) estimate I: Reduction to a strong type estimate.
We turn to the proof of Theorem 1.2. Let us begin with some definitions
and notations. A left-invariant quasi-distance d on G is defined by d(x, y) =
ρ(x−1y). A ball J := B(xJ , 2j) with center xJ and radius 2j is a set of
the form J = {x : d(x, xJ) < 2j} for some xJ ∈ G and j ∈ Z. For some
C > 1 (only depending on the constant B0 in the quasi-triangle inequality
ρ(xy−1) ≤ B0[ρ(x) + ρ(y)]), denote by J4 the annulus CJ \ C−1J , where
rJ := {x : d(x, xJ) < r2j} for r > 0. Moreover, let K(x) = Ω(x)ρ(x)−N ,
ht(x) = t−1ρ(x)χ{ρ(x)≤t}(x) and K0 = KχA0 with A0 = {x ∈ G : 1 ≤
ρ(x) ≤ 2}. We wish to show that∣∣∣∣{x ∈ G :

(∞�
0

|f ∗ (Kht)(x)|2 dt
t

)1/2

> α

}∣∣∣∣ . α−1‖f‖L1‖K0‖L logL.

We may assume that f ∈ C∞0 and α = 1, ‖K0‖L logL = 1 by linearity. We
perform the standard Calderón–Zygmund decomposition of f at height 1 to
obtain f = g +

∑
J bJ , where ‖g‖L1 . ‖f‖L1 and ‖g‖L∞ . α = 1. The J

range over a collection of disjoint balls with
∑

J |J | . ‖f‖L1 and for each J ,

(5.1) supp bJ ⊂ CJ
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and
(5.2) ‖bJ‖L1(CJ) . |J |,

�
bJ = 0.

Since f is smooth, we may arrange matters so that the bJ are smooth. We
decompose K =

∑
j∈Z SjK0, where

SjK0(x) = 2−j
∞�

0

ϕ(2−js)s−NK0(s−1 ◦ x) ds, j ∈ Z.

(See Section 2 for the definition of ϕ). In the following, we use 2j to denote
the radius of J , where j = j(J) is an integer. Now we write(∞�

0

|f ∗ (Kht)(x)|2 dt
t

)1/2

≤ |g ∗ (Kh(·))(x)|H +
∣∣∣∑
s≤C

∑
J

bJ ∗ (h(·)Sj+sK0)(x)
∣∣∣
H

+
∣∣∣∑
s>C

∑
J

bJ ∗ (h(·)Sj+sK0)(x)
∣∣∣
H

=: I1 + I2 + I3.

For the first term, the L2 boundedness of gΩ (Theorem 1.1) and Cheby-
shev’s inequality imply that

|{x : I1 > 1}| ≤ ‖g‖2L2(G) . ‖g‖L1(G) . ‖f‖L1(G).

The second term is supported in
⋃
J CJ , thus

|{x : I2 > 1}| ≤
∣∣∣⋃
J

CJ
∣∣∣ ≤∑

J

|CJ | . ‖f‖L1(G).

To handle the remaining term, it suffices to show that∣∣∣∣{∑
s>C

(∞�
0

∣∣∣∑
J

bJ ∗ (htSj+sK0)(x)
∣∣∣2 dt

t

)1/2

> 1
}∣∣∣∣ .∑

J

|J |.

Note that supp(Sj+sK0) ⊂ {x ∈ G : 2j+s−2 ≤ ρ(x) ≤ 2j+s+3}. Hence,
bJ ∗ (htSj+sK0) is supported on the annulus (2sJ)∆ provided that C in the
above inequality is large enough (only depending on B0 and C in (5.1)).
Take a suitable smooth cutoff function ψ such that

suppψ ⊂ {x : C−1/2 < ρ(x) < 4C}
and ψ ≡ 1 on {x : C−1 < ρ(x) < 2C}. Let ψsJ(x) = ψ(2−j−s ◦ (x−1

J x)). Then
to finish the proof of Theorem 1.2, it suffices to show that

(5.3)
∣∣∣∣{∑

s>C

(∞�
0

∣∣∣∑
J

ψsJ(x)(bJ ∗ (htSj+sK0)(x))
∣∣∣2 dt

t

)1/2

> 1
}∣∣∣∣ .∑

J

|J |.

Below we show that (5.3) is a consequence of the following proposition:
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Proposition 5.1. Suppose s > C and 1 < p < 2. Let J be a non-empty
finite collection of disjoint balls such that

(5.4)
∑
J

|J | . 1

and

(5.5)
∥∥∥∑

J

χC2sJ

∥∥∥
L∞(G)

. 2Ns.

Let bJ be a collection of smooth functions satisfying (5.2) and let ψJ = ψsJ .
Then

(5.6)
∥∥∥∑

J

ψJ(bJ ∗ (htSj+sFJ))
∥∥∥
Lp(H)

. 2−εs
(∑

J

|J | ‖FJ‖2L2(G)

)1/2

for all functions FJ in L2(G).

The proof of Proposition 5.1 will be postponed until Section 6. Now let
us complete the proof of (5.3) by applying Proposition 5.1. We need the
following

Lemma 5.2 ([T, Lemma 9.2]). Let B ⊂ B(0, C) be any Euclidean ball of
radius at least 2−εs, and define the functions ψJ,B by

ψJ,B(x) = ψB(2−j−s ◦ (x−1
J x)),

where ψB is any bump function adapted to B (this means that 0 ≤ ψB ≤ 1,
ψB ∈ C∞ with suppψB ⊂ 2B and ψB ≡ 1 on B). Then∣∣∣{∑

J

ψJ,B(x) > s32Ns|B|
}∣∣∣ . 2−εs

2
.

Applying Lemma 5.2 with a ball of size roughly 1 and a nonnegative
cutoff, we obtain ∣∣∣{∑

J

χC2sJ > s32Ns|B|
}∣∣∣ . 2−εs

2
.

Then we use a sieving argument of Córdoba (see [Cor, p. 11]). For any ball
J ∈ J , define the height h(J) to be the number

h(J) = #{J ′ ∈ J : 2J ⊂ 2J ′},
where #E denotes the cardinality of the set E.

Define the exceptional set Es by

Es =
⋃

h(J)≥s32Ns

J.

Then |Es| . 2−εs. For each a = 0, 1, . . . , s3 − 1, the collection of balls with
height between a2Ns and (a+ 1)2Ns (denoted by Ja) satisfies (5.6), and by
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s3 applications of (5.5) and the triangle inequality, we obtain

(5.7)
∥∥∥∑

J

ψJ(bJ ∗ (htSj+sFJ))
∥∥∥
Lp(Ec

s ,H)
. 2−εs

(∑
J

|J | ‖FJ‖2L2(G)

)1/2

for all functions FJ in L2(H) (see [T]).
We adapt Tao’s argument in [T]. By dilation invariance, it suffices to

verify (5.3) in the case when
∑

J |J | ∼ 1. In particular, we may assume that
(5.4) holds.

For each s > C we decompose K0 as K0 = K≤s+K>s, where K≤s(x) =
K0(x)χ{|K0|.2εs/2}(x). It suffices to show∣∣∣∣{∑

s>C

(∞�
0

∣∣∣∑
J

ψJ(bJ ∗ (htSj+sK>s))
∣∣∣2 dt

t

)1/2

& 1
}∣∣∣∣ . 1,(5.8)

∣∣∣∣{∑
s>C

(∞�
0

∣∣∣∑
J

ψJ(bJ ∗ (htSj+sK≤s))
∣∣∣2 dt

t

)1/2

& 1
}∣∣∣∣ . 1.(5.9)

By Lemma 2.1, (2.5) and (5.2), we have

‖ψJ(bJ ∗ (htSj+sK>s))‖L1(H) . ‖bJ‖L1(G)‖htSj+sK>s‖L1(H)

. |J | ‖K>s‖L1(G),

Note that ∑
s>C

‖K>s‖L1(G) . ‖K0‖L logL(G) . 1.

Then by (5.4) and the triangle inequality,∑
s>C

∥∥∥∑
J

ψJ(bJ ∗ (htSj+sK>s))
∥∥∥
L1(H)

.
∑
j>C

|J | ‖K>s‖L1(G) . 1,

which implies (5.8) by Chebyshev’s inequality.
As for (5.9), applying the estimate (5.7) with FJ = K≤s for all J , we

have, for each s,∥∥∥∣∣∣∑
J

ψJ(bJ ∗ (htSj+sK≤s))
∣∣∣
H

∥∥∥
Lp(Ec

s)
. 2−εs

(∑
J

|J | ‖K≤s‖2L2(G)

)1/2

. 2−εs/2.

Summing this over s > C yields∥∥∥∥∑
s>C

(∞�
0

∣∣∣∑
J

ψJ(bJ ∗ (htSj+sK≤s))
∣∣∣2 dt

t

)1/2∥∥∥∥
Lp((

S
s>C Es)c)

. 1.

Thus (5.9) follows from Chebyshev’s inequality and the fact |
⋃
s>C Es| . 1.

This completes the derivation of (5.3) from Proposition 5.1.
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6. Weak (1, 1) estimate II: Proof of Proposition 5.1 (I). The
following sections are devoted to proving Proposition 5.1. To get (5.6), by
duality, it suffices to show(∑

J

|J |−1

∥∥∥∥∞�
0

S∗j+s[(b̃J) ∗ (ψJgt)ht]
dt

t

∥∥∥∥2

L2(G)

)1/2

. 2−εs‖gt‖Lp′ (H)

for all test functions gt ∈ Lp
′
(H), where S∗j+s denotes the adjoint of Sj+s

and b̃J(x) = bJ(−x). By the TT ∗ method, we need to show

(6.1)
∥∥∥∥∑

J

|J |−1ψJ

(
bJ ∗ Sj+s

[∞�
0

S∗j+s([b̃J ∗ (ψJgt1)]ht1)
dt1
t1

ht2

])∥∥∥∥
Lp(H)

. 2−εs‖gt‖Lp′ (H).

Define the self-adjoint operators TJ and T by

TJft(x) =
bJ
|J |
∗
(
S0

(∞�
0

S∗0 [(b̃J ∗ ft1)ht1 ]
dt1
t1

)
ht2

)
(x)

and T = 2−Ns
∑

J ψJTJψJ , respectively, where ψJ denotes the multiplier
defined by

ψJf(x) := ψJ(x)f(x).

Then the desired estimate (6.1) takes the form

(6.2) ‖Tft‖Lp(H) . 2−εs‖ft‖Lp′ (H),

since Sj+sS∗j+s = 2−N(s+j)S0S
∗
0 . Let dJ : B(0, C)→ CJ denote the map

(6.3) dJ(v) = xJ(2j ◦ v).

Define the smooth functions cJ supported on the ball B(0, C) by cJ(v) =
|J |−1bJ(dJ(v)). Then by (5.2),

‖cJ‖L1(B(0,C)) . 1 and
�

B(0,C)

cJ = 0.

Note that
S0S

∗
0F (x) =

�
ϕ̄(u)F (u ◦ x) du,

where ϕ̄(u) =
	
ϕ(v)ϕ(uv)v−(N−1)dv is a bump function adapted to {u ∼ 1}.

Then TJ takes the form

TJFt1(t2, x) =
� � � �

cJ(v)ϕ̄(u)cJ(w)Ft1(dJ(w)u ◦ (dJ(v)−1x))

× ht1(u ◦ (dJ(v)−1x))ht2(dJ(v)−1x) dv du dw
dt1
t1
.

We need to define a slightly larger and noncancellative version of TJ . For
each J , let ψ+

J be a slight enlargement of ψJ which is positive on the support
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of ψJ . Also, applying Lemma 4.1, we may find functions c1J , . . . , c
n
J supported

on B(0, C) such that

(6.4) cJ =
n∑
i=1

∂xic
i
J , ‖ciJ‖L1(G) . 1.

Define c+J = |cJ |+
∑n

i=1 |ciJ |. Then c+J is a nonnegative function on B(0, C)
with

(6.5) ‖c+J ‖L1(G) . 1.

Finally, we choose ϕ+ to be any enlargement of ϕ̄ which is strictly positive
on the support of ϕ̄, and satisfies ϕ+(u) = ϕ+(u−1)u2−N . We then define
the self-adjoint operator T+

J by

T+
J Ft1(t2, x) =

� � � �
c+J (v)ϕ+(u)c+J (w)Ft1(dJ(w)u ◦ (dJ(v)−1x))

× ht1(u ◦ (dJ(v)−1x))ht2(dJ(v)−1x) dv du dw
dt1
t1
,

and
T+ = 2−Ns

∑
J

ψ+
J T

+
J ψ

+
J ,

where ψ+
J denotes the multiplier defined by ψ+

J f(x) := ψ+
J (x)f(x). Clearly,

for all J and non-negative F , we have the pointwise bounds

(6.6) TJFt1(t2, x) ≤ T+
J Ft1(t2, x) and TFt1(t2, x) ≤ T+Ft1(t2, x).

Before estimating (6.2), we first show

(6.7) ‖T+Ft‖Lp(H) . ‖Ft‖Lq(H) for all 1 ≤ p ≤ q ≤ ∞.

By interpolation and duality, it suffices to verify (6.7) for q =∞. By Hölder’s
inequality and (5.5), we have∥∥∥∑

J

ψ+
J T

+
J ψ

+Ft1

∥∥∥
Lp(H)

=
∥∥∥∥(∞�

0

∣∣∣∑
J

(ψ+
J T

+
J ψ

+Ft1)(t2, ·)
∣∣∣2 dt2

t2

)1/2∥∥∥∥
Lp(G)

≤
∥∥∥∥∑

J

|ψ+
J |
(∞�

0

|(T+
J ψ

+Ft1)(t2, ·)|2
dt2
t2

)1/2∥∥∥∥
Lp(G)

.
∥∥∥(∑

J

|χC2sJ |
)1/p′∥∥∥

L∞(G)

∥∥∥∥{∑
J

(∞�
0

|(T+
J ψ

+Ft1)(t2, ·)|2
dt2
t2

)p/2}1/p∥∥∥∥
Lp(G)

. 2Ns/p
′
(∑

J

‖T+
J ψ

+
J Ft1‖

p
Lp(H)

)1/p
.
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By Hölder’s and Minkowski’s inequalities, using
∑
|J | . 1 and (5.5) we get∑

J

‖T+
J ψ

+
J Ft‖

p
Lp(H) . ‖Ft1‖

p
L∞(H)

∑
J

∥∥∥ � � � c+J (v)ϕ+(u)c+J (w)

×ψ+
J (dJ(w)u ◦ (dJ(v)−1x)) dv du dw

∥∥∥p
Lp(G,dx)

. ‖Ft1‖
p
L∞(H)

∑
J

‖ψ+
J ‖

p
Lp(G) . 2Ns‖Ft1‖

p
L∞(H).

Now combining these two estimates yields (6.7).
To finish the proof of Theorem 1.2, we must obtain an attenuation factor

2−2εs for (6.2). To this end, we want to iterate T m+1 times with m = 22n−3,
as in the L2 case. But symmetry considerations require iterating one more
time, i.e., iterating m+ 2 times is sufficient for our purpose (see Remark 6.3
below). Now we turn to the details.

Below we show that, to get (6.2), it suffices to prove

(6.8) ‖Tm+2Ft‖Lp(H) . 2−εs‖Ft‖Lp′ (H)

for 1 ≤ p < 2 and some ε > 0. Indeed, by (6.8) and m − 2-fold application
of (6.7) for q = p and replacing T+ by T (see (6.6)), we get

(6.9) ‖T 2mFt‖Lp(H) . ‖Tm+2Ft‖Lp(H) . 2−εs‖Ft‖Lp′ (H).

By the TT ∗ method and the self-adjointness of T , it is easy to see that (6.9)
implies

(6.10) ‖TmFt‖Lp(H) . 2−ε
′s‖Ft‖L2(H)

for some ε′ > 0. On the other hand, by repeated application of (6.7) and
(6.6),

(6.11) ‖TmFt‖Lp(H) . ‖Ft‖Lq(H) for all q ≥ p ≥ 1.

By interpolation between (6.10) and (6.11), we thus obtain

(6.12) ‖TmFt‖Lp(H) . 2−ε
′′s‖Ft‖Lp′ (H)

for some small ε′′ > 0. Iterating this argument 22n−4 − 1 times we thus
obtain

‖T 2Ft‖Lp(H) . 2−θs‖Ft‖Lp′ (H)

for some θ > 0, and (6.2) follows from this easily (see the process of deriving
(6.12) from (6.9)).

Thus, we only need to show (6.8). Applying (6.7) m + 2 times for p =
q = 2, we see that Tm+2 is bounded on L2(H). By interpolation and duality,
it suffices to prove (6.8) for p = 1. By expanding Tm, we thus only need to
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show that

(6.13)
∥∥∥2−Nms

∑
J1,...,Jm∈J

T
( m⊗
i=1

ψJiTJiψJi

)
TFtm

∥∥∥
L1(H)

. 2−εs‖Ftm‖L∞(H);

here,
⊗m

i=1Qi denotes the composition of the operators Q1, . . . , Qm, defined
by
⊗m

i=1Qi(f) := Qm(· · · (Q2(Q1f)) · · · ). The balls {J1, . . . , Jm} may have
different sizes. We shall extract a subsequence of n ball, whose sizes increase
monotonically. First we need the following definition:

Definition 6.1. Let J = (J1, . . . , Jm) be an m-tuple of balls (m ≥ n)
and k={k1, . . . , kn} be a strictly increasing n-tuple of integers in {1, . . . ,m}.
We say that J is ascending with respect to k if

jkq ≤ jl for all kq ≤ l ≤ kn;

we then write J↗ k. Similarly, we say that J is descending with respect to
k if

jkq ≤ jl for all k1 ≤ l ≤ kq,

and write J↘ k, where 2ji is the radius of Ji (i = 1, . . . ,m).

The following lemma is due to Tao.

Lemma 6.2 ([T, Lemma 10.2]). If m = 22n−3 and J ∈ Jm, then there
exists a sequence k such that either J↗ k or J↘ k.

For all k = {k1, . . . , kn} ⊂ {1, . . . ,m}, we say k < k′ if k1 < k′1, or
kj = k′j for j = 1, . . . , i − 1, but ki < k′i (i = 2, . . . , n). This defines an
order on k. Thus, when m = 22n−3, for all J ∈ Jm we can choose a largest
sequence k := kmax(J) with respect to this order so that either J ↗ k or
J ↘ k. Clearly, Lemma 6.2 implies that kmax(J) is well-defined. Since the
number of choices of k is finite, it suffices to show that

(6.14) 2−Nms
∥∥∥ ∑
J=(J1,...,Jm)∈Jm

kmax(J)=k

T
( m⊗
i=1

ψJiTJiψJi

)
TFtm

∥∥∥
L1(H)

. 2−εs‖Ftm‖L∞(H)

for each k.
Fix k. Using the following discussion we can reduce to the case when

k1 = 1 and kn = m. Since

kmax(J1, . . . , Jm) = k

is independent of the choices of Ji for kn < i ≤ m, we may write

kmax(J1, . . . , Jkn) = k instead of kmax(J1, . . . , Jm) = k.
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Then the left hand side of (6.14) can be rewritten as

2−N(m−kn)s

∥∥∥∥ ∑
J1,...,Jkn∈J

kmax(J1,...,Jkn )=k

T
( kn⊗
i=1

ψJiTJiψJi

)
TTm−knFtm

∥∥∥∥
L1(H)

.

By (6.7), T is bounded on L∞(H), and it is sufficient to show that

2−N(m−kn)s
∥∥∥ ∑

J1,...,Jkn∈J
kmax(J1,...,Jkn )=k

T
( kn⊗
i=1

ψJiTJiψJi

)
TFtm

∥∥∥
L1(H)

. 2−εs‖Ftm‖L∞(H).

Using a similar argument to the above, the desired estimate can be further
reduced to

2−N(kn−k1+1)s
∥∥∥T k1−1

∑
Jk1

,...,Jkn∈J
kmax(Jk1

,...,Jkn )=k

T
( kn⊗
i=k1

ψJiTJiψJi

)
TFtm

∥∥∥
L1(H)

. 2−εs‖Ftm‖L∞(H).

The left hand side is majorized by

2−N(kn−k1+1)s
∥∥∥(T+)k1−1

∑
Jk1

,...,Jkn∈J
J↗k orJ↘k

∣∣∣T( kn⊗
i=k1

ψJiTJiψJi

)
TFtm

∣∣∣ ∥∥∥
L1(H)

.

By (6.7), T+ is bounded on L1(H), so we may discard the (T+)k1−1 operator.
Relabelling J and k, and reducing m to kn − k1 + 1, we only need to show
that

(6.15)
∥∥∥2−Nms

∑
J1,...,Jm∈J
J↗k orJ↘k

∣∣∣T( m⊗
i=1

ψJiTJiψJi

)
TFtm

∣∣∣∥∥∥
L1(H)

. 2−εs‖Ftm‖L∞(H)

for all n ≤ m ≤ 22n−3 and all k with k1 = 1 and kn = m.

Remark 6.3. Recall that in the estimates of the L2 case, we iterate L
n + 1 times (see Section 3) because of an extra integral in the variable t.
Here we need to iterate T m + 2 times in (6.8) in order to guarantee that
the left hand side of (6.15) is symmetric in the sense that the case J↗ k is
dual to J↘ k. Thus we only need to prove (6.15) for J↗ k.

Below we prove (6.15) for J ↗ k. Since T is bounded on L∞(H), it
suffices to show
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∥∥∥2−Nms
∑

J1,...,Jm∈J :J↗k

∣∣∣T( m⊗
i=1

ψJiTJiψJi

)
Ftm

∣∣∣ ∥∥∥
L1(H)

. 2−εs‖Ftm‖L∞(H)

(6.16)

for all n ≤ m ≤ 22n−3 and all k such that k1 = 1, kn = m.
Next, we shall remove the t integral in the H norm on the left hand side

of (6.16). Then the problem reduces to estimating a scalar-valued integral.
To be more precise, we will use the following conclusion:

Lemma 6.4.

(6.17) ‖T+Ft0‖L1(H) . sup
J∈J , w∈B(0,C)

∥∥∥∥∞�
0

ht0(|dJ(w)−1 · |)Ft0ψ+
J

dt0
t0

∥∥∥∥
L1(G)

.

Proof. We first show that (6.17) is a consequence of (5.5) and the in-
equality

(6.18) ‖(T+
J ψ

+
J Ft0)(·, ·)‖L1(H) . sup

w∈B(0,C)

∥∥∥∥∞�
0

ht0(dJ(w)−1·)ψ+
J Ft0

dt0
t0

∥∥∥∥
L1(G)

.

In fact, the above estimate together with (5.5) yields

‖T+Ft0‖L1(H) . 2−Ns
(∑

J

‖ψ+
J ‖L∞(G) · ‖T+

J (ψ+
J Ft0)‖L1(H)

)
. 2−Ns

∑
J

‖χC2sJ‖L∞(G) sup
w∈B(0,C)

∥∥∥∥∞�
0

ht0(|dJ(w)−1 · |)Ft0ψ+
J

dt0
t0

∥∥∥∥
L1(G)

. sup
J∈J , w∈B(0,C)

∥∥∥∥∞�
0

ht0(|dJ(w)−1 · |)Ft0ψ+
J

dt0
t0

∥∥∥∥
L1(G)

.

Let us turn to the proof of (6.18). For any Gs ∈ L∞(H) with ‖Gs‖L∞(H)

≤ 1, we write |〈(T+
J ψ

+
J Ft0)(·, s), G(·, s)〉L1(H)| as∣∣∣ � � � � c+J (v)ϕ+(u)c+J (w)〈Ft0(dJ(w)u ◦ (dJ(v)−1x)), ht0(u ◦ (dJ(v)−1x))〉H

× ψ+
J (dJ(w)u ◦ (dJ(v)−1x))〈hs(dJ(v)−1x), Gs(x)〉H dx du dv dw

∣∣∣.
Now we use the change of variables x = dJ(v) 1

u ◦ (dJ(w)−1y) (so dx =
u−Ndy) and u ∼ 1 to deduce

|〈(T+
J ψ

+
J Ft0)(·, s), G(·, s)〉L1(H)|

.

∣∣∣∣ � � � � c+J (v)ϕ+(u)c+J (w)ψ+
J (y)〈Ft0(y), ht0(dJ(w)−1y)〉H

×
〈
hs

(
1
u
◦ (dJ(w)−1y)

)
, Gs

(
dJ(v)

1
u
◦ (dJ(w)−1y)

)〉
H
dy du dv dw

∣∣∣∣
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.
� � � �

c+J (v)ϕ+(u)c+J (w)ψ+
J (y)|〈Ft0(y), ht0(dJ(w)−1y)〉H|

× ‖hs‖L∞(H)‖Gs‖L∞(H) dy du dv dw

. sup
w∈B(0,C)

‖〈ht0(dJ(w)−1·), ψ+
J Ft0〉H‖L1(G)‖c+J ‖

2
L1(G)‖ψ

+‖L∞(G)‖ϕ+‖L1(G)

. sup
w∈B(0,C)

∥∥∥∥∞�
0

ht0(dJ(w)−1·)ψ+
J Ft0

dt0
t0

∥∥∥∥
L1(G)

,

where (6.5) is used in the last inequality. By duality, we finally obtain
(6.18).

Remark 6.5. From the pointwise inequality (6.6), we see that Lemma
6.4 still holds on replacing T+ by T .

Applying Lemma 6.4 to the function

F (t0, ·) =
[( m⊗

i=1

ψJiTJiψJi

)
Ftm

]
(t0, ·)

and J = J0, we see that to show (6.16), it suffices to verify

(6.19)

2−Nms
∑

J∈Jm:J↗k

∥∥∥〈[( m⊗
i=1

ψJiTJiψJi

)
Ftm

]
(t0, ·)ψ+

J0
(·), ht0(dJ0(w0)−1·)

〉
H

∥∥∥
L1(G)

. 2−εs‖Ftm‖L∞(H)

uniformly in J0 and w0 ∈ B(0, C) for all n ≤ m ≤ 22n−3 and all k with
k1 = 1 and kn = m.

Fix m and k. By duality, it suffices to prove that the quantity

(6.20)
∑
J↗k

∣∣∣∣〈∞�
0

[( m⊗
i=1

ψJiTJiψJi

)
Ftm

]
(t0, ·)ht0(dJ0(w0)−1·)ψ+

J0

dt0
t0
, G

〉∣∣∣∣
is . 2−εs2Nms for all functions Ft in the unit ball of L∞(H) and G in the
unit ball of L∞(G).

For each J ∈ Jm and J↗ k, we expand the inner product in (6.20) as

�
· · ·

�
Ftm(xm)G(x0)ψ+

J0
(x0)

m∏
i=1

(
ψJi(xi−1)cJi(vi)ϕ̄(ui)cJi(wi)ψJi(xi)

)
×
m−1∏
j=0

Rjhtm(um ◦ (dJm(vm)−1xm−1))
dtm
tm

d~w d~u d~v dx0,

where ~v = (v1, . . . , vm), ~w = (w1, . . . , wm) range over B(0, C)m, and ~u =
(u1, . . . , um) ranges over [C−1, C]m, d~w =

∏m
i=1 dwi, d~v =

∏m
i=1 dvi, x0
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ranges over G, and x1, . . . , xm are defined recursively by

(6.21) xi = dJi(wi)(ui ◦ (dJi(vi)
−1xi−1)) for i = 1, . . . ,m.

Moreover, Rj (j = 0, . . . ,m− 1) is defined by

R0 := min
{
ρ(dJ1(v1)−1x0)
ρ(dJ0(w0)−1x0)

,
ρ(dJ0(w0)−1x0)
ρ(dJ1(v1)−1x0)

}
,

and

Rj := min
{
ρ(uj ◦ (dJj (vj)−1xj−1))
ρ(dJj+1(vj+1)−1xj)

,
ρ(dJj+1(vj+1)−1xj)

ρ(uj ◦ (dJj (vj)−1xj−1))

}
for j = 1, . . . ,m− 1.

We define new variables ~τ = (τ1, . . . , τn) by τq = ukq and y = v1, since
only these variables are actively used below. As in the proof of Theorem 1.1,
we shall decompose the J↗ k portion of (6.20) into

(6.22)
∑

J∈Jm :J↗k

∣∣∣∣� · · · �Ftm(xm)G(x0)ψ+
J0

(x0)
m∏
i=1

(ψJi(xi−1)cJi(vi)ϕ̄(ui)

× cJi(wi)ψJi(xi))
m−1∏
j=0

Rjη(2δs2−Mn detDL
~τ (xm))

× htm(um ◦ (dJm(vm)−1xm−1))
dtm
tm

d~w d~u d~v dx0

∣∣∣∣
and

(6.23)
∑

J∈Jm :J↗k

∣∣∣∣ � · · · �Ftm(xm)G(x0)ψ+
J0

(x0)
m∏
i=1

(
ψJi(xi−1)cJi(vi)ϕ̄(ui)

× cJi(wi)ψJi(xi)
)m−1∏
j=0

Rj [1− η(2δs2−Mn detDL
~τ (xm))]

× htm(um ◦ (dJm(vm)−1xm−1))
dtm
tm

d~w d~u d~v dx0

∣∣∣∣
where Mn =

∑n
i=1 αi(jki

+ s) (recall that 2jki is the radius of Jki
) and

δ > 0 is a small constant to be chosen later, and η is a bump function which
equals 1 near the identity.

The degenerate portion (6.22), as in the L2 case, can be majorized by
the corresponding portion of the singular integral. Thus it suffices to verify
that

(6.24) the nondegenerate portion (6.23) . 2−εs2Nms.
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7. Weak (1, 1) estimate III: Nondegenerate portion of the inte-
gral. To finish the proof of Proposition 5.1, we only need to show (6.24).
Define

T̃+
J F (x) =

� � �
c+J (v)ϕ+(u)c+J (w)F (dJ(w)u ◦ (dJ(v)−1x)) dw du dv

and

T̃+ = 2−Ns
∑
J

ψ+
J T̃

+
J ψ

+
J ,

where c+J and ϕ+ are as in the definition of T+
J in Section 6. In [T], the

following estimate is proved:

(7.1) ‖T̃+F‖Lp(G) . ‖F‖Lq(G) for all 1 ≤ p ≤ q ≤ ∞.

Therefore, to show (6.24), it is sufficient to show that

∑
J∈Jm :J↗k

∣∣∣∣ � · · · �Ftm(xm)G(x0)ψ+
J0

(x0)
m∏
i=1

(
ψJi(xi−1)cJi(vi)ϕ̄(ui)cJi(wi)

× ψJi(xi)
)m−1∏
j=0

Rj(1− η(2δs2−Mn detDL
~τ (xm)))

× htm(um ◦ (dJm(vm)−1xm−1))
dtm
tm

d~w d~u d~v dx0

∣∣∣∣
. 2−εs2Nms〈(T̃+)m1, 1〉.

By expanding out T̃+, we rewrite the above estimate as

(7.2)
∣∣∣∣ � · · · �Ftm(xm)G(x0)ψ+

J0
(x0)

m∏
i=1

(
ψJi(xi−1)cJi(vi)ϕ̄(ui)cJi(wi)

× ψJi(xi)
)m−1∏
j=0

Rjhtm(um ◦ (dJm(vm)−1xm−1))

× (1− η(2δs2−Mn detDL
~τ (xm)))

dtm
tm

d~w d~u d~v dx0

∣∣∣∣
. 2−εs

� � � � m∏
i=1

ψ+
Ji

(xi−1)c+Ji
(vi)ϕ+(ui)c+Ji

(wi)ψ+
Ji

(xi) dx0 d~w d~u d~v.

Fix all the frozen variables. Removing all the factors in the above expression
which do not depend on the variables y := v1 and ~τ , we reduce (7.2) to
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(7.3)
� �
G(x0)

(∞�
0

Ftm(xm)htm(um ◦ (dJm(vm)−1xm−1))
dtm
tm

)
cJ1(y)

× a(y, ~τ)
(m−1∏
i=0

Ri

)
(1− η(2δs2−Mn detDL

~τ (xm))) dy d~τ

. 2−εs
� �
c+J1

(v1)a+(y, ~τ) dy d~τ ,

where

a(y, ~τ) =
m∏
l=1

ψJl
(xl−1)ψJl

(xl)(1− η(2δs2−Mn detDL
~~τ

(xm)))
n∏
q=1

ϕ̄(~τq)ψ+
J0

(x0)

a+(y, ~τ) =
m∏
l=1

ψ+
Jl

(xl−1)ψ+
Jl

(xl)
n∏
q=1

ϕ+(~τq).

Since dJm(wm) is independent of y and ~τ , we may set

f(xm) =
∞�

0

Ftm(xm)htm(um ◦ (dJm(vm)−1xm−1))
dtm
tm

=
∞�

0

Ftm(xm)htm(dJm(wm)−1xm)
dtm
tm

.

By Cauchy–Schwarz’s inequality, we can easily see ‖f‖L∞(G) ≤ 1 .
To show (7.3), by (6.4) and integration by parts, it suffices to verify that

I1 + I2 + I3 :=
∣∣∣ � � ciJ1

(y)∂yif(xm)a(y, ~τ)
m−1∏
ς=0

Rς dy d~τ
∣∣∣(7.4)

+
∣∣∣ � � ciJ1

(y)f(xm)∂yia(y, ~τ)
m−1∏
ς=0

Rς dy d~τ
∣∣∣

+
∣∣∣ � � ciJ1

(y)f(xm)a(y, ~τ)
(
∂yi

m−1∏
ς=0

Rς

)
dy d~τ

∣∣∣
. 2−εs

� �
c+J1

(v1)a+(y, ~τ) dy d~τ

for each i = 1, . . . , n. The desired estimate for I2 follows from Lemma 13.1
in [T] and the obvious bound

∏m−1
ς=0 Rς ≤ 1. To estimate I1 and I3, the

estimates for the derivatives of homogeneous norms are required.
We give an explicit estimate for the Euclidean derivative of the homoge-

neous norm which is new on general homogeneous groups.

Theorem 7.1. The homogeneous norm ρ satisfies the estimate

(7.5) |∂xiρ(x)| . ρ(x)−αi+1,

where αi is given by (1.3).
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Proof. The homogeneity of ρ implies that

ρ(rα1x1, . . . , r
αnxn) = rρ(x1, . . . , xn).

Taking the derivative in xi, we have

rαi∂xiρ(r ◦ x) = r∂xiρ(x),

which shows that ∂xiρ(x) is homogeneous of order −αi + 1. Since the ho-
mogeneous norm is C∞ away from the origin (see [FoSt]), we know that
∂xiρ(x) . 1 for x ∈ Σ. Then (7.5) follows by a dilation argument.

Using the above theorem, we next show the following

Lemma 7.2. For y = v1 and xς−1 (ς = 1, . . . ,m) defined by (6.21), the
following estimates hold :

(a) |∂yi [ρ(dJς (vς)−1xς−1)]| . 2−εsρ(dJς (vς)−1xς−1)
for ς = 1, . . . ,m and i = 1, . . . , n

(b) |∂~τq [ρ(dJς (vς)−1xς−1)]| . ρ(dJς (vς)−1xς−1)

for ς = 1, . . . ,m and q = 1, . . . , n.

Proof. Since xς−1 ∈ (2sJς)∆, we see that

ρ(dJς (vς)−1xς−1) ≈ 2s+jς .

For (a), we only need to show that

(7.6) |∂yi [(dJς (vς)−1xς−1)k]| . 2−εs2(s+jς)αk ,

where (x)k denotes the kth component of x ∈ Rn. Indeed, let

z = (dJς (vς)−1 · xς−1).

Since ρ is regular, by the chain rule, this estimate together with (7.5) yields

|∂yi [ρ(dJς (vς)−1xς−1)]| =
∣∣∣∣ n∑
m=1

∂ρ(z)
∂zm

∂zm
yi

∣∣∣∣ . 2−εs2s+jς ,

which gives (a). Now we prove the inequality (7.6). Since

|2−s−jς ◦ (dJς (vς)−1xς−1)| ∼ ρ(2−s−jς ◦ (dJς (vς)−1xς−1)) . 1,

by Lemma 4.3(a), we have

|∂yi(2
−s−jς ◦ (dJς (vς)−1xς−1))| ∼ |∂Lyi

(2−s−jς ◦ (dJς (vς)−1xς−1))|.
Applying Lemma 4.3(b), (g), we get

|∂Lyi
(2−s−jς ◦ (dJς (vς)−1xς−1))| = |∂Lyi

((2−s−jςuς−1) ◦ (dJς−1(vς−1)−1xς−2))|
= · · ·
= |∂Lyi

((2−s−jςuς−1 . . . u1) ◦ (dJ1(y)−1x0))|.
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Using the fact j1 ≤ jς arising from J ↗ k and ul ∼ 1 for l = 1, . . . ,m, and
then applying Lemma 4.3(b), (c), (d), we have

|∂yi(2
−s−jς ◦ (dJς (vς)−1xς−1))| . |∂Lyi

(2−s−jς ◦ (dJ1(y)−1x0))|

. |∂Lyi
(2−s−j1 ◦ (dJ1(y)−1x0))|

. |C[2−j1−s ◦ (x−1
J1
x0)](2−s ◦ ∂Lyi

(y−1))|

. |(2−s ◦ ∂Lyi
(y−1))| . 2−α1s,

where we use dJ1(y)−1 = (2j1 ◦ y−1)x−1
J in the third inequality, and in the

last inequality we use the fact that y−1 depends on y polynomially. Hence,
by (1.3),

2−(s+jς)αk |∂yi(dJς (vς)−1xς−1)(k)| = |∂yi(2
−(s+jς)αk(dJς (vς)−1xς−1))(k)|

≤ |∂yi(2
−s−ji ◦ (dJς (vς)−1xς−1))| ≤ 2−α1s,

which implies (7.6) .
The proof of (b) is similar. We may assume that kq ≤ ς (otherwise (b)

is trivial). By the chain rule, it suffices to show

(7.7) |∂~τq [(dJς (vς)−1xς−1)k]| . 2(s+jς)αk .

Using Lemma 4.3(a), (b), (g), (e), we have

|∂~τq(2−s−jς ◦ (dJς (vς)−1xς−1))| ∼ |∂L~τq(2−s−jς ◦ (dJς (vς)−1xς−1))|

∼ |∂L~τq(2−s−jς ◦ (~τq ◦ dJq(vq)−1xq−1))|

. |~τ−1
q (~τq ◦X[2−s−jq ◦ (dJq(vq)−1xq−1)])|

∼ |X[2−s−jq ◦ (dJq(vq)−1xq−1)]|

∼ ρ(2−s−jq ◦ (dJq(vq)−1xq−1)) . 1,

which, by (1.3), implies (7.7).

Let us continue to estimate I1 and I3 in (7.4). We consider I3 first. To
begin, we prove that

(7.8) |∂yi(Rς)| . 2−εs for i = 1, . . . , n and ς = 0, 1, . . . ,m− 1.

When ς = 0, if ρ(dJ1(v1)−1x0) ≤ ρ(dJ0(w0)−1x0), then by Lemma 7.2(a),

|∂yi(R0)| . |∂yi [ρ(dJ1(v1)−1x0)]|
ρ(dJ0(w0)−1x0)

. 2−εs.

If ρ(dJ0(w0)−1x0) ≤ ρ(dJ1(v1)−1x0), the proof is similar.
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Next we estimate ∂yi(Rς) for ς = 1, . . . ,m−1. If ρ(uς◦(dJς (vς)−1xς−1)) ≤
ρ(dJς+1(vς+1)−1xς), then by Lemma 7.2(a), we have

|∂yi(Rς)| ≤
∣∣∣∣∂yi [ρ(uς ◦ (dJς (vς)−1xς−1))]ρ(dJς+1(vς+1)−1xς)

ρ(dJς+1(vς+1)−1xς)2

∣∣∣∣
+
∣∣∣∣ρ(uς ◦ (dJς (vς)−1xς−1))∂yi [ρ(dJς+1(vς+1)−1xς)]

ρ(dJς+1(vς+1)−1xς)2

∣∣∣∣
.
|∂yi [ρ(uς ◦ (dJς (vς)−1xς−1))]|+ |∂yi [ρ(dJς+1(vς+1)−1xς)]|

ρ(dJς+1(vς+1)−1xς)
. 2−εs.

The case when ρ(dJς+1(vς+1)−1xς) ≤ ρ(uς ◦ (dJς (vς)−1xς−1)) can be treated
similarly. Thus (7.8) is proved. From (7.8) and Rς ≤ 1 (ς = 0, . . . ,m − 1),
we have

(7.9)
∣∣∣∂yi

m−1∏
ς=0

Rς

∣∣∣ . 2−εs.

From (7.9) and ‖f‖L∞(G) ≤ 1, the estimate for I3 follows easily.
Finally, we estimate I1. It suffices to show that

(7.10)
∣∣∣� ∂yif(xm)a(y, ~τ)

m−1∏
ς=0

Rς d~τ
∣∣∣ . 2−εs

�
a+(y, ~τ) d~τ

uniformly in y. Fix y. By Lemma 4.2, we can rewrite the left hand side as∣∣∣�∇~τf(xm) · (DL
~τ xm)−1∂Lyi

xma(y, ~τ)
m−1∏
ς=0

Rς d~τ
∣∣∣.

Integrating by parts, we see that this is equal to∣∣∣� f(xm)∇~τ · ((DL
~τ xm)−1∂Lyi

xma(y, ~τ)
m−1∏
ς=0

Rς)d~τ
∣∣∣.

Thus to show (7.10), it suffices to prove the pointwise bound∥∥∥(1 +∇~τ )
(m−1∏
ς=0

Rς

)∥∥∥ ‖(1 +∇~τ )((DL
~τ xm)−1∂Lyi

xma(y, ~τ))‖ . 2−εsa+(y, ~τ),

where ‖(1 +∇)f‖ := |∇f |+ |f |. The estimate

‖(1 +∇~τ )((DL
~τ xm)−1∂Lyi

xma(y, ~τ))‖ . 2−εsa+(y, ~τ)

is shown in [T, p. 1583]. Thus it suffices to show∥∥∥(1 +∇~τ )
(m−1∏
ς=0

Rς

)∥∥∥ . 1.
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From the obvious fact |Rς | . 1, we reduce the proof to

(7.11) |∂τq(Rς)| . 1

for each ς = 0, . . . ,m− 1 and q = 1, . . . , n.
We first estimate ∂τq(R0). If ρ(dJ1(v1)−1x0) ≤ ρ(dJ0(w0)−1x0), then by

Lemma 7.2(b), we get

|∂τq(R0)| =
|∂τq [ρ(dJ1(v1)−1x0)]|
ρ(dJ0(w0)−1x0)

. 1.

If ρ(dJ0(w0)−1x0) ≤ ρ(dJ1(v1)−1x0), the estimate is similar.
Next we estimate ∂τq(Rς) for ς = 1, . . . ,m−1. If ρ(uς◦(dJς (vς)−1xς−1)) ≤

ρ(dJς+1(vς+1)−1xς), then by Lemma 7.2(b), we have

|∂τq(Rς)| ≤
∣∣∣∣∂τq [ρ(uς ◦ (dJς (vς)−1xς−1))]ρ(dJς+1(vς+1)−1xς)

ρ(dJς+1(vς+1)−1xς)2

∣∣∣∣(7.12)

+
∣∣∣∣ρ(uς ◦ (dJς (vς)−1xς−1))∂τq [ρ(dJς+1(vς+1)−1xς)]

ρ(dJς+1(vς+1)−1xς)2

∣∣∣∣
.
|∂τq [ρ(uς ◦ (dJς (vς)−1xς−1))]|+ |∂τq [ρ(dJς+1(vς+1)−1xς)]|

ρ(dJς+1(vς+1)−1xς)

. 1.

The case ρ(dJς+1(vς+1)−1xς) ≤ ρ(uς ◦ (dJς (vς)−1xς−1)) can be verified in a
similar way. Thus (7.11) is proved. This ends the proof of Proposition 5.1
and, therefore, Theorem 1.2.
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